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THE EFFECT OF DENSITY,

INITIAL MOISTURE CONTENT,

AND SPONTANEOUS HEATING

ON DRYING ISOTHERMS OF ALFALFA

C. A. Cromer, E. B. Collins, and W. R. Guthrie

The phenomenon of spontaneous heating has long been observed and

associated with storage or large quantities of moist grasses. If this heat-

ing is allowed to proceed unchecked, spontaneous ignition, or combustion,

often results.

Respiration of the plant plays an integral part in the early stages of

spontaneous heating. The end products of this respiration are heat, car-

bon dioxide, and metabolic water. The warm moist atmosphere produced

is an excellent environment for the development and activity of micro-

organisms and enzymes.

Many of the biological aspects involved are not completely under-

stood, despite a number of extensive investigations. So far, progress has

been mainly in the direction of recognition of the factors involved, but

the relative importance and interaction of the various agencies involved

are not fully understood. The method used for investigation may often

predetermine the results. The evolution of heat is the process under

investigation, but it must be recognized that the temperature of the heat-

ing mass will often determine the further course of the phenomenon.

Browne (1), Henson (5), James (8), Hoffman (6), and Rothbaum (11)

have made available an interesting and extensive review of observations

and theories of spontaneous heating. Most of the researchers will agree

that microorganisms are present in the early stages of the evolution of

heat in damp hay. The fungi are considered only of importance when the

heating occurs slowly (5). Bacteria are probably present in the entire

range from air temperature to 70° C. Respiration of the living cells of

the plant also enter into the heating process (2, 4, 5, 14). Chemical oxi-

dations probably play an important part when the temperature rises to at

least 70° C (8).
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Spontaneous heating was shown by Phillips (10) to bring about the

formation of moist spots near the top of alfalfa bales which were extremely

difficult to dry in commercial systems. For this reason, the effect of

spontaneous heating had to be considered when evaluating factors which

affect the drying process. Methods for determining moisture content of

bales by conventional means were difficult because drying temperatures

of 130° F and 160° F were used in the tests. These high temperatures

made the use of resistance and capacitance moisture meters extremely

unreliable. A method for determining moisture content was desired in

which temperature would not affect reliability.

In any system which uses air as the medium to remove moisture

from the product, the temperature of the air will decrease due to the heat

used in evaporating moisture. Jennings (9) stated that the temperature

drop of drying air varies with the moisture content of the hay and the

humidity of the drying air as it enters the product. Phillips (10) found

that the depth of the drying zone along any vertical line in the bale was

usually within a range of two inches. If constant air flow of a uniform

condition is used during the entire drying process, then the decrease in

moisture content in each zone will be indicated by die temperature drop.

An isotherm* will be defined as a line which connects points of

equal temperature.

INVESTIGATION
Tests and small samples

Tests were conducted on small samples to determine the relation-

ship between temperature and moisture content. Four small samples were

placed in series in the same air stream. (Typical moisture curves are

presented in Figure 1 and the corresponding temperature curves are given

in Figure 2.)

As air passed through each sample in order, from 1 to 4, a drop in

sample temperature occurred. The temperature curves lag one another in

the reverse order in which air passed through the samples. The moisture

curves exhibit the same lag. Drying in each small sample was nearing

completion before any appreciable moisture loss occurred in the next

sample through which air passed. This indicates that drying occurs in a

relatively thin layer of hay before progressing toward the point where the

air is exhausted. It was observed from plots of this data versus time

that the average temperature-time curve for a drying sample was approxi-

* Isotherm is the name commonly applied to an equilibrium moisture curve cor-

responding to a specific temperature (3).

i



mately the inverse of the average moisture content-time curve, providetl

that the plotting scale was adjusted so that the beginning moisture con-

tent coincided with the final temperature (Figure 3). llius, there exists

a straight line relationship between moisture-content and temperature at a

given time (Figure 4). The equation relating average temperature witi)

average moisture content is:

T - T^ =. (M - Mj) (T2 - T^) = b (M - Mp (1)

(M2 - Ml)

where:

T = average temperature at a given time

M = average moisture content at a given time

T^ = average initial temperature

T2 = average final temperature

Mj - average initial moisture content

M2 = average final moisture content

b = slope of temperature-moisture content line or solving for the

moisture content at a given time:

M = (T-Tj) + Ml (2)

I)

The slope b represents the average moisture content at a given time

from the average temperature throughout the sample. This could be ac-

complished without disturbing the sample. If a representative moisture

content sample can be obtained at the beginning and the end of drying,

the slope may be calculated using the two-point slope equation:

b - T2 - Ti (3)

M2 - Mj

The accuracy of this analysis depends upon the "representative-

ness" of the averages used in the calculation. It was applied to several

sets of drying data and has been found to give good results (Figure 5).

Predictions were very good with bale size samples weighing approxi-

mately 50 pounds. Thus, a line connecting points of equal temperature

(isotherms) should also be lines of constant moisture content in a given

sample. Examples of the isotherms for baled alfalfa hay are shown in

the Appendix.

Samples of different depths

A useful equation of simple form can be derived for the falling-rate

period by assuming that the rate of drying during the falling-rate period

is directly proportional to the free-water content. This assumption is

only a rough approximation (12). The rate of drying is zero at the equilib-



rium moisture content and equal to the constant rate at the critical mois-

ture. Sherwood (12) developed Equation 4.

Log E' = -K^' (4)

where: 6' = the time elapsed since reaching the critical moisture content

E' = the moisture content ratio

K = a drying constant

The E' of Equation 4 is the ratio of the free-water content at any

time 6^ to the free-water content at the beginning of the drying or follow-

ing the critical moisture content. It has been shown that a semi-log plot

of E' versus ^' will result in a straight line. Since the equilibrium mois-

ture content of the samples used in the tests was quite small, a plot of

W/W will result in a straight line when plotted on semi-log paper. Wq

is the moisture content at some beginning point and W is the moisture

content at some later time. This relationship was determined for samples

of different depths. An example of the resulting curves is presented in

Figure 6. The resulting curvature in the initial portion of the curves is

probably a result of the heating period. The 1.5-inch sample did not exhibit

this heating period, indicating that thin layer drying* occurred, the re-

sulting curve for it being a straight line. The remaining three curves are

also straight lines following this initial period of heating. The entire

period of drying probably takes place in the falling-rate period, with bound

water causing the break in the lower portion of the plots.

It was desirable to eliminate the heating portion of the curves so

that a drying constant for samples of different depths could be computed.

This may be accomplished by selecting a value of W^ equal to approxi-

mately 0.6 the moisture at the time drying was started. The resulting

curve is shown in Figure 7. This is the same data used for Figure 6.

The drying rate for small samples of various depths was determined

by graphical differentiation. Figure 8 shows drying rate versus moisture

content, and Figure 9 shows variation of drying rate with time. It will be

noted from Figure 8 that the drying rate for the different depths of hay

coincide below 20 per cent moisture. This indicates that the drying rate

in this range is independent of depth of hay.

Heating in static bales

Alfalfa hay baled at moisture contents above 30 per cent (W. B.)

began spontaneous heating almost immediately after baling unless air

was forced through the bale. The heating in a single , bale produced a

maximum temperature ranging from 120° F to 140° F. This temperature

Thin layer drying refers to the drying of a solid which is entirely exposed to

air of a constant condition moving through the product (3)-



was reached within a period of six to ten hours after baling. A gradual

fall in temperature followed.

For the first eight hours after baling, the temperature rise may be

represented by the equation:

Y = 4.6X + C (5)

where:

X = the time after baling (hours)

Y = the temperature (°F)

C = initial temperature of the bale

A scatter diagram of recorded temperatures during the spontaneous

heating period is shown in Figure 10. Moisture content during the heating

process remained nearly constant. The greatest variation encountered was

a rise of about five per cent (W. B.) in bale moisture content.

Bale drying equipment used

A two-bale experimental drier was constructed (Figure 11) for the

1963 hay-drying season. The top of the chamber was omitted to enable

bales to be easily inserted in the drier chamber and also to permit the

thermocouples to be readily inserted in the bale. A Chromalox electronic

thermostat was used to control the temperature of the drying air. With

the system shown in Figure 9, the temperature of the drying air could be

controlled to + 4° F. Compression on the bales was maintained by the

use of two screw-type mechanisms which were adjusted to maintain a con-

stant static pressure during the entire drying period. A four-inch opening

in the bottom of the chamber permitted air to pass from the plenum chamber

up through the hay.

All the tests conducted during this season were with the bales

oriented "flat" except for three tests which consisted of one bale "flat"

and one "on edge." These tests were used for direct comparison of the

bale orientation. Drying temperature was maintained at 160° F.

The research during the 1964 season used bales oriented "on edge"

with the drying temperature maintained at 130° F + 2°F. The experimental

drier was re-designed to handle four bales in each test (Figure 12).

Test procedure

Bales were placed in the drier, and thermocouples were inserted at

the points shown by the grid system in Figure 13. Compression was ap-

plied by means of the screw-type mechanism until the sides of the cham-

bers fitted securely against the bales. The static pressure was then

measured with a sloping draft gage. This static pressure was maintained

throughout the test. A 48-point Brown potentiometer was used to indicate

temperature. A drying temperature of 160° F was used for all tests con-

ducted during the 1963 season, and temperature of 130° F was used for all

5



tests con<lucted during the 1964 season. After allowing spontaneous

heating to occur for a selected period of time, air flow was started. An

Alnor velometer was used to determine air flow. The velometer had been

calibrated against a flow tube.

ANALYSIS
Variables involved

The independent variables involved in the tests conducted were:

1. Bale density

2. Moisture content

3. Time of spontaneous heating prior to the start of air flow.

Temperatures within the bales

Isotherms for selected time intervals are presented in Appendix C.

Temperatures plotted for different points located one above the other on a

vertical line through the center of the bale are shown in Figure 14 and

15. The letters on the curves correspond to the points shown as letters in

the grid system of Figure 13. These bales were secured from the same

field, at the same time, and differed only in bale density. After the same

period of spontaneous heating, they were placed in the drier, one "flat"

and one "on edge." The bale "on edge" was found to dry much faster

than the bale "flat."

An abrupt drop in temperature, due to the presence of metabolic

water liberated by the respiring plants while undergoing spontaneous

heating, will be noted for all points in the bales when air flow was initiat-

ed. The moisture is on the surface of the plants where it is readily avail-

able for evaporation, which results in evaporation occurring at its maximum

rate with the wet bulb temperature of the air being approached by the dry-

ing air. Following the removal of the "free" water from the bale, the

temperature of the bale began to increase. This temperature increase

occurred by layers as the drying progressed upward through the bale.

Drying first began near the edge of the bales. As the point of measure-

ment was further displaced from the point where the drying air entered,

the corresponding temperature curves for this point lagged those of any

point lower in the bale. This same lag was also exhibited by the small

samples. A summary of all tests is presented in Tables 1 and 2.

Following the initial period, the temperature curves of Figures 14

and 15 are nearly straight lines until the temperature of the drying air is

approached. The straight line portions are nearly parallel in this range,

indicating that there is a relationship between the moisture content and

the temperature of the product. Figure 16 represents the drying curves of

all tests conducted during the 1964 season. The spontaneous heating
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periods ranged from 1 to 20 hours. These graphical representations in-

dicate that spontaneous heating over long periods accelerates the time

of drying; however, those intervals in excess of 8 hours produce an un-

acceptable product for animal consumption. Short periods of spontaneous

heating increased the drying time.

Application of Hukill's analysis

The analysis of drying developed by llukill (7) was used to compute

the drying time. A sample calculation using this method is presented in

Appendix A. The calculated results for all tests are presented in Tables

3 and 4. Drying time determined by using isotherms is presented for

comparison.

Effect of the different variables

Using the method of least squares (Appendix B) a multiple regression

equation for drying time was developed. The three variables involved

are: (a) bale density, (b) moisture content, and (c) time of spontaneous

heating. These equations are valid only for the range of conditions at

which the tests were conducted.

Equation 6 represents the regression equation for bales oriented

"flat" with a drying temperature of 160° F, and Equation 7 for bales ori-

ented "on edge" with a drying temperature of 130° F:

Yf = -18.66 + 2.74Xi - 0.43X2 + 0.175X3 (6)

Ye = -16.57 + 1.52X1 + 0.75X2 + .26X3
(7)

where:

Y = drying time (hours)

Xj = bale density (dry) (lbs/ft^)

X2 = spontaneous heating period (hours)

X3 = initial moisture content W. B. (per cent)

Multiple correlation coefficient for Equation 6 was (0.92), and for

Equation 7, (0.87).

Spontaneous heating effects on the drying time differed with bale

orientation. Bales oriented "flat" exhibited a negative correlation, while

bales oriented "on edge" exhibited a positive correlation.

The variable exhibiting the greatest influence on drying time was

bale density in both systems of orientation.

The second greatest effect was spontaneous heating with bales

oriented "flat" and initial moisture content with bales oriented "on edge."

The drying constant

From plots of W'/W , such as shown in Figure ~, values of k for

Equation 4 were determined. The value of k is the slope of the semi-lot

plot (Figure 7). Figure 17 indicates the effect that different depths of



hay for the samples have upon the drying constant. The constant applies

to the following rate period of drying and should not be considered repre-

sentative of the lower portions of the curves (for values of W/Wq less than

0.02). A different mechanism, probably that of bound water, is controlling

thedryingrate at these moisture contents. This is indicated by the breaks
in the curves.

CONCLUSIONS
The variables investigated (dry density, initial moisture content,

and spontaneous heating) all exhibited a definite effect upon the drying

rate of alfalfa.

Dry density was the most prominent variable relative to the extend-

ing of the drying time requirement, while spontaneous heating exhibited

the least effect.

Spontaneous heating exhibited both positive and negative effects

on the drying time. The reversal was attributed to chemical and biological

changes which occurred during the heating period.

Hukill's analysis, when applied to the drying data, always yielded

shorter computed drying times than was observed.

Drying in the bales (oriented "flat" and "on edge") occurred in

very narrow and defined zones.
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Air temperature ^ 155" F
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Figure 1. Moisture curves of the four samples in series in the same

air stream.
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Figure 2. Temperature curves of four samples in series in the same
air stream.
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Figure 3. Variation of moisture content and

temperature with time.
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Figure 4. Plot of moisture content versus temperofure
for two separate drying systems and seasons,
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Figure 5. Actual and Calculated drying curves

for two drying systems and two

different seasons.
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Time (hours)

Figure 6. Relationship of time and W/W^ equal to the moisture at start

of test.
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Figure 7. Relationship of time and ^'/^o equal to 0.6 the moisture

of test.
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Figure 9- The relationship of time and drying rate.
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Figure 14. Temperatures for different points located on a vertical

line in center of bole (Bole on edge).
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APPENDIX A
Sample Calculation for Computing
Drying Time by Hukill's Analysis

Given: Initial Moisture Content = 92.3% (D. B.)

Drying Temperature = 16 0° F
Relative Humidity = 9%
Dry Top Layer to 7% Moisture (D. B.)

Density = 6.9 Ib/ft^

Find: Time Necessary to Dry for Given Conditions

Solution: From a psychrometric chart

Wet Bulb Temperature = 77° F
Specific Volume = 16.1 ft^/lb

AT = 160 - 77 = 83° F

From work by Davis, et. al. (4)

Equilibrium Moisture = 4.8% (D. V.)

Value of H = 0.9

AM = 92.3 - 4.8 = 87.5%

The Moisture Content Ratio (MCR) is determined by Equa-
tion 2.

^^^ = 7-0 - 4.8 = _2^ = .025

92.3 - 4.8 87.5

The pounds in a depth unit may be calculated using Equa-
tion 1

.

G = (130/16.1)60 X 83 X 0.24 x 0.9

0.01 X 87.5 X 1100

= 9.02 Ib/ft^

The number of depth units may be calculated by dividing

the weight of hay per square foot by the computed value
of G.

Depth units = (18/12) x (6.9/9.02) = 1.15

From Figure 4 the number of time units can be determined
using the computed values of MCR and depth units.

Time units = 7.8

The drying time is now determined by multiplying the number
of time units by the value H.

Time = 7.8 x .9

= 7.O2 hours
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APPENDIX B

Moisture Determination

Moisture content is reported with two different bases. These bases

are (a) dry weight basis (D. B.) and (b) wet weight basis (W. H.)- Ihe

per cent moisture may be represented by one of the following equations:

M/^ B )
~ ^^*ght of the water x 100

Total weight of solid

M/p jg \ = Weight of the water x 100

Dry weight of the solid

Conversion from one base to the other may be given as follows:

M(W.B.) = M(j3 g ) / (100 + M)(DB )

The relation between the two bases is shown in Figure 18.
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APPENDIX C
ISOTHERMS FOR SELECTED TIME INTERVALS

After 4 Hours Spontaneous Heating After 1/2 Hour of Air Flow

Air

After 2 Hours of Air Flow

Air

After 4 Hours of Air Flow

Air Air Flow-85 cfm/ft-^ Air

After 6 Hours of Air Flow ^^'' Temperature- 160OF.
^^^^^ g ^^,. ^ ^^^^^ ^^ ^.^ P^^^.

Relative Humidity-Qyc
Density-6.3 lbs/ft^
Per cent Moisture-48%

Figure 19-A. Drying Isotherms At Selected Time Intervals Bales Ori-

ented "Flat".
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After 8 Hours Spontaneous Heating
Air

After 1/2 Hour of Air Flow

After 2 Hours of Air Flow
Air

After 4 Hours of Air Flow

Air Air Flow-85 cfm/ft2 Air
After 6 Hours of Air Flow ^ir Temperature- I6O0F. ^f^g^ 12 Hours of Air Flov

Relative Humidity-107o
Density-10.2 lbs/ft3
Per cent Moisture- 50%

Figure 19-B. Drying Isotherms At Selected Time Intervals Bales Ori-

ented "Flat".
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After 4 Hours of Spontaneous Heating

jNTxTfTTTK^'^S'^
Air

After 1/2 Hour of Air Flov

Air Air Flow-130 cfm/ft2 Air
After 5 Hours of Air Flow

^^'iaTi^'e^Humufity-^g'^^' ^^'^' ^ "°"^^ °^ ^'' ^ 1°^^'

Density-6.9 lbs/ft^
Per cent Moisture 48%

Figure 19-C. Drying Isotherms at Selected Time Intervals Bales Ori-

ented "On Edge".
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After 6 Hours Spontaneous Heating
Air

After 1/2 Hour of Air Flow

After 2 Hours of Air Flow
Air

After 5 Hours of Air Flow

KWWWNf f f fkWW
Air Air Flow- 80 cfm/ft2 Air

After 11 Hours of Air Flow '^ir Temperature- 160°F. After 16 Hours of Air Flow
Relative Humidity-S,%
Density- 13. 7 lbs/ft3
Per cent MoisturerSSTi

Figure 19 D. Drying Isotherms Ar. Selected Time Intervals Bales Ori-

ented "Flat".
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Air
After 2 Hours of Air Flow

Air
After 5 Hours of Air Flow

K\\\\Mt t t ibA^NJ^
Air Air Flow- 120 cfnift2 Air

After 6 Hours of Air Flow Air Temperature- 160°F. After 7 Hours of Air Flow
Relative Humidity-S^rt
Density- 11.8 lbs,' ft'*

Per cent Moisture-337i>

Figure 19-E. Drying Isotherms At Selected Time Intervals Bales

Oriented "On Edge".
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