West Virginia Agricultural and Forestry Experiment Davis College of Agriculture, Natural Resources Station Bulletins

1-1-1958

Regeneration under oak stands

Earl H. Tryon

Kenneth L. Carvell

Follow this and additional works at: https://researchrepository.wvu.edu/ wv_agricultural_and_forestry_experiment_station_bulletins

Digital Commons Citation

Tryon, Earl H. and Carvell, Kenneth L., "Regeneration under oak stands" (1958). West Virginia Agricultural and Forestry Experiment Station Bulletins. 424T.
https://researchrepository.wvu.edu/wv_agricultural_and_forestry_experiment_station_bulletins/646

Regeneration
 Under Oak Stands

THE AUTHORS

 the coltege of lgionleure Foncolls and


```
    R(N \I. hいIIMIN, |lR|(|O)
        \ork,\\IOいN゙
```


Regeneration Under Oak Stands

Introduction

E. H. TrYon and K. L. Carvell

0AK forest types make up half of the forest land in West Virginia (Wray 1952). They occur over a wide sange of site conditions from rich moist bottomands and coves to dry infertile ridgetop). Over much of this area the mature stands will be harvested in such a way that new oak stands will be regenerated by natural means. Thus, the reproduction which becomes established following harvesting, as well as the reproduction present on the ground at the time of harvesting, will determine the composition of the next stand.

In order to harvest mature oak stands properly on that desired species will make up the next crop, more information pertaining to basic and applied phases of silviculture is needed. Work of a fundamental nature is now in progress in which the effect of site factors on oak reproduction is being studied. These site factors include soils, iopography, stand density, insects, and animals. The results should aid in a better understanding of natural establishment of oak seedlings which will help, to improve silvicultural methods used in harvesting stands of the oak types.

The reproduction data have been summarized althongh not yet related to the measured site factors. Since future work on this project will be built on this eraluation of reproduction, and since the results contain material of interest without relating to site lactors, this bulletin will present the evaluation of the reproduction foumd mader mak chand.

Conditions and Methods

Tho different sets ol plose were stadied. One ser, permanemt plots. was established in an attempt to have plots with both high and low amounts of reproduction. Detailed infomation on the permanent plot. was taken on stand composition, reproduction, yearly seed crops, and site factors, induding insed and rodent damage to acoms. The other set. temporary plots, was studied to insestigate further the effert of site factors, other than insects and rodents, on amonnts and species of re-

 dolph and 1 wher

Keptraluction wis ballicel wing milarre quath：as．I red mak or

 bond the＂omon of the echter lice．Ihws the reporelation en cath plot
 fown the sown al the ecoltal tree．
 was xpatated into height dinse in the lallowing manther：Iow than 1
 for amd biol lece amd larger．
 betwren xedling dme yhoms．Howerot，ne：aty all of the regemetation Wふ ol arelling migin．

Results

 prevelts the
 ないいls of the lomperat plos．

Iabie 1. Abuadadee of Reprodtctoon Prk Acre on Combinid Permanext anit Temporary Plots

Speries	Hetght Class (Feet)							
Oak Speches	$\begin{gathered} \text { Under } \\ 1 \end{gathered}$	1-1.9	2-2.9	3-3.9	4-4.9	5-5.9	Oter ${ }^{\text {4 }}$	Total
White Oak	2,496	829	222	68	22	13	a)	3,650
Northern Red Oak	1,092	209	24	7	4	7	2	1,345
Chestnut Oak	1,020	136	26	6	2	2	2	1,194
Black Oak	116	31	6	4	2	0	2	161
Scarlet Oak	66	11	0	0	0	0	0	77
Shingle Oak	0	0	4	9	0	0	0	4
Total Oaks	4,790	$1.21 \overline{6}$	282	85	30	22	${ }^{5}$	6,431

Other Species

Red Maple	17,939	239	86	44	16	13	11	18,348
Black Cherry	5,519	575	167	48	4	11	0	6,324
Chestnut Oak	562	270	75	29	16	9	2	963
Serviceberry	629	81	22	13	4	9	4	762
Witch-hazel	360	142	64	26	4	6	15	617
Flowering Dogwood	346	132	50	33	29	7	7	604
Slippery Elm	342	141	53	22	7	7	0	572
Sassafras	312	169	37	T	2	2	1	529
Hickory	299	101	35	4	4	1	6	449
Yellow-poplar	419	6	2	1	4	0	0	4.31
White Ash	224	68	22	16	7	0	5	342
Maple-leaved Viburnum	195	83	44	9	t	0	0	335
Blackgum	167	77	29	22	2	t	2	30:3
Black Chokeberry	105	121	57	11	0	0	2	296
Pinxter-flower	17.3	86	26	6	0	11	2	293
Blue Beech	154	59	29	13	3	11	T	282
Sugar Maple	138	37	18	2	0	0	4	199
Black Birch	160	16	6	0	0	0	6	188
Eastern Hophornbeam	167	4	2	0	"	0	9	173
Blueberry	88	35	4	2	${ }^{1}$	0	2	131
Spicebush	59	20	26	18	2	2	2	127
American Chestnut	$1 ;$	35	26	0	(1)	0	2	69
Striped Alaple	22	20	18	1	4	0	${ }^{1}$	65
Fire Cherry	31	13	13	2	11	0	11	59
Arrow-wood	20	11	11.	4	1	0	11	46
Hazelnut	4	16	9	${ }^{6}$	4	6	11	45
White Pine	39	4	0	0.	0	0	11	4.3
Mountain-laurel	29	11	2	11	11	1	11	42
American Elm	18	7	0	2	4	2	11	33
Cucumbertree	11	7	9	2	1	0	1	2!
Black Locust	9	1:	4	2	11	0	,	- 21
American Beerly	14 ;	1	11	2	2	11	11	21
Eastern Hemlock	(i)	2	4	11	11	11	11	12
Amerlcan l Basswood	4	1	2	$1{ }^{1}$	2	0	11	12
Rosebay Rhododendron	;	2	11	11	2	"	1	111
Gooseberry	4	;	1	i	11	11	11	111
Sweet Crab Apple	6	0	0	11	4	1	11	111
Eastern Redbud	0	4	2	2	11	\because	11	11
Yellow Blrch	6	\because	0	0	0	11	0	s
Smooth Alder	2	2	\because	0	2	$1)$	U	s
Sourwood	2	0	4	-	$1)$	0	0	S
Virginia Pine	4	\because	0	0	(1)	0	0	${ }_{6}$
Blackhaw	0	0	\because	11	11	U	a	2
Staghorn Sumac	0	0	0	0	11	0	2	2
Others	2	0	0	11	0	0	1	(;
Total - Other Species....	28,4U-1	2,627	962	351	13:	$\because 1$	85	32.85 s
Grand Total - All Species	33,394	3, 810	1,2.14	436	16 \%	113	91	39.28!

Beil 4 Ejph	－1 11：41	（ $2: 15$	－！	151	4	13	11	25．4nu
lil h l lerry	7．7．：	1．17：2		$10: 3$	1	1：3	11	！1．25：3
H，wilioril	In）	こたい	111%	311	15	11	11	1，31i
Wiflery Files	－ 415	24ii	1211	15	1.5	14	11	1，242
＊＊＊！lorry	411	13 y	（1）	1：1	1	$!$	0	1， 0156
S．ilion pregiar	T11	1	11	11	0	0	0	74^{5}
Wtels lizatl	：31；	$2 い 1$	क11	：	11	1	o	6155
F゙iowtrlige logatimel	：197	147	In	318	$2: 2$	11	11	664
（1）knrs	$13{ }^{\circ}$	147	Sis	4	9	0	0	660
－i ifr	312	156	\because	4	11	0	0	494
1116hん1311	225	914	22	2.2	U	1	4	374
Itil lifucli	156	411	14	1	4	0	0	26.2
S¢，1u b	116	$\therefore 1$	53	31	1	1	4	2．13
Whle Ash	112	$5: 3$	18	Is	4	0	0	205
sulenr Maplo	10%	15	$!$	1	11	0	0	165
Pinxter－flowir	$1!1$	411	21	4	4	0	1）	160
F＇lre Cherry	76	31	31	1	0	(1)	0	112
Magle loaves Viburuum	414	40	4	0	0	0	1	134
Whark litreh an	：1	1s	0	0	0	0	0	11：
Amortan cligetnul	1	27	31	(1)	0	0	0	fie
	1	13	4	0	0	0	0	21
Simertchn leverls	13	1	0	1	0	0	1	21
sweet C＇rab Apple	5	$1)$	0	11	9	0	11	18
－imumbertren	4	4	9	0	0	0	0	17
Sumeth Alder	1	4	4	11	4	0	0	16
fione uluery	11	13	$(1$	11	0	0	0	13
	11	0	1	11	\bigcirc	1	0	4
1才，ick Jatu I	11	4	0	0	0	$1)$	0	1
Ifentiny lehomoulebitron	1	${ }^{1}$	11	0	n	0	0	4
	34．173	：3，37．1	1．151	3913	104	70	8	43，576
ficish Turat．－NLL SuECIEN	4：1．4．3	$\therefore .235$	1，1： 15	586	118	96	8	51，621

 far the mest abmadam yee tes．Aollowal br blach wemy and then white
 The relatisels high ammont of repoelution muter one foot in height is

Table 3. Abundance of Reprodlction Prr Acre on Memporary Plots

Spectes	Height Class (Feet)							
Oak Spectes	Under	1-1.9	2-2.9	3-3.9	4-4.9	5-5.9	Over 6	Total
White Oak	1,713	316	28	9	9	6	0	2,081
Chestuut Oak	1,519	222	44	9	3	3	3	1,803
Northern Red Oak	909	194	19	6	3	9	3	1,143
Black Oak	113	16	6	0	3	0	3	141
Scarlet Oak	109	16	0	0	0	0	0	125
Total Oaks	4,363	764	97	24	18	18	9	5,293

Other Spectes

Red Maple	13,003\|	172	84	44	25	12	19	13,359
Black Cherry	3,972	234	47	9	3	9	0	4,274
Hawthorn	409	200	47	28	16	16	3	719
Witch-hazel	356	100	53	37	6	3	25	580
Serviceberry	478	50	9	12	3	9	6	567
Flowering Dogwood	309	122	44	31	34	12	12	564
Sassafras	313	178	47	6	3	3	0	550
Black Chokeberry	178	206	97	19	0	0	0	500
Maple-leaved Viburnum	266	112	72	16	6	0	0	472
White Ash	303	78	25	16	9	0	9	440
Pinxter-flower	259	91	28	3	0	0	3	384
Hickory	203	69	19	0	0	0	9	300
Blue Beech	153	44	37	19	12	19	12	296
Easteru Hophornbeam	284	6	3	0	0	0	0	293
Blackgum	125	66	34	22	3	3	0	253
Black Birch	206	16	9	0	0	0	9	240
Sugar Maple	159	31	25	0	0	0	6	221
Blueberry	150	59	6	3	0	0	0	218
Yellow-poplar	194	6	3	0	6	0	0	209
Striped Maple	38	34	31	6	6	0	0	115
Slippery Elm	25	41	6	6	0	0	0	78
Arrow-wood	34	19	19	6	0	0	0	78
American Chestnut	6	41	22	0	0	0	3	72
Mountain-laurel	50	19	3	0	0	0	0	72
White Pine	66	6	0	0	0	0	0	72
Hazeluut	3	19	12	9	6	9	0	58
American Elm	31	12	0	3	6	3	0	55
Black Locust	16	19	6	3	0	0	0	44
Spicebush	19	12	6	6	0	0	0	43
Cucumbertree	16	9	9	6	0	0	0	40
American Beech	19	3	0	0	3	0	0	25
Americaln Basswood	6	6	3	0	3	0	0	18
Eastern Hemlock	9	3	6	0	0	0	0	18
Eastern Redbud	0	6	3	3	0	3	0	15
Sourwood	3	0	6	3	0	0	0	12
Rosebay Rhododendron	6	3	0	0	3	0	0	12
Yellow Birch	9	3	0	0	0	0	0	12
Virginia Pine	6	3	0	0	0	0	0	9
Grooseberry	6	0	0	0	0	0	0	6
Sweet Crab Apple	3	0	0	0	0	0	0	;
Staghorn Sumac	0	0	0	0	0	0	3	3
Others	3	0	0	0	0	0	6	9
Total - Other Species.	21,694	2,098	821	316	153	301	125	25.30 s
Grand Tutal - All Spectes ...	$\overline{26,057}$	2,862	918	340	171	119	134	30,601

 makel well sexked mined both stonds. hut dies ent rapidly within the

 leas that onf from in height, and wer one fort in lecight is presented in

()" phos with good oath sphothotion the momber of white oaks incosad with gege and height, whereas the momber of sed wath decreased. I lis suggests th.tt white oath is able to berome cestablished and stovise
 Production, both red wih and white wah decreased in the older and talle flases, but real wath derteased at a mote bipsid ratte than white oak.
 Low oak establivhancolt ate peor.

The differences beween the plos with good and poor reproduction are, at peremt, wot motemotod. Howeser, site quality alone is bot the

(OWP

 frojection al that tre S (ompratisen wias mate with wak reproduction
 all wher species.

Table: 1. Thf Nuaber of Year-old Oak Sefdeings Comparfe M'the Older Oak Siedlings on the 28 Perminfot Ploty (1.4 Wtith (\%om) () ik Reprodlction: 14 With Poor Oak Reprodection)

Alld Oak Spectes						
$\begin{gathered} \text { AGE } \\ \text { AND } \\ \text { HETGHT } \end{gathered}$	All Plots		Plots With Good Oak Regeneration		Plots With Poor Oak Regeneration	
	Number Per Acre	$\%$	NuMber Per Acre	$\%$	NrMber Per Acre	\%
1 year old	2.562	31.8	3.803	28.2	1.321	50.5
less than 1 foot tall	2,839	35.3	4,857	36.0	S21	31.4
1 foot to 6 feet tall	2,652	32.9	4,830	35.8	473	18.1
Total	8,053	100.0	13,490	100.0	2.615	100.00
Whine OAK						
$\begin{aligned} & \text { AGE } \\ & \text { AND } \\ & \text { HEIGHT } \end{aligned}$	All Plots		Plots With Good Oak Regeneratio.		Plots With Poor Oak Regeneration	
	NuMber Per Acre	$\%$	NuMber Per Acre	$\%$	NCMBER PER Acre	$\%$
1 year old	1,451	24.6	2,428	23.0	473	38.2
less than 1 foot tall	2,165	36.7	3,893	36.9	437	35.2
1 foot to 6 feet tall	2.277	38.7	4,223	40.1	330	26.6
Total	5,893	100.0	10,544	100.0	1.240	100.0
Red Oak						
$\begin{aligned} & \text { AgE } \\ & \text { AND } \\ & \text { HETGHT } \end{aligned}$	All Plots		Plots With Good Oak Regeneration		Plots With Poor OAK REGENERATION	
	N゙MBER Per Acre	$\%$	N゙MBER Per Acre	$\%$	Number Pre Acre	\%
1 year old	795	48.7	1,071	44.0	518	62.4
Vore than 1 year old, less than 1 foot tall	558	34.1	893	36.6	223	$\begin{aligned} & 26.9 \\ & 10.7 \end{aligned}$
1 foot to 6 feet tall	281	17.2	473	19.4	S9	
Total	1,634	100.0	2,437	100.0	\$30	100.0

Oak reproduction under the crown of the central oak tree aroraged 7,041 stems per acre, and beyond the tree crown areaged 5,852 stems per acre. This difference was not significant at the 5 per cent level.

Reproduction of other species, oak excluded, averaged 39,98. stems per acre under the crown of the central tree, and 34,079 stems per acre beyond the crown of the eemtal tree. '1 his difference also mas not sig. nificant.

It is not smprising that the differences noted above were not significant, since the amount of reproduction between plots varied greatly: As the difference in reproduction under the crown of the central oak tree and beyond the crown is not significant, all plots were used int evaluating the various phases of the reproduction results.

The degree of stoching, of frequenor, of the aak reproduction was

 and bevond then for benh permane at and temperat plots.
 the

 gowns were stocked, and 77.6 pet cent of the quidhats bewond the rowns were stok

Valse obtathed for pertentage of sencheng indicate that the oak wedlings ate well distributed oner the areat, and that they ate as well

O IK , \BLNDINCFBY , IRE

The relativels high ahmmelanee of oak reproduction occursing under o.th stands has been swoplising (ow the athors. To be bute, most of this is mader onefont high and baries in ahmandere comsiterahly from plot 10 phen. The mamber of oak seedling per acre based on per cent of the area are presented in Figetse 1 . These curices may be wed to show the peramtage of the area hasing differem amounts of oak reprotuction. The upper curve in for total momber of aats, and the lower curve exfode the firs-vear seallings. B! selecting any momber of oak seedlings per dere on the absista and dtawing a line vertially on a come, then atending the line honinontally from the point where the curve is touched to a proint on the : avis, a percemage value is indicated. 'This value rep reselts the per remt of the ate:a whish that momber of wath seedlings
 per whe oratr on 1.5 per wht of the ate: In a like manner the per
 m1, be determined.

 wear seddings are eveluded.

The sppeatance of the ale has hing differem amomats of oak re

FIGURE 1. Abundance of oak seedlings under mixed oak stand. The curves indicate percentage of area having different amounts of oak reproduction. Each value of the abscissa represents the amount indicated, or more. For example lines $A_{1} A$ indicate that 1,200 or more oak seedlings, excluding first-year ones, occur on 70 per cent of the area. Lines $B_{1} B$ indicate that 3,000 or more oak seedlings, excluding first-year ones, occur on 45.5 per cent of the area.
until a close examination was made. Figure 2 has only 500 oaks per acre in the reproduction class and Figure 3 has 1,125. These are mainly less than one foot in height.

OAK REPRODUCTION RELATE1) TO REPRODUCTION OF OTHER SPECIES

An attempt was made to detemine the effects of amount of reproduction of species other than oaks on amoum of oak regeneration. No clear-cut trend could be observed. However, there did appear to be a slight negative relation between large reproduction of other species and oak reproduction less than one foot tall. Thus high amomts of tall reproduction of other species may have an effect in reducing oak regeneration.

WHITE AND RED OAK REPRODUCTION COMPARED TO

 WHITE AND RED OAK IN OVERSTORYThe abundance of white oak reproduction was observed to be greater than red oak reproduction on both the permanent and temporary plots

FIGURE 2. A permanent plot with 500 oak seedlings per acre in the reproduc tion class.

FIGURE 3. A permanent plot with 1.125 oak seedlings per acre in the reproduction class. The seed trap shown is 1_{4} milacre in area and one of a pair malntained under the central oak tree in each permanent plot.

FIGURE 4. A permanent plot having 3,250 oak seedlings per acre. Although ferns were abundant on the plot, they were not dense enough to limit the regeneration of tree species, as a dense fern cover often does.

FIGURE 5. A permanent plot having 55,750 oak seedlings per acre in the reproduction class. This stand had much more oak reproduction than any other area studied. The overstory is mainly of white oak.
wee lable 2 .and 3. IV rel wh saw momer occurs in greater amounts that white wat s.on timbs in Wiol لioginia (Wian 1952), a greater
 - mombll of red amd white wh kencomion were compancel with the - Imoulls wh tel and white o.th in the ovestors.

 sil per

 gersedten with the geeater mumber of white wath in the owe

 dex mot whe imdidting that fartor wher than the amount of white wath in the onconory influence the momber of white oak seedtings.

Fo whds farther the effertitomen between red and white oaks in phoducing vedellings, at mond limited amd detailed tex was made. The momber of sombl aroms collected from the center oak in each permanent phot was detemmined from the fall collection of 1951. These results were related to the momber of new sedling from the I milace guadrats under coth conter math in 1955. Thene sedllings were all prestmed to have originated fomm hae 1951 mase. Wll valuen were adjusted to equal rown atcas.

It wh fommt that for each 100 bol wak secdlings there were 101 White wat secellings all wedlmg lecing in their firs growing scasong. Howerer, for c:ath 100 sound red wat atorms collected in the fall of 1951
 - mel white rathe ggreen well with the comparisen of total red and white wh tupotuction to wel and white oak in the werstory. However, the whele wh acoms were lise times as effective as the red oak acorns in prodroing serdlings.

The eranon for the gerelle effertivemes of the white oak acorns in phoducing secelling is not huown it perell, although work in progress mas pronlure the evplatation. It is donbthal if the fall germination of
the white oak proved an advantage over the spring germination of the red oak acorns as spring and early summer moisture were adequate according to results from soil moisture blocks. Possibly the smaller white oak acorns were better covered by the litter and protected to a greater extent from animals than the larger red oak acoms.

The greater amount of white oak reproduction is partly, perlapes largely, due to the greater number of white oaks in the overstory. However, other factors, as yet undetermined, appear to favor the establishment of white oak over red oak.

RED MAPLE REPRODL'CTION COMPARED TO RED MAPLE IN OVERSTORY

Red maple was the most abundant species of all the reprodnction. making up approximately 50 per cent of the total (note Tables 1,2 and 3). This seems to be a rather high amount considering that the stands were classified as mixed oak, with oaks the predominant species. The oak reproduction itself made up only about 15 per cent of the total reproduction.

Red maples 6 inches d.b.h. and over in the permanent plots were compared to the total number of trees the same size in order to determine the amount of red maple in the orerstory. Red maples made up 15.0 per cent of the total number of stems, or 10.3 per cent of the total basal area. Thus red maple must develop seed in a very prolific manner to produce reproduction so abundantly.

COMPARISON OF NUMBERS OF \CORNS BETWEEN PLOTS WITH HIGH AMOUNTS OF OAK REPRODUCTION ANI) PLOTS WITH LOW AMOUNTS OF O. IK REPROIOCCTION

Acorn production was measured on the If permanent plots with high amounts of oak reproduction and on the 14 permanent plots with low amounts of oak reproduction in order to find out if a difference in acorn production occurred. A difference, if existing, might in itself explain the reason for a difference in amount of reproduction between the areas of high and low oak reproduction.

Areas chosen for high amounts of oak reproduction showed an aw erage of 13,491 oak secellings per acte. Areas chosen for low amounts of oak reproduction had aboul one-fifth as much, or 2,616 batk seedlings per acre.

Acorns were collected bi-weekly during eath fall of the 1954-1957 period in two seed traps under cath center oak thee of each permanment plot. Such a trap may be seen in Figure 3. W'ire sereen was placed inside each trap to keep rodents out, however, acoms conld pasis through

 x

 1s mudenwas，but has wat been completed．

RトPR（）Hじ（，IION \BUND．INCE BY HEIGHT

The amonm of reprolaction in the different height dasses varied comsideals．I he greatest amomot is meler obe foot in height，and it dogs bapidls with incrabing height．For all oaks in Table I，approxim－

 （las．This fapid drop in momber with incasaing height may be ob－ woled in figme ti．Is all samd in which the plots were baken had been

い大吅	ArokNe		Sot in deorsin	
	IIf：It O．SK lifluй Ctos l＇iates	1л円 O．NK PI．OTA	III：I OАк 16 『isunictias Plots	IAW GAK l＇LATR
W1！11k	いた。	1．455	13.3	279
1 Ha 10 h	2.675	2，08：	！78	776
Fenti	$\therefore 5,37$	3，714	1.111	1,055

[^0]

FIGURE 6. Abundance of oak, red maple, and black cherry reproduction by height classes, expressed in per cent. Data from permanent and temporary plots.
undisturbed for several years, this illustrates the ability of oaks, and other species, to live a short time under a forest canopy and then die out. This general trend is evident lor all species for which an appreciable number occurred in the sample, regardless of their tolerance rating.

The rapid decrease in mumber of red maple seedlings with height was unexpected when compared with other species. Red maple is known to be a tolerant species (Baker 1950; Little 1950; Tommey and Korstian 1947; Zon and Graves 1911) and in theory the curve should drop less rapidly than the curve for species of lower tolerance rating. Such a comparison is shown in Figure 6. The red maple is compared with black cherry and the oaks because both are less tolerant than red maple and because both should be high enough in abundance to give reliable results by height class. The curve for red maple may be observed to drop more rapidly than the other curves, indicating a smaller percentage of seedlings in the taller height classes. The first interpretation was that red maple is considerably less tolerant than it is rated. However, the condition of the red maples sampled was considered by the writers and it

 1.0phe dimp out of the wal maple might the Gomsed by difliculty in be-
 ithilerstond.
 dan under met ont. Whith whtathed the sed mople in their first grow-

 living in the tallea height dases. In this wat the gicater werance of red

FIGURE 7. Abundance of oak, red maple, and black cherry reproduction by height classes excluding the smallest class of less than 1 foot, expressed in per cent. Data from permanent and temporary plots.

The inability of red maple to become established successfully seems to account for the relatively low abundance of the species in the taller height classes, rather than to its tolerance rating. The reason for this establishment difficulty is not known; however, the seedlings are small and often quite succulent during the tirst growing season and may have high mortality during the first winter. Whatever the reason, it is fortunate that red maple has difficulty in establishment. If this were not so, the species would make up at much greater proportion of the final stand than it does today, because it is tolerant, and produces first-year seedling, in such a prolific manner.

Summary and Conclusions

The abundance of reproduction under mixed oak stands was studied on 28 permanent plots and 10 temporary plots. The amount of reproduction under these stands was high. There was an average of approximately 39,000 individuals per acre composed of some 50 different species, and over 6,000 were oaks. The stocking, or frequency, of oak reproduction was high, indicating an even distribution of oak seedlings over the area.

A considerable difference in amount of oak reproduction occurred between areas. Generally, the number was higher than had been expected when this study was initiated, with the majority being less than onc foot tall. Excluding the oaks in their first growing season, it was found that one-half of the study areas had 2,500 oak seedlings or more per acre. One plot contained 55,000 oak seedlings per acre.

This abundance of regeneration suggests the possibility of using the one-cut shelterwood silvicultural method, removing the entire overstory in a single removal cut (Hawley and smith 1954). The number of oak seedlings needed to produce the next stand following harvesting by this method is not known. Varions factors enter into the detemmination, any of which might prohibit the use of this method. These factors include logging damage, si/e and condition of seedlings present, and death of seedlings due to expostre after the mature stand is cut. The initial growth rate of othor species and of oaks must be considered. In spite of these factors, certain selected oak stands may be adequately handled by the one-cut shelterwood method, if logging damage is kept to a minimum.

One-half of the permanent plots were rated high in abundance of oak reproduction, and the other hall low. The number of acorns collected during a four-year period was essentially the same on both sets of plots. Thus the dilference in amount of oak reproduction appears to be the result of site factors arting on the atom after lalling from the tree. or on the resulting seedling.

I he abmulame of whme arak remodnction evecoled that of the red

 that the red oak acomos. dut this stattion is lediened to be the nstal

 ploter it form damaging agcols.

Mast of the sectlings, indheling the wahs. were lownd in the smallest

 light intensity and wmpretion.

 wlerance.

Literature Cited

 \U alld 111 pp.

APPENDIX

COMMON ANI TECHNICAL VAMES OF TREES AND SHRUBS

Common N゙hme
Alder, smooth
Ipple, sweet crab
Arow-wood
Ash, white
Basswood, American
Beech, American
Beech, blue
Blackgum
Blackhaw
Birch, black
Birch, yellow
Bluchervy
Cherry, black
Cherry, fire
Chestnut, American
Chokeberry, black
Curumbertree
Dogwood, flowering
Elm, American
Elm, slippery
Gooseberry
Hawthorn
Ha/clnut
Hemlock, eastern
Hickory
Hophombeam, castem
L.ocust, black

Monntain-lantel
Maple, ted
Maple, striped
Maple, sugar
Oak, black
Oak, chestmut
Oak, northern red
Oak, scarlet
Oak, shingle

Technical Nave
Almus sermlata (Ait.) Willd.
Malus coronaria (L.) Mill.
V'ilnurnum reagnitum Fern.
Fraxinus americanal.
Tilia americama 1.
F'agus grundifolia Ehrlo.
Carpinus caroliniana W’alt.
Nyssa syliatica Marsh.
V'iburnum prunifolium I.
Betula lenta L.
Betula alleghanieusis Britton
l'accinium spp.
Prumus serotina Ehrh.
Promus pensylamica L.f.
Castamea dentata (Marsh.) Borkh.
Prumus virginial.
Magnolia acuminata L.
Commus florida L.
L'lmus americama I.
L'lmus rubra Mahl.
Ribes spp.
Crataegus spp.
Corylus spp.
Tsuga canadensis (L.) Cant.
Cinta spp.
Ostra tirginiana (Mill.) K. Koch
Roblimia pasendoacacial.
Ḱalmin lalifolia I.
Acer mbloum L.
fere pernsylanaicmun I..
Acer sachlarutn Marvls.
()uprous zeplutina Lam.

Ouerens prinus 1.
() Itercus rubral.

()nctors imbricaria Miehx.

```
().1h wlule
Fu|k \ llщi||.&
Jum, wllite
『ハハ\!-|゙いいい!
```

Kといlいい！，\＆．小けいい

S．小い．11．小

y小ulbush
tollfucx）l
Stull．u，vighorn

IIII h hol／el
lellom－｜x）｜l．s

Rloudodemdicul mbeliflommm （I．．） 1 （111．

Klowdodemilum！mavimum！ 1.
samalim alluldemm（Nimes．）V＇ées
Amelamille＇ソ1）．

だわいい 心plimal．．

I／mmmmells illEmimun 1.
l．mindendront tullpheran I．

[^0]:

