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ABSTRACT 

MORPHOLOGICAL, GENETIC AND BIOCHEMICAL CHARACTERIZATION OF THE ANTI-MALARIAL HERB, 

Artemisia annua GERMPLASM COLLECTION AT WEST VIRGINIA UNIVERSITY  

Delini Kanchana Samarasinghe 

 

Malaria is one of the deadliest diseases in human history. Nearly half of the world’s population, 

is at the risk in 106 countries. Only in 2016, this disease killed about 445,000 people, 72% of them 

being children under age five. It also accounts for US $12 billion dollars of direct costs in Africa 

alone. Five different species of Plasmodium cause malaria but P. falciparum is the most 

detrimental one, causing 50% of all malaria cases and is considered as the deadliest parasite in 

humans. Artemisinin (ART), a 15 C sesquiterpenoid is currently the only precursor to the most 

effective anti-malarial drugs. The World Health Organization (WHO) recommends the use of ART-

derived drugs in combination with other anti-malarial drugs (collectively called as Artemisinin-

based Combination Therapies, ACT), to prevent the development of ART resistance by the 

parasite. The natural source of ART is Artemisia annua, an Asteraceae plant native to East Asia. 

ART is synthesized in 10-cell glandular trichomes and accumulates extra-cellularly in the sub 

cuticular space. ART is synthesized in A. annua in low quantities, about 0.01-3% DW and, due to 

its complex molecular structure, it cannot be synthesized chemically in an economically viable 

way. Even though the semi-synthesis of ART has been successful in bioreactors, ART extraction 

from A. annua is much more economically viable. Therefore, it is important to understand the A. 

annua genetic contribution to ART synthesis to improve the ART yield of the plants. We 

characterized a collection of 12 different genotypes of Artemisia annua at West Virginia 

University in terms of developmental traits, biochemical profile, and gene expression to better 

understand the phenotypical differences of the germplasm in the collection. Plants were 

analyzed for height, biomass, leaf shape and leaf size, adaxial and abaxial trichome densities for 

morphological characterization. Freeze dried leaf material was extracted with hexane and an 

internal standard and the extractions were analyzed with GC-MS. Flash frozen leaf material were 

used to extract total RNA and analyzed for the gene expression of 15 genes with qRT-PCR. Based 

on the results, it was revealed that there is high phenotypical and metabolic variation among the 

genotypes. Monoterpenes made up for a large component of the hexane-extracted metabolome. 

Camphor and endo-borneol contributed significantly to differentiate the genotypes. Out of the 

all the genes analyzed, gene expression of three genes (FPS, CPR, and DBR2) were significantly 

different among the genotypes. Based on data, genotype J has the highest accumulation of ART 

and DHAA with anatomical characteristics supporting towards high ART and DHAA yield. Next, I 

and G genotypes also showed anatomical features supporting towards high ART and DHAA 

accumulation. The genotypes can be used to further investigate ideal genetic variations and 

allelic combinations for crop improvement in future. 
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OVERVIEW 

Artemisinin (ART) is the sesquiterpenoid the precursor of the main component that the World 

Health Organization (WHO) recommends as treatment for Plasmodium falciparum malaria 

(WHO, 2006). Artemisinin is a secondary metabolite naturally synthesized in the annual herb 

Artemisia annua (Asteraceae). ART is produced only in A. annua in small quantities, 0.01-1.4% of 

dry weight and its supply does not meet the global demand, which results that ART-based 

treatments (ACTs) are costly and the prices fluctuate drastically. Even though the semi-synthesis 

of ART using yeast (Saccharomyces cerevisiae) as a heterologous system has been successfully 

achieved, the production costs have made it a pricier alternative (Pelpow, 2016). Therefore, A. 

annua remains the most economically viable source for the synthesis of ART.   

The major goal of this research is to characterize phenotypically and genetically the twelve 

genotypes of Artemisia annua germplasm collection at West Virginia University regarding their 

accumulation of artemisinin (ART), dihydroartemisinic acid (DHAA) and artemisinic acid (AA), and 

compare the morphological and genetic factors that determine the levels of those metabolites 

within the genotypes. Understanding the factors that drive high ART and DHAA yield is important 

to breed for superior A. annua genotypes that can be used to fulfill the demand for ART-based 

active pharmaceuticals on time and at a reasonable and constant price.  

The first chapter of this thesis is a brief introduction to the importance of A. annua in malaria 

treatments and factors related to ART biosynthesis pathway with the current available literature.  

The second chapter presents the morphological characterization of the twelve genotypes of A. 

annua in the germplasm collection at West Virginia University. Plant height, biomass of the aerial 

system, leaf area as well as adaxial and abaxial trichome densities were measured and compared 

among the genotypes.  

The third chapter shows the GC-MS analysis of non-polar secondary metabolites extracted with 

hexane. Fifty-two peaks were identified with National Institute of Standards and Technology 

(NIST) mass spectral library and of those 52 compounds, two of which (camphor and endo-

borneol) were confirmed with authentic standards after pre-statistical analysis. The online 

MetaboAnalyst (4.0) software was used to analyze the relative abundance of compounds. 

The fourth chapter deals with the gene expression analysis performed to understand the 

transcriptional differences of the ART biosynthesis pathway genes among the twelve genotypes 

in the study. RT-qPCR was used to compare the mRNA levels for each gene between genotypes 

relative to a housekeeping gene using the SYBR Green fluorescence system. 

The fifth chapter discusses how to apply the knowledge gained from this research and already 

available information in the scientific literature towards the breeding of genotypes with high ART 

and DHAA yield and how to overcome the inherent barriers associated with A. annua genome.  
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The sixth and the last chapter presents the summary and conclusions reached with the data 

collected and information produced in this research.
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CHAPTER 1 
 

The historical importance and current status of malaria in the world 
 

Malaria is one of the deadliest disease of human history. Nearly half of the world 

population, 3.2 billion is at the risk in 106 countries. Only in 2016, malaria killed about 445,000 

people in the world, 72% of them being children under age 5. It also accounts for US$ 12 billion 

dollars direct cost only in Africa (CDC, 2018). Earlier it was believed that humans and chimpanzees 

each inherited cerebral malaria parasite-like infections from their common ancestor and these 

parasites co-evolved with their hosts (Escalante and Ayala, 1994). But it is now believed that 

cerebral malaria parasite infection arose in humans after acquiring it from a gorilla likely within 

the past 10,000 years (Liu et al., 2010b; Sundararaman et al., 2016). Some researchers believed 

that half of all human who ever lived died from malaria (Whitfield et al., 2002). A less known fact 

is that the Center for Disease Control (CDC) was founded in 1946 mainly to control malaria in the 

U.S. Even though malaria has been eradicated from many countries, it still threatens the lives of 

about half a million lives annually.  

There are five different Plasmodium species that cause malaria in humans: P. falciparum, 

P. malariae, P. vivax, P. ovale and P. knowlesi. P. falciparum is the most common in African 

region, accounting for 99% of reported cases in 2016 whereas P. vivax is the most common on 

American, South East Asian and Eastern Mediterranean regions (WHO World Malaria Report, 

2017). Although the U.S. did not have any reported cases in recent years, there are areas in the 

country susceptible to the presence of the Anopheles mosquito vector, such as: Southern Florida 

and Hawaii, and not to mention unincorporated territories, such as Puerto Rico and Guam. 

Therefore, it is of US interest not only to prevent the introduction of the disease in the country, 

but also to mitigate the disease by providing foreign aid with the aim to eradicate the disease 

globally. 

Malaria is characterized by an acute febrile illness with an incubation period of seven 

days or longer (WHO International Travel and Health Report, 2018). Between the two most 

common parasites causing malaria, P. falciparum and P. vivax, the former causes the most 

dangerous version of the disease, called the malignant form, whereas P. vivax causes less severe 

symptoms, called the benign form (Vogel, 2013). Initial mild symptoms of falciparum malaria 

can be fever, chills, headache, muscular aching and weakness, vomiting, cough, diarrhea, and 

abdominal pain. If not treated, more severe symptoms can occur, such as acute renal failure, 

pulmonary edema, generalized convulsions, circulatory collapse, following by coma and death 

(WHO International Travel and Health Report, 2018). Even though the initial mild symptoms of 

the disease may not be easily recognizable as malaria, it must be treated early because 

falciparum malaria can be fatal if treatment is delayed beyond 24 hours after the onset of clinical 

symptoms. Therefore, it is important to assume the possibility of falciparum malaria in cases of 
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having an unexplained fever, seven days after the first possible exposure to three months or 

rarely later after the last possible exposure to the malaria (vector) (WHO International Travel 

and Health Report, 2018). Other forms of malaria are not generally considered as fatal, except 

for a few cases of severe P. vivax recently reported. Additionally, P. vivax and P. ovale can remain 

dormant in the liver and cause relapses months after the exposure (WHO, 2018). 

Although most temperate countries have eliminated the malaria threat (Figure 1), 

according to the WHO’s World Report of Malaria 2017 (WHO, 2018), 216 million cases of malaria 

have reported in the world last year, with 90% of the cases from Africa whereas 7% and 2% from 

Southeast Asia and Eastern Mediterranean regions, respectively. In 2016, an estimated 445,000 

deaths have been reported in which 91% are from African region followed by 6% from East Asian 

region (WHO World Malaria Report, 2017) Out of the 91 countries reporting indigenous malaria 

cases in 2016, 80% of the burden is carried by India and 14 of sub- Saharan African countries ( 

WHO World malaria report, 2017).  

Even though anyone can be infected with malaria, the young and the elderly, pregnant 

women and immunosuppressed individuals are considered to be at greatest risk when living and 

travelling in areas where the disease is prevalent. It is a well-known fact that, despite the 

negative effects of the sickle cell disease, this trait protects against malaria infection, even in 

asymptomatic (heterozygous) individuals (Serjeant, 2010) – it’s therefore thought that the trait 

first evolved as a protection against the disease in endemic regions of Africa. 

Quinine (an ingredient of tonic water) had been traditionally used as medicine against 

malaria and is still listed an essential medicine by WHO (WHO World Malaria Report, 2015). 

However, over time the protozoan developed resistance against it, making it less effective (Le 

Bras and Durand, 2003). This quinoline alkaloid was first isolated from the bark of the Cinchona 

officinalis tree (Rubiaceae) and is still used against chloroquine-resistant P. falciparum when the 

artemisinin-derivative (artesunate) is not available (Esu et al., 2014). The current malaria vaccine 

(called RTS,S) has low efficacy against P. falciparum and is not recommended by WHO to prevent 

the disease in most cases (WHO World Malaria Report, 2016).  
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Figure 1. World malaria distribution 2018. Countries under the threat of malaria (in blue). Note that the 
disease level varies substantially within the 91 countries with reported cases. The Sub-Saharan region in 
Africa accounts for more than 90% of the global cases, mostly due to Plasmodium falciparum. Source: 
Global Health - Division of Parasitic Diseases and Malaria - Center for Disease Control (CDC) (2018). 

 

Artemisia annua and the sesquiterpene lactone, artemisinin 

 

Artemisia annua is the only commercial source for artemisinin (ART), the precursor for 

main component of the malaria treatment recommended by WHO against P. falciparum: 

Artemisinin combination therapy (ACT). Due to diverse reasons, this plant remains the most 

important source of artemisinin in the market. However, the supply has consistently not met the 

global demand for the medicine (Kindermans et al., 2007; Shretta and Yadav, 2012; Pandey and 

Pandey-Rai, 2016). 

Species of the genus Artemisia (family Asteraceae  subfamily Asteroideae  

supertribe Asterodae  tribe Anthemideae) are well known for their medicinal, cosmetic, 

pharmaceutical and culinary values. It consists of a large clade encompassing 200-400 species, 

including wormwood (A. absinthium), an ingredient of absinthe, the culinary herb tarragon (A. 

dracunculus), and the anti-malarial herb, sagewort or sweet wormwood (A. annua). The exact 

number of species is unknown due to a plethora of synonyms. The name of this genus refers to 

the wilderness goddess Artemis in the Greek pantheon (she is the equivalent to Diana in the 

Roman mythology).  

This genus consists of annual, biennial and perennial herbs and shrubs distributed in Asia, 

North America, Africa, and Europe (Pandey and Singh, 2017) with a greatest concentration in 

Asia (Abad et al., 2012). Because of copious secondary metabolite production, many species are 
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bitter and have strong odor that evolved to overcome herbivory and that have been harnessed 

to treat human maladies and other uses. Many metabolites synthesized in Artemisia spp. is 

known to have antimalarial, cytotoxic, antibacterial, antifungal, and antioxidant properties 

(Abad et al., 2012; Pandey and Singh, 2017). And among them, A. annua is well known and 

researched for its principle component Artemisinin (ART), the antimalarial drug precursor for 

recommended for multi- drug resistance to P. falciparum. 

Artemisia annua L. is native to temperate Asia (China and Vietnam) used in traditional 

Chinese medicine for thousands of years as treatment for malaria. It has been naturalized to 

North America, South America and Europe (Ferreira and Janick, 1995).  It is an annual short-day 

plant with a critical day length of 13.5-h. The species is allogamous and naturally cross-pollinated 

by wind (Ferreira and Janick, 1995). Currently, A. annua is the only natural source of ART, the 

precursor of semi-synthetic anti-malarial drugs. In 2015, Youyou Tu was awarded the Nobel Prize 

of Medicine for the discovery of artemisinin (ART) as the anti-malarial active compound in A. 

annua (Su and Miller, 2015). 

ART is a highly oxygenated sesquiterpene with a 1,2,4-trioxane ring structure (Figure 2) 

that is believed to be the reaction center that confers its antimalarial activity (Brown, 2010) 

against the asexual stage of the P. falciparum (Bryant et al., 2015). ART-based semi-synthetic 

drugs are used in the so-called Artemisinin Combination Therapies (ACTs) as the standard 

treatment for chloroquine- and quinine-resistant P. falciparum, which causes cerebral malaria, 

as well as against other Plasmodium species (Weathers et al., 2006; Covello, 2008; Pandey and 

Pandey-Rai, 2016). ART is not only effective against malaria but also other parasitic diseases, 

such as schistosomiasis (Schistosoma spp.), and leishmaniasis (Leishmania spp.) (Krishna et al., 

2008). ART was also effective to treat some viral diseases, such as hepatitis B (Nguyen et al., 

2011; Rai et al., 2011). Additionally, ART was indicated to be effective against several cancer cell 

lines and drug-resistant cancers (Weathers et al., 2006).  

A. annua genotypes can be classified into two chemotypes based on their geographic 

origin that produce different levels of artemisinin and its precursors: dihydroartemisinic acid 

(DHAA) and artemisinic acid (AA). The chemotype clones high in ART and DHAA but low in AA is 

from Vietnam while the Chinese (which includes the European-American clones) are high in AA 

but low in ART and DHAA (Wallaart et al., 2000).  
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Figure 2. Structure of artemisinin. The endoperoxide group in the 1,2,4-trioxane ring is 

considered as the active site of this 15-C sesquiterpene molecule.  

 

As the main component of ACT, there is a very high global demand for ART (Shretta and 

Yadav, 2012). It is estimated that the global demand for ART in 2017 reached 176 metric tons 

with an expected demand of 216 metric tons for 2021 (Global malaria diagnostic and artemisinin 

treatment commodities demand forecast, 2018). However, due to the difficulties in cultivating 

A. annua as a field crop, since this species can remain highly undomesticated, ART demands are 

hardly met (Graham et al., 2010). There have been research efforts to find alternatives to ART 

production, including the use of biotechnology, such as yeast, bacteria, and algae bioreactors 

(Ro et al., 2006; Chang et al., 2007; Paddon and Keasling, 2014; Ikram and Simonsen, 2017; Choi 

et al., 2017; Badshah et al., 2018) as well as tobacco leaves (Farhi et al., 2011; Fuentes et al., 

2016). Indeed, the entire artemisinin pathway up to DHAA has been introduced into prokaryotic 

(E. coli) and unicellular eukaryotic systems (budding yeast), as well as moss (Physcomitrella 

patens) and artemisia hairy roots for bioreactor semi-synthesis of DHAA (Paddon and Keasling, 

2014; Khairul Ikram et al., 2017; Patra and Srivastava, 2016) in addition to tobacco (Fuentes et 

al., 2016). However, ART produced in bioreactors becomes too expensive for governments in 

developing countries and the target populations that need the medicine the most. In planta 

production by A. annua field cultivation still remains the cheapest and most economically viable 

method of producing ART (Delabays et al., 2001; Ikram and Simonsen, 2017).  

As a secondary metabolite, ART is synthesized in low quantities in plants (0.01-3% dry 

weight). Due to the complex nature of its molecular structure, the complete chemical synthesis 

is not economically viable (Kumar et al., 2004). ART semisynthesis in transgenic yeast has been 

achieved recently (Paddon et al., 2013). During its semisynthesis in yeast, the natural mevalonic 

acid (MVA) pathway was improved to increase the biosynthesis of farnesyl pyrophosphate (FPP 

– the precursor of all sesquiterpenes) and lower the endogenous sterols production(Meadows 

et al., 2016). Subsequently, by introducing the gene amorpha-4,11-diene synthase (ADS) along 

with a novel cytochrome P450 from A. annua (CYP71AV1) to first cyclize FPP to amorpha-4,11-

diene (AD), which is the first committed metabolite of the ART pathway, and further oxidize it 

to artemisinic acid (AA), respectively. Finally, the extracted AA can be converted to ART in vitro 
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via catalytic hydrogenation to yield dihydroartemisinic acid (DHAA), and further processed by 

esterification of the carboxyl bond in DHAA, a reaction with chemically generated singlet oxygen 

(1O2), to produce an allylic hydroperoxide, and finally a series of acid-catalyzed reactions and 

oxygen to finally yield ART (Paddon et al., 2013). Even though the semisynthesis of ART has been 

successful industrially, ART extraction from A. annua is much more economically viable: the 

semi-synthetic ART costs US$350-400/kg vs. US$250/kg of the naturally extracted from A. annua 

(Peplow, 2016). 

 

Glandular secretory trichomes  

Trichomes are epidermal protrusions found on aerial organs of plants to provide physical 

and chemical protection. As a general feature of the Asteraceae family, A. annua bears two types 

of trichomes: glandular secretory trichomes (GST) (Figure 3), as well as filamentous T-shaped 

non-glandular (tector) trichomes (Ferreira and Janick, 2009). Trichomes are found on the aerial 

organs of A. annua such as stems and leaves (Duke and Paul, 1993) as well as on the corolla and 

floral receptacles (Ferreira and Janick, 1995). GSTs are evenly distributed on both leaf surfaces, 

except the leaf margin, but with a higher density on the abaxial surface. A. annua GSTs are 

stalkless (sessile) and consist of ten cells arranged in a biseriate manner. Each GST consists of a 

pair of basal cells, a pair of stalk cells, three pairs of secretory cells, and a bilobed sac made by 

the cuticle of six secretory cells (Duke and Paul, 1993). Stalk cells contain smaller chloroplasts 

compared to mesophyll chloroplasts with an average area of 6.1 µm2 compared to 6.5 µm2 of 

subapical cells containing large, amorphous plastids lacking starch grains (modified 

chloroplasts), and the apical cells that contain no chloroplasts (Kjaer et al., 2014). All GST cells 

have a large amount of smooth endoplasmic reticulum associated with secondary metabolite 

synthesis and exporting (Duke and Paul, 1993). The main role of GST is considered as a protection 

against various biotic stresses by producing a large array of secondary metabolites. GSTs protect 

the plants from herbivores by releasing irritant secondary metabolites by excretion or rupturing 

the sac upon touch or by ingestion of bitter or poisonous metabolites (Kjaer et al., 2014). 

A. annua GSTs are the synthesis site of about 600 secondary metabolites, mostly 

terpenoids, including ART. Based on evidence of transcription activity of key ART biosynthesis 

genes, GST are considered as the sole sites of ART biosynthesis. A GST laser dissection study 

showed that the expression of four genes (ADS, CYP7AV1, DBR2 and ALDH1) occurs in both, 

apical and subapical cells (Olofsson et al., 2012). Despite of the importance of GST to synthesize 

and store ART, and plethora of compounds in diverse species, the molecular mechanisms of GST 

development remain generally poorly understood. Duke and Paul (1993) reported the 

initiation of GST from foliar cells begins in the youngest leaf primordia and complete the 

differentiation into the 10-cell structure before the start of the leaf development meaning 

that the final number of the GST is predetermined regardless of the final leaf size. The GST 

density peaks in the young, fully expanded leaf and decreases rapidly due to rupturing of the 
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subcuticular sac (Duke and Paul, 1993) caused by mechanical damage. Singh et al. (2016) 

showed that the overexpression of -glucosidase increased the trichome density in A. annua 

(Singh et al., 2016). Similarly, Shi et al. (2018) demonstrated that the overexpression of 

AaMIXTA1, a MYB transcription factor that is expressed mainly in basal cells of GST, increased 

the number of GSTs and ART content in A. annua (Shi et al., 2018). On the other hand, 

attempts to increase GST densities by applying abiotic stresses have not been successful 

(Kjær et al., 2012). 

 

 

   

Figure 3. Structure of the glandular trichome of A. annua. Left: A schematic diagram of GST indicating cell 
arrangements. Right: Fluorescence microscopic image of GSTs on the abaxial side of the A. annua leaf 
(Scale bar = 500 µm). 

 

The artemisinin biosynthesis pathway  

ART is a sesquiterpene lactone made up of three isoprene units. It originates in the 

cytosol from precursors derived from the cytosolic mevalonate (MVA) pathway as well as the 

plastidial methylerythritol phosphate (MEP) pathway (Weathers et al., 2011) (Figure 4). 

Although there are two independent pathways that synthesize the two basic isoprene units 

[isopentenyl pyrophosphate (IPP) and dimethyallyl pyrophosphate (DMAPP)], the predominant 

route in plants is the cytosolic MVA pathway, which originates from acetyl-CoA, whereas the 

plastidial MEP pathway originates from pyruvate and glyceraldehyde 3-phosphate (G3P) 

(Weathers et al., 2006; Wen and Yu, 2011).  
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 Figure 4. Biosynthesis pathway of the sesquiterpene lactone, artemisinin in glandular trichomes of 

Artemisia annua. 1. Plant terpenoids are synthesized via two distinct pathways, the cytosolic mevalonate 

pathway in the cytosol and methyl-erythritol phosphate pathway in plastids, with both contributing with 

IPP and DMAPP isomeric moieties. 2. Interconversion of IPP into DMAPP is carried out by IPP isomerase. 

The steady-state IPP: DMAPP isomeric ratio in A. annua cells is estimated in 6:1. Therefore, the availability 

of the more reactive moiety (DMAPP) is a major bottleneck of the general terpenoid pathway. 3. In the 

cytosol, GPP synthase (GPS) fuses IPP and DMAPP to produce GPP, which is the precursor of all terpenoids. 

4. FPP is produced by farnesyl synthase (FPS) by the fusion of GPP and IPP. FPP is the precursor of all ≥15-

carbon terpenes. 5. Amorpha-4,11-diene synthase (ADS) synthesized the first committed product of the 

artemisinin pathway, AD. ADS is a limiting enzyme and key to increase the flux of the pathway. 6. 

Following, the cytochrome P450 monooxygenase CYP71AV1 oxidases AD to AA in three successive 

reactions (7 and 11). CYP71AV1 is the main rate-limiting enzyme of the committed artemisinin pathway. 

Moreover, the associated cytochrome P450 reductase (CPR) is necessary to restore the active state of 

CYP71AV1. 7. Whereas AO can be produced by the CYP71AV1/CRP enzymatic system, the alcohol 

dehydrogenase 1 (ADH1) can also AO using AOH as a substrate. 8. AO is disputed by the enzyme 

artemisinic aldehyde Δ11(13) reductase (DBR2), which generates DHAO, and the third reaction of 

CYP71AV1 (11), which is unproductive and generates AA. 9. DHAO is converted into DHAA by aldehyde 

dehydrogenase 1 (ALDH1). 10. The conversion of DHAA into ART is carried non-enzymatically, possibly by 

ultraviolet light and/or reactive oxygen species generated in the cell by stress. 11. The third reaction of 

CYP71AV1 turns AO into AA, deviating the pathway from producing ART. 12. AA can be converted non-

enzymatically into AB. (Chemical structures were captured from www.molview.org).  

However, unlike most of other plant terpenes, ART is composed of basic isoprene units 

originated from both pathways. First, Towler and Weathers (2007) showed that inhibition of 

MVA and MEP pathways respectively with mevinolin and fosmidomycin, decreased ART 

biosynthesis (Towler and Weathers, 2007). Later, Schramek et al. (2010) brought up a possible 

scenario for the contribution of both pathways to synthesize the artemisinin precursor (FPP) by 

isotopologue profiling of A. annua plants with 13CO2. From the 13C NMR spectroscopy results, 

they proposed that mostly DMAPP of MVA origin is first transferred to the plastid and then used 

to synthesize geranyl diphosphate (GPP), which is subsequently exported to the cytosol for 

further elongation to form farnesyl diphosphate (FPP) with a unit of IPP from the MVA pathway 

(Schramek et al., 2010; Wen and Yu, 2011). Even though the ART pathway is not completely 

understood yet, as a sesquiterpene, its biosynthesis can be split into two stages, namely the 

synthesis of the linear precursor (FPP), followed by cyclization and modifications into the final 

product. While the enzymes for the first stage are evolutionarily conserved across species, 

enzymes for the second stage are species-specific and result in distinct terpenoid profiles (Wen 

and Yu, 2011).   

Therefore, FPP is synthesized via the activity of several enzymes using precursors from 

both, MVA and MEP pathways. In the MVA pathway, 3-hydroxyl-3-methylglutaryl-CoA reductase 

(HMGR) catalyzes HMG-CoA to MVA and is considered the first rate limiting enzyme in the 

terpenoid pathway (Wen and Yu, 2011). Transgenic and chemical studies using plant hormones 

(e.g., auxin and gibberellin) showed that HMGR is a direct regulator of ART biosynthesis in A. 
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annua (Wen and Yu, 2011). In the MEP pathway, 1-deoxy-D-xylulose-5-phosphate synthase 

(DXS) and 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) catalyze the two rate-

limiting steps and were also shown to be regulated in ART biosynthesis (Wen and Yu, 2011).  

The first committed step towards ART biosynthesis is the cyclization of FPP to amorpha-4 

,11-diene by the trichome-specific sesquiterpene cyclase called amorpha-4,11-diene synthase 

(ADS) (Bouwmeester et al., 1999; Mercke et al., 2000; Wang et al., 2011). This volatile amorpha-

4,11-diene is subsequently oxidized to artemisinic alcohol and then to artemisinic aldehyde by 

the trichome-specific cytochrome P450 monooxygenase, CYP71AV1 along with its redox partner, 

the cytochrome P450 reductase (CPR) (Teoh et al., 2006; Fuentes et al., 2016). Artemisinic 

aldehyde can be oxidized further by the same enzyme pair and continue to synthesize arteannuin 

B (AB) via artemisinic acid (AA).  AB and AA are side products of the pathway without an anti-

malarial effect. Therefore, they compete with the productive ART pathway. 

Alternatively, artemisinic aldehyde can be used as a substrate to artemisinic aldehyde D11 

(13) reductase (DBR2) in order to form dihydroartemisinic aldehyde (Zhang et al., 2008). 

Dihydroartemisinic aldehyde is then oxidized by aldehyde dehydrogenase (ALDH1) to form 

dihydroartemisinic acid (DHAA) (Zhang et al., 2008), which is considered the immediate precursor 

for ART in vivo. Conversion of DHAA to ART is believed to be a non-enzymatic photooxidative 

reaction that occurs in the subcuticular space of glandular trichomes (Sy and Brown, 2002; Tang 

et al., 2014). The presence of large number of oxygenated terpenoid compounds in A. annua, 

such as terpene allylic hydroperoxides and endoperoxides, is evidence used to support this 

hypothesis, because these compounds are assumed to be intermediates of auto-oxidized terpene 

precursors (Brown, 2010; Fuentes et al., 2016). On the other hand, some reports suggest the 

possibility of enzyme-mediated reactions in the final steps of ART biosynthesis (Ferreira et al., 

2018).  

Genetic regulation of the ART biosynthesis pathway in Artemisia annua 

Apart from the structural genes that code for enzymes directly involved in the 

biosynthesis pathway, there are a number of transcription factors found to control artemisinin 

biosynthesis and accumulation (Shen et al., 2016). The first transcription factor to be isolated 

and characterized in A. annua was AaWRKY1, which is highly expressed in glandular trichomes. 

AaWRKY1 is strongly induced by methyl jasmonate and has the ability to bind to the W-box of 

the ADS promoter in order to activate gene expression in both, transgenic tobacco as well as 

transiently in A. annua leaf system (Ma et al., 2009). Also, AaWARKY1 overexpression enhanced 

the expression of the trichome-specific CYP71AV1. HPLC metabolite profiling of AaWRKY1–

overexpressing A. annua leaves showed a twofold increase of ART compared to the control line 

(Han et al., 2014).  

In A. annua, four AP2/ERF transcription factors have been related to ART biosynthesis: 

AaORA, AaERF1, AaERF2, and AaTAR1. AaORA is highly expressed in both GSTs as well as tector 

trichomes. Its overexpression in A. annua highly induced the transcription of ADS, CYP71AV1 and 
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DBR2 genes (Lu et al., 2013). Two other jasmonic acid response AP2/ERF transcription factors, 

AaERF1 and AaERF2, identified from GST cDNA libraries are highly expressed in the inflorescence 

and have a similar spatial expression pattern as ADS and CYP71AV1 genes (Yu et al., 2012). Lastly, 

TAR1 is expressed at high levels in young leaves and inflorescence and is involved with wax 

deposition, cuticle permeability, trichome morphology as well as ART biosynthesis. TAR1 

overexpression resulted in increased ART, DHAA and AA in leaves and flower buds, 

demonstrating its important role as a regulator of ART biosynthesis and trichome development 

(Tan et al., 2015).  

Additional transcription factors are involved in ART biosynthesis. AaBbZIP1 regulates ART 

biosynthesis by binding to ABRE motifs in the promoters of ADS and CYP7AV1 to increase their 

expression (Zhang et al., 2015). AabHLH1 enhances ART biosynthesis by binding to E-box cis-

elements in ADS and CYP71AV1 promoters (Ji et al., 2014). AaMYC2 binds to the G-box-like cis-

elements in CYP71AV1 and DBR2 gene promoters in order to boost the ART biosynthesis in A. 

annua (Tang et al., 2014).  

 

Flavonoids in A. annua  

A. annua is a species abundant in secondary metabolites. So far about 600 secondary 

metabolites belonging to eight categories have been described in A. annua. Out of these, 

terpenoids form the largest group whereas flavonoids are the second largest category (Brown, 

2010). In fact, A. annua is reported to be one of the four medicinal plants with highest ORAC 

(oxygen radical absorbance capacity) value, with 1,125 and 1,234 µmoles of Trolox equivalents/g 

in leaf and inflorescence extracts, respectively (Ferreira et al., 2010). The high antioxidant 

capacity of A. annua is attributed to the high phenolic content of A. annua, greatly encompassed 

by flavones and flavonols (Ferreira et al., 2010). Eleven flavones and 29 flavonols have been 

reported mainly constituting the flavonoid portion of the profile, including diverse 

polymethoxylated flavonoids (Ferreira et al., 2010). 

Different flavonoids are known to play different biological functions, including protection 

against ultraviolet radiation and as ROS scavengers during biotic and abiotic stress conditions 

(Agati et al., 2011). Flavonoids offer an antioxidative protection by preventing the formation of 

ROS through their ability to chelate transition metal ions such as Fe2+ and Cu2+, as well as 

scavenging ROS once they are generated (Di Ferdinando et al., 2012), and by inhibiting ROS 

generating enzymes (Kumar and Pandey, 2013). Although the flavonoid in vivo mode of action 

regarding ROS scavenging remains unclear, their subcellular localization, on or in close proximity 

to the location of ROS generation, is consistent with their ROS scavenging role (Di Ferdinando et 

al., 2012). 

Similar to ART, DHAA and AA, the flavonoid content of A. annua is related to the genetic 

composition of the two chemotypes (Ferreira et al., 2010). Therefore, their capacity to scavenge 

the ROS produced during stress conditions vary depending on the chemotype. Recently, 
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lyophilized powder of A. annua whole plants was shown to be efficient in treating malaria caused 

by artemisinin-resistant plasmodium, as well as to slow the evolution of drug resistance (Elfawal 

et al., 2015; Daddy et al., 2017). It is thought that, a set of secondary metabolites in the plant 

chemical profile, potentially including flavonoids, is acting synergistically to enhance the anti-

malarial effect of ART. This is a testable hypothesis that deserves a systematic analysis. 

 

Goal of this Research  
This thesis aimed to characterize the differences between the twelve genotypes of the A. annua 

germplasm collection at West Virginia University regarding their physiological, biochemical and 

genetic properties.  This characterization will lead us to better understand the genetic 

underpinnings leading to the development of favorable characteristics in order to improve 

breeding efforts of A. annua as a resilient crop in the field with maximum ART yield. 

  



13 
 

CHAPTER 2 

Morphological characterization of Artemisia annua germplasm collection at West Virginia 

University 
 

INTRODUCTION 

Artemisia annua is an Asteraceae short-day annual herb that naturally grows to about 30-100 cm 

in height with alternate branches. The aromatic leaves of the plant are pinnately dissected with 

a varying number of sections per leaf, depending on the maturity of the organ. The length and 

width of the leaves can vary between 2.5-5 and 1-3 cm, respectively. The flowers are miniscule 

and yellow, arranged in loose panicles with capitula (World Health Organization, 2006). Plants 

prefer cross pollination via insects and wind over selfing, making them highly allogamous 

(Ferreira and Janick, 1995). 

Even though A. annua is the main commercial source for artemisinin (ART), the main component 

of Plasmodium falciparum malaria treatment, current commercial hybrids produce ART in 

relatively low quantities, 1.4% d.w. (Ferreira et al., 2018). Therefore, understanding the 

properties of the plant favorable toward a high ART yield is essential. As dihydroartemisinic acid 

(DHAA), which is the immediate precursor of ART, can be easily converted to ART in vitro, aiming 

for A. annua genotypes with high dihydroartemisinic acid (DHAA) and ART will not only improve 

the natural ART yield from plants but also the total yield by also taking into account DHAA yield 

(Ferreira et al., 2018).  

West Virginia University (WVU) is home to twelve different genotypes of A. annua (Table 1, 

Figure 1) generated from different origin cultivars. Originally, the germplasm collection was 

compiled and maintained by Dr. Jorge F. S. Ferreira when working at USDA/ARS in Beaver, WV. 

Seeds of a high ART yielding Brazilian cultivar, 3M and the Swiss cultivar, Artemis were grown 

and plants that were high in ART and DHAA were selected. Similarly, seeds from cv. Sandeman 

were grown and a genotype was selected with high artemisinic acid (AA) levels. All of these seed-

generated genotypes were maintained vegetatively under the greenhouse conditions. The 

collection was passed down to Prof. Vagner Benedito at WVU when the research station closed 

down in 2012. The most striking difference among these genotypes is in the accumulation levels 

of ART and its precursor DHAA, as well as the non-productive byproduct AA. The twelve 

genotypes were named A to L for the ease of use and their genotype identification number and 

the origin of the parental hybrid stocks are provided in Table 1. 
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Table1. Identification codes for A. annua 

genotypes in the germplasm collection at 

the West Virginia University. 

Genotype Code Origin 

3M13 A Brazilian 

3M29 B Brazilian 

3M39 C Brazilian 

3M49 D Brazilian 

3M51 E Brazilian 

3M83 F Brazilian 

3M85 G Brazilian 

Sandeman H United Kingdom 

MDP4 I Swiss 

MDP7 J Swiss 

MDP31 K Swiss 

MDP11 L Swiss 

 

 

 

Figure 1. Germplasm collection of A. annua (Asteraceae) at the West Virginia University. The images 

show representative plants from each genotype grown for 45 days after rooting of 10-cm high cuttings. 
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Morphological analyses of A. annua genotypes in the WVU germplasm collection: Four main 

morphological characteristics that are important in determining ART production were analyzed: 

height of the plants, biomass of the aerial system of the plants, leaf shape and leaf area, and 

trichome densities.  

 

MATERIAL AND METHODS 

Maintenance of germplasm collection: stock plants were cultivated in 27-cm diameter round 

plastic pots with soilless medium (Sunshine Mix #1; Sun Gro Horticulture) under greenhouse 

conditions (25/20˚C, average relative humidity 50%) and long-day regimen (16-18h light, 

depending on the season) to repress flowering and subsequent senescence. Plants were irrigated 

daily, as needed. Fertilization was carried out every other day with 20-10-20 fertilizer at 200 ppm. 

The major pests (mealybug, thrips, and spider mites) were treated with insecticides by spraying 

or drenching of Safari® systemic insecticide, as needed. Alternatively, biological control with the 

mite predator, Mesoseiulus longipes, was used.  

Clonal propagation of stem cuttings: 10 cm cuttings were taken from healthy shoots of stock 

plants, dipped in rooting powder (Hormodin #3), transferred to 6-cell trays filled with soilless 

medium (Sunshine Mix #1; Sun Gro Horticulture) and placed in a mist room (21.6±2.6 ̊ C/ 19.4±1.9 

˚C day/night (mean±SD), average daytime relative humidity 57.5% ±10%, 18 h light, on 18±2˚C 

heating pad) for four weeks.  

Experimental design: Six well-rooted cuttings (around 13-15 cm height) from each genotype 

were transferred to pots (15-cm diameter) with soilless medium (Sunshine Mix #1; Sun Gro 

Horticulture) and arranged into a randomized block design in greenhouse for 45 days. Average 

greenhouse temperatures were 23.8±1.7/ 19.8±1.6 ˚C day/night (mean±SD) and the average 

relative daytime humidity was 38.9±10.5%. The plants were irrigated with 20-10-20 (NPK) 

fertilizer at 200 ppm, daily to the field capacity. Harvest was carried out after 45 days of growing.  

Plant height: Each plant was measured from the soil surface to apical meristem to the nearest 

millimeter after 45 days after transplanting. 

Biomass of aerial system: Plants were harvested at the soil level, put in paper bags, and placed 

in a 40 ˚C oven for 15 days, until the dry weights were constant. Biomass of dry material was 

carried out in an analytical scale. 

Leaf measurements: Leaf area was measured using young, fully expanded leaves (n=5) collected 

from random, lateral shoots of three representative stock plants for each genotype. Leaves were 

imaged with a HP6000 scanner and analyzed with ImageJ software (version 1.8.0).  

Glandular secretory trichome (GST) density: Cuttings were taken and their stems were quickly 

placed in water to avoid wilting. GSTs were quantified with small leaf sections removed from the 
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tips of ten fully expanded leaves collected from three stock plants for each genotype. 

Epifluorescence images of both adaxial and abaxial surfaces of the same leaf section for each leaf 

were taken with an Olympus MVX10 fluorescence microscope with GFP filter (2X Objective, 2X 

slider and 1.2X magnification). ImageJ (Version 1.8.0) software was used for counting the 

fluorescent spots (denoting individual glandular trichomes) and to measure the area of the leaf 

section in order to calculate the trichome densities. 

Statistical data analyses: Data were collected for each parameter with each plant representing 

an experimental unit, except for the trichome density measurements, for which each leaf 

represented an experimental unit. ANOVA and post-hoc multiple comparison analyses were 

carried out in JMP (v.13.2). 

 

RESULTS AND DISCUSSION 

 

Plant height 

 

Figure 2. Height of A. annua germplasm collection. Height of twelve different genotypes of A. annua 

grown under greenhouse conditions for 45 days were measured from the soil surface to the apical 

meristem (n=6). Error bars indicate standard error and genotypes not connected by same letter are 

significantly different (Tukey’s test, α=0.05).  

Average height for the collection ranged more than two folds, from 44.93 cm to 91.73 cm, with 

genotypes I and E, and J and E had the two most height differences among all twelve genotypes, 

46.80 cm and 44.72 cm, respectively (p<0.001). A. annua naturally grows to a height of 30-100 

cm and cultivated plants can grow up to 2 m (WHO monograph on GACP for A. annua L., 2006). 
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An interesting work by Thu et al. (2011) indicates the importance of environmental factors over 

the genetics, on vegetative growth and ART content (Thu et al., 2011). This study showed that 

two A. annua clones (TC1 and TC2) with characteristic late flowering and high ART yield (1-2%) 

responded differently to high (26.2-32.8 ˚C) and low (10.5-18.0 ˚C) temperatures by plants 

growing about four to five fold taller (TC1: 48.9 cm vs. 255.5 cm, TC2: 56.6 cm vs. 258.8 cm) for 

both clones and 4.3 and 3.4 fold higher ART content in TC1 and TC2, respectively, thus correlating 

to the robustness of the plants. They reasoned that the results attributed to high transpirational 

rates in warmer conditions caused the plants to grow shorter and spend more resources on root 

growth to increase water absorption (Thu et al., 2011). In an earlier experiment conducted by 

Elhag et al. (1992) to identify morphological characteristics associated with ART producing A. 

annua genotypes, they concluded that high ART chemotypes are associated with tall, robust 

plants with long internodes, open-branching, dense leaves and thick stems (Elhag et al., 1992), 

which is compatible with the data from our research. Interestingly, however, is that a recent 

research conducted by Czechowski et al. (2018) comparing the high-ART producing (HAP) hybrid 

Artemis and an open pollinated low-ART producing (LAP) A. annua variety mentioned that LAP 

plants are distinctly different from HAP for having taller and long internode plants with smaller 

leaves (Czechowski et al., 2018). It is likely that plant height, biochemical profiles, and ART 

accumulation are genetically unlinked traits, although there is a possibility that distinct loci 

involved in these processes are physically linked in the chromosomes of A. annua. Previous trait 

genetic mapping efforts (Graham et al., 2010) and the recent genome sequence and annotation 

(Shen et al., 2017) will likely help resolve this question and improve trait mapping in this species. 

Dry weight of aerial plant system  

The average dry weights (Figure 3) ranged more than three folds: from genotype A weighing an 

average of 7.51 g to genotype L weighing 23.81 g per plant.  Half of the collection (L, I, G, D, J 

and H) were not significantly different amongst themselves regarding biomass but were 

significantly distinct from genotypes A, F, C and E (p< 0.001). Genotypes B and K were the most 

similar in terms of biomass with only 0.173 g difference on average. To obtain a more accurate 

idea about the useful biomass of the plants, it will be ideal to rather measure specifically the 

weight of leaves without stems in future experiments since the weight of stems does not 

significantly contribute to ART yield. 
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Figure 3.  Dry weight of A. annua germplasm collection. Aerial parts of twelve genotypes of A. annua 

grown under greenhouse conditions for 45 days were oven-dried and average weight (n=6) was 

determined. Error bars indicate standard error and levels not connected by the same letter are 

significantly different (Tukey’s test, α=0.05).  

Various factors affect biomass in both positive and negative ways. In a study conducted by 

Ferreira using the Artemis hybrid under greenhouse conditions (Ferreira, 2007), plants were 

provided 2 mg/kg soluble N, 28 mg/kg extractable P and 82, 439 and 192 mg/kg exchangeable K, 

Ca and Mg, respectively, with 5.08 soil pH level and grown for 90-102 days. These plants produced 

the highest biomass (70.3 g/plant) compared to untreated plants (6.18 g/plant). It was further 

shown that no-K treatment resulted in about 70% of leaf biomass of the complete nutrition 

treatment with higher ART levels (but not significant compared to complete treatment) whereas 

no-N supplementation resulted in about 20% of the leaf biomass of the complete treatment, 

which indicates the importance of N for biomass. Another study indicated that gradual increase 

of N application from 6 mg/L to 106 mg/L increased leaf and stem biomass as well as ART content. 

However, increasing N further up to about 206 mg/L and 306 mg/L did not increase biomass but 

impacted ART content negatively (Davies et al., 2009). In the same study, the authors showed 

that increased application of K had a positive impact on biomass without any effect on ART yield. 

Therefore, soil N level is likely to be a critical factor determining the biomass and the ART yield. 

Application of gibberellic acid has increased the biomass by stem elongation and leaf expansion 

with increased ART content (Banyai et al., 2011). Short-term drought did not affect negatively 

the biomass of container-grown A. annua plants but increased ART content (Marchese et al., 

2010). Yang et al. confirmed this result by showing increased levels of ADS in shoots induced by 

drought (Yang et al., 2010). Certain minerals such as B have little to no effect on biomass yet 

improved ART content (Aftab et al., 2010). Soil pH level in the range of 5.5-6 was found to be best 

for maximum biomass yield and ART content (Laughlin, 1994; Ferreira, 2007). Since ART synthesis 
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depends directly on leaf area, a high biomass production is an essential factor contributing to 

increase ART yield regardless of other factors. Therefore, in breeding programs, it is important to 

select genotypes with high biomass along with other factors that positively contribute to the high 

ART content.  

Leaf phenotypes 

Artemisinin accumulates in glandular trichomes (GTs) mostly on the leaf epidermis. Theoretically, 

a large leaf area can create more space for the development of GTs, and hence increase the 

accumulation of ART and precursors (Graham et al., 2010). Since the leaf is the most important 

tissue of the A. annua plant as a crop, identifying genotypes with larger and less serrated leaves 

can be helpful for breeding programs. Moreover, finding plants with high trichome densities is 

another key factor in achieving superior A. annua plants. Therefore, we analyzed the collection 

for differences in leaf shape, size and trichome density among the genotypes in the WVU 

collection. 

Leaf Morphology 

A. annua develops small leaves, usually presenting five to seven deep serrated sections (leaflets). 

This compound shape is true for all genotypes of the collection. The smallest leaves in the 

collection are developed in genotypes A and H (Figure 4). A less serrated leaf with more lamina 

area is ideal for A. annua, since these leaves could potentially bear more GTs per plant. Therefore, 

more research on external and internal factors that determines the leaf shape in the Asteraceae 

clade will be potentially helpful in breeding for a better crop.  

 

Figure 4. Leaf morphologies of A. annua germplasm collection. Scanned images of typical young, fully 

expanded leaves show the differences among the leaf size and shape of the genotypes.   

Leaf Area 

The trait leaf area ranged more than 20-fold in the germplasm collection (Figure 5). Out of the 

twelve genotypes, genotype H and genotype A have significantly the lowest leaf areas, 31.72 

mm2 and 141.27 mm2, respectively. On the other hand, genotype D, E, J and K had the highest 

leaf area. Regarding the leaf area, genotypes from both origins (Brazil and Switzerland) showed 

great phenotypical variation. This points out to the great phenotypical variability in leaf area in 

this collection, which should be followed up by the determination of genetic and environmental 

factors controlling the development of this trait in A. annua.  

A   B      C         D         E         F       G      H        I        J        K       L 
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Figure 5. Leaf area of A. annua genotypes. Measurements were determined using fully developed leaves 

(n=5). Leaves were scanned and area was determined using ImageJ software. Error bars indicate standard 

errors and levels not connected by same letter are significantly different (Tukey’s test, α=0.05).  

Glandular Trichome Densities 

Glandular secretory trichomes (GSTs) are the exclusive site of ART biosynthesis and accumulation 

in A. annua. Therefore, GSTs are considered the most important structure of the plant from the 

economic point of view. This way, GST density is an essential factor when breeding for high ART 

yields – the total number of trichomes per area, along with how full these trichomes are and the 

chemical profile stored in them, will determine the ultimate plant yield. We determined both the 

adaxial and abaxial trichome densities for each of the twelve genotypes in the collection (Figures 

6 and 7 - notice the different scale of the y-axes). 
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Figure 6. Adaxial trichome density of A. annua genotypes. Adaxial trichome density of young, fully 
expanded leaves (n=10) from three plants representing the twelve A. annua genotypes. Trichomes 
were determined using epifluorescence images taken using Olympus MVX10 fluorescence microscope 
with the GFP filter. Error bars indicate standard error and levels not connected by same letter are 
significantly different (Tukey’s test, α=0.05). 

 

Figure 7. Abaxial trichome density of A. annua genotypes. Abaxial trichome density of young fully 
expanded leaves (n=10) from three plants representing the twelve A. annua genotypes. Trichomes 
were determined using epifluorescence images taken using Olympus MVX10 fluorescence microscope 
with the GFP filter. Error bars indicate standard error and levels not connected by same letter are 
significantly different (Tukey’s test, α=0.05).  
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In general, for A. annua genotypes in the collection, abaxial trichome densities were higher than 

the adaxial values (Figures 6-8). The adaxial trichome density ranged almost 5-fold, from 6.09 to 

29.05 mm-2 whereas abaxial trichome density ranged almost three-fold, from 16.95 to 47.66 mm-

2. On both surfaces, genotype L consistently ranked the lowest.  

Fluorescence microscopy is becoming popular to easily visualize GSTs as they auto-fluoresce due 

to the essential oils stored in them (e.g., Graham et al., 2010). We used the same approach to 

quantify GSTs in the A. annua collection. The epifluorescence micrographs indicated an even 

distribution of GSTs on the adaxial leaf surface whereas, GSTs are distributed leaving a groove 

like space around the leaf veins on the abaxial leaf surface (Figure 8). 

 

Figure 8. Leaf adaxial and abaxial trichome densities of A. annua germplasm collection. For each 

genotype (A-L), top rows indicate adaxial trichome and bottom rows indicate abaxial trichome densities. 

Scale Images were taken with Olympus MVX 10 fluoroscence microscope with the GFP filter (2X objective, 

2X slider and 1.2X magnification) and bars at the right bottom corners are 500 µm. 

The average trichome densities reported in more recent literature are between 10-75 mm-2 

(Kjaer et al., 2014) with significantly higher GST density on abaxial than the adaxial surface (Kjær 

et al., 2012), which is in agreement with our data. However, Hu et al. (1993) reported the 
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opposite pattern and the results of Arsenault et al. (2010) showed no difference between these 

densities (Hu et al., 1993; Arsenault et al., 2010).  

CONCLUSIONS 

In our morphological analysis of genotypes in the collection, the genotypes I, J, L, and G had the 

highest height and dry weight values. While genotype H was among the shortest plants, it showed 

high dry weight, which reveals a very dense plant architecture. Leaf area presented high variation 

among genotypes, with D, E, J and L showing highest values whereas A and H displayed the 

smallest leaf areas. Glandular trichomes were present on both leaf surfaces, but they were clearly 

more abundant in the abaxial surface. Genotypes A and K showed the highest adaxial densities 

whereas the genotypes A, K along with C, D and E are grouped with the highest abaxial trichome 

densities. Overall, genotype J had the best anatomical properties to support high ART yield.  

Graham et al. (2010) described several anatomical and physiological factors that determine the 

ART yield, which is a product of ART concentration and plant fresh weight (Graham et al., 2010). 

They documented high phenotypic variation in the Artemis pedigree, such as ART and other 

metabolite concentration, leaf area, glandular trichome density, and plant fresh weight. These 

are the main traits targeted for increasing ART yield. They also confirmed the phenotypic 

variation with high degree of genetic variation with a mean SNP frequency of 1 in 104 base pairs.  

Agronomic factors can also impact the secondary metabolite production in plants, since it is 

associated with the plant’s interaction with its environment (Davies et al., 2009). Therefore, there 

is a high likelihood for physiological characteristics to be dependent on the interaction of plant 

with its environment than the genetics of the plant. Even for high yielding varieties, the yield 

potential is closely related to field management standards in A. annua (RBM/UNITAID/WHO 

Artemisinin Conference Final Report, 2011). Literature related to A. annua physiology and 

environment often presents contrasting results regarding the same trait. The main reason for 

such discrepancies could be due to how this genetically and chemically complex plant interacts 

with its macro- and micro-environment. Also, as secondary metabolites are not directly involved 

with the normal growth and the development of the plant, but they are rather synthesized as a 

defense mechanism against biotic and abiotic stresses, manipulation of growth conditions in the 

field is important to force plants to use their genetic potential to synthesize DHAA and ART in 

maximum quantities.  

Currently, China and Vietnam produce about 80% of the global supply, with East Africa countries 

producing the remaining 20% (Shretta and Yadav, 2012). The average yield of A. annua varies 

between 1.5-2 tons of dry matter per hectare with varying 0.5-1.2% ART content, depending on 

seed quality, climate, altitude, soil, planting density (stand), and the farmers’ knowledge and 

technology used. Considering a 50-80% extraction efficiency and purification yield, 6-14 kg of 

ART, the starting material for active pharmaceuticals is produced  on average per hectare of A. 
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annua (Kindermans et al., 2007). Improving efficiencies in each step is a sine qua non condition 

to alleviate global supply shortages, especially including the use of high-yield varieties. 
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CHAPTER 3  

Biochemical profiling of Artemisia annua genotypes in the germplasm collection at WVU 
 

INTRODUCTION 

Artemisia annua (Sweet wormwood, Qinghao) is a metabolite rich aromatic ethnomedicinal herb 

(Bhakuni et al., 2001). It has been used in Chinese culture since ancient times due to its strong 

aroma and in Chinese traditional medicine for more than 2,000 years to treat various ailments, 

such as cough, cold, and agues, including malaria (Wang et al., 2011). A. annua has been subject 

to intensive phytochemical evaluations since the discovery in 1970’s  of artemisinin (ART), the 

precursor to current WHO recommended treatment against Plasmodium falciparum malaria 

(Wang et al., 2011). Apart from ART, A. annua is a rich source of essential oils that gives the 

characteristic smell to the plant, and is used commercially in perfumery and cosmetics (Jain et 

al., 1996).  A. annua essential oil is known to have insecticidal properties (Jain et al., 1996). It is 

rich in secondary metabolites with almost 600 known compounds dominated by terpenoids, 

particularly sesquiterpene lactone, in addition to flavonoids, coumarins and other shikimate 

metabolites (Brown, 2010).  

Metabolomics can be defined as identification and quantification of metabolic responses of living 

systems to stimuli or genetic modifications (Worley and Powers, 2013). Therefore, metabolomics 

is the result of genomic, transcriptomic and proteomic responses in an organism to a given 

stimulus or change. It encompasses the final process in the cell resulted directly from enzymatic 

activities. Thus, metabolites are more proximal to the phenotype than genes, transcripts and 

proteins. Indeed,  minimal changes in gene expression or protein accumulation does not 

necessarily correlate with variation in protein activity, but alterations in metabolite accumulation 

only occurs through such changes (Worley and Powers, 2013). 

To study A. annua metabolites, various extraction, separation and identification methods have 

been tested (Christen and Veuthey, 2001; Van Nieuwerburgh et al., 2006; Peng et al., 2006; 

Czechowski et al., 2018). Among them, GC-MS approach is widely used (Ma et al., 2008). Various 

statistical methods are also used to simplify and extract more information from complex 

metabolomics data to understand key factors driving the metabolome. In our study, we used GC-

MS to separate and identify compounds and PLS-DA analysis to select and extract information to 

best describe the twelve genotypes of A. annua.  

Multivariate analysis methods are used in metabolomics studies to identify biologically relevant 

spectral features and two of the most common such methods are, principal component analysis 

(PCA) and partial least squares projection to latent structures (PLS) (Worley and Powers, 2013). 
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In this research, we used partial least squares discriminant analysis (PLS-DA) to differentiate the 

genotypes and to identify key features in characterizing each genotype.  

 

MATERIAL AND METHODS 

Plant material: The twelve genotypes that compose the Artemisia annua germplasm collection 

were used in this experiment. The experimental set up is described in Chapter 2.  Juvenile and 

young, fully expanded leaves, up to about 12th leaf from apical meristem of the main stem and 

from one branch from the upper third of the plant was carefully stripped from the stem and 

packed into a 50 mL plastic vial. Meristem from the main stem was not included as it was 

harvested for gene expression analysis. The material was flash frozen with liquid nitrogen and 

stored at -80 ˚C and freeze-dried within two weeks of storage. 

Metabolite extraction and analysis: Non-polar metabolites of 0.100 g freeze-dried leaf material 

were extracted with 5 mL hexane containing 50 µg/L tetracosane (C24H50) as an internal standard 

(IS). Extractions were analyzed using a GC-MS (Trace 1310 GC, Thermo Fisher Scientific) coupled 

to an MS detector system (ISQ QD, Thermo Fisher Scientific) with autosampler (Triplus RSH, 

Thermo Fisher Scientific). A capillary column (Rxi-5Sil MS, Restek, Bellefonte, PA, USA; 30 m × 

0.25 mm × 0.25 µm capillary column w/10 m Integra-Guard Column) was used to detect polar 

metabolites. After an initial temperature hold at 60 °C, the oven temperature was increased to 

200 °C at 7 °C/min, then increased to 320 °C at 15 °C/min and held for 5 min. Injector, MS transfer 

line, and ion source temperatures were set at 275 °C, 280 °C, and 300 °C, respectively. An aliquot 

of 1 μL was injected with the split ratio of 1:4. The helium carrier gas was kept at a constant flow 

rate of 1.2 mL/min. The mass spectrometer was operated in positive electron impact mode (EI) 

at 70.0 eV ionization energy at m/z 40–500 scan range. Metabolite identification was based on 

mass spectra of standard compounds and retention time or comparison with the in the National 

Institute of Standards and Technology (NIST). The metabolites ART, DHAA, AA, camphor and 

endo-borneol were confirmed using standards. The areas of the identified peaks were normalized 

to the IS area and the relative abundance of each predicted compound were calculated and 

normalized to the exact dry weight measurements. The data were statistically analyzed with 

MetaboAnalyst software (v.4.0) (Chong et al., 2018). 

 

RESULTS AND DISCUSSION 

A total of 52 peaks were identified using the NIST library database. During initial assessment, 

camphor and endo-borneol appeared as the two main metabolites that could be used to 

characterize the collection due to their significantly high F values and significantly low p values 

(Appendix 2: Supplemental Table 1) and due to high VIP (Variable Importance in Performance) 
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values (Appendix 2: Supplemental Table 3). Therefore, those two metabolites were further 

confirmed with authentic standards. 

 

Figure 1. Relative abundance of 52 compounds detected by GC-MS analysis from 12 different Artemisia 
annua genotypes. Compounds on or below the solid line on the graph are not significantly different by 
Tukey’s HSD, α=0.05.  

From the 52 compounds identified, one-way analysis of ANOVA and Tukey’s post-hoc test at 

α=0.05 (Figure 1) revealed that 50 compounds were significantly different among the genotypes. 

Based on the PLS-DA analysis, the first, second and third components described 49.3%, 19.8% 

and 9.7% of the variability in the dataset respectively (Figure 2). Camphor, endo-borneol, and 

(potentially) eucalyptol had the three highest impacts on the first three components with 0. 8893, 

-0.92878 and 0.62501 loading values, respectively (Appendix 2: Supplemental Table 2). Loading 

values are coefficients of the linear combination of original variables that makes up the 

components. Therefore, they indicate the weights that each original variable has on the principal 

components in PLS-DA analysis; i.e., the higher the loading value, the higher the significance of 

the corresponding variable. 
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Figure 2. 3D score plot from PLS-DA analysis for the 12 different genotypes of the Artemisia annua 
germplasm collection. The twelve genotypes are well clustered indicating their unique metabolomes. 
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Figure 3.  Loading plots from PLS-DA analysis for the 12 different genotypes of the Artemisia annua 
germplasm collection. Camphor and endo-borneol had a significant contribution in describing the 
germplasm collection 

The importance of camphor and endo-borneol on genotypic identification of the collection was 

further shown with 5.3055 and 3.6694 VIP (Variable Importance in Projection) scores, 

respectively (Appendix 2: Supplemental Table 3). For small datasets (<100), VIP values above 1 

are considered as marker compounds (Wang et al., 2009).  

 

Camphor 

Endo-Borneol 
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Figure 4. Relative abundance of the monoterpenoid camphor (C10H16O) in A. annua genotypes. Relative 
abundance of camphor was measured by comparing the peak intensity with the internal standard and 
normalized to dry weight. Average camphor content (n=6) within genotypes was statistically analyzed and 
error bars indicate standard error. Genotypes not connected by same letter are significantly different 
(Tukey’s test, α=0.05).  

 

(-)-Camphor (C10H16O) is a bicyclic monoterpene ketone with strong odor naturally found in 

essential oils from diverse taxonomic plant groups. Camphor has been present in the human 

pharmacopoeia since ancient times due to its numerous pharmacological uses as an anti-

inflammatory, anti-oxidant, and decongestant agent (Tian et al., 2015). Camphor is derived from 

geranyl diphosphate (GPP) undergoing three enzymatic reactions. First, the linear GPP is cyclized 

to bornyl diphosphate with bornyl diphosphate synthase and then hydrolyzed to borneol with 

borneol synthase. Finally, borneol is oxidized to camphor via borneol dehydrogenase (BDH).  

Camphor relative abundance values varied from a maximum of 3.048 µg/g to undetectable levels 

for the genotypes in the germplasm collection (Figure 4; Appendix 2: Supplemental Table 6). The 

genotypes D, E and F did not show any detectable amount of camphor in the analysis. 

In a recent work by Czechowski et al., camphor was the most abundant monoterpene in Artemis, 

the commercial hybrid recently introduced by the Swiss company Mediplant, which is considered 

as a high ART chemotype (Czechowski et al., 2018). Indeed, we also observed high camphor levels 

in the high-ART chemotypes of our collection. All but one of the Swiss genotypes, I, J, K showed 

the highest levels of camphor in the collection. The only exception was the genotype L. The 
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relationship between camphor and ART has been well documented in A. annua metabolite 

analysis studies. Detailed studies on essential oils from A. annua from Vietnamese and Chinese 

origins showed that camphor and germacrene D as the main components in the Vietnamese oil 

whereas artemisia ketone as the main component in the Chinese oil (Bilia et al., 2014). This 

difference in essential oil composition is thought to reflect ART content in Vietnamese plants and 

Chinese plants with 1.0% and 0.17% dry weight, respectively (Brown, 2010). 

In our analysis, correlation coefficient between camphor and ART was 0.63271 (Appendix 2: 

Supplemental Tables 4 and 5). On the other hand, camphor and DHAA had a correlation 

coefficient of 0.3698. Considering that DHAA is the immediate precursor to ART, and the current 

hypothesis that DHAA to ART conversion is non-enzymatic (Czechowski et al., 2016), the 

association between ART and camphor was not expected to be independent of DHAA levels, since 

ART production depends only on DHAA and ROS levels. Therefore, a strong positive correlation 

between camphor and DHAA was also expected. The lack of strong correlation between DHAA 

and camphor can be interpreted as a possible enzymatic intervention of DHAA to ART reaction, 

in which the genes responsible for this enzyme could be genetically linked to key camphor 

biosynthesis genes. A recent work by Wang et al. indicated that the terpene synthases 

responsible for borneol and camphor biosynthesis are located in the plastidial genome of 

Amomum villosum (Zingiberaceae) (Wang et al., 2018). If this is true for A. annua as well, then 

camphor and ART pathway precursor competition may not be intense, as ART uses 5C precursors 

2:1 from MVA and MEP pathways, respectively (Schramek et al., 2010) whereas camphor uses 

both 5C precursors from MEP pathway (Wang et al., 2018). Further, the relationship between 

camphor and ART is shown in genotypes E, F and G with lack of camphor and low accumulation 

of ART. Therefore, it could be worth investigating the positive correlation between camphor and 

ART and use this information in breeding for high A. annua genotypes. 
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Figure 5. Relative abundance of the monoterpenoid endo-borneol (C10H16O) in A. annua genotypes. 
Relative abundance of endo-borneol was measured by comparing the peak intensity with the internal 
standard and normalized to dry weight. Average endo-borneol content (n=6) within genotypes was 
statistically analyzed and error bars indicate standard error and genotypes not connected by same letter 
are significantly different (Tukey’s test, α=0.05).   

 

endo-Borneol is a bicyclic monoterpene alcohol and an immediate biosynthesis precursor of 

camphor. It was also identified as a distinctive compound in our biochemical profiling study 

(Figure 5). The maximum mean relative abundance found amongst the genotypes in our 

collection was 1.61 µg/g (genotype A). Similar to camphor, the genotypes D, E and F had no 

detectable levels of endo-borneol (Appendix 2: Supplemental Table 6), indicating that the 

impairment of the camphor pathway lies either in the very first or this second enzymatic step. 

Tian et al. (2015) characterized the gene encoding for borneol dehydrogenase in A. annua 

(AaBDH). They found that the enzyme is specific for the substrate borneol and acts in the last 

step of camphor biosynthesis. It has a higher activity compared to alcohol dehydrogenase 

(AaADH2), which is an enzyme specific to glandular trichomes that catalyzes the production of 

various secondary alcohols in vitro, including borneol (Polichuk et al., 2010). Therefore, we 

suggest that genotype A may lack a functional AaBDH allele but has the activity of AaADH2 

retained to carry out borneol hydrolysis to produce camphor. On the other hand, other 
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genotypes (B-C, G-L) with high levels of camphor may have higher AaBDH activity so that they 

have significantly lower borneol levels. 

 

Figure 6. Correlation coefficients between camphor and other metabolites in Artemisia annua germplasm 
collection. The graph indicates the top 25 tentatively identified compounds correlated with camphor.  

  

Among other tentatively identified compounds, two potential monoterpenes (camphene, 

cymene) and two sesquiterpenes (germacrene D, cedren-13-ol) also showed VIP scores above 

the threshold value of 1 (Appendix 2, Supplemental Table 3). Two additional compounds that 

were highlighted as markers still need further identification. The compounds highlighted in the 

VIP score plot are mono- and sesquiterpenes. These results underscore the terpenoid-rich nature 

of the A. annua metabolome. Surprisingly, none of the compounds of particular focus in our 

study, i.e. ART and its chemical relatives, had a significant impact on the genotype separation of 

the germplasm collection. The VIP values for ART, DHAA and AA were 0.24454, 0.35902, and 

0.042541, respectively (Appendix 2, Supplemental Table 3). The compounds describing the 
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genotypes are components of the A. annua essential oil, mainly monoterpenoids synthesize 

potentially in larger quantities compared to ART, DHAA and AA (Brown 2010).  

Generally, there was a positive correlation between ART and camphor levels (Figure 6). The 

positive correlation coefficient (PCC=0.632) and the correlation probability of 4.20E-09 indicate a 

clear positive relationship between these compounds (Appendix 2, Supplemental Tables 4 and 

5).  

 

 

Figure 7. Relative abundance of the anti-malarial sesquiterpene, artemisinin (ART), in the twelve 
genotypes of the Artemisia annua germplasm collection at the West Virginia University. Relative 
abundance of ART content was measured by comparing the peak intensity with the internal standard and 
normalized to dry weight. Average ART content (n=6) within genotypes was statistically analyzed and error 
bars indicate standard error and genotypes not connected by the same letter are significantly different 
(Tukey’s test, α=0.05). 

ART levels within the collection ranged from 0.024 µg/g (genotype J) to 0.004 µg/g (genotype F) 

(Figure 7). The genotype with highest average level of ART was J. Genotypes F and H had the least 

levels of ART. ART has a strong positive Pearson correlation with DHAA (PCC=0.75296). 

Additionally, chiapin B, β-copaene, deoxyartemisinin, and camphor showed high positive 

correlations (Figure 8). On the other hand, ART and AA had an overall low, significant negative 

relationship (PCC= -0.27403, p> 0.021702) (Figure 9). 
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Figure 8.  Correlation coefficients between artemisinin and other metabolites in Artemisia annua 

germplasm collection. The graph shows the top 25 tentatively identified compounds correlated with 

artemisinin. 
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Figure 9. Relative abundance of the artemisinin precursor, dihydroartemisinic acid (DHAA) in A. annua 

genotypes. Relative abundance of DHAA content was measured by comparing the peak intensity with 

the internal standard and normalized to dry weight. Average DHAA content (n=6) within genotypes was 

statistically analyzed and error bars indicate standard error and genotypes not connected by the same 

letter are significantly different (Tukey’s test, α=0.05). 

 

The levels of the ART immediate precursor, dihydroartemisinic acid (DHAA) within the genotypes 

in the collection varied more than nine-fold, from 0.0077 to 0.071 µg/g. Genotype J showed 

distinctively the highest level (Figure 9). Together with biomass (Chapter 2), Genotype J is the 

best genotype in terms of ART and DHAA yield because of its high biomass and ART high ART and 

DHAA accumulations. Next to genotype J, genotypes G and I had next highest levels of ART yield.  

DHAA and ART showed a similar, highly correlated accumulation pattern in the metabolic 

profiling (Figure 10). DHAA is converted to ART via a potentially non-enzymatic oxidation step 

that forms the peroxide bridge directly involved in the mechanism of action against the 

Plasmodium parasite (Wen and Yu, 2011) 

In a recent publication by Ferreira et al., the potential of high DHAA accessions for semi-synthesis 

of ART, as well as plant breeding for high ART producing varieties, was discussed (Ferreira et al., 

2018). High DHAA accumulation indicates a strong pull of C skeletons from competing terpenoid 

pathways in general, including specifically other concurrent sesquiterpenoid compounds, toward 

the relevant compound, ART. 
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The very final step of ART conversion still needs further elucidation. If this is indeed a non-

enzymatic process triggered by reactive oxygen species (ROS) generated by O2 in the presence of 

light, and one would expect most of the accumulation to occur as ART in physiological conditions, 

not as DHAA. But it has shown ex-vivo and suggested the hydrophobic environment in the sub 

cuticular cavitiy favours the conversion of DHAA to ART (Czechowski et al., 2016).  

Figure 10. Correlation coefficients between dihydroartemisinic acid (DHAA) and other metabolites in 12 

different Artemisia annua genotpes. The graph shows the top 25 tentatively identified compounds 

correlated with DHAA. 
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Figure 11. Relative abundance of the non-productive artemisinic acid (AA) in A. annua genotypes. Relative 
abundance of AA content was measured by comparing the peak intensity with the internal standard and 
normalized to dry weight. Average AA content (n=6) within genotypes was statistically analyzed and error 
bars indicate standard error and genotypes not connected by the same letter are significantly different 
(Tukey’s test, α=0.05). 

Artemisinin acid (AA) biosynthesis competes for substrate with the ART pathway at the level of 

artemisinic aldehyde. To maximize ART accumulation levels, AA is expected to be low.  Genotype 

H accumulated significantly higher levels of AA (0.005 µg/g) compared to all other genotypes 

analyzed, which have relatively low AA levels (Figure 11). Like the Chinese genotypes, Sandman 

(genotype H) can be categorized as a low ART-producing chemotype because of its high AA and 

low ART levels. The rest of the collection can be categorized as high ART-producing chemotypes 

because of their low AA and high ART profiles. Even though genotypes such as D, E, and F have 

low ART levels, they are still categorized under the high ART-producing chemotypes because of 

their low AA content. As previously mentioned, the levels of ART and other metabolites are 

known to vary widely due to high degree of genetic variation in this species. For example, a 

variation between 0.93 and 20.65 µg/mg was observed in the famous high ART-producing 

Artemis hybrid cultivar (Graham et al., 2010).  

Eucalyptol and a yet unidentified compound showed strong positive correlation coefficients with 

AA - 0.81179 and 0.77667, respectively (Figure 12). The strong positive correlation between AA 

and eucalyptol may be explained by the availability of GPP (the precursor of all terpenoids), or 
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the coincidence that genotypes that utilize most of artemisinic aldehyde towards AA conversion 

also have strong alleles (e.g., coding for functional enzymes with enhanced kinetic properties) for 

monoterpenoid biosynthesis. 

The deviation of the ART precursors toward the non-productive formation of AA is a complex 

problem to tackle. The cytochrome P450 monooxygenase CYP71AV1 plays a role in two 

consecutive conversions from amorpha-4, 11-diene (AD) to artemisinic aldehyde (Shen et al., 

2012). However, it can convert artemisinic aldehyde to AA, thus redirecting substrates to the 

non-productive pathway. Ideally, breeding programs will select for CYP71AV1 alleles with high-

affinity for substrates in the first two reactions, but with low activity in converting artemisinic 

aldehyde to AA. It is possible that genotype J (highest ART and highest DHAA, and low AA) carries 

an interesting CYP71AV1 allele for breeding purposes. An enzymological analysis of natural 

variation of the CYP71AV1 gene in A. annua germplasm could be valuable in finding ideal alleles 

for breeding. Moreover, for biotechnological purposes (e.g., ART production in bioreactors) the 

use of directed evolution to engineer an optimal cytochrome P450 monooxygenase with high 

affinity to productive substrates but with very little affinity to artemisinic aldehyde could start 

with a gene from a genotype with a profile similar to that of genotype J. 
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Figure 12. Correlation coefficients between artemisinic acid (AA) and other metabolites in 12 A. 
annua germplasm collection. The graph shows the top 25 tentatively identified compounds 

correlated with AA.  

 

CONCLUSION 

Genotype J had the highest accumulation of ART and DHAA compare to the rest of the collection. 

Furthermore, genotypes G, I and C showed high ART content whereas G, I and E presented high 

DHAA content.  Genotype H had the highest accumulation of AA compared to the rest of the 

collection, which showed low AA accumulation levels. Because of high AA accumulation and low 

DBR2 gene expression (Chapter 3), we concluded that H belongs to the low ART-producing 

chemotype. Even though there are genotypes with low ART in the collection, they are still 

considered as high ART-producing genotypes because of the low AA levels. Along with other 

published research, we also observed metabolite variation within descendants of A. annua in the 
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data collected in this research as well. For example, the Brazilian genotypes are descendants of 

the cultivar 3M while the Swiss genotypes are descendants of the cultivar Artemis (Chapter 1). 

The relationship between camphor and ART was also highlighted from the data collected. The 

two heterozygous parent lines (C1 and C4) that is used in producing Artemis are of Vietnamese 

origin (Graham et al., 2010, Czechowski et al., 2016) and the Vietnamese genotypes are known 

be high in camphor and ART (Brown, 2010). Futher High levels of monoterpenoids indicates the 

retaining potential of the A. annua metabolome that can be used achieve high DHAA and ART 

genotypes content by improving the C flux towards ART biosynthesis via breeding.  

Altogether, this chapter presented and discussed the biochemical profiles of the genotypes in the 

A. annua germplasm collection at WVU. This profiling is the key to characterize the germplasm 

collection as well as provide information on how to use the phenotypical variability within to 

propose breeding opportunities for enhanced ART accumulation. 
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CHAPTER 4 

Transcriptional analysis of genes involved in the artemisinin pathway in the Artemisia annua 

germplasm collection at WVU 

 

INTRODUCTION 

The enzymes, genes, and many transcriptional regulators involved in the biosynthesis pathway 

for artemisinin (ART) are quite well known (Lu et al., 2013), except for the last reaction, which is 

believed to be non-enzymatic (Czekowski et al., 2016), i.e. the conversion of dihydroartemisinic 

acid (DHAA) to ART. Even though there is a large body of research showing the possibility of auto-

oxidation of DHAA via dihydroartemisinic acid tertiary peroxide (DHAAOOH) into ART in the 

presence of light (Sy and Brown, 2002; Wallaart et al., 1999; Brown and Sy, 2004; Czechowski et 

al., 2016), strong evidence demonstrating that this reaction happens in vivo remains missing. ART 

is a sesquiterpenoid that accumulates in the subcuticular space of glandular secretory trichomes 

(GSTs). The immediate ART precursor (DHAA) is synthesized in the GST sub-apical and apical cells 

(Olofsson et al., 2011). 

Briefly, the ART biosynthesis pathway starts in the general terpenoid pathway. Dimethylallyl 

diphosphate (DMAPP) from the cytosolic mevalonate pathway (MVA) is transferred to plastid 

and condenses with another 5-C isoprenoid (IPP) from the plastidial methylerythritol pathway 

(MEP) to generate geranyl pyrophosphate (GPP), which is subsequently imported by the cytosol 

for further elongation with an isopentyl pyrophosphate (IPP) from the MVA pathway to form the 

15-C farnesyl pyrophosphate (FPP), the precursor of all sesquiterpenes in the plant (Wen and Yu, 

2011). In the ART committed pathway, FPP is cyclized to amorpha-4,11-diene (AD) by amorpha 

diene synthase (ADS) and oxidized with the CYP7AV1/CPR pair to form artemisinic alcohol 

(AAOH). At this point, the pathway divides into two branches leading to the artemisinic acid (a 

non-productive compound) via artemisinic aldehyde with additional activity of ADH1. Meanwhile 

in the productive branch, the double bonds at 11 and 13 positions of AAOH are reduced by DBR2 

and then oxidized to DHAA by ALDH1 (Weathers et al., 2017). 

Herein, we analyzed the transcriptional activity of 16 genes in the 12 genotypes of the Artemisia 

annua germplasm collection at the West Virginia University - 10 structural genes from the 

biosynthetic pathway, 5 transcription factors previously described as regulators of this pathway, 

as well as GAPDH as the constitutive housekeeping gene for data normalization. By comparing 

gene expression of key genes in the ART pathway with the metabolite profile of these genotypes 

under the same conditions, we are able to better understand how this pathway is regulated at 

the genetic and biochemical levels.  
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MATERIAL AND METHODS 

Sampling and cDNA synthesis 

The same samples collected for the biochemical profiling (Chapter 2) were used for this 

experiment. In brief, young leaves with the apical meristem were flash frozen in liquid N2 and 

stored at -80˚C until processing. Total RNA was extracted with TRIzol reagent and purified with 

Direct-zol™ RNA Miniprep plus kit (Zymo Research) following the manufacture’s instruction.  

Isolated total RNA was treated with DNase I (DNA-free TURBO kit, Ambion), quantified with a 

NanoDrop™ spectrophotometer (Nanodrop), and used for cDNA synthesis. cDNA synthesis was 

carried out with 1 µg of DNase treated RNA and SuperScript®IV first-strand synthesis system 

(Invitrogen) with oligod(T) primer, according to the manufacture’s instruction in 10-uL reactions. 

Synthesized cDNA was diluted 10 times with RNase free water to a final volume of 100 µL and 

stored at -80 ˚C.  

Quantitative RT-PCR 

Primers were designed as described by (Mock et al., 2017) (Table 1). cDNA was used in qPCR 

amplification using SybrGreen fluorescence. Fifteen genes were amplified and GAPDH was used 

as an internal control for normalization. qPCR was performed using 1 µL diluted cDNA, 0.5 µL 

RNA free water, 2.5 µL 2X Power SYBR® Green master mix (ThermoFisher Scientific) and 1 µL mix 

of 10 mM each forward and reverse primers. Each sample was run in technical triplicates, and 

each treatment was run in three biological replicates. The reactions were performed with ABI 

7500 instrument (Applied Biosystems) and CFX96 Touch™ (Bio-Rad) with appropriate clear 96 

well plates. 

 
Table 1. Primers used in gene expression analysis in this study. 
 

Gene ID 
 
 

Functional 
Annotation 

Forward primer sequence 5'-3' Reverse primer sequence 5'-3' Amplicon 
size (bp) 

AF182286.2 1-deoxy-D-xylulose-
5-phophate synthase 

(AaDXS1) 

GCAGATCAATTAGCCGAAGC CATGACCTCCAAAGCCTCTC 96 

AF182287.2 1-deoxy-D-xylulose-
5-phosphate 

reductoisomerase 
(AaDXR1) 

ACCGGACAACGTGAAATACC GGCTTTCTCGTTAGCTGCAC 100 

AF142473.1 HMG-CoA reductase 
(AaHMGR1) 

ATTGCGTCAAAGGTGTGAAAG ACCCTTCAAAACCGCACAC 101 

GQ420346.1 Farnesyl 
pyrophosphate 

synthase (AaFPS) 

TGATTTTGAGTCTAGCGAGTGG TACAGACAACATCGGCTTGC 70 

KR445687.1 Amorpha-4,11-diene 
synthase (AaADS) 

TGATCTCATGACCCACAAGG TCAAGGTTTGGGCATACTCC 107 
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KJ609178.1 Amorpha-4,11-diene 
monooxygenase 
(AaCYP71AV1) 

CAACTGGAAACTCCCCAATG CTCGGTCTTTCTTTGCATCG 85 

JN594507.1 Cytochrome P450 
reductase (AaCPR) 

TTGTATGTTTGCGGTGATGC TAGAGCTCCGCCTTTGAGG 107 

JF910157.1 Alcohol 
dehydrogenase 1 

(ADH1), from 
genotype CL8 Contig 

1 

GGCTAGTGTGGCCATTAACAG GGTTCTTACGCCACCAAAAG 79 

EU704257.1 Artemisinic aldehyde 
delta-11(13) 

reductase (AaDBR2) 

CTGATTTGGTCGCTTTTGG CCTATTTAAAGGTGCGTTGAGC 83 

FJ809784.1 Aldehyde 
dehydrogenase 1 

(AaALDH1) 

CGAGATCTATTCGAGCAGGTG TCCTTGTTCTCGTCCAAACC 107 

JQ797708.1 Octadecanoid-
derivative responsive 
AP2 domain protein 

(AaORA) 

TGAGGAGCTTCGGATGGTAG GTCATGATCTGTTCCCACCTC 79 

FJ390842.1 WRKY transcription 
factor 1 (AaWRKY1) 

GATTGAACCTGCTTGATAGTTGG TGCAGAAAGATACGTCCTCAAG 67 

JN162091.1 AP2/ERF 
transcription factor 

(AaERF1) 

GCCGAGTGGTAGATAGGATTTG AAATCCAGACCCGATACCATC 101 

KP119607.1 MYC2 transcription 
factor 

GGTAAGCTCGTCTTTCTCATGG CACCCAAATCCTGCTTTTTG 61 

JQ617313.1 ABA receptor 
(AaPYL9) 

CGAGTCATTTGTGGTGGATG CTCTGAGACATCAGCCAACG 109 

GQ870632.1 glyceraldehyde-3-
phosphate 

dehydrogenase 

TGGTGACAGTAGGTCAAGCATC GGGTGCTGTATCCCCATTC 107 

 

Data analysis 

The geometric means of Ct values were used to calculate the relative mRNA abundance according 

to a formula provided in Jacometo et al. with a slight modification by assuming 100% 

amplification of mRNA instead of using the primer efficiency in the equation (Jacometo et al., 

2014). The dataset was subjected to ANOVA and, when appropriate, to post-hoc testing using 

Tukey’s range test (=0.05). 

RESULTS AND DISCUSSION 

A description of the enzymes involved in the ART pathway is reported in the Introduction section 

of this thesis. To understand the relationship between biochemical phenotypes of the genotypes, 

ten enzymatic genes and five genes encoding transcription factors were analyzed.  

Genes which expressed were found not significantly different among the genotypes in the 

collection were HMGR from the general MVA pathway, DXR1 and DXS1 from the MEP pathway, 

and the ART biosynthesis genes, CYP7AV1 and ADH1 along with all five transcription factors, 
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WRKY1, MYC2, PYL9, TAR1 and ERF1 (cf. Appendix 3). Among the ten structural genes of 

biosynthesis pathway, only three (FPS, CPR, and DBR2) showed significant differences in mRNA 

abundance among the genotypes tested. 

According to (Olofsson et al., 2012), most ART biosynthesis genes are expressed in sub- and apical 

cells of glandular trichomes (GST). FPS is the key enzyme to enter the sesquiterpenoid pathway 

and acts on the synthesis of 15-C farnesyl pyrophosphate (FPP) by condensation of geranyl 

pyrophosphate (GPP) and IPP in the cytosol. Even though FPP is the starting point for wide variety 

of other sesquiterpenes, such as squalene and β-farnesene, the overexpression of FPS showed a 

moderate to high influence on the ART yield (Wang et al., 2011; Banyai et al., 2011). The relative 

abundance of FPS expression among the genotypes in our materials ranged from 0.480468 

(genotype C) to 2.439918 (genotype K) units, compared to GAPDH expression level, which is set 

as 1 unit by definition (Figure 1). According to our data, FPS mRNA abundance of genotypes K 

and L were significantly higher compared to genotypes B, J, A, H and C. Considering the alleles 

present in all genotypes have comparable kinetic levels (e.g., substrate affinity, turnover rates, 

inhibitor levels), we would expect a stronger C flow towards the general sesquiterpene synthesis 

and a lower monoterpene accumulation in genotypes K and L compared to A, B, C, H, and J but 

we could not observe this assumption. Therefore we can assume unfavorable allelic versions of 

genes encoding ART pathway enzymes in K and L that are inefficient in converting the C flow 

created by FPS towards DHAA and ART.   

  

Figure 1. Relative mRNA abundance of FPS gene within the A. annua genotypes of the WVU germplasm 
collection. mRNA abundance was measured and averaged (n=3) with young, unexpanded leaf materials 
collected from plants grown for 45 days.  Error bars indicate standard error and genotypes not connected 
by the same letter are significantly different (Tukey’s test, α=0.05). 
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Figure 2. Relative mRNA abundance of CPR gene within the A. annua genotypes of the WVU germplasm 
collection. mRNA abundance was measured and averaged (n=3) with young, unexpanded leaf materials 
collected from plants grown for 45 days. Error bars indicate standard error and genotypes not connected 
by the same letter are significantly different (Tukey’s test, α=0.05). 

The cytochrome P450 reductase (CPR) (Figure 2) is the redox partner of the cytochrome P450 

monooxygenase (CYP71AV1) that carries out the oxidation steps from amorpha-4,11-diene into 

artemisinic aldehyde (Shen et al., 2012) as well as a third, non-productive step to artemisinic acid 

(AA) (Shen et al., 2012). The CPR reduction activity restores the catalytic properties of CYP7AV1 

and can be seen a single enzymatic complex. Whereas we have not observed transcriptional 

differences for CYP71AV1 amongst the genotypes in the collection, we did for CPR. The largest 

CPR mRNA abundance differences were between the genotypes expressing the highest levels (A 

and C) compared to the group with lowest transcriptional activity (K and C).  

Since genotype H had significantly high content of AA compared to the rest of the collection (cf. 

Chapter 3), one would expect significantly higher expression levels of enzymes CYP7AV1, CPR and 

ALDH1 genes. However, none of these genes were significantly high for genotype H. Therefore, 

we reason that the high AA accumulation in genotype H is more due to allelic variation with 

enhanced properties towards conversion of artemisinic aldehyde to AA, which is highly 

undesirable for high-ART biosynthesis. 
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Figure 3. Relative mRNA abundance of DBR2 gene within the A. annua genotypes of the WVU germplasm 
collection. mRNA abundance was measured and averaged (n=3) with young, unexpanded leaf materials 
collect from plants grown for 45 days.  Error bars indicate standard error and genotypes not connected 
by same letter are significantly different (Tukey’s test, α=0.05). 

Among all the genes tested, the artemisinic aldehyde-Δ11 (13) reductase (DBR2) was the most 

drastically differently expressed amongst the genotypes. DBR2 mRNA abundance values ranged 

30-fold, from 2.97599 (genotype K) to 0.101044 relative units (genotype H). A. annua is divided 

into two chemotypes based on the content of ART and its precursors (Wallaart et al., 2000). ART, 

DHAA, and AA content along with DBR2 expression levels are parameters used to categorize A. 

annua chemotypes, the high-ART (HAP) and low ART-producing (LAP) groups. In LAP, the AA 

content is high (Lommen et al., 2006; Arsenault et al., 2010; Larson et al., 2013; Czechowski et 

al., 2018). A study by Yang et al. deduced that the difference between HAP and LAP chemotypes 

are due to DBR2 differential expression and specifically due to the insertions and deletions of 

certain cis-elements in the DBR2 promoter in LAP, leading to a lower transcriptional activity of 

the gene coding for this enzyme (Yang et al., 2015). In our germplasm collection, our biochemical 

profiling data categorized the genotype H as a LAP, which is congruent with the lowest expression 

level of the DBR2 gene seen in this study for H (Figure 3). The remaining genotypes of the 

collection can be categorized under HAP chemotype because of their low AA levels and high DBR2 

expression compared to genotype H. Notwithstanding, the DBR2 expression level of H was not 

statistically different from genotypes C-J and L, possibly due to the high data variation amongst 

the biological replicates and warrant the inclusion of additional replicates and a re-analysis of the 

data in future. 
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Notwithstanding, given that the ART committed pathway is localized in glandular trichomes, the 

significant differences in trichome densities amongst the genotypes (cf. Chapter 2) may be 

contributing to muddle the gene expression results. Currently, our group is considering the 

addition of another level of normalization to the gene expression dataset according to glandular 

trichome density values. For that, we will need to establish the number of glandular trichomes 

occurs per dry weight mass of sampled leaves. 

ART biosynthesis pathway is considered to correlate with leaf development (Liu et al., 2016). The 

early steps of the pathway occur in glandular trichomes of young juvenile leaves and the later 

steps happening in mature leaves (Czechowski et al., 2016). Another study by the same group 

tested for the gene expression of young leaves of HAP and LAP chemotypes and found 

significantly higher expression of DBR2 in HAP compared to LAP and, conversely, significantly 

higher expression of ALDH1 in LAP compared to HAP. Additionally, they also showed that there 

was no significant differences between ADS and CYP7AV1 gene expression in young leaves of 

both chemotypes (Czechowski et al., 2018), which corroborate our findings. Expression of ALDH1 

specific promoter with GUS expression in different tissues showed strong expression in GSTs of 

young leaves and reduced to no expression in mature and old GSTs, respectively. In our study, 

we used young, juvenile leaf samples to study gene expression, and our results are compatible 

with recent reports: the genotype H can be classified as chemotype LAP (chapter 3) and shows 

low DBR2 expression levels whereas a high transcription of ALDH1. On the other hand, the 

transcriptional levels for genotypes belonging to the HAP chemotype group are also compatible 

with the results reported by Czechowski et al. (2018), however with some deviations that could 

be attributed to environmental variations (Ferreira et al., 2018). 

CONCLUSION 

Considering the results from biochemical analysis of the genotypes, genotype J was expected to 

have significantly higher mRNA levels for biosynthesis pathway genes compared to the rest of 

the collection, specifically for DBR2, since DHAA levels of the genotype J was significantly high. 

However, transcriptional levels were not necessarily high for genotype J. This could be because 

of the different (multi)alleles may be encoding for enzyme isoforms with different levels of 

affinities to the substrate and other catalytic properties. An experiment conducted by Graham et 

al. using the Artemis hybrid showed that the mean SNP frequency between plants within  this 

hybrid was extremely high, 1 in 104 bp (Graham et al., 2010). Therefore, depending on the SNP 

locations, the process from gene expression to protein structure and catalytic activity can be 

affected. The other factor can be the highly convoluted nature of the terpene biosynthesis 

pathway. The high biochemical complexity of A. annua is attributed to promiscuous enzymes 

encoded by multiple members of gene families expressed in glandular trichomes (Wang et al., 

2009; Graham et al., 2010; Soetaert et al., 2013). On the other hand, terpenoid pathway 

intermediates act as substrates for different types of terpene synthases. For example, DHAA is 

the precursor to 16 other compounds including ART (Brown, 2010).  This means that there can 
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be other unidentified enzymes contributing to ART biosynthesis pathway as well as unidentified 

enzymes that use intermediates of ART biosynthesis pathway reducing the flow towards the end 

products such as ART, DHAA and AA. Therefore, the chemical phenotypes and the genotypes may 

not be compatible with each other in these plants.   

Further, mRNA abundance of none of the transcription factors which we tested were significantly 

different among the genotypes analyzed. Importantly, some of the primers designed for 

transcription factors did not amplify consistently within genotypes. This could be due to the 

genotypical constitution of the genotypes that deviates from the sequences available for primer 

design. In conclusion, apart from DBR2, the gene expression data does not completely explain 

the biochemical phenotype of the collection. Therefore, an analysis of the allelic variation of the 

genes of interest in each genotype through whole-genome sequencing could be a valid approach 

to explain the biochemical phenome of this germplasm collection. 
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CHAPTER 5 

Genetic improvement of Artemisia annua: honing domestication and boosting yields of 

artemisinin and dihydroartemisic acid 

INTRODUCTION 

Artemisia annua is an annual herb with hermaphrodite composite flowers (Wetzstein et al., 2014) 

and a self-incompatible outcrossing reproduction strategy (allogamy) (Ferreira et al., 2005). 

Despite of some breeding efforts to improve it as a viable crop, one can consider it as an 

undomesticated species that has been selected from crossings of wild accessions growing in 

South Asia. The main features that typifies this species as undomesticated are especially its 

flowering induction promptly triggered by short days, the high degree of genetic polymorphism, 

an incapability of self-pollinating (which would facilitate cultivation and development of true 

varieties by stabilizing the genotype), and the high variability of economically relevant traits, such 

as leaf morphology and size (especially total leaf area).  

In this diploid species (2n=2X=18; 1.74Gb per haploid set; (Shen et al., 2018), flowering is 

promptly induced under a photoperiod threshold of 16 hours or less, depending on the genotype 

(Ferreira et al., 1995), highly restricting the latitude of field cultivation. The genetic identity of 

this plant cannot be preserved by self-pollination, and the genotype (i.e., the exact allelic 

combination of an organism) is permanently lost via sexual propagation. Due to the high degree 

of genetic heterozygosity conferred by the obligatory allogamy, artemisia breeding is challenging. 

Notwithstanding, artemisia breeding is feasible, as already illustrated by many successful 

examples in allogamous crops in the Asteraceae family (e.g., sunflower, artichoke) as well as a 

plethora of cases in other plant families (e.g., corn, rye, alfalfa, tobacco, cotton), and especially 

in species which value, like artemisia, resides in the accumulation of terpenoids inside of 

glandular trichomes (e.g., hop, cannabis). 

Conventional plant breeding implicates basically the creation of genome-wide allelic 

combinations for all genes contributing to the relevant phenotypes, followed by selection of the 

best assortment. In conventional crop breeding of allogamous species, the strategies used 

employ either highly inbred lines to generate commercial F1 hybrids (like corn) or use an open-

pollination strategy with two populations with stable alleles for the most important traits of the 

crop (Souza Jr., 2011). For artemisia, given that self-crossing is not a viable option for most 

genotypes, the second case applies. The parental lines of commercial hybrids remain highly 

heterozygous and must be maintained by vegetative propagation, or as two distinct populations. 

Although many efforts have been made on the molecular genetics front to understand the ART 

biosynthesis and genetic regulation of the pathway, conventional breeding programs of artemisia 

have traditionally been performed by only a few companies and institutions around the world, 

such as Médiplant in Switzerland (Simonnet et al., 2008), Bionexx in Madagascar (Townsend et 
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al., 2013; Suberu et al., 2016), the University of York in the UK (Townsend et al., 2013; Czechowski 

et al., 2016), North Carolina State University in the U.S. (Alejos-Gonzalez et al., 2011), and some 

places in China, such as the Institute of Medicinal Plants in Kunming (Yang et al., 2010; Liu et al., 

2010a) and the Academy of Chinese Materia in Chongqing (Li et al., 2010, 2017). In order to 

generate commercial lines able to achieve the genetic potential of the species for ART production 

in different cropping environments, more concerted efforts and investment are required. 

ART yield is a function of leaf ART content as well as leaf biomass production. Moreover, besides 

the plant genetic constitution, crop management and environmental conditions also influence 

the final yield (Ferreira, 2007). Breeding goals are to boost ART content from 1-1.4% (g ART per 

100 g total leaf dry weight) to ~2% (Delabays et al., 2001; van der Kooy and Sullivan, 2013; Suberu 

et al., 2016) or even more. Two Chinese varieties, ‘Anamed’ and ‘Chongqing’, produce ~1% ART 

(Yang et al., 2015; Han et al., 2014). The F1 hybrid ‘Artemis’ achieves 1.3% ART (Simonnet et al., 

2008) and a reported yield of 37.8 kg/ha. ‘Artemis’ is produced by crossing of two Vietnamese 

populations (Graham et al., 2010). It was developed by the Centre for Novel Agricultural Products 

(CNAP) at the University of York, UK in collaboration with East-West Seed International. Most 

recently, ‘Hyb8001r’ was develop and introduced by CNAP as a new hybrid, which is now 

commercialized by East-West Seed International. In field trials worldwide, ‘Hyb8001r’ produced 

high ART concentration (up to 1.44%), high biomass (up to 4.4 kg/ha dry leaf), reaching high ART 

yields (54 kg/ha) (Suberu et al., 2016 – in this work, ‘Hyb8001r’ is referred to as CNAP8001). 

Being the raw material of conventional breeding, the genetic basis of artemisia is fortunately 

quite broad (Li et al., 2017). Artemisia shows great phenotypic diversity for important traits, 

including leaf morphology, trichome density, plant size, as well as terpenoid profile, and 

artemisinin (ART) yield. As an example of this advantage for genetic breeding, a basic genetic 

map was produced with a segregating population developed from a crossing between two 

commercial parental populations that are used to produce the ‘Artemis’ F1 hybrid (Graham et al., 

2010). In the segregating population, ART content ranged extensively between 0.1-2.1%. 

Furthermore, doubling the artemisia ploidy (4X=36), may have a positive effect on yield, although 

the results are not conclusive (Lin et al., 2011; Wallaart et al., 1999), and the impact on 

susceptibilities to biotic and abiotic stresses or flower induction remain untested. 

 

Boosting the terpenoid as well as the committed ART biosynthesis in glandular trichomes can be 

achieved by selecting alleles with strong promoters or optimized protein sequences that lead to 

a stronger flux of photosynthates towards these pathways as well as most substrates flowing 

towards sesquiterpene biosynthesis, and ensuring that the pathway does not branch off to 

synthesis of other products than DHAA and ART. 
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ART is a sesquiterpene lactone that holds an uncharacteristic peroxide bridge. It is synthesized in 

multicellular glandular trichomes that develop on the epidermis of aerial organs of the plant 

(Olofsson et al., 2012). The co-accumulation of its precursor dihydroartemisinic acid (DHAA) is 

often an overlooked aspect in artemisia breeding. DHAA is converted non-enzymatically into ART 

by UV light exposure, even during post-harvest sun drying (Ferreira and Luthria, 2010). Thus, it is 

reasonable to consider both, ART and DHAA, in genetic gain models for ART yields (Ferreira et al., 

2018). In considering breeding for high ART yields, it is important to appreciate the genetic 

aspects involved in the ART pathway and consider not only the allelic variation and regulation of 

structural genes coding for enzymes or enzymatic units, but also the regulatory components, 

such as transcription factors.  

Below, we briefly introduce the most relevant aspects of the general terpenoid biosynthesis 

pathway and leading to the committed ART pathway.  

 

The general isoprenoid/terpenoid biosynthesis pathway 

Quite exceptionally, plant terpenoids (a.k.a. isoprenoids) are synthesized via two distinct 

pathways in different compartments of the plant cell from precursors derived from sugar 

catabolism. The mevalonate pathway (MVA) uses acetyl-CoA as a precursor and occurs in the 

cytosol, possibly with some contribution by the ER. There have been suggestions that the MVA 

pathway also receives contributions from peroxisomes (Sapir-Mir et al., 2008; Clastre et al., 

2011). In turn, the methylerythritol phosphate (MEP or DOXP) pathway occurs in plastids and 

utilizes glyceraldehyde-3-P (G3P) and pyruvate as precursors. Importantly for breeding purposes, 

the structural genes of the plastidial MEP pathway are encoded in the nucleus and the enzymes 

are imported into the plastid. Therefore, they display Mendelian segregation and are not 

cytoplasmically (unilaterally) inherited. In both cases, the general terpenoid pathways produce 

the 5-carbon compounds isopentenyl diphosphate (IPP or IDP) and its isomer dimethylallyl 

diphosphate (DMAPP) as building blocks of all isoprenoids. The steady state of IPP to DMAPP in 

plastids is estimated to be 6:1 (Eisenreich et al., 2004; Ma et al., 2016), which makes DMAPP a 

limiting substrate for terpenoid biosynthesis. Following the synthesis of IPP and DMAPP, the 

remaining steps of the terpene biosynthesis occurs in the cytosol for sesqui- and triterpenes, 

whereas mono-, di- and tetraterpenes are synthesized in the plastid (Chen et al., 2011). IPP and 

DMAPP are used to synthesize the 10-carbon compound geranyl diphosphate (GPP), the 15-

carbon compound farnesyl diphosphate (FPP), and the 20-carbon compound geranylgeranyl 

diphosphate (GGPP) as terpenoid building blocks. In the first steps committed to sesquiterpene 

synthesis in the cytosol, GPP is produced by the fusion of IPP and DMAPP, to which another IPP 

unit is added to generate FPP.  

 



53 
 

The committed ART biosynthesis pathway 

Since FPP is the precursor of all sesquiterpenes, for maximum accumulation, it is important that 

in glandular trichomes most FPP rather flows towards FFP synthesis and then ART synthesis. The 

entry point of the committed ART pathway occurs with FPP conversion to amorpha-4,11-diene 

(AD) by its synthase (ADS) in the cytosol. Consequently, it is the ADS sink strength - as defined by 

its gene expression level and catalytic properties of the enzyme (AD affinity and turnover rate) – 

that will determine how much of the cytosolic FPP pool will flow towards ART biosynthesis. 

Terpene synthases (TPS) encompass a large class of enzymes that utilize GPP, FPP, or GGPP to 

synthesize mono-, sesqui- and tri-, or di- and tetraterpenes, respectively. Four phylogenetically 

TPS clades contain enzymes with sesquiterpene synthase activities: TPS-a-1, some in TPS-c, TPS-

e/f, and TPS-g (Chen et al., 2011). Although an ADS gene from artemisia responsible for AD 

synthesis has been identified (Lommen et al., 2007; Zhang et al., 2015), attention must be paid 

for alternate ADS isozymes to could cooperate with FPP flux to ART, as well as other TPS 

competing for substrate in glandular trichomes. In the next step in the pathway, the cytochrome 

P450 monooxygenase CYP71AV1, in association with the cytochrome P450 reductase (CPR), 

oxidizes AD to AA in three successive reactions via the intermediates artemisinic alcohol (AOH) 

and artemisinic aldehyde (AO). CYP71AV1 is the main rate-limiting enzyme of the committed ART 

biosynthesis (Lv et al., 2016; Chen et al., 2017). Although the CYP71AV1/CPR enzymatic system 

does not produce dihydroartemisinic aldehyde (DHAO), it can convert DHAO into 

dihydroartemisinic acid (DHAA). Therefore, ART biosynthesis competes with the AA pathway for 

AO. Manipulating this step is key to invert the high-AA, low-ART profile of certain genotypes. In 

the ART pathway, AO is reduced by the AO 11(13) reductase encoded by the DOUBLE BOND 

REDUCTASE 2 (DBR2) gene into DHAO, which can be further reduced by either the CYP71AV1/CPR 

system or AOH dehydrogenase (ALDH1) into DHAA. In these convoluted, promiscuous enzymatic 

systems involved in the late pathway, it is critical to define allelic variants with higher affinity to 

substrates largely favoring ART biosynthesis, rather than AA. Finally, the last step of ART 

biosynthesis is the conversion of DHAA into ART, which is thought to occur non-enzymatically in 

the trichome subcuticular space (oil sac) through photo-oxidation by UV light (Czechowski et al., 

2016). Alternatively, reactive oxygen species (ROS) that generated by abiotic stresses may be also 

contributing to this conversion (Nguyen et al., 2011).  

  

Furthermore, several transcription factors activating the expression of structural genes of the 

ART biosynthesis, especially between FPP and AO, have been identified, such as TAR1, AabZIP1, 

AaERAF1/2, AaORA, AaWORKY, AabHLH1, and AaMYC2 (Shen et al., 2016; Lv et al., 2017). These 

are obvious candidates for having a large impact on ART synthesis and accumulation and mapping 

of their genes will potentially help selection of optimal combinations of allelic variants. 
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Despite being a crucial element in this pathway, the plasma membrane transporter that secretes 

DHAA from the apical secretory cells to the subcuticular sac has not been characterized yet. 

 

Transmembrane transport - plastid to cytosol delivery of IPP and artemisinin efflux to the secretory 

reservoir 

Plastidial contribution with IPP to the cytosolic terpenoid biosynthesis is facilitated by 

unidentified proton symporters present in the envelope membrane (Bick and Lange, 2003; 

Dudareva et al., 2005; Pick and Weber, 2014; Henry et al., 2015). At a fundamental level, the 

molecular identification of such plastidial transporters could help streaming the IPP pool towards 

sesquiterpene biosynthesis. Moreover, the fact that ART, or its immediate precursor DHAA, is 

synthesized in the secretory cells of glandular trichomes and then stored in the subcuticular 

reservoir, a transmembrane efflux system for ART or DHAA is required but remains unidentified. 

In plants, two members of the ABC transporter family were characterized as terpene transporters 

at the plasma membrane: ABC1 Nicotiana plumbaginifolia (Jasiński et al., 2001) and ABCG/PDR 

from N. benthamiana (Shibata et al., 2016).  

 
Indeed, the coordination of the ten cells that compose the peltate glandular trichome towards 

ART biosynthesis in artemisia is not fully understood (Xiao et al., 2016). Only the four sub-apical 

cells contain chloroplasts, and it appears that only the two apical secretory cells express the late 

enzymes of the ART pathway (Nguyen et al., 2011; Xiao et al., 2016). It would be valuable to have 

a better resolution of gene expression of each enzyme in specific cell types of the glandular 

structure, such as by using RNA in situ hybridization or confocal microscopy with a fluorescent 

protein fusion under native promoter. How substrates are trafficked from one cell to another is 

also largely unknown, including how ART is secreted to the trichome subcuticular oil storage 

cavity (i.e., the cuticular sac or gland tip), as aforementioned. In the Chinese herb Tripterygium 

wilfordii, an MDR transporter (TwMDR1) was recently identified with affinity to the 

sesquiterpene pyridine alkaloids, wilforine and wilforgine. This opens up the possibility that an 

MDR transporter, in addition to ABC transporters, could be involved in the export of DHAA to the 

subcuticular sac (Miao et al., 2017). An analysis of membrane transporters exclusively expressed 

in secretory cells of glandular trichomes could lead to potential candidates that play these 

essential yet neglected functions in ART accumulation. 

 

Breeding for high ART accumulation via targeted allelic selection of natural variants 

By and large, for plant selection programs aiming at boosting ART+DHAA in artemisia should 

primarily focus on the following main traits: 

1. Enhanced general terpenoid and ART accumulation in glandular trichomes: Most of the 

rate-limiting enzymes and many transcriptional regulators of the ART pathway have already been 
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characterized. The first key enzyme in the MVA pathway is 3-hydroxy-3-methylglutaryl-CoA 

reductase (HMGR), which gene expression is positively correlated with ART content in artemisia 

(Alam and Abdin, 2011). The transcription factor AabHLH1 was shown to induce HMGR as well as 

some enzymes of the committed ART pathway, such as ADS and CYP71AV1 (Ji et al., 2014). To 

tackle DMAPP limitations for sesquiterpene biosynthesis, over-expression of the type-I IPP 

isomerase (AaIPPI1) in the cytosol in artemisia leaf cells led to a 1:7 IPP-to-DMAPP ratio, which 

considerably increased the levels of arteannuin B (4%) along with yields of ~0.20% ART and 1% 

AA (Ma et al., 2016). 

 

The sesquiterpene biosynthesis occurs in the cytosol with a terpene synthase fusing two IPP units 

to form farnesyl diphosphate (FPP or FDP) the primordial sesquiterpene (15C) molecule. Then, 

the first committed reaction of ART pathway is a cyclization catalyzed by ADS to produce 

amorpha-4,11-diene by a synthase (ADS). Virtually all structural genes of this pathway have been 

identified, along with various regulators. However, additional unknown genes may be 

contributing or competing with the ART pathway. For example, in the tomato genome, there are 

44 terpene synthases (TPS) with 14 expressing in trichomes (Matsuba et al., 2013). The functional 

characterization of potential sesquiterpene synthases expressed in tomato glandular trichomes 

as a model organism could lead to the identification of TPS genes coding for enzymes with 

sesquiterpene synthase activity as well as their transcriptional regulators. Undoubtedly, the 

genome-wide identification of all TPS members in the artemisia genome would be highly 

beneficial and is now within reach with the availability of high-quality genome sequence and 

annotation (Shen et al., 2018). 

Mapping of these genes on the artemisia genome will enable selection of allelic versions that 

may function as molecular markers for high ART accumulation. Combining an optimal set of 

alleles for enzymes and transcriptional regulators in the committed biosynthesis pathway may 

lead to major gains in yield. Moreover, the availability of a gene expression atlas for all different 

organs and main structures, the generation of regulatory gene networks and genome-wide 

association studies (GWAS) will be highly beneficial to further explore its genome for breeding 

purposes. 

 

2. Improved final ART+DHAA profile and low accumulation of side products: For best 

results, the pathway must flow towards producing ART+DHAA, and not stray precursors to make 

compounds with no or little anti-malarial effects. The main products that drain artemisinic 

aldehyde (AO) from the final steps of ART biosynthesis, lowering the yield, are artemisinic acid 

(AA) and arteannuin B (AB). Expectedly, ART+DHAA yields are negatively correlated with AA+AB 

content. The accessions for which data are available show phenotypical variation leading to 

massive yield differences for each of these compounds. For example, a recent study showed very 
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distinct chemical profiles of Chinese accessions (Zhang et al., 2017). Therefore, selection of allelic 

variants with high ART+DHAA and low in AA+AB is feasible. This goal can be accomplished by 

optimizing gene expression and/or catalytic activity of DBR2 to compete for the AO substrate in 

order to maximally produce DHAA. Moreover, the use of high AA variants to compare at the gene 

variation (at expression and/or protein sequence levels) potentially responsible for the variation 

in chemical profiles could reveal the most important genetic variations that define ART/AA 

branching of the pathway. 

 

3. High glandular trichome density on leaves and floral calyx: Glandular trichomes are 

multicellular epidermal appendices on aerial organs of a plant. They are generally regarded as 

chemical factories of the plant (Glas et al., 2012; Huchelmann et al., 2017). The development of 

higher densities of glandular trichomes on the surface of aerial organs directly causes higher 

accumulation of ART. The density of glandular trichomes in Artemisia annua can vary from none 

(glandless mutants) up to over 25 glands per mm2 for the adaxial side of fully expanded leaves. 

However, it will be interesting in future to compute trichome densities on both, adaxial and 

abaxial sides of the leaf, in mathematical models predicting ART yields. Recently, the closely-

related species, A. deserti was reported as having much higher glandular trichome densities 

amongst five species analyzed in the genus (Salehi et al., 2018), which could make it an ideal 

material for introgression of the trait in breeding programs. 

 

Much has been unveiled in recent years about the developmental pathway of non-glandular 

(tector) trichomes in Arabidopsis at the molecular genetics level (Pattanaik et al., 2014). Although 

relatively little has been achieved regarding glandular trichome developmental pathways, recent 

advances are quickly changing this landscape. For example, the MYB transcription factor 

AmMYBML3 from Antirrhinum majus and the bHLH transcription factor PIGMENT GLAND 

FORMATION (PGF) from cotton were identified as key regulators of glandular trichome formation 

(Jaffé et al., 2007; Ma et al., 2016). Very recently, the R2R3 MYB transcription factor AaMIXTA1 

was identified in artemisia as an inducer of glandular trichome development as well as cuticle 

biosynthesis (Shi et al., 2018). Additionally, besides inducing enzymatic genes, the AP2 

transcription factor AaTAR1 is also involved in trichome development (Tan et al., 2015). Which 

other players are involved with glandular trichome development and whether these pathways 

are conserved in Artemisia annua remains to be discovered. Studies using a related Asteraceae 

model species with genome sequence available, such as sunflower (Aschenbrenner et al., 2015; 

Badouin et al., 2017), which belongs to the same Asteroideae subfamily, could help elucidate 

these questions. 

 

4. Total leaf area (size and shape): Leaf size is a highly variable trait in Artemisia annua, 

varying at least ten-fold, from about 500 to 5,000 mm2 (Graham et al., 2010). A key QTL for leaf 
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area was mapped to the linkage group 8, although the exact gene remains to be identified 

(Graham et al., 2010). Further studies to identify the genetic determination of leaf size in 

Artemisia annua will be very informative to increase ART yield.  

 

As a common feature found in members of the Asteraceae family, the shape of the leaf lamina in 

Artemisia annua is highly subdivided into 5-7 leaflets connected by the rachis. This conformation 

dramatically reduces the total area available for the development of glandular trichomes, not to 

mention limiting photosynthesis for biomass accumulation. Leaf complexity is a function of 

continued meristematic activity at the leaf margins in the shoot apical meristem and in plant 

models, such as Arabidopsis, involves a complex genetic network coordinated by several 

transcription factors, including NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION 

ACTIVATON FACTOR 1 and 2 (ATAF1/2), CUP-SHAPED COTYLEDON 2 (CUC2), not to mention small 

RNA regulators, such as miR164 (Wang et al., 2016). A better understanding of the molecular 

basis of compound leaf development in Artemisia annua could lead to the development of tools 

to generate a genotype with a simpler leaf pattern with increased lamina area. Therefore, 

recognizing the functional homologs of these transcription factors in the Asteraceae, and 

especially in Artemisia annua could lead to an important breakthrough in leaf reshaping for leap 

yield increases. Moreover, genome sequencing of A. annua and further narrowing of loci 

associated with relevant traits to ART yield via genome-wide association studies (GWAS) will 

greatly speed up gene discovery and breeding. 

 

5. High biomass production and high leaf-to-stem ratio: Along with leaf parameters (area, 

perimeter and specific area), the total plant size (height and stature) and fresh weight were 

associated with artemisinin yields (Graham et al., 2010). A QTL for stature fell in linkage group 2 

where a gene homolog of the shoot branching regulator and strigolactone biosynthesis, MORE 

AXILLARY BRANCHING 3 (MAX3/CCD7), is located (Bennett et al., 2006). Meanwhile, a QTL for 

fresh weight was mapped in linkage group 4, albeit no obvious gene was found in that genomic 

interval (Graham et al., 2010). In this species, flowering is induced under short-day conditions. 

The day length threshold for flower induction depends on the genotype and show genetic 

variability in the range of 12 to 16 hours (Ferreira et al., 1995). Thus, a better characterization of 

the genetic pathways associated with vegetative and reproductive development in A. annua, 

starting with the identification of flowering gene homologs will lead to the design of molecular 

tools to advance breeding to expand the latitude range of this crop. 

 

6. Resistance to biotic and abiotic stresses: in addition to high ART yields, crop production 

requires plants to be tolerant to edaphoclimatic stresses (extreme temperatures, poor soils, 

drought) and pests. So far, there has been little evaluation of tolerance of accessions to diverse 
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stresses. The main diseases of artemisia in the field have not been reported. In greenhouse 

conditions, the main pests we observed are mealybugs, thrips, and spider mites. Selecting for 

accessions tolerant to stresses in field conditions is essential to generating successful field 

varieties. 

 

The genome size of A. annua is 1.74 Gb and its sequence has been published recently (Shen et 

al., 2018). The artemisia genome is only slightly larger than the human genome, twice that of 

tomato and almost 13-fold of Arabidopsis. Very recently, the sequence of its plastid genome was 

published (Shen et al., 2017), which can be useful to explore the MEP pathway that contributes 

to ART biosynthesis. An initial genetic mapping of loci contributing to important traits was 

produced with a segregating population (Graham et al., 2010), but the resolution was low and in 

most cases, it did not allow for the identification of candidate genes within each locus. Revisiting 

this dataset in the light of the newly published genome sequence might be revealing. The use of 

genetic transformation can be used to boost ART and DHAA yields (Elfahmi et al., 2014; Tang et 

al., 2014). Genetic transformation and in vitro regeneration protocols for A. annua are available 

(Alok et al., 2016; Alam et al., 2014). For example, substrate channeling was obtained by 

expressing ADS-FDS fused enzymatic system under constitutive expression or the trichome-

specific promoter of the CYP71AV1 gene in order to converge the general terpene intermediates 

(IDP and DMADP) into directly producing amorpha-4,11-diene. This strategy more than doubled 

ART yields (Han et al., 2016). Further, making a gene expression atlas available would be 

invaluable to move forward with gene discovery and potentially lead to leaps and bounds of 

breeding advancement in the crop. 

 

Genome editing as a potential approach 

The CRISPR/Cas9 genome editing system has revolutionized the way we think of crop breeding. 

Now it is feasible to quickly engineer a plant genome to result in the desirable phenotypes. And 

this can be accomplished without the final product being transgenic, especially when only gene 

knockout is desired. Once the transgenic cassette carrying out the T-DNA coding for the Cas9 and 

gRNAs (and, when the case, other additional elements), once the genome is edited (usually 

already in the T0 generation, which the T-DNA is in hemizygosity), the transgenic regenerant line 

can be allowed to sexually reproduce and segregate the T-DNA out, thus resulting in a non-

transgenic plant (for all practical and scientific purposes, although policies and politics may 

dispute this notion) with its genome edited. Albeit still challenging, but within reach in near 

future, manipulation of expression of inherent genes under certain conditions (inducing, 

repressing transcription) will become feasible. In this case, CRISPR/Cas9-driven systems with 

modified nucleases (fused of other proteins and with the nuclease activity dead) still able to 

recognize and bind to promoter regions of the genes of interest but instead of cutting the DNA, 
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they call (or hinder) the transcriptional machinery to the promoter, or base-editing enzymes to 

the site to be mutated (Pandiarajan and Grover, 2018; Murovec et al., 2017; Demirci et al., 2018). 

The de novo domestication of crop species was suggested as a potential novel approach to create 

varieties that are highly resilient to environmental stresses (Zsögön et al., 2017). More recently, 

the approach was experimentally demonstrated for tomato (Zsögön et al., 2018) and gooseberry 

(Lemmon et al., 2018). In the first case, knockout of just six genes of the closest relative of the 

cultivated tomato (Solanum pimpinellifolium) resulted in a more condensed plant architecture 

(half of the wild-type stature, and with half of the sympodial index) that produced more flowers 

(six-fold increase), and larger fruits (three times heavier) with a preferred shape (more oblong) 

and higher nutritional content (five-fold increase in lycopene). 

For genome editing of plant species, sequence of target genes (preferably, information on the 

whole genome is useful to prevent off-targeting) as well as efficient transformation and 

regeneration protocols are required. The nuclear and plastidial genome sequences of artemisia 

has been made available recently (Shen et al., 2017, 2018). An efficient method of genetically 

transforming artemisia via Agrobacterium tumefaciens has also been described (Alam et al., 

2014). 

In artemisia, key genes to be targeted are the early structural genes in the terpenoid pathway 

that compete for C skeletons with the committed ART pathway – the main structures drained from 

the main ART pathway are IPP/DMAPP to make hemiterpenes, GPP to make monoterpenes, and 

FPP to make other sesquiterpenes and higher-order terpenoid compounds. The main enzymes 

identified to deviate FPP from ART biosynthesis are CPS (towards -carophyllene), SQS (towards 

squalene and sterols), BFS (towards -farnesene), and GAS (towards germacrene A) (Chen et al., 

2011). In addition, blocking the RED1 enzyme, which competes for dihydroartemisinic aldehyde 

(Shi et al., 2017) could also be beneficial to increase the ART biosynthesis flux.  

In addition, enabling the plant to self-pollinate would be highly beneficial to create true varieties 

with stable genetics (i.e., in homozygosity to virtually the whole gene set) that can be propagated 

by seeds. A self-pollinating genotype was reported for A. annua (Alejos-Gonzalez et al., 2011), 

although the molecular genetics mechanism behind this trait remains unknown. In tomato 

(Solanaceae), pollen rejection and self-incompatibility involves an S-RNase (gene 

Solyc01g055200) and HT proteins (Tovar‐Méndez et al., 2017) – such mechanisms should be 

identified in the Asteraceae ((Allen et al., 2011; Koseva et al., 2017) in order to design self-

compatible A. annua plants. 
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Boosting ART and DHAA yields in Artemisia annua through crop management and post-harvest 
practices 

Moreover, understanding the phenology of the crop is important to optimize biochemical yields. 

For example, glandular trichomes reach their plumpness maximum after the leaf reaches 

maturity and tend to thin out as the organ gets older. The best harvesting time for maximum ART 

yield has been identified as at the anthesis (Ferreira et al., 1995; Arsenault et al., 2010). The 

nutritional and physiological conditions of the crop can affect ART accumulation. A mild K 

deficiency increased 75% ART content (Ferreira, 2007). Cold shock treatment (4oC for 6h) 

improved ART yields threefold to about 5% (Liu et al., 2017). Sun drying the leaves for one to 

three weeks was effective in converting almost all DHAA into ART and increased ART yield in 

almost 50% compared to freeze-drying. On the other hand, drying leaves in a forced-air oven at 

45oC for 12-16h led to 40% conversion of DHAA into ART (Ferreira and Luthria, 2010).  

 

Conclusions 

Compared to crops that have been domesticated over millennia, Artemisia annua can be 

considered still a wild species that requires concerted efforts to be tamed as a viable, easy to 

grow crop. Metabolic engineering and plant design via genome editing can be of great help to 

speed up the process of making it self-compatible, less-inducible to flowering, and maximally 

channel C skeletons towards ART biosynthesis. ART yields of 5% have been reported and may be 

an achievable goal. 

In toto, combining ideal varieties, environmental conditions, crop management and post-harvest 

practices will make artemisia a more viable cash crop to supply the demand for ART to the anti-

malarial needs of the world. 
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SUMMARY AND CONCLUSION 

 

In our study, the genotype J showed best performance regarding the anatomical characters 

important for high ART yield. J was among the tallest genotypes, with heaviest aerial biomass, 

and also among the genotypes with largest leaf areas. However, it was not among the genotypes 

with highest trichome densities.  

Next to J, the genotypes I and G also showed high performance in height, biomass and leaf area 

categories, but they were not among the genotypes with high trichome densities neither. The 

genotypes with highest trichome density were A, C, D, E and K. Genotype D was among the one 

with highest biomass and leaf area whereas the genotype E was amongst those with highest leaf 

area.  

We identified camphor and endo-borneol as key compounds to distinguish the genotypes in the 

collection by biochemical profiling. We could also classify genotype H as the only one belonging 

to chemotype LAP, whereas all other genotypes are considered of chemotype HAP. 

The genotype J had the highest accumulation of ART+DHAA accumulation compared to the rest 

of the collection. Considering these active compounds separately, the genotypes G, I and C had 

the highest ART content whereas G, I and E had the highest DHAA content.  

From the 15 genes tested for gene expression variation among the collection, only three (FPS, 

CPR, and DBR2) were differentially expressed. However, the biological variation observed within 

genotypes was too high to identify genotypes with the highest transcriptional activities.  

Based on anatomical, biochemical and genotypic data, the genotype J were the best performer 

for high ART and DHAA yield as well as morphological features. Next, I and G were best genotypes 

in terms of ART and DHAA yield.  

We discussed parameters to be considered in breeding programs of Artemisia annua, make a 

case that this species remains undomesticated and propose biotechnological tools to speed up 

the process to make it a viable crop. 
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APPENDIX 1 

 

Biomass 

Genotype 

Avg Dry 
weight 
(g) SD SE 

A 7.511667 3.885303 1.586168 

B 15.288 2.274021 1.016973 

C 11.83 1.911565 0.780393 

D 18.81833 1.215523 0.496235 

E 12.65167 1.852559 0.756304 

F 12.65167 4.173055 1.703643 

G 19.31667 5.372097 2.193149 

H 18.08 2.635762 1.076045 

I 20.905 2.368702 0.967019 

J 18.38833 2.28124 0.931312 

K 15.115 2.966174 1.210936 

L 23.81 1.930824 0.788255 

 

Height 

Genotype 
Height 
(cm) SD SE 

A 67.42 16.43706 6.710402 

B 62.16667 8.822396 3.601728 

C 51.61667 11.40832 4.657425 

D 58.75 4.688177 1.91394 

E 44.93333 3.509226 1.432635 

F 67.1 9.962931 4.06735 

G 78.36667 5.273203 2.152776 

H 50.35 3.254996 1.328847 

I 91.73333 9.978109 4.073546 

J 89.65 15.78135 6.442709 

K 61.65 8.871246 3.621671 

L 74.66667 5.16901 2.11024 

 

Leaf Area 

Leaf Area (mm2) 

Genotype Average SD SE 
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A 141.266 34.15129 15.27292 

B 290.238 96.48973 43.15152 

C 340.84 135.2585 60.48942 

D 699.6 125.2167 55.99862 

E 691.466 94.76308 42.37934 

F 270.784 84.45247 37.76829 

G 340.65 73.78729 32.99868 

H 20.77042 20.77042 9.288816 

I 338.646 80.14543 35.84213 

J 652.01 55.04141 24.61527 

K 253.886 49.97252 22.34839 

L 552.962 62.89215 28.12622 

 

Adaxial and abaxial trichome density 

 Trichome Density/mm2)   

Genotype Abaxial SD SE Adaxial SD SE 

A 47.66733 3.841648 1.214836 29.05378 2.965062 0.937635 

B 30.18174 5.0327 1.591479 15.95805 2.398 0.758314 

C 43.94468 13.14686 3.795172 20.12748 5.327932 1.606432 

D 40.41052 5.907275 1.868044 15.43737 2.578836 0.815499 

E 37.13038 6.295646 1.990858 18.0763 3.463788 1.095346 

F 25.88249 5.468571 1.729314 16.3587 3.17513 1.004064 

G 23.97742 6.301147 1.992598 12.94511 4.117952 1.302211 

H 28.24997 7.457773 2.358355 18.50155 4.571628 1.445676 

I 29.12951 8.267891 2.755964 20.46048 6.009572 2.003191 

J 29.64868 4.004197 1.513444 19.17322 3.933026 1.486544 

K 41.90864 8.288223 3.132654 25.55991 5.669946 2.004629 

L 16.95694 3.094288 0.893244 6.094229 2.322155 0.670349 
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APPENDIX 2 
 

Anova table 

 

 f.value p.value #NAME? FDR Tukey's LSD 

Cedren-13-ol, 8- 640.61 2.93E-56 55.533 1.55E-54 

F - A; F - B; F - C; F - D; F - E; F - 

G; F - H; F - I; F - J; F - K; F - L 

Camphor 268.32 1.84E-45 44.736 4.87E-44 

A - B; C - A; A - D; A - E; A - F; A - 

G; A - H; I - A; J - A; K - A; C - B; 

B - D; B - E; B - F; G - B; H - B; I - 

B; J - B; K - B; L - B; C - D; C - E; C 

- F; C - G; C - H; C - I; J - C; K - C; 

C - L; G - D; H - D; I - D; J - D; K - 

D; L - D; G - E; H - E; I - E; J - E; K 

- E; L - E; G - F; H - F; I - F; J - F; K 

- F; L - F; I - G; J - G; K - G; L - G; I 

- H; J - H; K - H; L - H; J - I; K - I; I 

- L; J - L; K – L 

endo-Borneol 198.89 8.67E-42 41.062 1.53E-40 

A - B; A - C; A - D; A - E; A - F; A - 

G; A - H; A - I; A - J; A - K; A - L 

Butanoic acid, 2-methyl-, 

phenylmethyl ester 189.33 3.46E-41 40.461 4.58E-40 

A - B; A - C; A - D; A - E; A - F; A - 

G; A - H; A - I; A - J; A - K; A - L; B 

- C; B - D; B - E; B - F; B - G; B - 

H; B - I; B - J; B - K; B - L; C - F; C 

- G; C - H; C - I; C - J; C - K; C - L; 

D - F; D - G; D - H; D - I; D - J; D - 

K; D - L; E - F; E - G; E - H; E - I; E 

- J; E - K; E - L; F - G; F - H; F - I; F 

- J; F - K; G - I; G - J; L - G; H - I; H 

- J; L - H; K - I; L - I; K - J; L - J; L – 

K 

cis-p-mentha-17,8-dien-2-ol 147.8 3.53E-38 37.452 3.75E-37 

A - B; A - D; A - E; A - F; A - G; A 

- H; A - I; J - A; K - A; A - L; C - B; 

B - D; B - E; G - B; B - H; B - I; J - 

B; K - B; C - D; C - E; C - F; C - G; 

C - H; C - I; J - C; K - C; C - L; G - 

D; J - D; K - D; F - E; G - E; J - E; K 

- E; L - E; G - F; F - H; F - I; J - F; K 

- F; G - H; G - I; J - G; K - G; G - L; 
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J - H; K - H; L - H; J - I; K - I; L - I; J 

- L; K – L 

cis-beta-Terpineol 143.94 7.39E-38 37.132 6.52E-37 

A - B; A - C; A - D; A - E; A - F; A - 

G; A - H; A - I; A - J; A - L; C - B; B 

- D; B - E; B - F; G - B; H - B; J - B; 

K - B; L - B; C - D; C - E; C - F; C - 

G; C - H; C - I; C - L; G - D; H - D; 

I - D; J - D; K - D; L - D; G - E; H - 

E; I - E; J - E; K - E; L - E; G - F; H - 

F; I - F; J - F; K - F; L - F; H - G; G - 

I; J - G; K - G; H - I; J - H; K - H; H 

- L; J - I; K - I; L - I; K - J; J - L; K – 

L 

2-Methyl-4-2,6,6-

trimethylcyclohex-2-

enylbut-3-en-2-ol 118.29 1.70E-35 34.771 1.28E-34 

B - A; A - C; D - A; E - A; A - F; G - 

A; A - H; A - I; A - J; A - K; A - L; B 

- C; D - B; B - E; B - F; B - G; B - 

H; B - I; B - J; B - K; B - L; D - C; E 

- C; G - C; C - H; J - C; C - L; D - E; 

D - F; D - G; D - H; D - I; D - J; D - 

K; D - L; E - F; E - H; E - I; E - J; E - 

K; E - L; G - F; F - H; F - L; G - H; 

G - I; G - J; G - K; G - L; I - H; J - 

H; K - H; L - H; I - L; J - K; J - L; K 

– L 

Phenol, 2-methoxy-3-2-

propenyl- 113.58 5.20E-35 34.284 3.45E-34 

C - A; D - A; E - A; G - A; A - H; I - 

A; J - A; K - A; A - L; C - B; D - B; 

E - B; G - B; B - H; I - B; J - B; K - 

B; B - L; C - F; C - H; I - C; J - C; K 

- C; C - L; D - F; D - H; I - D; J - D; 

K - D; D - L; E - F; E - H; I - E; J - 

E; K - E; E - L; G - F; F - H; I - F; J - 

F; K - F; F - L; G - H; I - G; J - G; K 

- G; G - L; I - H; J - H; K - H; I - J; 

K - I; I - L; K - J; J - L; K - L 

Artemisinin 102.07 9.74E-34 33.011 5.74E-33 

A - B; C - A; A - D; A - E; A - F; G - 

A; A - H; I - A; J - A; C - B; B - F; G 

- B; B - H; I - B; J - B; K - B; L - B; 

C - D; C - E; C - F; G - C; C - H; I - 

C; J - C; C - K; C - L; D - F; G - D; 

D - H; I - D; J - D; K - D; L - D; E - 

F; G - E; E - H; I - E; J - E; K - E; L - 

E; G - F; I - F; J - F; K - F; L - F; G - 
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H; G - I; J - G; G - K; G - L; I - H; J 

- H; K - H; L - H; J - I; I - K; I - L; J - 

K; J – L 

Caryophylene oxide 101.14 1.25E-33 32.903 6.63E-33 

A - B; A - C; A - D; A - E; A - F; A - 

G; A - H; A - I; A - J; A - K; A - L; B 

- D; B - E; F - B; G - B; H - B; I - B; 

J - B; K - B; L - B; C - D; C - E; F - 

C; G - C; H - C; I - C; J - C; K - C; L 

- C; F - D; G - D; H - D; I - D; J - D; 

K - D; L - D; F - E; G - E; H - E; I - 

E; J - E; K - E; L - E; G - F; H - F; F 

- J; F - L; G - H; G - I; G - J; G - K; 

G - L; H - I; H - J; H - K; H - L; K - 

J; K – L 

Cyclohexanol, 1-methyl-4-1-

methylethenyl-, cis- 82.15 3.56E-31 30.448 1.72E-30 

A - B; A - C; A - D; A - E; A - F; A - 

G; A - H; A - I; A - J; A - L; C - B; 

G - B; H - B; J - B; K - B; L - B; C - 

D; C - E; C - F; C - G; C - H; C - I; 

K - C; C - L; G - D; H - D; J - D; K - 

D; L - D; G - E; H - E; J - E; K - E; L 

- E; G - F; H - F; J - F; K - F; L - F; 

H - G; G - I; J - G; K - G; L - G; H - 

I; J - H; K - H; J - I; K - I; L - I; K - J; 

J - L; K – L 

beta-copaene 74.567 4.82E-30 29.317 2.13E-29 

A - B; A - D; A - E; A - F; A - H; K - 

A; A - L; C - B; B - E; B - F; G - B; 

B - H; I - B; J - B; K - B; B - L; C - 

D; C - E; C - F; C - H; K - C; C - L; 

D - E; D - F; G - D; D - H; I - D; J - 

D; K - D; D - L; E - F; G - E; E - H; I 

- E; J - E; K - E; G - F; F - H; I - F; J 

- F; K - F; L - F; G - H; K - G; G - L; 

I - H; J - H; K - H; L - H; K - I; I - L; 

K - J; J - L; K – L 

Artemisinic acid 62.475 5.34E-28 27.272 2.18E-27 

C - A; D - A; E - A; G - A; H - A; J - 

A; D - B; E - B; G - B; H - B; J - B; 

G - C; H - C; C - I; C - L; G - D; H - 

D; D - I; D - K; D - L; G - E; H - E; 

E - I; E - K; E - L; G - F; H - F; H - 

G; G - I; G - J; G - K; G - L; H - I; H 

- J; H - K; H - L; J - I; J - K; J - L 
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Eucalyptol 58.844 2.59E-27 26.588 9.79E-27 

A - B; A - D; A - E; A - F; A - G; H 

- A; A - I; A - J; A - K; A - L; B - D; 

B - E; H - B; B - L; C - D; C - E; C - 

F; H - C; C - I; C - J; C - L; G - D; H 

- D; G - E; H - E; K - E; H - F; H - 

G; G - L; H - I; H - J; H - K; H - L; K 

– L 

Isoaromadendrene 

epoxide.1 55.728 1.07E-26 25.969 3.80E-26 

B - A; D - A; E - A; A - H; A - I; A - 

K; A - L; B - C; D - B; B - E; B - F; 

B - G; B - H; B - I; B - J; B - K; B - 

L; D - C; E - C; F - C; G - C; C - H; 

C - I; C - K; C - L; D - E; D - F; D - 

G; D - H; D - I; D - J; D - K; D - L; 

E - F; E - G; E - H; E - I; E - J; E - 

K; E - L; F - H; F - I; F - J; F - K; F - 

L; G - H; G - I; G - J; G - K; G - L; I 

- H; J - H; J - I; I - K; I - L; J - K; J – 

L 

Corymbolone 49.756 2.04E-25 24.691 6.76E-25 

B - A; A - C; D - A; A - F; A - H; A 

- I; A - J; A - K; A - L; B - C; D - B; 

B - E; B - F; B - G; B - H; B - I; B - 

J; B - K; B - L; D - C; E - C; G - C; C 

- H; C - L; D - E; D - F; D - G; D - 

H; D - I; D - J; D - K; D - L; E - F; E 

- H; E - I; E - J; E - K; E - L; G - F; F 

- H; F - L; G - H; G - I; G - J; G - K; 

G - L; I - H; J - H; K - H; L - H; I - 

L; J - L; K – L 

Cymene 45.034 2.63E-24 23.579 8.21E-24 

A - B; A - C; D - A; E - A; F - A; A - 

G; A - H; A - J; A - L; D - B; E - B; 

F - B; I - B; K - B; L - B; D - C; E - 

C; F - C; I - C; K - C; L - C; D - G; D 

- H; D - I; D - J; D - K; D - L; E - G; 

E - H; E - I; E - J; E - K; E - L; F - G; 

F - H; F - I; F - J; F - K; F - L; I - G; 

K - G; L - G; I - H; K - H; L - H; I - 

J; K - J; L - J; K – L 

Cubenol 42.74 9.95E-24 23.002 2.93E-23 

B - A; A - C; A - E; F - A; I - A; K - 

A; A - L; B - C; B - D; B - E; B - G; 

B - H; I - B; B - J; K - B; B - L; D - 

C; F - C; G - C; H - C; I - C; J - C; K 

- C; C - L; F - D; H - D; I - D; K - D; 
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D - L; F - E; G - E; H - E; I - E; K - 

E; E - L; F - G; I - F; F - J; K - F; F - 

L; I - G; K - G; G - L; I - H; H - J; K 

- H; H - L; I - J; K - I; I - L; K - J; J - 

L; K – L 

Neointermedeol 42.597 1.08E-23 22.965 3.02E-23 

A - C; D - A; A - F; A - G; A - H; A 

- K; A - L; B - C; B - F; B - G; B - 

H; B - I; B - K; B - L; D - C; E - C; 

G - C; C - H; I - C; J - C; K - C; C - 

L; D - E; D - F; D - G; D - H; D - I; 

D - J; D - K; D - L; E - F; E - G; E - 

H; E - L; F - H; I - F; J - F; K - F; F - 

L; G - H; J - G; G - L; I - H; J - H; K 

- H; L - H; I - L; J - L; K - L 

Terpineol 37.195 3.26E-22 21.487 8.63E-22 

A - B; A - C; A - D; A - E; A - F; A - 

G; A - I; A - J; K - A; A - L; B - D; B 

- E; B - F; H - B; K - B; C - D; C - E; 

C - F; H - C; K - C; C - L; G - D; H - 

D; I - D; J - D; K - D; G - E; H - E; I 

- E; J - E; K - E; G - F; H - F; I - F; J 

- F; K - F; L - F; H - G; K - G; G - L; 

H - I; H - J; K - H; H - L; K - I; I - L; 

K - J; J - L; K – L 

Dihydroartesmisinic acid 35.272 1.21E-21 20.916 3.06E-21 

E - A; G - A; I - A; J - A; E - B; G - 

B; I - B; J - B; E - C; G - C; I - C; J - 

C; D - F; G - D; D - H; J - D; D - L; 

E - F; E - H; J - E; E - K; E - L; G - 

F; I - F; J - F; G - H; G - I; J - G; G - 

K; G - L; I - H; J - H; K - H; J - I; I - 

K; I - L; J - K; J – L 

Terpinen 32.557 8.64E-21 20.064 2.08E-20 

A - B; A - C; A - G; A - H; A - I; A - 

J; A - L; D - B; E - B; F - B; I - B; K 

- B; D - C; E - C; F - C; I - C; K - C; 

E - D; F - D; D - G; D - H; D - J; D 

- L; E - G; E - H; E - I; E - J; E - L; F 

- G; F - H; F - I; F - J; F - L; I - G; K 

- G; I - H; K - H; I - J; K - I; I - L; K 

- J; K – L 

Isoaromadendrene 

epoxide.3 31.972 1.34E-20 19.872 3.09E-20 

A - B; A - D; A - E; A - G; H - A; K 

- A; A - L; C - B; B - E; F - B; G - B; 

H - B; I - B; J - B; K - B; B - L; C - 
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D; C - E; H - C; K - C; C - L; D - E; 

F - D; G - D; H - D; I - D; J - D; K - 

D; F - E; G - E; H - E; I - E; J - E; K 

- E; H - F; K - F; F - L; H - G; K - G; 

G - L; H - I; H - J; H - L; K - I; I - L; 

K - J; J - L; K – L 

3-buten-2-one, 4-5,5-

dimethyl-1-oxaspiro2.5oct-

4-yl 31.185 2.46E-20 19.61 5.43E-20 

A - B; A - C; A - D; A - E; A - F; J - 

A; A - L; C - B; G - B; H - B; I - B; J 

- B; K - B; C - D; C - E; C - F; G - 

C; J - C; K - C; C - L; G - D; H - D; I 

- D; J - D; K - D; G - E; H - E; I - E; 

J - E; K - E; G - F; H - F; I - F; J - F; 

K - F; J - G; G - L; J - H; K - H; H - 

L; J - I; I - L; J - L; K - L 

Chiapin B 25.6 2.67E-18 17.574 5.66E-18 

A - B; A - D; A - E; A - F; A - H; J - 

A; A - L; C - B; G - B; B - H; I - B; J 

- B; K - B; C - D; C - E; C - F; C - H; 

J - C; C - L; D - E; D - F; G - D; D - 

H; I - D; J - D; K - D; G - E; E - H; I 

- E; J - E; K - E; L - E; G - F; F - H; I 

- F; J - F; K - F; L - F; G - H; J - G; 

G - L; I - H; J - H; K - H; L - H; J - I; 

K - I; I - L; J - L; K – L 

Cholestan-3-ol, 2-

methylene-, 3beta,5a- 23.247 2.47E-17 16.607 5.03E-17 

A - B; A - D; A - E; A - F; A - G; A 

- H; A - I; A - J; K - A; A - L; B - H; 

K - B; B - L; C - E; C - F; C - G; C - 

H; K - C; C - L; D - H; K - D; D - L; 

E - H; K - E; E - L; F - H; K - F; F - 

L; G - H; K - G; G - L; I - H; J - H; K 

- H; H - L; K - I; I - L; K - J; J - L; K 

– L 

Pinene 21.478 1.48E-16 15.829 2.91E-16 

A - B; C - A; A - D; A - E; A - F; A - 

I; C - B; B - D; B - E; B - F; H - B; J 

- B; K - B; L - B; C - D; C - E; C - F; 

C - G; C - H; C - I; C - K; C - L; G - 

D; H - D; J - D; K - D; L - D; G - E; 

H - E; J - E; K - E; L - E; G - F; H - 

F; J - F; K - F; L - F; H - G; G - I; J - 

G; H - I; J - I; K - I; L - I; J - L 

Unkown alkane 20.366 4.85E-16 15.314 9.18E-16 
A - B; A - C; A - D; A - E; A - F; A - 

G; A - H; A - I; A - J; A - K; A - L; C 
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- B; D - B; B - F; G - B; H - B; B - I; 

C - F; H - C; C - I; C - J; C - L; D - 

E; D - F; H - D; D - I; D - J; D - L; E 

- F; G - E; H - E; E - I; G - F; H - F; 

I - F; J - F; K - F; L - F; H - G; G - I; 

G - J; G - L; H - I; H - J; H - K; H - 

L; K - I; L - I; K – J 

Elemen 20.243 5.55E-16 15.256 1.01E-15 

A - C; D - A; E - A; F - A; A - H; A - 

I; A - L; B - C; E - B; B - G; B - H; 

B - I; B - K; B - L; D - C; E - C; F - 

C; J - C; K - C; C - L; D - G; D - H; 

D - I; D - J; D - K; D - L; E - G; E - 

H; E - I; E - J; E - K; E - L; F - G; F - 

H; F - I; F - J; F - K; F - L; G - H; G 

- L; I - H; J - H; K - H; J - I; I - L; J - 

L; K – L 

Epiglobulol 19.389 1.43E-15 14.845 2.53E-15 

D - A; E - A; A - H; A - I; A - J; A - 

L; B - C; D - B; B - F; B - H; B - I; B 

- J; B - K; B - L; D - C; E - C; C - H; 

C - I; C - J; C - L; D - E; D - F; D - 

G; D - H; D - I; D - J; D - K; D - L; 

E - F; E - G; E - H; E - I; E - J; E - 

K; E - L; F - H; F - L; G - H; G - I; G 

- J; G - L; K - H; K - I; K - J; J - L; K 

– L 

Deoxyartemisinin 18.699 3.15E-15 14.502 5.38E-15 

A - B; A - D; A - E; A - F; A - H; A 

- L; C - B; B - F; G - B; B - H; I - B; 

J - B; K - B; C - D; C - E; C - F; C - 

H; C - L; D - F; G - D; D - H; I - D; 

J - D; K - D; G - E; E - H; I - E; J - 

E; K - E; G - F; F - H; I - F; J - F; K - 

F; G - H; G - L; I - H; J - H; K - H; L 

- H; I - L; J - L; K – L 

compound 1 18.66 3.30E-15 14.482 5.46E-15 

A - F; H - A; I - A; B - F; H - B; C - 

F; H - C; D - F; H - D; I - D; E - F; 

H - E; G - F; H - F; I - F; J - F; K - 

F; H - G; H - I; H - J; H - K; H - L; I 

– L 

beta-Guaiene 18.083 6.49E-15 14.188 1.04E-14 

F - A; G - A; I - A; J - A; K - A; A - 

L; F - B; G - B; I - B; J - B; K - B; B 

- L; G - C; C - H; I - C; J - C; K - C; 
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C - L; F - D; G - D; I - D; J - D; K - 

D; D - L; F - E; G - E; I - E; J - E; K 

- E; F - H; K - F; F - L; G - H; K - G; 

G - L; I - H; J - H; K - H; K - I; I - L; 

K - J; J - L; K - L 

Olean-12-en-3-one 13.739 1.88E-12 11.725 2.94E-12 

B - A; C - A; D - A; A - H; I - A; L - 

A; B - E; B - F; B - G; B - H; I - B; L 

- B; C - E; C - F; C - G; C - H; C - J; 

C - K; D - E; D - F; D - G; D - H; D 

- J; D - K; E - H; I - E; J - E; L - E; I 

- F; J - F; K - F; L - F; G - H; I - G; L 

- G; I - H; J - H; K - H; L - H; I - J; I 

- K; L - J; L - K 

Camphene 13.213 4.06E-12 11.392 6.14E-12 

A - B; A - D; A - E; A - F; A - G; J - 

A; A - L; H - B; I - B; J - B; K - B; C 

- D; C - E; C - F; I - C; J - C; K - C; 

G - D; H - D; I - D; J - D; K - D; L - 

D; G - E; H - E; I - E; J - E; K - E; L 

- E; G - F; H - F; I - F; J - F; K - F; L 

- F; H - G; I - G; J - G; K - G; J - H; 

H - L; I - L; J - L; K - L 

Heptacosane 12.255 1.73E-11 10.762 2.55E-11 

A - B; A - C; A - D; A - E; A - F; A - 

G; A - H; A - I; A - J; A - K; A - L; B 

- F; G - B; B - J; C - D; C - F; C - I; 

C - J; C - K; C - L; D - F; G - D; D - 

J; E - F; G - E; E - I; E - J; G - F; H - 

F; G - H; G - I; G - J; G - K; G - L; 

H - I; H - J; H - L 

Farnesene epoxide, E- 11.563 5.15E-11 10.289 7.37E-11 

B - A; D - A; A - H; A - I; A - L; B - 

C; B - F; B - G; B - H; B - I; B - J; B 

- K; B - L; D - C; E - C; C - H; C - L; 

D - F; D - G; D - H; D - I; D - J; D - 

K; D - L; E - H; E - I; E - J; E - K; E 

- L; F - H; F - I; F - K; F - L; G - H; 

G - I; G - K; G - L; J - H; K - H; J - 

L; K - L 

2H-Pyran, 2-7-

heptadecynyloxytetrahydro-

.1 9.3023 2.47E-09 8.6081 3.44E-09 

A - B; A - D; A - F; A - H; A - L; G - 

B; B - H; I - B; J - B; K - B; C - D; C 

- F; C - H; C - L; G - D; D - H; I - D; 

J - D; K - D; E - F; E - H; K - E; G - 

F; F - H; I - F; J - F; K - F; G - H; G 
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- L; I - H; J - H; K - H; L - H; I - L; J 

- L; K - L 

Cyclohexane, 1-ethenyl-1-

methyl-2-1-methylethenyl-

4-1-methyle 9.2301 2.81E-09 8.5507 3.82E-09 

A - B; I - A; L - A; C - B; D - B; G - 

B; I - B; K - B; L - B; C - E; C - F; C 

- H; I - C; C - J; L - C; D - E; D - F; 

D - H; I - D; D - J; L - D; I - E; L - 

E; I - F; L - F; G - H; I - G; L - G; I - 

H; L - H; I - J; I - K; L - J; L - K 

Isoaromadendrene 

epoxide.2 8.8949 5.23E-09 8.2814 6.93E-09 

A - C; A - F; A - H; K - A; A - L; B - 

C; B - F; B - H; K - B; B - L; D - C; I 

- C; K - C; C - L; D - F; D - H; K - 

D; D - L; I - E; K - E; E - L; I - F; K - 

F; F - L; I - G; K - G; G - L; I - H; K 

- H; H - L; I - J; I - L; K - J; J - L; K - 

L 

Ylangene 7.9522 3.21E-08 7.4938 4.15E-08 

D - A; G - A; H - A; I - A; L - A; B - 

J; L - B; I - C; L - C; D - E; D - F; D 

- J; L - D; G - E; H - E; I - E; L - E; 

G - F; H - F; I - F; L - F; G - J; L - 

G; H - J; L - H; I - J; I - K; L - I; L - 

J; L - K 

Aromadendrene oxide-2 7.8245 4.14E-08 7.3835 5.22E-08 

A - E; A - F; A - J; A - L; B - E; B - 

F; B - J; B - L; C - E; C - F; C - J; C - 

L; D - E; D - F; D - J; D - L; H - E; K 

- E; E - L; H - F; K - F; F - L; K - G; 

G - L; H - J; H - L; K - I; I - L; K - J; 

J - L; K - L 

cis-beta-Farnesene 7.7941 4.39E-08 7.3571 5.42E-08 

B - A; D - A; E - A; F - A; G - A; I - 

A; L - A; B - C; B - H; B - J; B - K; 

D - C; F - C; D - H; D - I; D - J; D - 

K; F - E; E - H; E - J; E - K; F - G; F 

- H; F - I; F - J; F - K; F - L; G - H; 

G - J; G - K; I - H; L - H; I - J; I - K; 

L - J; L - K 

Isoaromadendrene 

epoxide.4 7.7366 4.93E-08 7.307 5.94E-08 

A - B; A - C; A - H; A - I; J - A; A - 

K; A - L; D - B; E - B; F - B; G - B; J 

- B; E - C; F - C; G - C; J - C; E - D; 

D - H; J - D; D - K; E - H; E - I; E - 

K; E - L; F - H; F - I; F - K; F - L; G 
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- H; G - I; J - G; G - K; G - L; J - H; 

J - I; J - K; J - L 

Copaene 7.2251 1.40E-07 6.8539 1.65E-07 

D - A; G - A; H - A; I - A; L - A; B - 

J; L - B; L - C; D - E; D - F; D - J; L 

- D; G - E; H - E; I - E; L - E; G - F; 

H - F; I - F; L - F; G - J; L - G; H - J; 

L - H; I - J; L - I; L - J; L - K 

Ocimene 6.835 3.18E-07 6.4982 3.66E-07 

A - D; A - E; A - F; A - I; C - B; H - 

B; J - B; C - D; C - E; C - F; C - I; G 

- D; H - D; J - D; K - D; L - D; G - 

E; H - E; J - E; K - E; L - E; G - F; H 

- F; J - F; K - F; L - F; G - I; H - I; J 

- I; K - I 

Germacrene D 6.1279 1.48E-06 5.8299 1.67E-06 

D - A; G - A; H - A; I - A; L - A; B - 

J; L - B; I - C; L - C; D - E; D - F; D 

- J; L - D; G - E; H - E; I - E; L - E; 

G - F; H - F; I - F; L - F; G - J; L - 

G; H - J; L - H; I - J; L - I; L - J; L - 

K 

cis-Z-alpha-Bisabolene 

epoxide 4.7692 3.50E-05 4.4564 3.86E-05 

A - C; A - D; A - G; E - B; F - B; I - 

B; K - B; E - C; F - C; I - C; J - C; K 

- C; L - C; E - D; F - D; I - D; K - D; 

E - G; E - H; F - G; F - H; I - G; K - 

G; I - H; K - H 

2H-Pyran, 2-7-

heptadecynyloxytetrahydro- 3.6658 0.000558 3.2536 0.00060325 

A - B; A - F; A - H; A - L; E - B; J - 

B; K - B; J - C; J - D; E - F; E - H; E 

- L; J - F; K - F; J - G; J - H; K - H; J 

- I; K - I; J - L; K - L 

Aromadendrene oxide-2.1 3.2349 0.001717 2.7653 0.0018198 

A - B; A - D; A - F; A - L; C - B; G - 

B; I - B; J - B; K - B; C - D; C - F; C 

- L; G - D; I - D; J - D; K - D; G - F; 

H - F; I - F; J - F; K - F; G - L; H - L; 

I - L; J - L; K - L 

Caryophyllene 2.7765 0.005775 2.2384 0.0060018 

D - A; L - A; D - B; L - B; D - C; L - 

C; D - E; D - G; D - H; D - J; F - J; 

L - G; K - H; L - H; I - J; K - J; L - J 
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PLS-DA loadings 

  Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 

Pinene 0.15539 -0.04311 0.22212 0.11636 -0.09019 0.1623 -0.19174 0.22311 

Ocimene 0.13127 -0.03066 0.21406 0.095667 -0.1071 0.13923 -0.1355 0.15533 

Camphene 0.23821 -0.05493 0.076524 -0.14344 0.041644 -0.22284 0.4492 -0.56282 

Cymene -0.13499 -0.12051 -0.35505 -0.35159 0.33068 -0.28554 -0.43608 -0.03273 

Eucalyptol 0.029457 -0.04424 0.62501 -0.19478 -0.00361 -0.40318 0.072068 0.1207 

Terpinen -0.04571 -0.07608 -0.13548 -0.24581 0.082954 -0.135 -0.12881 0.013952 

cis-beta-Terpineol 0.080037 -0.05563 0.040733 0.010408 -0.01441 0.013961 -0.06832 0.11954 

Cyclohexanol, 1-methyl-4-1-
methylethenyl-, cis- 0.066173 -0.04645 0.025478 -0.01781 0.020649 0.001819 -0.1107 0.11224 

Camphor 0.8893 0.097887 -0.1497 -0.09759 0.082124 0.042853 -0.13553 0.087376 

endo-Borneol 0.088222 -0.92878 -0.00019 0.040971 0.10807 0.12239 0.094711 -0.08624 

Terpineol 0.041736 -0.03187 0.04964 -0.0487 0.010841 -0.13071 -0.00584 0.1192 

cis-p-mentha-17,8-dien-2-ol 0.043943 -0.02312 -0.03239 -0.01099 -0.05461 0.035848 -0.03328 0.073203 

Cyclohexane, 1-ethenyl-1-methyl-2-1-
methylethenyl-4-1-methyle 0.011648 0.007621 -0.03348 0.098257 0.21991 0.008364 0.082358 0.012882 

Phenol, 2-methoxy-3-2-propenyl- 0.042979 0.035682 -0.14171 -0.07182 -0.00902 -0.16252 0.046334 0.067618 

Butanoic acid, 2-methyl-, phenylmethyl 
ester -0.04512 -0.18484 -0.01279 0.091187 -0.05794 0.031316 -0.07843 0.23194 

Elemen -0.03414 -0.02119 -0.09908 -0.05112 -0.11051 -0.06368 -0.00503 0.006088 

ylangene -0.0083 0.029671 0.044088 0.13366 0.2627 0.00106 0.11949 0.040054 

Caryophyllene -0.02427 0.008635 -0.06701 0.046353 0.29578 -0.07149 0.14625 0.16318 

copaene -0.00876 0.025329 0.034593 0.11346 0.23024 -0.00275 0.10784 0.044242 

cis-beta-Farnesene -0.07569 0.027982 -0.05553 0.026657 0.095168 0.069141 0.20722 0.091548 

Germacrene D -0.01997 0.060256 0.076734 0.3058 0.5847 -0.04132 0.31716 0.096969 

Isoaromadendrene epoxide 0.015426 0.003677 0.01257 0.024344 -0.02454 -0.02225 -0.03763 0.10701 

compound 1 0.006532 0.009259 0.068179 -0.01393 -0.00927 -0.08289 -0.00711 -0.03152 

Caryophylene oxide 0.023489 -0.09862 0.048198 -0.04423 0.004606 0.018485 0.12401 0.018002 

beta-Guaiene 0.022238 0.009677 -0.0429 -0.05912 -0.03083 -0.03302 0.064707 0.052409 

Isoaromadendrene epoxide.1 -0.04123 -0.01379 -0.05353 0.053011 -0.11393 -0.02767 0.057838 0.006993 

Farnesene epoxide, E- -0.03216 -0.01366 -0.05991 0.037653 -0.11017 -0.02764 0.004125 0.061102 

Cubenol 0.042447 0.013268 -0.06779 -0.24782 -0.00799 -0.31302 0.3224 0.28434 

Aromadendrene oxide-2 0.005672 -0.01058 -0.00034 -0.01226 -0.01633 -0.05775 0.024976 0.07526 

Isoaromadendrene epoxide.2 0.007183 -0.00363 -0.02591 -0.01755 -0.02132 -0.06982 0.043156 0.027345 

Neointermedeol -0.00458 -0.0278 -0.12177 0.015185 -0.09162 -0.0855 0.071115 -0.00506 

Epiglobulol -0.01864 -0.01136 -0.04568 0.025365 -0.05727 -0.06552 -0.01294 0.067203 

Corymbolone -0.04085 -0.04533 -0.15644 0.090919 -0.17288 -0.13653 0.053779 0.10206 

2H-Pyran, 2-7-
heptadecynyloxytetrahydro- 0.018011 -0.00934 -0.02058 -0.00464 -0.04535 -0.01275 -0.04825 -0.07685 

Cedren-13-ol, 8- -0.10485 0.016688 -0.05346 -0.55063 0.014982 0.55842 0.28511 0.24035 
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Isoaromadendrene epoxide.3 0.027353 -0.00981 0.040381 -0.07512 -0.00981 -0.04407 0.071402 0.063051 

cis-Z-alpha-Bisabolene epoxide 0.003393 -0.00885 -0.03131 -0.07652 0.036612 -0.0077 0.003156 -0.06297 

Cholestan-3-ol, 2-methylene-, 3beta,5a- 0.017834 -0.02133 -0.04032 -0.04212 -0.05001 -0.066 0.023203 0.10367 

2-Methyl-4-2,6,6-trimethylcyclohex-2-
enylbut-3-en-2-ol -0.07632 -0.05126 -0.22807 0.16152 -0.25294 -0.18787 0.12995 0.092119 

Artemisinic acid -0.00159 0.007181 0.061771 -0.01215 -0.01148 -0.03594 -0.01305 -0.0184 

3-buten-2-one, 4-5,5-dimethyl-1-
oxaspiro2.5oct-4-yl 0.04967 -0.01595 0.004783 -0.00853 -0.03836 -0.0594 0.079543 -0.0077 

Dihydroartesmisinic acid 0.042234 0.035244 -0.08376 0.032567 -0.18588 0.048915 0.040185 -0.38186 

Isoaromadendrene epoxide.4 -0.00857 -0.01822 -0.03121 -0.01906 -0.07922 0.10074 -0.02007 -0.16806 

beta-copaene 0.13552 -0.05259 -0.30549 0.12953 -0.09853 -0.14614 0.24144 0.24312 

Chiapin B 0.02584 -0.00795 -0.04012 0.018366 -0.01254 0.010665 0.01598 0.012756 

1-Heptatriacotanol 0.009999 -0.00793 0.0063 -0.03273 -0.0281 0.019288 0.014713 -0.05769 

Aromadendrene oxide-2.1 0.021556 -0.00785 0.003714 -0.00018 -0.02752 -0.02783 0.019371 -0.01302 

2H-Pyran, 2-7-
heptadecynyloxytetrahydro-.1 0.029007 -0.01853 -0.07876 0.05103 -0.03012 0.01098 0.045515 0.009667 

Deoxyartemisinin 0.047284 -0.0376 -0.12777 0.083603 -0.03686 -0.01318 0.12261 0.072315 

Artemisinin 0.042639 0.015261 -0.05153 0.073991 -0.05618 0.040156 0.06194 -0.11498 

Heptacosane 0.001487 -0.10667 0.038271 0.079432 -0.08786 -0.02515 -0.04585 0.11169 

Unkown alkane 0.009206 -0.11216 0.10645 0.11068 -0.05708 -0.17672 -0.14495 0.087599 

Olean-12-en-3-one 0.028023 0.058051 -0.15134 0.31603 0.2331 0.046794 0.01653 0.026604 

 

PLSDA VIP values 

 

  
Comp. 
1 

Comp. 
2 

Comp. 
3 

Comp. 
4 

Comp. 
5 

Pinene 0.33469 0.81716 0.77008 0.7311 0.73908 

Ocimene 0.43504 0.62129 0.54747 0.66974 0.6661 

Camphene 1.2714 1.1818 1.1996 1.1618 1.1684 

Cymene 0.40051 0.99114 1.6688 1.6065 1.5835 

Eucalyptol 0.10973 0.27355 0.27825 0.79406 0.79848 

Terpinen 0.2312 0.36534 0.72525 0.69297 0.69056 

cis-beta-Terpineol 
0.09971

4 0.39461 0.34975 0.33364 0.34058 

Cyclohexanol, 1-methyl-4-1-methylethenyl-, cis- 0.17679 0.27069 0.30171 0.28615 0.30709 

Camphor 5.3055 4.915 4.3541 4.1359 4.0742 

endo-Borneol 3.6694 3.7187 3.8495 3.6489 3.595 

Terpineol 0.11197 0.16704 0.19833 0.18923 0.28729 

cis-p-mentha-17,8-dien-2-ol 
0.02723

9 0.25545 0.23802 0.22569 0.23676 

Cyclohexane, 1-ethenyl-1-methyl-2-1-
methylethenyl-4-1-methyle 0.32761 0.34408 0.41982 0.49703 0.50955 
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Phenol, 2-methoxy-3-2-propenyl- 0.37822 0.32687 0.30027 0.32459 0.32482 

Butanoic acid, 2-methyl-, phenylmethyl ester 1.5518 1.5139 1.4119 1.4822 1.4709 

Elemen 0.45861 0.41324 0.44457 0.42718 0.42298 

Ylangene 0.43769 0.55647 0.65801 0.6285 0.62531 

Caryophyllene 0.20573 0.38534 0.45244 0.81836 0.80752 

Copaene 0.36449 0.47197 0.55478 0.5362 0.53235 

cis-beta-Farnesene 0.34819 0.33421 0.44229 0.87296 0.88198 

Germacrene D 0.89222 1.1483 1.3497 1.3201 1.3078 

Isoaromadendrene epoxide 
0.09594

9 0.24365 0.40092 0.47988 0.47476 

compound 1 
0.08518

2 
0.07330

2 
0.06460

4 
0.06177

3 
0.06268

9 

Caryophylene oxide 0.15903 0.16128 0.53287 0.62886 0.72794 

beta-Guaiene 0.16831 0.14646 0.1294 0.13238 0.24361 

Isoaromadendrene epoxide.1 0.61063 0.57682 0.72313 0.70804 0.69969 

Farnesene epoxide, E- 0.51525 0.49202 0.60269 0.57285 0.56731 

Cubenol 0.35597 0.30444 0.27372 0.37165 0.851 

Aromadendrene oxide-2 0.12319 0.17913 0.23344 0.32696 0.32285 

Isoaromadendrene epoxide.2 0.01897 
0.06791

3 
0.08121

6 0.08568 0.11014 

Neointermedeol 0.36123 0.39604 0.43763 0.41683 0.41679 

Epiglobulol 0.33775 0.33015 0.4092 0.41003 0.40399 

Corymbolone 0.908 0.90145 1.04 0.99254 0.98411 

2H-Pyran, 2-7-heptadecynyloxytetrahydro- 
0.03096

4 0.08631 
0.07729

9 0.12562 0.15901 

Cedren-13-ol, 8- 0.21344 0.56296 0.51854 1.0661 1.0725 

Isoaromadendrene epoxide.3 0.10582 0.12627 0.1127 0.17248 0.20487 

cis-Z-alpha-Bisabolene epoxide 0.18676 0.24213 0.42099 0.44033 0.44404 

Cholestan-3-ol, 2-methylene-, 3beta,5a- 0.13843 0.25474 0.28934 0.34129 0.34199 

2-Methyl-4-2,6,6-trimethylcyclohex-2-enylbut-3-
en-2-ol 1.3015 1.2399 1.429 1.3546 1.3534 

Artemisinic acid 
0.04254

1 
0.05193

8 0.04954 
0.07245

6 
0.07138

2 

3-buten-2-one, 4-5,5-dimethyl-1-oxaspiro2.5oct-
4-yl 0.17441 0.22574 0.20663 0.23876 0.28025 

Dihydroartesmisinic acid 0.35902 0.30807 0.27724 0.87405 0.86185 

Isoaromadendrene epoxide.4 
0.08311

6 0.08244 0.18113 0.42988 0.42928 

beta-copaene 
0.05839

8 0.86027 0.887 0.8509 0.90279 

Chiapin B 0.06563 0.12715 0.11312 0.11094 0.11036 

1-Heptatriacotanol 
0.02121

2 0.04106 
0.04560

3 
0.04380

4 0.14279 
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Aromadendrene oxide-2.1 
0.02643

8 0.12429 0.12347 0.12617 0.15664 

2H-Pyran, 2-7-heptadecynyloxytetrahydro-.1 
0.01672

8 0.19216 0.18051 0.18153 0.18257 

Deoxyartemisinin 0.12033 0.40312 0.40868 0.39058 0.3989 

Artemisinin 0.24454 0.23854 0.2116 0.39021 0.3852 

Heptacosane 0.75598 0.81042 0.74468 0.70753 0.70246 

Unkown alkane 0.61706 0.65747 0.57997 0.61957 0.63301 

Olean-12-en-3-one 0.32813 0.28412 0.38382 0.56196 0.60996 

 

Metabolite correlation coefficients 

 

  

cis-beta 
-
Farnesene 

Cedren 
-13-ol, 
8- 

Cym 
ene 

Terp 
inen 

Butanoic 
 acid, 2-
m 

Neoin 
termedeol 

Isoarom 
adendrene 
e 

Farnesene 
 epoxide, Elemen 

cis-beta-Farnesene 1.00 0.43 0.34 0.17 0.13 0.16 0.49 0.34 0.34 

Cedren-13-ol, 8- 0.43 1.00 0.33 0.40 0.00 -0.06 0.12 0.09 0.27 

Cymene 0.34 0.33 1.00 0.87 0.26 0.40 0.26 0.29 0.55 

Terpinen 0.17 0.40 0.87 1.00 0.27 0.38 0.16 0.20 0.59 

Butanoic acid, 2-m 0.13 0.00 0.26 0.27 1.00 0.30 0.44 0.40 0.34 

Neointermedeol 0.16 -0.06 0.40 0.38 0.30 1.00 0.66 0.59 0.77 

Isoaromadendrene e 0.49 0.12 0.26 0.16 0.44 0.66 1.00 0.81 0.71 

Farnesene epoxide, 0.34 0.09 0.29 0.20 0.40 0.59 0.81 1.00 0.62 

Elemen 0.34 0.27 0.55 0.59 0.34 0.77 0.71 0.62 1.00 

Epiglobulol 0.31 -0.04 0.40 0.32 0.43 0.69 0.75 0.63 0.72 

Corymbolone 0.32 -0.07 0.39 0.32 0.48 0.86 0.84 0.75 0.79 

2-Methyl-4-2,6,6-t 0.39 -0.05 0.37 0.27 0.42 0.85 0.88 0.78 0.77 

cis-p-mentha-17,8- -0.49 -0.15 -0.22 -0.08 0.07 0.25 -0.22 -0.09 0.00 

cis-beta-Terpineol -0.65 -0.37 -0.40 -0.25 0.13 -0.13 -0.50 -0.38 -0.38 

Cyclohexanol, 1-me -0.65 -0.31 -0.25 -0.11 0.11 -0.15 -0.56 -0.42 -0.33 

3-buten-2-one, 4-5 -0.58 -0.37 -0.38 -0.23 -0.24 0.10 -0.35 -0.28 -0.24 

Camphene -0.52 -0.32 -0.34 -0.18 -0.28 -0.03 -0.49 -0.47 -0.32 

Camphor -0.63 -0.37 -0.42 -0.31 -0.36 -0.04 -0.60 -0.47 -0.40 

Pinene -0.56 -0.36 -0.61 -0.51 -0.04 -0.36 -0.49 -0.40 -0.51 

Ocimene -0.48 -0.31 -0.54 -0.43 -0.11 -0.30 -0.48 -0.33 -0.42 

Terpineol -0.57 -0.34 -0.19 0.03 0.03 -0.13 -0.50 -0.35 -0.26 

Isoaromadendrene e -0.47 0.06 -0.27 -0.05 -0.20 -0.20 -0.45 -0.36 -0.30 

Isoaromadendrene e -0.10 -0.16 0.16 0.32 -0.02 0.58 0.10 0.11 0.43 

Cholestan-3-ol, 2- -0.23 -0.04 0.18 0.38 0.20 0.58 0.09 0.16 0.43 
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Cubenol -0.12 0.11 0.15 0.34 -0.20 0.30 -0.18 -0.07 0.19 

Aromadendrene oxid -0.05 -0.14 0.04 0.18 0.23 0.29 0.11 0.13 0.21 

Dihydroartesmisini -0.21 -0.17 -0.22 -0.22 -0.39 0.38 0.12 0.07 0.18 

Artemisinin -0.33 -0.39 -0.40 -0.43 -0.36 0.26 -0.08 -0.07 -0.16 

Phenol, 2-methoxy- -0.17 -0.14 0.23 0.30 -0.39 0.47 -0.13 0.03 0.21 

beta-Guaiene -0.23 0.12 0.04 0.21 -0.37 0.40 -0.14 -0.07 0.22 

2H-Pyran, 2-7-hept -0.17 -0.26 -0.08 -0.04 0.01 0.38 -0.04 0.06 0.04 

Chiapin B -0.35 -0.28 -0.14 -0.10 -0.11 0.34 -0.17 0.00 -0.08 

beta-copaene -0.26 -0.35 -0.04 0.00 -0.01 0.59 -0.01 0.09 0.12 

Deoxyartemisinin -0.18 -0.30 -0.04 -0.03 0.12 0.55 0.09 0.16 0.06 

Olean-12-en-3-one 0.06 -0.34 -0.04 -0.26 -0.10 0.11 -0.01 0.06 -0.23 

Caryophyllene 0.59 0.07 0.39 0.21 -0.02 0.07 -0.01 -0.08 0.05 

Cyclohexane, 1-eth 0.29 -0.23 0.08 -0.10 -0.15 -0.12 -0.27 -0.32 -0.36 

Germacrene D 0.43 -0.21 -0.06 -0.24 -0.14 -0.30 -0.19 -0.30 -0.37 

Ylangene 0.39 -0.20 -0.09 -0.28 -0.15 -0.37 -0.24 -0.34 -0.44 

Copaene 0.42 -0.18 -0.06 -0.25 -0.15 -0.36 -0.22 -0.31 -0.42 

compound 1 -0.33 -0.31 -0.35 -0.27 -0.26 -0.42 -0.31 -0.37 -0.27 

Eucalyptol -0.29 -0.12 -0.37 -0.23 -0.03 -0.55 -0.32 -0.35 -0.41 

Artemisinic acid -0.23 -0.13 -0.35 -0.29 -0.24 -0.56 -0.22 -0.27 -0.34 

cis-Z-alpha-Bisabo -0.08 0.24 0.38 0.47 -0.10 0.09 -0.21 -0.09 0.10 

Isoaromadendrene e 0.05 0.26 0.08 0.11 -0.01 0.22 0.24 0.16 0.31 

Heptacosane -0.19 -0.22 -0.09 0.00 0.59 0.05 0.13 0.13 -0.02 

Unkown alkane -0.34 -0.45 -0.11 -0.07 0.47 -0.09 0.01 0.03 -0.13 

endo-Borneol -0.23 -0.09 0.18 0.28 0.73 0.21 0.02 0.03 0.07 

Caryophylene oxide -0.33 0.02 -0.08 0.11 0.36 -0.06 -0.25 -0.23 -0.18 

Isoaromadendrene e -0.20 -0.19 -0.22 -0.17 0.02 -0.10 -0.09 -0.09 -0.13 

Aromadendrene oxid -0.31 -0.26 -0.28 -0.14 -0.16 0.00 -0.27 -0.21 -0.17 

2H-Pyran, 2-7-hept -0.22 -0.20 -0.06 0.02 -0.09 0.24 -0.04 -0.05 0.13 

1-Heptatriacotanol -0.15 0.09 -0.12 0.00 -0.15 -0.07 -0.19 -0.14 -0.04 

 

 

 

  
Epiglo 
bulol 

Corym 
bolone 

2-
Methyl 
-4-
2,6,6-t 

cis-p- 
mentha-
17,8- 

cis-beta 
-
Terpineol 

Cyclohexanol, 
 1-me 

3-buten 
-2-one, 
4-5 

Cam 
phene 

Cam 
phor 

cis-beta-Farnesene 0.31 0.32 0.39 -0.49 -0.65 -0.65 -0.58 -0.52 -0.63 

Cedren-13-ol, 8- -0.04 -0.07 -0.05 -0.15 -0.37 -0.31 -0.37 -0.32 -0.37 

Cymene 0.40 0.39 0.37 -0.22 -0.40 -0.25 -0.38 -0.34 -0.42 

Terpinen 0.32 0.32 0.27 -0.08 -0.25 -0.11 -0.23 -0.18 -0.31 

Butanoic acid, 2-m 0.43 0.48 0.42 0.07 0.13 0.11 -0.24 -0.28 -0.36 



92 
 

Neointermedeol 0.69 0.86 0.85 0.25 -0.13 -0.15 0.10 -0.03 -0.04 

Isoaromadendrene e 0.75 0.84 0.88 -0.22 -0.50 -0.56 -0.35 -0.49 -0.60 

Farnesene epoxide, 0.63 0.75 0.78 -0.09 -0.38 -0.42 -0.28 -0.47 -0.47 

Elemen 0.72 0.79 0.77 0.00 -0.38 -0.33 -0.24 -0.32 -0.40 

Epiglobulol 1.00 0.85 0.84 0.00 -0.26 -0.26 -0.17 -0.41 -0.40 

Corymbolone 0.85 1.00 0.97 0.06 -0.27 -0.29 -0.14 -0.31 -0.34 

2-Methyl-4-2,6,6-t 0.84 0.97 1.00 -0.03 -0.38 -0.41 -0.19 -0.39 -0.43 

cis-p-mentha-17,8- 0.00 0.06 -0.03 1.00 0.82 0.80 0.67 0.49 0.77 

cis-beta-Terpineol -0.26 -0.27 -0.38 0.82 1.00 0.97 0.73 0.63 0.80 

Cyclohexanol, 1-me -0.26 -0.29 -0.41 0.80 0.97 1.00 0.67 0.59 0.78 

3-buten-2-one, 4-5 -0.17 -0.14 -0.19 0.67 0.73 0.67 1.00 0.73 0.77 

Camphene -0.41 -0.31 -0.39 0.49 0.63 0.59 0.73 1.00 0.75 

Camphor -0.40 -0.34 -0.43 0.77 0.80 0.78 0.77 0.75 1.00 

Pinene -0.39 -0.39 -0.47 0.57 0.80 0.74 0.54 0.55 0.66 

Ocimene -0.38 -0.34 -0.40 0.46 0.64 0.59 0.49 0.48 0.54 

Terpineol -0.17 -0.24 -0.34 0.49 0.73 0.76 0.65 0.55 0.56 

Isoaromadendrene e -0.28 -0.38 -0.43 0.42 0.58 0.56 0.70 0.57 0.52 

Isoaromadendrene e 0.40 0.43 0.35 0.29 0.13 0.13 0.39 0.29 0.25 

Cholestan-3-ol, 2- 0.39 0.44 0.32 0.66 0.46 0.47 0.52 0.35 0.41 

Cubenol 0.05 0.08 0.02 0.20 0.14 0.17 0.39 0.36 0.30 

Aromadendrene oxid 0.34 0.29 0.22 0.32 0.34 0.34 0.42 0.21 0.19 

Dihydroartesmisini 0.02 0.15 0.18 0.36 0.09 0.01 0.41 0.30 0.37 

Artemisinin -0.13 0.04 0.05 0.51 0.35 0.25 0.60 0.45 0.63 

Phenol, 2-methoxy- 0.14 0.22 0.17 0.38 0.12 0.15 0.43 0.33 0.50 

beta-Guaiene 0.06 0.14 0.06 0.55 0.30 0.31 0.60 0.42 0.55 

2H-Pyran, 2-7-hept 0.15 0.21 0.19 0.52 0.34 0.27 0.44 0.25 0.43 

Chiapin B 0.03 0.13 0.08 0.75 0.57 0.53 0.66 0.47 0.71 

beta-copaene 0.22 0.37 0.31 0.70 0.49 0.44 0.65 0.44 0.64 

Deoxyartemisinin 0.18 0.33 0.31 0.58 0.40 0.34 0.52 0.31 0.49 

Olean-12-en-3-one -0.03 0.05 0.08 -0.04 -0.05 -0.07 -0.06 -0.01 0.19 

Caryophyllene 0.17 0.09 0.13 -0.18 -0.20 -0.13 -0.17 -0.17 -0.17 

Cyclohexane, 1-eth -0.18 -0.17 -0.14 -0.10 0.03 0.05 0.03 0.10 0.17 

Germacrene D -0.17 -0.22 -0.16 -0.34 -0.12 -0.10 -0.15 -0.06 -0.09 

Ylangene -0.22 -0.29 -0.23 -0.36 -0.11 -0.09 -0.15 -0.08 -0.08 

Copaene -0.20 -0.27 -0.21 -0.36 -0.13 -0.10 -0.16 -0.09 -0.10 

compound 1 -0.22 -0.41 -0.41 -0.19 0.16 0.14 0.29 0.30 0.10 

Eucalyptol -0.32 -0.49 -0.50 -0.15 0.27 0.24 0.23 0.23 0.03 

Artemisinic acid -0.27 -0.44 -0.40 -0.26 0.06 0.04 0.13 0.07 -0.10 

cis-Z-alpha-Bisabo -0.09 -0.10 -0.14 0.03 -0.05 0.04 0.08 0.16 0.10 

Isoaromadendrene e 0.14 0.12 0.19 0.15 -0.12 -0.15 0.02 -0.10 -0.13 

Heptacosane 0.25 0.16 0.14 0.24 0.37 0.30 0.18 -0.02 -0.05 
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Unkown alkane 0.18 0.06 0.03 0.17 0.44 0.40 0.26 0.09 0.00 

endo-Borneol 0.05 0.16 0.09 0.35 0.48 0.46 0.27 0.23 0.08 

Caryophylene oxide -0.21 -0.14 -0.18 0.35 0.55 0.52 0.51 0.39 0.21 

Isoaromadendrene e 0.00 -0.04 -0.09 0.20 0.29 0.26 0.16 0.07 0.22 

Aromadendrene oxid -0.04 -0.16 -0.18 0.41 0.44 0.38 0.60 0.42 0.45 

2H-Pyran, 2-7-hept 0.06 0.04 0.04 0.47 0.31 0.28 0.33 0.29 0.35 

1-Heptatriacotanol -0.08 -0.21 -0.19 0.19 0.16 0.13 0.28 0.22 0.18 

 

 

  
Pi 
nene 

Oci 
mene 

Ter 
pineol 

Isoaro 
madendr
ene e 

Isoaro 
madendren
e e 

Cholesta
n 
-3-ol, 2- 

Cube 
nol 

Aroma 
dendren
e oxid 

Dihydro 
artesmisin
i 

cis-beta-Farnesene -0.56 -0.48 -0.57 -0.47 -0.10 -0.23 
-

0.12 -0.05 -0.21 

Cedren-13-ol, 8- -0.36 -0.31 -0.34 0.06 -0.16 -0.04 0.11 -0.14 -0.17 

Cymene -0.61 -0.54 -0.19 -0.27 0.16 0.18 0.15 0.04 -0.22 

Terpinen -0.51 -0.43 0.03 -0.05 0.32 0.38 0.34 0.18 -0.22 

Butanoic acid, 2-m -0.04 -0.11 0.03 -0.20 -0.02 0.20 
-

0.20 0.23 -0.39 

Neointermedeol -0.36 -0.30 -0.13 -0.20 0.58 0.58 0.30 0.29 0.38 

Isoaromadendrene 
e -0.49 -0.48 -0.50 -0.45 0.10 0.09 

-
0.18 0.11 0.12 

Farnesene epoxide, -0.40 -0.33 -0.35 -0.36 0.11 0.16 
-

0.07 0.13 0.07 

Elemen -0.51 -0.42 -0.26 -0.30 0.43 0.43 0.19 0.21 0.18 

Epiglobulol -0.39 -0.38 -0.17 -0.28 0.40 0.39 0.05 0.34 0.02 

Corymbolone -0.39 -0.34 -0.24 -0.38 0.43 0.44 0.08 0.29 0.15 

2-Methyl-4-2,6,6-t -0.47 -0.40 -0.34 -0.43 0.35 0.32 0.02 0.22 0.18 

cis-p-mentha-17,8- 0.57 0.46 0.49 0.42 0.29 0.66 0.20 0.32 0.36 

cis-beta-Terpineol 0.80 0.64 0.73 0.58 0.13 0.46 0.14 0.34 0.09 

Cyclohexanol, 1-me 0.74 0.59 0.76 0.56 0.13 0.47 0.17 0.34 0.01 

3-buten-2-one, 4-5 0.54 0.49 0.65 0.70 0.39 0.52 0.39 0.42 0.41 

Camphene 0.55 0.48 0.55 0.57 0.29 0.35 0.36 0.21 0.30 

Camphor 0.66 0.54 0.56 0.52 0.25 0.41 0.30 0.19 0.37 

Pinene 1.00 0.87 0.52 0.43 -0.10 0.17 
-

0.07 0.15 0.09 

Ocimene 0.87 1.00 0.49 0.40 -0.05 0.13 
-

0.02 0.11 0.14 

Terpineol 0.52 0.49 1.00 0.75 0.42 0.53 0.56 0.59 -0.17 

Isoaromadendrene 
e 0.43 0.40 0.75 1.00 0.30 0.45 0.57 0.52 -0.03 

Isoaromadendrene 
e -0.10 -0.05 0.42 0.30 1.00 0.73 0.73 0.52 0.19 
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Cholestan-3-ol, 2- 0.17 0.13 0.53 0.45 0.73 1.00 0.67 0.67 0.09 

Cubenol -0.07 -0.02 0.56 0.57 0.73 0.67 1.00 0.52 -0.07 

Aromadendrene 
oxid 0.15 0.11 0.59 0.52 0.52 0.67 0.52 1.00 -0.16 

Dihydroartesmisini 0.09 0.14 -0.17 -0.03 0.19 0.09 
-

0.07 -0.16 1.00 

Artemisinin 0.31 0.27 -0.05 0.04 0.12 0.14 
-

0.07 -0.12 0.75 

Phenol, 2-methoxy- -0.09 -0.07 0.24 0.21 0.65 0.63 0.66 0.32 0.28 

beta-Guaiene 0.11 0.07 0.38 0.49 0.66 0.73 0.74 0.36 0.34 

2H-Pyran, 2-7-hept 0.11 0.04 0.09 0.02 0.43 0.42 0.13 0.02 0.36 

Chiapin B 0.35 0.28 0.25 0.23 0.32 0.48 0.17 0.22 0.43 

beta-copaene 0.22 0.16 0.28 0.20 0.54 0.69 0.40 0.35 0.37 

Deoxyartemisinin 0.13 0.06 0.14 0.08 0.34 0.52 0.20 0.24 0.31 

Olean-12-en-3-one -0.06 -0.08 -0.26 -0.36 -0.09 -0.20 
-

0.19 -0.24 0.01 

Caryophyllene -0.30 -0.26 -0.06 -0.13 0.12 -0.01 0.10 0.12 -0.27 

Cyclohexane, 1-eth 0.00 -0.05 -0.08 -0.17 -0.07 -0.21 
-

0.12 -0.10 -0.15 

Germacrene D -0.03 -0.02 -0.06 -0.16 -0.18 -0.42 
-

0.15 -0.11 -0.29 

Ylangene -0.01 -0.02 -0.08 -0.18 -0.26 -0.49 
-

0.20 -0.15 -0.31 

Copaene -0.03 -0.04 -0.08 -0.17 -0.25 -0.47 
-

0.18 -0.13 -0.32 

compound 1 0.30 0.31 0.46 0.44 0.07 -0.09 0.15 0.21 -0.06 

Eucalyptol 0.37 0.34 0.54 0.58 -0.11 -0.11 0.10 0.26 -0.31 

Artemisinic acid 0.25 0.29 0.33 0.42 -0.20 -0.27 
-

0.06 0.16 -0.12 

cis-Z-alpha-Bisabo -0.24 -0.19 0.07 0.15 0.24 0.17 0.35 -0.10 0.03 

Isoaromadendrene 
e -0.15 -0.08 -0.33 -0.17 0.00 -0.05 

-
0.31 -0.30 0.51 

Heptacosane 0.23 0.12 0.25 0.12 0.10 0.21 
-

0.16 0.24 -0.15 

Unkown alkane 0.32 0.23 0.44 0.23 0.06 0.14 
-

0.15 0.30 -0.21 

endo-Borneol 0.22 0.17 0.34 0.18 0.07 0.31 
-

0.04 0.22 -0.13 

Caryophylene oxide 0.37 0.35 0.54 0.53 0.09 0.28 0.19 0.26 -0.09 

Isoaromadendrene 
e 0.21 0.06 0.20 0.14 0.03 0.18 0.00 0.16 -0.07 

Aromadendrene 
oxid 0.31 0.25 0.39 0.42 0.40 0.33 0.18 0.29 0.28 

2H-Pyran, 2-7-hept 0.17 0.11 0.15 0.09 0.29 0.29 0.01 0.07 0.46 

1-Heptatriacotanol 0.07 0.12 0.13 0.27 0.21 0.10 0.05 0.01 0.23 
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Arte 
misinin 

Phenol 
, 2-
methoxy- 

beta 
-
Guaiene 

2H-
Pyran 
, 2-7-
hept 

Chiapin 
 B 

beta- 
copaene 

Deoxy 
artemisinin 

Olean- 
12-en-
3-one 

Caryo 
phyllene 

cis-beta-Farnesene -0.33 -0.17 -0.23 -0.17 -0.35 -0.26 -0.18 0.06 0.59 

Cedren-13-ol, 8- -0.39 -0.14 0.12 -0.26 -0.28 -0.35 -0.30 -0.34 0.07 

Cymene -0.40 0.23 0.04 -0.08 -0.14 -0.04 -0.04 -0.04 0.39 

Terpinen -0.43 0.30 0.21 -0.04 -0.10 0.00 -0.03 -0.26 0.21 

Butanoic acid, 2-m -0.36 -0.39 -0.37 0.01 -0.11 -0.01 0.12 -0.10 -0.02 

Neointermedeol 0.26 0.47 0.40 0.38 0.34 0.59 0.55 0.11 0.07 

Isoaromadendrene e -0.08 -0.13 -0.14 -0.04 -0.17 -0.01 0.09 -0.01 -0.01 

Farnesene epoxide, -0.07 0.03 -0.07 0.06 0.00 0.09 0.16 0.06 -0.08 

Elemen -0.16 0.21 0.22 0.04 -0.08 0.12 0.06 -0.23 0.05 

Epiglobulol -0.13 0.14 0.06 0.15 0.03 0.22 0.18 -0.03 0.17 

Corymbolone 0.04 0.22 0.14 0.21 0.13 0.37 0.33 0.05 0.09 

2-Methyl-4-2,6,6-t 0.05 0.17 0.06 0.19 0.08 0.31 0.31 0.08 0.13 

cis-p-mentha-17,8- 0.51 0.38 0.55 0.52 0.75 0.70 0.58 -0.04 -0.18 

cis-beta-Terpineol 0.35 0.12 0.30 0.34 0.57 0.49 0.40 -0.05 -0.20 

Cyclohexanol, 1-me 0.25 0.15 0.31 0.27 0.53 0.44 0.34 -0.07 -0.13 

3-buten-2-one, 4-5 0.60 0.43 0.60 0.44 0.66 0.65 0.52 -0.06 -0.17 

Camphene 0.45 0.33 0.42 0.25 0.47 0.44 0.31 -0.01 -0.17 

Camphor 0.63 0.50 0.55 0.43 0.71 0.64 0.49 0.19 -0.17 

Pinene 0.31 -0.09 0.11 0.11 0.35 0.22 0.13 -0.06 -0.30 

Ocimene 0.27 -0.07 0.07 0.04 0.28 0.16 0.06 -0.08 -0.26 

Terpineol -0.05 0.24 0.38 0.09 0.25 0.28 0.14 -0.26 -0.06 

Isoaromadendrene e 0.04 0.21 0.49 0.02 0.23 0.20 0.08 -0.36 -0.13 

Isoaromadendrene e 0.12 0.65 0.66 0.43 0.32 0.54 0.34 -0.09 0.12 

Cholestan-3-ol, 2- 0.14 0.63 0.73 0.42 0.48 0.69 0.52 -0.20 -0.01 

Cubenol -0.07 0.66 0.74 0.13 0.17 0.40 0.20 -0.19 0.10 

Aromadendrene oxid -0.12 0.32 0.36 0.02 0.22 0.35 0.24 -0.24 0.12 

Dihydroartesmisini 0.75 0.28 0.34 0.36 0.43 0.37 0.31 0.01 -0.27 

Artemisinin 1.00 0.41 0.39 0.54 0.73 0.68 0.65 0.34 -0.22 

Phenol, 2-methoxy- 0.41 1.00 0.79 0.49 0.57 0.73 0.55 0.19 0.12 

beta-Guaiene 0.39 0.79 1.00 0.42 0.55 0.66 0.46 -0.13 -0.03 

2H-Pyran, 2-7-hept 0.54 0.49 0.42 1.00 0.68 0.73 0.67 0.28 0.07 

Chiapin B 0.73 0.57 0.55 0.68 1.00 0.85 0.77 0.31 -0.04 

beta-copaene 0.68 0.73 0.66 0.73 0.85 1.00 0.87 0.34 0.08 
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Deoxyartemisinin 0.65 0.55 0.46 0.67 0.77 0.87 1.00 0.40 0.03 

Olean-12-en-3-one 0.34 0.19 -0.13 0.28 0.31 0.34 0.40 1.00 0.27 

Caryophyllene -0.22 0.12 -0.03 0.07 -0.04 0.08 0.03 0.27 1.00 

Cyclohexane, 1-eth 0.20 0.14 -0.06 0.21 0.23 0.24 0.26 0.59 0.73 

Germacrene D -0.09 -0.19 -0.30 -0.10 -0.14 -0.12 -0.11 0.37 0.76 

Ylangene -0.08 -0.23 -0.33 -0.15 -0.15 -0.16 -0.13 0.37 0.69 

Copaene -0.09 -0.22 -0.32 -0.15 -0.15 -0.15 -0.12 0.36 0.72 

compound 1 -0.18 -0.17 -0.06 -0.34 -0.32 -0.34 -0.41 -0.30 -0.21 

Eucalyptol -0.35 -0.39 -0.20 -0.47 -0.39 -0.45 -0.45 -0.43 -0.19 

Artemisinic acid -0.27 -0.41 -0.24 -0.53 -0.45 -0.55 -0.55 -0.46 -0.21 

cis-Z-alpha-Bisabo -0.07 0.31 0.31 0.14 0.07 0.07 0.05 -0.13 -0.02 

Isoaromadendrene e 0.16 -0.13 0.03 0.41 0.13 -0.03 0.02 -0.22 -0.13 

Heptacosane -0.05 -0.23 -0.18 0.40 0.14 0.14 0.19 -0.16 -0.15 

Unkown alkane -0.12 -0.30 -0.26 0.14 0.02 0.02 0.03 -0.15 -0.12 

endo-Borneol -0.03 -0.19 -0.09 0.23 0.24 0.23 0.32 -0.14 -0.05 

Caryophylene oxide 0.05 -0.14 0.16 0.14 0.23 0.19 0.23 -0.37 -0.13 

Isoaromadendrene e 0.16 0.10 0.14 0.14 0.15 0.16 0.16 0.11 -0.12 

Aromadendrene oxid 0.28 0.28 0.33 0.65 0.41 0.37 0.31 -0.08 -0.05 

2H-Pyran, 2-7-hept 0.28 0.22 0.23 0.57 0.32 0.30 0.21 -0.13 -0.11 

1-Heptatriacotanol 0.06 0.06 0.16 0.50 0.16 0.06 0.00 -0.18 -0.05 

 

 

  

Cyclo 
hexane, 
1-eth 

Germa 
crene D 

ylan 
gene 

copa 
ene 

comp 
ound 1 

Euca 
lyptol 

Artem 
isinic 
acid 

cis-Z- 
alpha-
Bisabo 

Isoaro 
madendrene e 

cis-beta-Farnesene 0.29 0.43 0.39 0.42 -0.33 -0.29 -0.23 -0.08 0.05 

Cedren-13-ol, 8- -0.23 -0.21 -0.20 -0.18 -0.31 -0.12 -0.13 0.24 0.26 

Cymene 0.08 -0.06 -0.09 -0.06 -0.35 -0.37 -0.35 0.38 0.08 

Terpinen -0.10 -0.24 -0.28 -0.25 -0.27 -0.23 -0.29 0.47 0.11 

Butanoic acid, 2-m -0.15 -0.14 -0.15 -0.15 -0.26 -0.03 -0.24 -0.10 -0.01 

Neointermedeol -0.12 -0.30 -0.37 -0.36 -0.42 -0.55 -0.56 0.09 0.22 

Isoaromadendrene e -0.27 -0.19 -0.24 -0.22 -0.31 -0.32 -0.22 -0.21 0.24 

Farnesene epoxide, -0.32 -0.30 -0.34 -0.31 -0.37 -0.35 -0.27 -0.09 0.16 

Elemen -0.36 -0.37 -0.44 -0.42 -0.27 -0.41 -0.34 0.10 0.31 

Epiglobulol -0.18 -0.17 -0.22 -0.20 -0.22 -0.32 -0.27 -0.09 0.14 

Corymbolone -0.17 -0.22 -0.29 -0.27 -0.41 -0.49 -0.44 -0.10 0.12 

2-Methyl-4-2,6,6-t -0.14 -0.16 -0.23 -0.21 -0.41 -0.50 -0.40 -0.14 0.19 

cis-p-mentha-17,8- -0.10 -0.34 -0.36 -0.36 -0.19 -0.15 -0.26 0.03 0.15 

cis-beta-Terpineol 0.03 -0.12 -0.11 -0.13 0.16 0.27 0.06 -0.05 -0.12 

Cyclohexanol, 1-me 0.05 -0.10 -0.09 -0.10 0.14 0.24 0.04 0.04 -0.15 

3-buten-2-one, 4-5 0.03 -0.15 -0.15 -0.16 0.29 0.23 0.13 0.08 0.02 
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Camphene 0.10 -0.06 -0.08 -0.09 0.30 0.23 0.07 0.16 -0.10 

Camphor 0.17 -0.09 -0.08 -0.10 0.10 0.03 -0.10 0.10 -0.13 

Pinene 0.00 -0.03 -0.01 -0.03 0.30 0.37 0.25 -0.24 -0.15 

Ocimene -0.05 -0.02 -0.02 -0.04 0.31 0.34 0.29 -0.19 -0.08 

Terpineol -0.08 -0.06 -0.08 -0.08 0.46 0.54 0.33 0.07 -0.33 

Isoaromadendrene e -0.17 -0.16 -0.18 -0.17 0.44 0.58 0.42 0.15 -0.17 

Isoaromadendrene e -0.07 -0.18 -0.26 -0.25 0.07 -0.11 -0.20 0.24 0.00 

Cholestan-3-ol, 2- -0.21 -0.42 -0.49 -0.47 -0.09 -0.11 -0.27 0.17 -0.05 

Cubenol -0.12 -0.15 -0.20 -0.18 0.15 0.10 -0.06 0.35 -0.31 

Aromadendrene oxid -0.10 -0.11 -0.15 -0.13 0.21 0.26 0.16 -0.10 -0.30 

Dihydroartesmisini -0.15 -0.29 -0.31 -0.32 -0.06 -0.31 -0.12 0.03 0.51 

Artemisinin 0.20 -0.09 -0.08 -0.09 -0.18 -0.35 -0.27 -0.07 0.16 

Phenol, 2-methoxy- 0.14 -0.19 -0.23 -0.22 -0.17 -0.39 -0.41 0.31 -0.13 

beta-Guaiene -0.06 -0.30 -0.33 -0.32 -0.06 -0.20 -0.24 0.31 0.03 

2H-Pyran, 2-7-hept 0.21 -0.10 -0.15 -0.15 -0.34 -0.47 -0.53 0.14 0.41 

Chiapin B 0.23 -0.14 -0.15 -0.15 -0.32 -0.39 -0.45 0.07 0.13 

beta-copaene 0.24 -0.12 -0.16 -0.15 -0.34 -0.45 -0.55 0.07 -0.03 

Deoxyartemisinin 0.26 -0.11 -0.13 -0.12 -0.41 -0.45 -0.55 0.05 0.02 

Olean-12-en-3-one 0.59 0.37 0.37 0.36 -0.30 -0.43 -0.46 -0.13 -0.22 

Caryophyllene 0.73 0.76 0.69 0.72 -0.21 -0.19 -0.21 -0.02 -0.13 

Cyclohexane, 1-eth 1.00 0.82 0.81 0.82 -0.19 -0.23 -0.27 -0.02 -0.25 

Germacrene D 0.82 1.00 0.98 0.98 0.04 0.05 0.05 -0.14 -0.31 

Ylangene 0.81 0.98 1.00 1.00 0.04 0.08 0.08 -0.16 -0.34 

Copaene 0.82 0.98 1.00 1.00 0.03 0.06 0.07 -0.16 -0.34 

compound 1 -0.19 0.04 0.04 0.03 1.00 0.78 0.78 -0.07 -0.19 

Eucalyptol -0.23 0.05 0.08 0.06 0.78 1.00 0.81 -0.17 -0.29 

Artemisinic acid -0.27 0.05 0.08 0.07 0.78 0.81 1.00 -0.22 -0.14 

cis-Z-alpha-Bisabo -0.02 -0.14 -0.16 -0.16 -0.07 -0.17 -0.22 1.00 0.13 

Isoaromadendrene e -0.25 -0.31 -0.34 -0.34 -0.19 -0.29 -0.14 0.13 1.00 

Heptacosane -0.15 -0.18 -0.19 -0.19 0.07 0.18 0.02 -0.17 0.29 

Unkown alkane -0.12 -0.04 -0.05 -0.05 0.36 0.44 0.32 -0.23 0.07 

endo-Borneol 0.02 -0.14 -0.15 -0.15 -0.14 0.09 -0.16 0.13 0.15 

Caryophylene oxide -0.05 -0.09 -0.08 -0.08 0.12 0.33 0.14 0.15 0.10 

Isoaromadendrene e 0.06 -0.09 -0.08 -0.09 0.15 0.14 0.09 -0.23 -0.19 

Aromadendrene oxid 0.00 -0.13 -0.18 -0.18 0.28 0.12 0.07 0.09 0.42 

2H-Pyran, 2-7-hept -0.13 -0.25 -0.30 -0.29 0.03 -0.12 -0.11 0.11 0.61 

1-Heptatriacotanol -0.13 -0.19 -0.24 -0.24 0.17 0.06 0.06 0.21 0.66 

 

 



98 
 

  
Hepta 
cosane 

Unkown 
 alkane 

endo- 
Borneol 

Caryo 
phylene 
oxide 

Isoaro 
madendrene e 

Aroma 
dendrene 
oxid 

2H-
Pyran 
, 2-7-
hept 

1-Hepta 
triacotanol 

cis-beta-Farnesene -0.19 -0.34 -0.23 -0.33 -0.20 -0.31 -0.22 -0.15 

Cedren-13-ol, 8- -0.22 -0.45 -0.09 0.02 -0.19 -0.26 -0.20 0.09 

Cymene -0.09 -0.11 0.18 -0.08 -0.22 -0.28 -0.06 -0.12 

Terpinen 0.00 -0.07 0.28 0.11 -0.17 -0.14 0.02 0.00 

Butanoic acid, 2-m 0.59 0.47 0.73 0.36 0.02 -0.16 -0.09 -0.15 

Neointermedeol 0.05 -0.09 0.21 -0.06 -0.10 0.00 0.24 -0.07 

Isoaromadendrene e 0.13 0.01 0.02 -0.25 -0.09 -0.27 -0.04 -0.19 

Farnesene epoxide, 0.13 0.03 0.03 -0.23 -0.09 -0.21 -0.05 -0.14 

Elemen -0.02 -0.13 0.07 -0.18 -0.13 -0.17 0.13 -0.04 

Epiglobulol 0.25 0.18 0.05 -0.21 0.00 -0.04 0.06 -0.08 

Corymbolone 0.16 0.06 0.16 -0.14 -0.04 -0.16 0.04 -0.21 

2-Methyl-4-2,6,6-t 0.14 0.03 0.09 -0.18 -0.09 -0.18 0.04 -0.19 

cis-p-mentha-17,8- 0.24 0.17 0.35 0.35 0.20 0.41 0.47 0.19 

cis-beta-Terpineol 0.37 0.44 0.48 0.55 0.29 0.44 0.31 0.16 

Cyclohexanol, 1-me 0.30 0.40 0.46 0.52 0.26 0.38 0.28 0.13 

3-buten-2-one, 4-5 0.18 0.26 0.27 0.51 0.16 0.60 0.33 0.28 

Camphene -0.02 0.09 0.23 0.39 0.07 0.42 0.29 0.22 

Camphor -0.05 0.00 0.08 0.21 0.22 0.45 0.35 0.18 

Pinene 0.23 0.32 0.22 0.37 0.21 0.31 0.17 0.07 

Ocimene 0.12 0.23 0.17 0.35 0.06 0.25 0.11 0.12 

Terpineol 0.25 0.44 0.34 0.54 0.20 0.39 0.15 0.13 

Isoaromadendrene e 0.12 0.23 0.18 0.53 0.14 0.42 0.09 0.27 

Isoaromadendrene e 0.10 0.06 0.07 0.09 0.03 0.40 0.29 0.21 

Cholestan-3-ol, 2- 0.21 0.14 0.31 0.28 0.18 0.33 0.29 0.10 

Cubenol -0.16 -0.15 -0.04 0.19 0.00 0.18 0.01 0.05 

Aromadendrene oxid 0.24 0.30 0.22 0.26 0.16 0.29 0.07 0.01 

Dihydroartesmisini -0.15 -0.21 -0.13 -0.09 -0.07 0.28 0.46 0.23 

Artemisinin -0.05 -0.12 -0.03 0.05 0.16 0.28 0.28 0.06 

Phenol, 2-methoxy- -0.23 -0.30 -0.19 -0.14 0.10 0.28 0.22 0.06 

beta-Guaiene -0.18 -0.26 -0.09 0.16 0.14 0.33 0.23 0.16 

2H-Pyran, 2-7-hept 0.40 0.14 0.23 0.14 0.14 0.65 0.57 0.50 

Chiapin B 0.14 0.02 0.24 0.23 0.15 0.41 0.32 0.16 

beta-copaene 0.14 0.02 0.23 0.19 0.16 0.37 0.30 0.06 

Deoxyartemisinin 0.19 0.03 0.32 0.23 0.16 0.31 0.21 0.00 

Olean-12-en-3-one -0.16 -0.15 -0.14 -0.37 0.11 -0.08 -0.13 -0.18 

Caryophyllene -0.15 -0.12 -0.05 -0.13 -0.12 -0.05 -0.11 -0.05 

Cyclohexane, 1-eth -0.15 -0.12 0.02 -0.05 0.06 0.00 -0.13 -0.13 

Germacrene D -0.18 -0.04 -0.14 -0.09 -0.09 -0.13 -0.25 -0.19 

Ylangene -0.19 -0.05 -0.15 -0.08 -0.08 -0.18 -0.30 -0.24 
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Copaene -0.19 -0.05 -0.15 -0.08 -0.09 -0.18 -0.29 -0.24 

compound 1 0.07 0.36 -0.14 0.12 0.15 0.28 0.03 0.17 

Eucalyptol 0.18 0.44 0.09 0.33 0.14 0.12 -0.12 0.06 

Artemisinic acid 0.02 0.32 -0.16 0.14 0.09 0.07 -0.11 0.06 

cis-Z-alpha-Bisabo -0.17 -0.23 0.13 0.15 -0.23 0.09 0.11 0.21 

Isoaromadendrene e 0.29 0.07 0.15 0.10 -0.19 0.42 0.61 0.66 

Heptacosane 1.00 0.85 0.63 0.53 0.14 0.46 0.38 0.39 

Unkown alkane 0.85 1.00 0.54 0.49 0.16 0.37 0.27 0.22 

endo-Borneol 0.63 0.54 1.00 0.79 -0.01 0.16 0.14 0.11 

Caryophylene oxide 0.53 0.49 0.79 1.00 0.02 0.28 0.08 0.19 

Isoaromadendrene e 0.14 0.16 -0.01 0.02 1.00 0.22 -0.03 0.01 

Aromadendrene oxid 0.46 0.37 0.16 0.28 0.22 1.00 0.66 0.78 

2H-Pyran, 2-7-hept 0.38 0.27 0.14 0.08 -0.03 0.66 1.00 0.59 

1-Heptatriacotanol 0.39 0.22 0.11 0.19 0.01 0.78 0.59 1.00 

 

 

  

cis 
- 
beta-
Farne 
sene 

Ced
r 
en- 
13-
ol 
, 8- 

Cy
m 
ene 

Ter
p 
inen 

Buta 
noic 
 
acid
, 
 2-m 

Neo
i 
nter 
med 
eol 

Isoar 
oma
d 
endr 
ene e 

Farn 
esen
e 
 epo 
xide, 

Eleme
n 

Epiglobulo
l 

cis-beta-Farnesene NA 0.00 0.00 0.16 0.27 0.18 0.00 0.00 0.00 0.01 

Cedren-13-ol, 8- 0.00 NA 0.00 0.00 0.98 0.61 0.34 0.44 0.02 0.75 

Cymene 0.00 0.00 NA 0.00 0.03 0.00 0.03 0.01 0.00 0.00 

Terpinen 0.16 0.00 0.00 NA 0.02 0.00 0.17 0.09 0.00 0.01 

Butanoic acid, 2-m 0.27 0.98 0.03 0.02 NA 0.01 0.00 0.00 0.00 0.00 

Neointermedeol 0.18 0.61 0.00 0.00 0.01 NA 0.00 0.00 0.00 0.00 

Isoaromadendrene 
e 0.00 0.34 0.03 0.17 0.00 0.00 NA 0.00 0.00 0.00 

Farnesene 
epoxide, 0.00 0.44 0.01 0.09 0.00 0.00 0.00 NA 0.00 0.00 

Elemen 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 NA 0.00 

Epiglobulol 0.01 0.75 0.00 0.01 0.00 0.00 0.00 0.00 0.00 NA 

Corymbolone 0.01 0.55 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

2-Methyl-4-2,6,6-t 0.00 0.67 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

cis-p-mentha-17,8- 0.00 0.20 0.06 0.49 0.59 0.03 0.06 0.47 1.00 0.97 

cis-beta-Terpineol 0.00 0.00 0.00 0.04 0.30 0.27 0.00 0.00 0.00 0.03 

Cyclohexanol, 1-
me 0.00 0.01 0.04 0.38 0.35 0.21 0.00 0.00 0.00 0.03 

3-buten-2-one, 4-5 0.00 0.00 0.00 0.06 0.05 0.41 0.00 0.02 0.04 0.17 

Camphene 0.00 0.01 0.00 0.13 0.02 0.79 0.00 0.00 0.01 0.00 
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Camphor 0.00 0.00 0.00 0.01 0.00 0.74 0.00 0.00 0.00 0.00 

Pinene 0.00 0.00 0.00 0.00 0.76 0.00 0.00 0.00 0.00 0.00 

Ocimene 0.00 0.01 0.00 0.00 0.38 0.01 0.00 0.00 0.00 0.00 

Terpineol 0.00 0.00 0.12 0.82 0.78 0.29 0.00 0.00 0.03 0.15 

Isoaromadendrene 
e 0.00 0.65 0.02 0.70 0.10 0.10 0.00 0.00 0.01 0.02 

Isoaromadendrene 
e 0.42 0.19 0.18 0.01 0.84 0.00 0.39 0.38 0.00 0.00 

Cholestan-3-ol, 2- 0.05 0.76 0.13 0.00 0.09 0.00 0.47 0.18 0.00 0.00 

Cubenol 0.30 0.38 0.21 0.00 0.10 0.01 0.13 0.58 0.13 0.67 

Aromadendrene 
oxid 0.70 0.24 0.74 0.13 0.05 0.01 0.35 0.30 0.07 0.00 

Dihydroartesmisini 0.08 0.15 0.07 0.06 0.00 0.00 0.32 0.59 0.13 0.87 

Artemisinin 0.01 0.00 0.00 0.00 0.00 0.03 0.49 0.57 0.18 0.29 

Phenol, 2-
methoxy- 0.16 0.25 0.06 0.01 0.00 0.00 0.30 0.81 0.09 0.25 

beta-Guaiene 0.06 0.33 0.75 0.09 0.00 0.00 0.23 0.59 0.07 0.64 

2H-Pyran, 2-7-hept 0.15 0.03 0.51 0.74 0.96 0.00 0.73 0.61 0.77 0.23 

Chiapin B 0.00 0.02 0.23 0.39 0.38 0.00 0.15 0.99 0.52 0.81 

beta-copaene 0.03 0.00 0.77 1.00 0.94 0.00 0.96 0.45 0.33 0.07 

Deoxyartemisinin 0.13 0.01 0.75 0.81 0.33 0.00 0.48 0.18 0.65 0.13 

Olean-12-en-3-one 0.63 0.00 0.73 0.03 0.42 0.36 0.96 0.64 0.06 0.79 

Caryophyllene 0.00 0.55 0.00 0.07 0.87 0.59 0.93 0.49 0.68 0.16 

Cyclohexane, 1-
eth 0.02 0.06 0.49 0.42 0.21 0.33 0.03 0.01 0.00 0.13 

Germacrene D 0.00 0.09 0.64 0.04 0.25 0.01 0.11 0.01 0.00 0.16 

Ylangene 0.00 0.11 0.48 0.02 0.20 0.00 0.05 0.00 0.00 0.06 

Copaene 0.00 0.14 0.63 0.03 0.22 0.00 0.06 0.01 0.00 0.09 

compound 1 0.00 0.01 0.00 0.03 0.03 0.00 0.01 0.00 0.02 0.06 

Eucalyptol 0.01 0.33 0.00 0.05 0.81 0.00 0.01 0.00 0.00 0.01 

Artemisinic acid 0.05 0.30 0.00 0.01 0.05 0.00 0.07 0.03 0.00 0.02 

cis-Z-alpha-Bisabo 0.52 0.05 0.00 0.00 0.43 0.47 0.08 0.45 0.42 0.46 

Isoaromadendrene 
e 0.68 0.03 0.49 0.35 0.94 0.07 0.05 0.19 0.01 0.23 

Heptacosane 0.11 0.06 0.47 0.97 0.00 0.67 0.27 0.29 0.87 0.04 

Unkown alkane 0.00 0.00 0.36 0.54 0.00 0.47 0.90 0.83 0.28 0.13 

endo-Borneol 0.06 0.46 0.14 0.02 0.00 0.08 0.90 0.82 0.58 0.67 

Caryophylene 
oxide 0.01 0.84 0.51 0.35 0.00 0.62 0.03 0.06 0.15 0.08 

Isoaromadendrene 
e 0.09 0.12 0.07 0.16 0.86 0.43 0.43 0.46 0.28 0.97 

Aromadendrene 
oxid 0.01 0.03 0.02 0.26 0.18 0.99 0.02 0.07 0.15 0.73 
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2H-Pyran, 2-7-hept 0.07 0.10 0.65 0.88 0.45 0.04 0.77 0.70 0.27 0.61 

1-Heptatriacotanol 0.22 0.47 0.31 0.97 0.22 0.55 0.12 0.26 0.76 0.49 

 

Pval correlation table 

  

Corym
bolon
e 

2-
Methyl
-4-
2,6,6-t 

cis-p-
mentha
-17,8- 

cis-
beta-
Terpin
eol 

Cycloh
exanol, 
1-me 

3-
buten-
2-one, 
4-5 

Camph
ene 

Cam
phor 

Pine
ne 

Ocimen
e 

cis-
beta-
Farnes
ene 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cedren
-13-ol, 
8- 0.55 0.67 0.20 0.00 0.01 0.00 0.01 0.00 0.00 0.01 

Cymen
e 0.00 0.00 0.06 0.00 0.04 0.00 0.00 0.00 0.00 0.00 

Terpine
n 0.01 0.02 0.49 0.04 0.38 0.06 0.13 0.01 0.00 0.00 

Butanoi
c acid, 
2-m 0.00 0.00 0.59 0.30 0.35 0.05 0.02 0.00 0.76 0.38 

Neoint
ermede
ol 0.00 0.00 0.03 0.27 0.21 0.41 0.79 0.74 0.00 0.01 

Isoaro
maden
drene e 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Farnes
ene 
epoxid
e, 0.00 0.00 0.47 0.00 0.00 0.02 0.00 0.00 0.00 0.00 

Elemen 0.00 0.00 1.00 0.00 0.00 0.04 0.01 0.00 0.00 0.00 

Epiglob
ulol 0.00 0.00 0.97 0.03 0.03 0.17 0.00 0.00 0.00 0.00 

Corym
bolone NA 0.00 0.62 0.03 0.02 0.26 0.01 0.00 0.00 0.00 

2-
Methyl
-4-
2,6,6-t 0.00 NA 0.77 0.00 0.00 0.12 0.00 0.00 0.00 0.00 

cis-p-
mentha
-17,8- 0.62 0.77 NA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

cis-
beta- 0.03 0.00 0.00 NA 0.00 0.00 0.00 0.00 0.00 0.00 
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Terpine
ol 

Cycloh
exanol, 
1-me 0.02 0.00 0.00 0.00 NA 0.00 0.00 0.00 0.00 0.00 

3-
buten-
2-one, 
4-5 0.26 0.12 0.00 0.00 0.00 NA 0.00 0.00 0.00 0.00 

Camph
ene 0.01 0.00 0.00 0.00 0.00 0.00 NA 0.00 0.00 0.00 

Camph
or 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NA 0.00 0.00 

Pinene 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NA 0.00 

Ocimen
e 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NA 

Terpine
ol 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Isoaro
maden
drene e 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Isoaro
maden
drene e 0.00 0.00 0.02 0.29 0.27 0.00 0.01 0.04 0.41 0.71 

Cholest
an-3-ol, 
2- 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.27 

Cubeno
l 0.49 0.89 0.09 0.26 0.16 0.00 0.00 0.01 0.56 0.89 

Aroma
dendre
ne oxid 0.02 0.07 0.01 0.00 0.00 0.00 0.09 0.12 0.22 0.35 

Dihydr
oartes
misini 0.21 0.13 0.00 0.48 0.94 0.00 0.01 0.00 0.48 0.24 

Artemi
sinin 0.73 0.68 0.00 0.00 0.03 0.00 0.00 0.00 0.01 0.02 

Phenol, 
2-
methox
y- 0.07 0.17 0.00 0.32 0.21 0.00 0.00 0.00 0.47 0.58 

beta-
Guaien
e 0.26 0.61 0.00 0.01 0.01 0.00 0.00 0.00 0.36 0.55 

2H-
Pyran, 0.08 0.12 0.00 0.00 0.02 0.00 0.04 0.00 0.39 0.73 
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2-7-
hept 

Chiapin 
B 0.29 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 

beta-
copaen
e 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.18 

Deoxya
rtemisi
nin 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.29 0.64 

Olean-
12-en-
3-one 0.65 0.49 0.75 0.66 0.54 0.61 0.96 0.12 0.60 0.51 

Caryop
hyllene 0.48 0.30 0.13 0.09 0.28 0.15 0.16 0.17 0.01 0.03 

Cycloh
exane, 
1-eth 0.17 0.24 0.42 0.83 0.69 0.81 0.40 0.17 0.97 0.70 

Germa
crene D 0.07 0.17 0.00 0.31 0.40 0.22 0.60 0.46 0.79 0.86 

ylange
ne 0.02 0.05 0.00 0.36 0.48 0.20 0.51 0.49 0.96 0.86 

copaen
e 0.03 0.08 0.00 0.30 0.41 0.18 0.44 0.41 0.81 0.77 

compo
und 1 0.00 0.00 0.11 0.18 0.25 0.02 0.01 0.39 0.01 0.01 

Eucalyp
tol 0.00 0.00 0.23 0.02 0.05 0.06 0.05 0.80 0.00 0.00 

Artemi
sinic 
acid 0.00 0.00 0.03 0.64 0.75 0.27 0.59 0.43 0.03 0.02 

cis-Z-
alpha-
Bisabo 0.41 0.25 0.83 0.71 0.75 0.53 0.19 0.43 0.05 0.12 

Isoaro
maden
drene e 0.32 0.12 0.21 0.33 0.22 0.88 0.42 0.30 0.20 0.49 

Heptac
osane 0.17 0.25 0.05 0.00 0.01 0.13 0.86 0.66 0.06 0.34 

Unkow
n 
alkane 0.60 0.78 0.16 0.00 0.00 0.03 0.44 0.98 0.01 0.05 

endo-
Borneo
l 0.19 0.44 0.00 0.00 0.00 0.03 0.06 0.51 0.07 0.16 
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Caryop
hylene 
oxide 0.23 0.13 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 

Isoaro
maden
drene e 0.72 0.48 0.09 0.02 0.03 0.18 0.56 0.07 0.07 0.63 

Aroma
dendre
ne oxid 0.18 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 

2H-
Pyran, 
2-7-
hept 0.75 0.75 0.00 0.01 0.02 0.00 0.01 0.00 0.17 0.35 

1-
Heptatr
iacotan
ol 0.09 0.11 0.11 0.18 0.28 0.02 0.07 0.15 0.57 0.32 

           

  
Terpin
eol 

Isoaro
maden
drene e 

Isoaro
maden
drene e 

Choles
tan-3-
ol, 2- 

Cubeno
l 

Arom
adend
rene 
oxid 

Dihydr
oartes
misini 

Arte
misi
nin 

Phen
ol, 2-
meth
oxy- 

beta-
Guaien
e 

cis-
beta-
Farnes
ene 0.00 0.00 0.42 0.05 0.30 0.70 0.08 0.01 0.16 0.06 

Cedren
-13-ol, 
8- 0.00 0.65 0.19 0.76 0.38 0.24 0.15 0.00 0.25 0.33 

Cymen
e 0.12 0.02 0.18 0.13 0.21 0.74 0.07 0.00 0.06 0.75 

Terpine
n 0.82 0.70 0.01 0.00 0.00 0.13 0.06 0.00 0.01 0.09 

Butanoi
c acid, 
2-m 0.78 0.10 0.84 0.09 0.10 0.05 0.00 0.00 0.00 0.00 

Neoint
ermede
ol 0.29 0.10 0.00 0.00 0.01 0.01 0.00 0.03 0.00 0.00 

Isoaro
maden
drene e 0.00 0.00 0.39 0.47 0.13 0.35 0.32 0.49 0.30 0.23 

Farnes
ene 
epoxid
e, 0.00 0.00 0.38 0.18 0.58 0.30 0.59 0.57 0.81 0.59 

Elemen 0.03 0.01 0.00 0.00 0.13 0.07 0.13 0.18 0.09 0.07 
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Epiglob
ulol 0.15 0.02 0.00 0.00 0.67 0.00 0.87 0.29 0.25 0.64 

Corym
bolone 0.05 0.00 0.00 0.00 0.49 0.02 0.21 0.73 0.07 0.26 

2-
Methyl
-4-
2,6,6-t 0.00 0.00 0.00 0.01 0.89 0.07 0.13 0.68 0.17 0.61 

cis-p-
mentha
-17,8- 0.00 0.00 0.02 0.00 0.09 0.01 0.00 0.00 0.00 0.00 

cis-
beta-
Terpine
ol 0.00 0.00 0.29 0.00 0.26 0.00 0.48 0.00 0.32 0.01 

Cycloh
exanol, 
1-me 0.00 0.00 0.27 0.00 0.16 0.00 0.94 0.03 0.21 0.01 

3-
buten-
2-one, 
4-5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Camph
ene 0.00 0.00 0.01 0.00 0.00 0.09 0.01 0.00 0.00 0.00 

Camph
or 0.00 0.00 0.04 0.00 0.01 0.12 0.00 0.00 0.00 0.00 

Pinene 0.00 0.00 0.41 0.15 0.56 0.22 0.48 0.01 0.47 0.36 

Ocimen
e 0.00 0.00 0.71 0.27 0.89 0.35 0.24 0.02 0.58 0.55 

Terpine
ol NA 0.00 0.00 0.00 0.00 0.00 0.17 0.69 0.05 0.00 

Isoaro
maden
drene e 0.00 NA 0.01 0.00 0.00 0.00 0.81 0.75 0.09 0.00 

Isoaro
maden
drene e 0.00 0.01 NA 0.00 0.00 0.00 0.12 0.34 0.00 0.00 

Cholest
an-3-ol, 
2- 0.00 0.00 0.00 NA 0.00 0.00 0.44 0.25 0.00 0.00 

Cubeno
l 0.00 0.00 0.00 0.00 NA 0.00 0.57 0.57 0.00 0.00 

Aroma
dendre
ne oxid 0.00 0.00 0.00 0.00 0.00 NA 0.17 0.33 0.01 0.00 
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Dihydr
oartes
misini 0.17 0.81 0.12 0.44 0.57 0.17 NA 0.00 0.02 0.00 

Artemi
sinin 0.69 0.75 0.34 0.25 0.57 0.33 0.00 NA 0.00 0.00 

Phenol, 
2-
methox
y- 0.05 0.09 0.00 0.00 0.00 0.01 0.02 0.00 NA 0.00 

beta-
Guaien
e 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NA 

2H-
Pyran, 
2-7-
hept 0.46 0.89 0.00 0.00 0.28 0.89 0.00 0.00 0.00 0.00 

Chiapin 
B 0.03 0.05 0.01 0.00 0.16 0.07 0.00 0.00 0.00 0.00 

beta-
copaen
e 0.02 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Deoxya
rtemisi
nin 0.26 0.48 0.00 0.00 0.10 0.04 0.01 0.00 0.00 0.00 

Olean-
12-en-
3-one 0.03 0.00 0.44 0.09 0.12 0.05 0.96 0.00 0.12 0.29 

Caryop
hyllene 0.60 0.29 0.31 0.93 0.40 0.32 0.02 0.07 0.32 0.82 

Cycloh
exane, 
1-eth 0.50 0.17 0.56 0.08 0.32 0.43 0.21 0.10 0.25 0.60 

Germa
crene D 0.60 0.18 0.13 0.00 0.21 0.36 0.02 0.48 0.11 0.01 

ylange
ne 0.53 0.14 0.03 0.00 0.10 0.21 0.01 0.54 0.05 0.01 

copaen
e 0.51 0.16 0.04 0.00 0.13 0.27 0.01 0.45 0.07 0.01 

compo
und 1 0.00 0.00 0.57 0.46 0.21 0.08 0.60 0.13 0.16 0.60 

Eucalyp
tol 0.00 0.00 0.35 0.37 0.40 0.03 0.01 0.00 0.00 0.09 

Artemi
sinic 
acid 0.01 0.00 0.10 0.02 0.65 0.19 0.34 0.02 0.00 0.04 
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cis-Z-
alpha-
Bisabo 0.56 0.20 0.04 0.16 0.00 0.42 0.84 0.56 0.01 0.01 

Isoaro
maden
drene e 0.01 0.16 1.00 0.65 0.01 0.01 0.00 0.17 0.30 0.83 

Heptac
osane 0.04 0.31 0.43 0.07 0.17 0.04 0.20 0.69 0.05 0.14 

Unkow
n 
alkane 0.00 0.05 0.63 0.25 0.22 0.01 0.08 0.31 0.01 0.03 

endo-
Borneo
l 0.00 0.13 0.55 0.01 0.72 0.06 0.28 0.79 0.12 0.46 

Caryop
hylene 
oxide 0.00 0.00 0.46 0.02 0.12 0.03 0.44 0.66 0.24 0.19 

Isoaro
maden
drene e 0.10 0.26 0.81 0.14 0.98 0.19 0.54 0.20 0.43 0.24 

Aroma
dendre
ne oxid 0.00 0.00 0.00 0.00 0.13 0.02 0.02 0.02 0.02 0.01 

2H-
Pyran, 
2-7-
hept 0.20 0.44 0.01 0.02 0.93 0.56 0.00 0.02 0.06 0.05 

1-
Heptatr
iacotan
ol 0.28 0.02 0.08 0.40 0.66 0.92 0.05 0.63 0.60 0.19 

           

  

2H-
Pyran, 
2-7-
hept 

Chiapin 
B 

beta-
copaen
e 

Deoxy
artemi
sinin 

Olean-
12-en-
3-one 

Caryo
phylle
ne 

Cycloh
exane, 
1-eth 

Ger
macr
ene 
D 

ylang
ene 

copaen
e 

cis-
beta-
Farnes
ene 0.15 0.00 0.03 0.13 0.63 0.00 0.02 0.00 0.00 0.00 

Cedren
-13-ol, 
8- 0.03 0.02 0.00 0.01 0.00 0.55 0.06 0.09 0.11 0.14 

Cymen
e 0.51 0.23 0.77 0.75 0.73 0.00 0.49 0.64 0.48 0.63 

Terpine
n 0.74 0.39 1.00 0.81 0.03 0.07 0.42 0.04 0.02 0.03 
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Butanoi
c acid, 
2-m 0.96 0.38 0.94 0.33 0.42 0.87 0.21 0.25 0.20 0.22 

Neoint
ermede
ol 0.00 0.00 0.00 0.00 0.36 0.59 0.33 0.01 0.00 0.00 

Isoaro
maden
drene e 0.73 0.15 0.96 0.48 0.96 0.93 0.03 0.11 0.05 0.06 

Farnes
ene 
epoxid
e, 0.61 0.99 0.45 0.18 0.64 0.49 0.01 0.01 0.00 0.01 

Elemen 0.77 0.52 0.33 0.65 0.06 0.68 0.00 0.00 0.00 0.00 

Epiglob
ulol 0.23 0.81 0.07 0.13 0.79 0.16 0.13 0.16 0.06 0.09 

Corym
bolone 0.08 0.29 0.00 0.01 0.65 0.48 0.17 0.07 0.02 0.03 

2-
Methyl
-4-
2,6,6-t 0.12 0.51 0.01 0.01 0.49 0.30 0.24 0.17 0.05 0.08 

cis-p-
mentha
-17,8- 0.00 0.00 0.00 0.00 0.75 0.13 0.42 0.00 0.00 0.00 

cis-
beta-
Terpine
ol 0.00 0.00 0.00 0.00 0.66 0.09 0.83 0.31 0.36 0.30 

Cycloh
exanol, 
1-me 0.02 0.00 0.00 0.00 0.54 0.28 0.69 0.40 0.48 0.41 

3-
buten-
2-one, 
4-5 0.00 0.00 0.00 0.00 0.61 0.15 0.81 0.22 0.20 0.18 

Camph
ene 0.04 0.00 0.00 0.01 0.96 0.16 0.40 0.60 0.51 0.44 

Camph
or 0.00 0.00 0.00 0.00 0.12 0.17 0.17 0.46 0.49 0.41 

Pinene 0.39 0.00 0.06 0.29 0.60 0.01 0.97 0.79 0.96 0.81 

Ocimen
e 0.73 0.02 0.18 0.64 0.51 0.03 0.70 0.86 0.86 0.77 

Terpine
ol 0.46 0.03 0.02 0.26 0.03 0.60 0.50 0.60 0.53 0.51 



109 
 

Isoaro
maden
drene e 0.89 0.05 0.10 0.48 0.00 0.29 0.17 0.18 0.14 0.16 

Isoaro
maden
drene e 0.00 0.01 0.00 0.00 0.44 0.31 0.56 0.13 0.03 0.04 

Cholest
an-3-ol, 
2- 0.00 0.00 0.00 0.00 0.09 0.93 0.08 0.00 0.00 0.00 

Cubeno
l 0.28 0.16 0.00 0.10 0.12 0.40 0.32 0.21 0.10 0.13 

Aroma
dendre
ne oxid 0.89 0.07 0.00 0.04 0.05 0.32 0.43 0.36 0.21 0.27 

Dihydr
oartes
misini 0.00 0.00 0.00 0.01 0.96 0.02 0.21 0.02 0.01 0.01 

Artemi
sinin 0.00 0.00 0.00 0.00 0.00 0.07 0.10 0.48 0.54 0.45 

Phenol, 
2-
methox
y- 0.00 0.00 0.00 0.00 0.12 0.32 0.25 0.11 0.05 0.07 

beta-
Guaien
e 0.00 0.00 0.00 0.00 0.29 0.82 0.60 0.01 0.01 0.01 

2H-
Pyran, 
2-7-
hept NA 0.00 0.00 0.00 0.02 0.55 0.08 0.40 0.21 0.23 

Chiapin 
B 0.00 NA 0.00 0.00 0.01 0.73 0.06 0.26 0.23 0.22 

beta-
copaen
e 0.00 0.00 NA 0.00 0.00 0.52 0.05 0.33 0.18 0.20 

Deoxya
rtemisi
nin 0.00 0.00 0.00 NA 0.00 0.83 0.03 0.37 0.30 0.32 

Olean-
12-en-
3-one 0.02 0.01 0.00 0.00 NA 0.03 0.00 0.00 0.00 0.00 

Caryop
hyllene 0.55 0.73 0.52 0.83 0.03 NA 0.00 0.00 0.00 0.00 

Cycloh
exane, 
1-eth 0.08 0.06 0.05 0.03 0.00 0.00 NA 0.00 0.00 0.00 
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Germa
crene D 0.40 0.26 0.33 0.37 0.00 0.00 0.00 NA 0.00 0.00 

ylange
ne 0.21 0.23 0.18 0.30 0.00 0.00 0.00 0.00 NA 0.00 

Copaen
e 0.23 0.22 0.20 0.32 0.00 0.00 0.00 0.00 0.00 NA 

compo
und 1 0.00 0.01 0.00 0.00 0.01 0.08 0.11 0.74 0.72 0.82 

Eucalyp
tol 0.00 0.00 0.00 0.00 0.00 0.11 0.06 0.69 0.53 0.60 

Artemi
sinic 
acid 0.00 0.00 0.00 0.00 0.00 0.08 0.02 0.68 0.53 0.57 

cis-Z-
alpha-
Bisabo 0.25 0.58 0.59 0.68 0.30 0.87 0.85 0.23 0.19 0.19 

Isoaro
maden
drene e 0.00 0.29 0.83 0.90 0.07 0.27 0.04 0.01 0.00 0.00 

Heptac
osane 0.00 0.24 0.25 0.11 0.19 0.21 0.23 0.14 0.11 0.12 

Unkow
n 
alkane 0.24 0.88 0.87 0.84 0.23 0.32 0.32 0.73 0.66 0.65 

endo-
Borneo
l 0.05 0.05 0.05 0.01 0.23 0.71 0.90 0.27 0.21 0.21 

Caryop
hylene 
oxide 0.25 0.05 0.12 0.06 0.00 0.28 0.70 0.48 0.51 0.49 

Isoaro
maden
drene e 0.26 0.21 0.19 0.20 0.34 0.33 0.65 0.46 0.50 0.48 

Aroma
dendre
ne oxid 0.00 0.00 0.00 0.01 0.50 0.67 0.99 0.27 0.14 0.14 

2H-
Pyran, 
2-7-
hept 0.00 0.01 0.01 0.09 0.28 0.36 0.28 0.04 0.01 0.01 

1-
Heptatr
iacotan
ol 0.00 0.18 0.64 0.98 0.13 0.68 0.29 0.11 0.04 0.05 
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comp
ound 
1 

Eucalyp
tol 

Artemi
sinic 
acid 

cis-Z-
alpha-
Bisabo 

Isoaro
maden
drene e 

Hepta
cosan
e 

Unkow
n 
alkane 

end
o-
Born
eol 

Cary
ophyl
ene 
oxide 

Isoaro
maden
drene e 

cis-
beta-
Farnes
ene 0.00 0.01 0.05 0.52 0.68 0.11 0.00 0.06 0.01 0.09 

Cedren
-13-ol, 
8- 0.01 0.33 0.30 0.05 0.03 0.06 0.00 0.46 0.84 0.12 

Cymen
e 0.00 0.00 0.00 0.00 0.49 0.47 0.36 0.14 0.51 0.07 

Terpine
n 0.03 0.05 0.01 0.00 0.35 0.97 0.54 0.02 0.35 0.16 

Butanoi
c acid, 
2-m 0.03 0.81 0.05 0.43 0.94 0.00 0.00 0.00 0.00 0.86 

Neoint
ermede
ol 0.00 0.00 0.00 0.47 0.07 0.67 0.47 0.08 0.62 0.43 

Isoaro
maden
drene e 0.01 0.01 0.07 0.08 0.05 0.27 0.90 0.90 0.03 0.43 

Farnes
ene 
epoxid
e, 0.00 0.00 0.03 0.45 0.19 0.29 0.83 0.82 0.06 0.46 

Elemen 0.02 0.00 0.00 0.42 0.01 0.87 0.28 0.58 0.15 0.28 

Epiglob
ulol 0.06 0.01 0.02 0.46 0.23 0.04 0.13 0.67 0.08 0.97 

Corym
bolone 0.00 0.00 0.00 0.41 0.32 0.17 0.60 0.19 0.23 0.72 

2-
Methyl
-4-
2,6,6-t 0.00 0.00 0.00 0.25 0.12 0.25 0.78 0.44 0.13 0.48 

cis-p-
mentha
-17,8- 0.11 0.23 0.03 0.83 0.21 0.05 0.16 0.00 0.00 0.09 

cis-
beta-
Terpine
ol 0.18 0.02 0.64 0.71 0.33 0.00 0.00 0.00 0.00 0.02 

Cycloh
exanol, 
1-me 0.25 0.05 0.75 0.75 0.22 0.01 0.00 0.00 0.00 0.03 
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3-
buten-
2-one, 
4-5 0.02 0.06 0.27 0.53 0.88 0.13 0.03 0.03 0.00 0.18 

Camph
ene 0.01 0.05 0.59 0.19 0.42 0.86 0.44 0.06 0.00 0.56 

Camph
or 0.39 0.80 0.43 0.43 0.30 0.66 0.98 0.51 0.09 0.07 

Pinene 0.01 0.00 0.03 0.05 0.20 0.06 0.01 0.07 0.00 0.07 

Ocimen
e 0.01 0.00 0.02 0.12 0.49 0.34 0.05 0.16 0.00 0.63 

Terpine
ol 0.00 0.00 0.01 0.56 0.01 0.04 0.00 0.00 0.00 0.10 

Isoaro
maden
drene e 0.00 0.00 0.00 0.20 0.16 0.31 0.05 0.13 0.00 0.26 

Isoaro
maden
drene e 0.57 0.35 0.10 0.04 1.00 0.43 0.63 0.55 0.46 0.81 

Cholest
an-3-ol, 
2- 0.46 0.37 0.02 0.16 0.65 0.07 0.25 0.01 0.02 0.14 

Cubeno
l 0.21 0.40 0.65 0.00 0.01 0.17 0.22 0.72 0.12 0.98 

Aroma
dendre
ne oxid 0.08 0.03 0.19 0.42 0.01 0.04 0.01 0.06 0.03 0.19 

Dihydr
oartes
misini 0.60 0.01 0.34 0.84 0.00 0.20 0.08 0.28 0.44 0.54 

Artemi
sinin 0.13 0.00 0.02 0.56 0.17 0.69 0.31 0.79 0.66 0.20 

Phenol, 
2-
methox
y- 0.16 0.00 0.00 0.01 0.30 0.05 0.01 0.12 0.24 0.43 

beta-
Guaien
e 0.60 0.09 0.04 0.01 0.83 0.14 0.03 0.46 0.19 0.24 

2H-
Pyran, 
2-7-
hept 0.00 0.00 0.00 0.25 0.00 0.00 0.24 0.05 0.25 0.26 

Chiapin 
B 0.01 0.00 0.00 0.58 0.29 0.24 0.88 0.05 0.05 0.21 
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beta-
copaen
e 0.00 0.00 0.00 0.59 0.83 0.25 0.87 0.05 0.12 0.19 

Deoxya
rtemisi
nin 0.00 0.00 0.00 0.68 0.90 0.11 0.84 0.01 0.06 0.20 

Olean-
12-en-
3-one 0.01 0.00 0.00 0.30 0.07 0.19 0.23 0.23 0.00 0.34 

Caryop
hyllene 0.08 0.11 0.08 0.87 0.27 0.21 0.32 0.71 0.28 0.33 

Cycloh
exane, 
1-eth 0.11 0.06 0.02 0.85 0.04 0.23 0.32 0.90 0.70 0.65 

Germa
crene D 0.74 0.69 0.68 0.23 0.01 0.14 0.73 0.27 0.48 0.46 

ylange
ne 0.72 0.53 0.53 0.19 0.00 0.11 0.66 0.21 0.51 0.50 

copaen
e 0.82 0.60 0.57 0.19 0.00 0.12 0.65 0.21 0.49 0.48 

compo
und 1 NA 0.00 0.00 0.54 0.12 0.59 0.00 0.26 0.33 0.20 

Eucalyp
tol 0.00 NA 0.00 0.16 0.01 0.14 0.00 0.48 0.00 0.26 

Artemi
sinic 
acid 0.00 0.00 NA 0.07 0.25 0.86 0.01 0.19 0.26 0.47 

cis-Z-
alpha-
Bisabo 0.54 0.16 0.07 NA 0.28 0.16 0.05 0.30 0.23 0.06 

Isoaro
maden
drene e 0.12 0.01 0.25 0.28 NA 0.01 0.58 0.21 0.43 0.11 

Heptac
osane 0.59 0.14 0.86 0.16 0.01 NA 0.00 0.00 0.00 0.26 

Unkow
n 
alkane 0.00 0.00 0.01 0.05 0.58 0.00 NA 0.00 0.00 0.19 

endo-
Borneo
l 0.26 0.48 0.19 0.30 0.21 0.00 0.00 NA 0.00 0.91 

Caryop
hylene 
oxide 0.33 0.00 0.26 0.23 0.43 0.00 0.00 0.00 NA 0.90 

Isoaro
maden
drene e 0.20 0.26 0.47 0.06 0.11 0.26 0.19 0.91 0.90 NA 
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Aroma
dendre
ne oxid 0.02 0.32 0.56 0.44 0.00 0.00 0.00 0.19 0.02 0.07 

2H-
Pyran, 
2-7-
hept 0.83 0.34 0.39 0.36 0.00 0.00 0.02 0.23 0.53 0.82 

1-
Heptatr
iacotan
ol 0.17 0.61 0.63 0.08 0.00 0.00 0.07 0.35 0.11 0.92 

           

  

Aroma
dendr
ene 
oxid 

2H-
Pyran, 
2-7-
hept 

1-
Heptatr
iacotan
ol        

cis-
beta-
Farnes
ene 0.01 0.07 0.22        

Cedren
-13-ol, 
8- 0.03 0.10 0.47        

Cymen
e 0.02 0.65 0.31        

Terpine
n 0.26 0.88 0.97        

Butanoi
c acid, 
2-m 0.18 0.45 0.22        

Neoint
ermede
ol 0.99 0.04 0.55        

Isoaro
maden
drene e 0.02 0.77 0.12        

Farnes
ene 
epoxid
e, 0.07 0.70 0.26        

Elemen 0.15 0.27 0.76        

Epiglob
ulol 0.73 0.61 0.49        

Corym
bolone 0.18 0.75 0.09        

2-
Methyl 0.14 0.75 0.11        
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-4-
2,6,6-t 

cis-p-
mentha
-17,8- 0.00 0.00 0.11        

cis-
beta-
Terpine
ol 0.00 0.01 0.18        

Cycloh
exanol, 
1-me 0.00 0.02 0.28        

3-
buten-
2-one, 
4-5 0.00 0.00 0.02        

Camph
ene 0.00 0.01 0.07        

Camph
or 0.00 0.00 0.15        

Pinene 0.01 0.17 0.57        

Ocimen
e 0.04 0.35 0.32        

Terpine
ol 0.00 0.20 0.28        

Isoaro
maden
drene e 0.00 0.44 0.02        

Isoaro
maden
drene e 0.00 0.01 0.08        

Cholest
an-3-ol, 
2- 0.00 0.02 0.40        

Cubeno
l 0.13 0.93 0.66        

Aroma
dendre
ne oxid 0.02 0.56 0.92        

Dihydr
oartes
misini 0.02 0.00 0.05        

Artemi
sinin 0.02 0.02 0.63        

Phenol, 
2- 0.02 0.06 0.60        
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methox
y- 

beta-
Guaien
e 0.01 0.05 0.19        

2H-
Pyran, 
2-7-
hept 0.00 0.00 0.00        

Chiapin 
B 0.00 0.01 0.18        

beta-
copaen
e 0.00 0.01 0.64        

Deoxya
rtemisi
nin 0.01 0.09 0.98        

Olean-
12-en-
3-one 0.50 0.28 0.13        

Caryop
hyllene 0.67 0.36 0.68        

Cycloh
exane, 
1-eth 0.99 0.28 0.29        

Germa
crene D 0.27 0.04 0.11        

ylange
ne 0.14 0.01 0.04        

copaen
e 0.14 0.01 0.05        

compo
und 1 0.02 0.83 0.17        

Eucalyp
tol 0.32 0.34 0.61        

Artemi
sinic 
acid 0.56 0.39 0.63        

cis-Z-
alpha-
Bisabo 0.44 0.36 0.08        

Isoaro
maden
drene e 0.00 0.00 0.00        

Heptac
osane 0.00 0.00 0.00        



117 
 

Unkow
n 
alkane 0.00 0.02 0.07        

endo-
Borneo
l 0.19 0.23 0.35        

Caryop
hylene 
oxide 0.02 0.53 0.11        

Isoaro
maden
drene e 0.07 0.82 0.92        

Aroma
dendre
ne oxid NA 0.00 0.00        

2H-
Pyran, 
2-7-
hept 0.00 NA 0.00        

1-
Heptatr
iacotan
ol 0.00 0.00 NA        

 

 

 

 

 

 

Metabolite yield  

Genotype  ART SD SE AA SD SE DHAA SD SE 

A 0.011408 0.001871 0.000764 0.000232 0.000277 0.000113 0.015210 0.001708 0.000697 

B 0.008801 0.000550 0.000246 0.000244 0.000241 0.000108 0.014743 0.001116 0.000499 

C 0.014655 0.001793 0.000732 0.000784 0.000259 0.000106 0.014268 0.000408 0.000167 

D 0.008683 0.000786 0.000321 0.000804 0.000122 4.97E-05 0.020835 0.002108 0.000861 

E 0.008449 0.001922 0.000784 0.000796 0.000438 0.000179 0.027917 0.005543 0.002263 

F 0.004125 0.000595 0.000266 0.000306 0.000311 0.000139 0.011540 0.000528 0.000236 

G 0.019329 0.001774 0.000724 0.001413 0.000274 0.000112 0.035164 0.008954 0.003655 

H 0.004274 0.000337 0.000138 0.005298 0.001204 0.000491 0.007711 0.001886 0.000770 

I 0.016653 0.001138 0.000465 0.000228 0.000190 7.75E-05 0.026225 0.003721 0.001519 

J 0.024241 0.002094 0.000855 0.000829 0.000488 0.000199 0.070899 0.020968 0.008560 
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K 0.011603 0.001346 0.000550 0.000272 0.000147 6.00E-05 0.016682 0.001176 0.000480 

L 0.011526 0.001012 0.000413 0.000270 0.000109 4.46E-05 0.010091 0.000650 0.000265 

 

Genotype Camphor SD SE 
endo 
borneol SD SE 

A 1.478932 0.125588 0.051271 1.608464 0.268925 0.109788 

B 0.718140 0.032026 0.014323 0.009653 0.000928 0.000415 

C 2.109206 0.119811 0.048913 0.064204 0.007464 0.003047 

D 0.000107 0.000261 0.000107 0 0.000000 0.000000 

E 0.000807 0.001189 0.000485 8.13E-05 0.000199 0.000081 

F 0.000753 0.001226 0.000548 0 0.000000 0.000000 

G 1.018489 0.094753 0.038683 0.006622 0.000815 0.000333 

H 1.087971 0.121629 0.049655 0.024581 0.003990 0.001629 

I 1.834355 0.189417 0.077329 0.028382 0.004165 0.001700 

J 3.048455 0.350242 0.142986 0.033854 0.005285 0.002158 

K 2.887858 0.239312 0.097699 0.02048 0.003225 0.001317 

L 1.362339 0.079286 0.032368 0.064931 0.028079 0.011463 
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APPENDIX 3 

mRNA Abundance 

 

  ADH1 ADS ALDH1 CPR 

Geno
type 

Mea
n 

Std 
Dev 

Std 
Err 

Mea
n 

Std 
Dev 

Std 
Err 

Mea
n 

Std 
Dev 

Std 
Err 

Mea
n 

Std 
Dev 

Std 
Err 

A 
1.270

193 
0.874

005 
0.504

607 
4.07

1988 
5.45

2242 
3.14

7853 
1.18

4322 
0.77

8017 
0.44

9188 
2.13

5441 
1.00

1263 
0.57

8080 

B 
1.072

725 
0.290

407 
0.167

666 
2.39

4294 
2.58

9325 
1.49

4948 
1.11

1210 
0.75

0731 
0.43

3435 
1.79

2337 
0.79

6184 
0.45

9677 

C 
0.119

913 
0.041

127 
0.023

745 
1.37

9114 
0.53

0995 
0.30

6570 
0.14

5262 
0.02

3645 
0.01

3651 
0.40

6942 
0.09

8359 
0.05

6788 

D 
0.392

802 
0.113

033 
0.079

926 
2.88

4544 
1.03

6341 
0.73

2804 
0.34

4682 
0.06

9879 
0.04

9412 
0.69

4399 
0.00

3065 
0.00

2167 

E 
0.870

636 
0.257

766 
0.148

821 
2.22

3465 
0.94

5123 
0.54

5667 
0.65

1601 
0.18

6515 
0.10

7684 
1.27

9041 
0.34

6190 
0.19

9873 
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F 
0.664

496 
1.026

651 
0.592

737 
1.77

0003 
0.55

4850 
0.32

0343 
0.99

6560 
0.86

8514 
0.50

1437 
1.39

7736 
0.42

6498 
0.24

6238 

G 
0.631

783 
0.131

630 
0.075

996 
3.35

7824 
0.72

6694 
0.41

9557 
0.58

2813 
0.14

7484 
0.08

5150 
1.46

0386 
0.44

6328 
0.25

7687 

H 
0.691

213 
0.243

268 
0.140

451 
1.73

7309 
1.62

4557 
0.93

7939 
0.86

5466 
0.54

3720 
0.31

3917 
0.63

6860 
0.50

2680 
0.29

0223 

I 
0.441

027 
0.165

173 
0.095

363 
1.68

8239 
0.57

0707 
0.32

9498 
0.36

0669 
0.15

4876 
0.08

9418 
0.84

5266 
0.50

8505 
0.29

3585 

J 
0.473

180 
0.268

743 
0.155

159 
2.28

9325 
2.31

3696 
1.33

5813 
0.24

1337 
0.12

1755 
0.07

0296 
0.61

4690 
0.37

9554 
0.21

9135 

K 
1.763

454 
1.252

188 
0.722

951 
7.73

7536 
3.43

7569 
1.98

4681 
1.47

6306 
0.30

2513 
0.17

4656 
2.02

0741 
0.47

2857 
0.27

3004 

L 
0.582

225 
0.184

705 
0.106

640 
2.52

5460 
1.61

1174 
0.93

0212 
0.41

4653 
0.13

4119 
0.07

7433 
1.27

7369 
0.45

0779 
0.26

0257 

 

  CYP7AV1 DBR2 DXR1 

Genoty
pe Mean Std Dev Std Err Mean Std Dev Std Err Mean Std Dev Std Err 

A 
2.1031

83 
1.4548

93 
0.8399

83 
2.7974

36 
1.1611

64 
0.6703

98 
0.2455

50 
0.2064

74 
0.1192

08 

B 
1.4193

19 
0.7516

39 
0.4339

59 
2.4090

80 
1.1141

17 
0.6432

36 
0.1447

78 
0.1261

08 
0.0728

08 

C 
0.5675

62 
0.1412

06 
0.0815

26 
0.2779

20 
0.0371

55 
0.0214

52 
0.0663

32 
0.0114

11 
0.0065

88 

D 
1.3631

77 
0.3317

29 
0.2345

68 
0.8053

06 
0.1954

39 
0.1381

96 
0.1414

66 
0.0068

98 
0.0048

78 

E 
1.2162

60 
0.3847

77 
0.2221

51 
1.5094

71 
0.5913

27 
0.3414

03 
0.1547

43 
0.1072

30 
0.0619

09 

F 
0.8635

72 
0.1973

83 
0.1139

59 
0.8040

85 
0.5581

55 
0.3222

51 
0.1699

22 
0.0125

99 
0.0072

74 

G 
1.2468

98 
0.2220

93 
0.1282

25 
1.2833

35 
0.4983

02 
0.2876

95 
0.1837

24 
0.0109

46 
0.0063

19 

H 
0.7096

01 
0.2679

70 
0.1547

12 
0.1010

44 
0.0358

63 
0.0207

05 
0.1610

73 
0.0328

13 
0.0189

45 

I 
1.4406

69 
0.9313

05 
0.5376

89 
0.8604

84 
0.5814

44 
0.3356

97 
0.1392

45 
0.0452

27 
0.0261

12 

J 
1.0801

31 
0.6964

85 
0.4021

16 
0.6830

17 
0.2276

52 
0.1314

35 
0.0864

63 
0.0687

86 
0.0397

14 

K 
1.3797

94 
0.2641

37 
0.1525

00 
2.9759

90 
0.9376

28 
0.5413

40 
0.2324

94 
0.1081

90 
0.0624

64 

L 
1.4233

49 
0.2752

98 
0.1589

44 
1.4704

69 
0.3323

78 
0.1918

98 
0.1331

17 
0.0286

97 
0.0165

68 

          

  DXS1 ERF1 FPS 

Genoty
pe Mean Std Dev Std Err Mean Std Dev Std Err Mean Std Dev Std Err 
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A 
0.8464

56 
1.0797

16 
0.6233

74 
0.4107

64 
0.7050

37 
0.4070

53 
0.6050

01 
0.4766

48 
0.2751

93 

B 
0.5935

37 
0.4128

68 
0.2383

69 
0.2996

24 
0.4957

96 
0.2862

48 
0.6159

31 
0.4694

93 
0.2710

62 

C 
0.2972

09 
0.1101

88 
0.0636

17 
0.0017

43 
0.0016

45 
0.0009

49 
0.4804

68 
0.0274

07 
0.0158

23 

D 
0.2112

82 
0.0061

87 
0.0043

75 
0.0119

69 
0.0152

12 
0.0107

57 
0.7297

50 
0.0673

67 
0.0476

36 

E 
0.3708

08 
0.1289

91 
0.0744

73 
0.1613

85 
0.2680

43 
0.1547

55 
1.1576

60 
0.3946

46 
0.2278

49 

F 
0.8066

51 
0.2584

69 
0.1492

27 
0.0585

66 
0.0708

69 
0.0409

16 
1.2904

15 
0.3746

02 
0.2162

76 

G 
0.6329

42 
0.1875

67 
0.1082

92 
0.0077

66 
0.0018

39 
0.0010

61 
1.0359

00 
0.7197

69 
0.4155

59 

H 
0.4377

15 
0.1216

41 
0.0702

30 
0.0475

43 
0.0599

07 
0.0345

88 
0.5215

93 
0.1055

73 
0.0609

53 

I 
0.3803

95 
0.1679

82 
0.0969

84 
0.0045

02 
0.0044

78 
0.0025

85 
0.9474

88 
0.5473

21 
0.3159

96 

J 
0.1596

73 
0.1722

34 
0.0994

39 
0.0023

24 
0.0013

99 
0.0008

08 
0.6154

22 
0.5464

62 
0.3155

00 

K 
0.9647

35 
0.4926

95 
0.2844

58 
0.0004

36 
0.0003

33 
0.0001

92 
2.4399

18 
1.3917

91 
0.8035

51 

L 
0.2629

00 
0.1038

15 
0.0599

37 
0.0542

75 
0.0590

92 
0.0341

17 
1.4272

61 
0.1984

28 
0.1145

63 

          

  HMGR MYC2 ORA 

Genoty
pe Mean Std Dev Std Err Mean Std Dev Std Err Mean Std Dev Std Err 

A 
0.4914

07 
0.4188

44 
0.2418

20 
0.5518

09 
0.6319

55 
0.3648

59 
0.4728

50 
0.6637

92 
0.3832

40 

B 
0.3366

56 
0.4717

46 
0.3335

75 
0.3284

95 
0.4243

59 
0.2450

04 
0.4561

95 
0.6880

99 
0.3972

74 

C 
0.0896

02 
0.0266

21 
0.0153

69 
0.0157

13 
0.0046

29 
0.0026

73 
0.0165

61 
0.0044

24 
0.0025

54 

D 
0.9020

78 
0.0636

00 
0.0449

72 
0.0121

10 
0.0041

34 
0.0029

23 
0.1919

57 
0.0355

54 
0.0251

41 

E 
2.4054

40 
3.4195

37 
1.9742

71 
0.1066

02 
0.0099

67 
0.0057

54 
0.4493

32 
0.5138

79 
0.2966

88 

F 
1.0226

60 
0.8539

52 
0.4930

30 
0.1043

13 
0.0892

45 
0.0515

25 
0.1479

35 
0.1211

22 
0.0699

30 

G 
2.7774

41 
2.2803

33 
1.3165

51 
0.0942

59 
0.0306

52 
0.0176

97 
0.0638

92 
0.0189

55 
0.0109

44 

H 
0.2324

69 
0.0448

44 
0.0258

91 
0.0208

30 
0.0037

51 
0.0021

66 
0.0325

63 
0.0121

74 
0.0070

29 

I 
1.1813

44 
0.8949

73 
0.5167

13 
0.0257

32 
0.0060

67 
0.0035

03 
0.1978

77 
0.1345

95 
0.0777

09 
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J 
0.5079

27 
0.4586

64 
0.2648

10 
0.0147

17 
0.0036

08 
0.0020

83 
0.0955

04 
0.0959

56 
0.0554

00 

K 
0.3312

09 
0.1107

03 
0.0639

14 
0.0586

38 
0.0352

42 
0.0203

47 
0.0803

29 
0.0564

05 
0.0325

65 

L 
0.8001

12 
0.6575

44 
0.3796

33 
0.1153

30 
0.0120

19 
0.0069

39 
0.1645

19 
0.1195

97 
0.0690

49 

          

  WARKY1 PYL9    

Genoty
pe Mean Std Dev Std Err Mean Std Dev Std Err    

A 
1.5695

54 
2.5618

03 
1.4790

58 
0.1621

86 
0.2593

07 
0.1497

11    

B 
0.4409

38 
0.7447

34 
0.4299

72 
0.1580

93 
0.2202

98 
0.1271

89    

C 
0.0028

99 
0.0016

24 
0.0009

38 
0.0071

17 
0.0048

59 
0.0028

05    

D 
0.0010

83 
0.0006

10 
0.0004

32 
0.0029

98 
0.0001

70 
0.0001

20    

E 
0.0185

11 
0.0203

28 
0.0117

36 
0.0606

11 
0.0407

87 
0.0235

48    

F 
0.0112

75 
0.0145

51 
0.0084

01 
0.0166

01 
0.0155

74 
0.0089

92    

G 
0.0064

41 
0.0044

70 
0.0025

81 
0.0183

13 
0.0142

51 
0.0082

28    

H 
0.0015

47 
0.0010

46 
0.0006

04 
0.0035

18 
0.0033

53 
0.0019

36    

I 
0.0016

06 
0.0006

62 
0.0003

82 
0.0081

70 
0.0055

00 
0.0031

76    

J 
0.0032

21 
0.0041

67 
0.0024

06 
0.0099

31 
0.0053

17 
0.0030

70    

K 
0.0124

61 
0.0184

93 
0.0106

77 
0.0259

69 
0.0142

26 
0.0082

13    

L 
0.0107

89 
0.0048

77 
0.0028

16 
0.0325

62 
0.0037

96 
0.0021

91    
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mRNA abundance graphs 

 

 

Figure 1: Relative mRNA abundance of HMGR gene within the 12 A. annua genotypes of the WVU 

germplasm collection. mRNA abundance was measured and averaged (n=3) with young, unexpanded leaf 

materials collect from plants grown for 45 days.  Error bars indicate standard error and statistical analysis 

indicated none of the genotypes are significantly different (Tukey’s test, α=0.05). 
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Figure 2: Relative mRNA abundance of DXS1 gene within the 12 A. annua genotypes of the WVU 

germplasm collection. mRNA abundance was measured and averaged (n=3) with young, unexpanded leaf 

materials collect from plants grown for 45 days.  Error bars indicate standard error and statistical analysis 

indicated none of the genotypes are significantly different (Tukey’s test, α=0.05). 

 

 

Figure 3: Relative mRNA abundance of DXR1 gene within the 12 A. annua genotypes of the WVU 

germplasm collection. mRNA abundance was measured and averaged (n=3) with young, unexpanded leaf 

materials collect from plants grown for 45 days.  Error bars indicate standard error and statistical analysis 

indicated none of the genotypes are significantly different (Tukey’s test, α=0.05). 
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Figure 4: Relative mRNA abundance of ADS gene within the 12 A. annua genotypes of the WVU germplasm 

collection. mRNA abundance was measured and averaged (n=3) with young, unexpanded leaf materials 

collect from plants grown for 45 days.  Error bars indicate standard error and statistical analysis indicated 

none of the genotypes are significantly different (Tukey’s test, α=0.05).  

 

 

Figure 5: Relative mRNA abundance of CYP7AV1 gene within the 12 A. annua genotypes of the WVU 

germplasm collection. mRNA abundance was measured and averaged (n=3) with young, unexpanded leaf 

materials collect from plants grown for 45 days.  Error bars indicate standard error and statistical analysis 

indicated none of the genotypes are significantly different (Tukey’s test, α=0.05).  
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Figure 6: Relative mRNA abundance of ADH1 gene within the 12 A. annua genotypes of the WVU 

germplasm collection. mRNA abundance was measured and averaged (n=3) with young, unexpanded leaf 

materials collect from plants grown for 45 days.  Error bars indicate standard error and statistical analysis 

indicated none of the genotypes are significantly different (Tukey’s test, α=0.05). 

 

 

Figure 7: Relative mRNA abundance of ALDH1 gene within the 12 A. annua genotypes of the WVU 

germplasm collection. mRNA abundance was measured and averaged (n=3) with young, unexpanded leaf 

materials collect from plants grown for 45 days.  Error bars indicate standard error and statistical analysis 

indicated none of the genotypes are significantly different (Tukey’s test, α=0.05). 
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Figure 8: Relative mRNA abundance of ERF1 gene within the 12 A. annua genotypes of the WVU 

germplasm collection. mRNA abundance was measured and averaged (n=3) with young, unexpanded leaf 

materials collect from plants grown for 45 days.  Error bars indicate standard error and statistical analysis 

indicated none of the genotypes are significantly different (Tukey’s test, α=0.05). 

 

 

Figure 9: Relative mRNA abundance of ORA gene within the 12 A. annua genotypes of the WVU germplasm 

collection. mRNA abundance was measured and averaged (n=3) with young, unexpanded leaf materials 

collect from plants grown for 45 days.  Error bars indicate standard error and statistical analysis indicated 

none of the genotypes are significantly different (Tukey’s test, α=0.05). 
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Figure 10: Relative mRNA abundance of MYC2 gene within the 12 A. annua genotypes of the WVU 

germplasm collection. mRNA abundance was measured and averaged (n=3) with young, unexpanded leaf 

materials collect from plants grown for 45 days.  Error bars indicate standard error and statistical analysis 

indicated none of the genotypes are significantly different (Tukey’s test, α=0.05).  

 

 

Figure 11: Relative mRNA abundance of WARKY1 gene within the 12 A. annua genotypes of the WVU 

germplasm collection. mRNA abundance was measured and averaged (n=3) with young, unexpanded leaf 

materials collect from plants grown for 45 days.  Error bars indicate standard error and statistical analysis 

indicated none of the genotypes are significantly different (Tukey’s test, α=0.05). 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A B C D E F G H I J K L

m
R

N
A

 a
b

u
n

d
an

ce

Genotype

0

0.5

1

1.5

2

2.5

3

3.5

A B C D E F G H I J K L

m
R

N
A

 a
b

u
n

d
an

ce

Genotype



129 
 

 

Figure 12: Relative mRNA abundance of PYL9 gene within the 12 A. annua genotypes of the WVU 

germplasm collection. mRNA abundance was measured and averaged (n=3) with young, unexpanded leaf 

materials collect from plants grown for 45 days.  Error bars indicate standard error and statistical analysis 

indicated none of the genotypes are significantly different (Tukey’s test, α=0.05).  
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