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ABSTRACT

Stationary Automata

Anaam Bidhan

In this dissertation, we investigate new automata, we call it stationary automata or ST-

automata. This concept is based on the definition of TF-automaton by Wojciechowski [7].
What is new in our approach is that we incorporate stationary subsets of limit ordinals of

uncountable cofinality.

The first objective of the thesis is to motivate the new construction of automata. This

concept of ST-automata allows us to make a connection with infinite graph theory. Aharoni,

Nash-Williams, and Shelah [2] formulated a condition that is necessary and sufficient for a

bipartite graph to have a matching. For a bipartite graph G = (M , W, E) , we define a language

L (G) over the alphabet {M , W} . We construct an ST-automatonA such that for each bipartite

graph G, the automatonA accepts an element of L (G) if and only if G has no matching. The

theorem of Aharoni, Nash-Williams, and Shelah [2] is used to prove that A has the above

property.

The second objective is to compare the new ST-automata to TF-automata defined by Woj-

ciechowski [7]. First, adding an extra condition, we define special ST-automata and prove that

they are equivalent to TF-automata. Then we show that in general ST-automata are stronger.

We give an example of a language accepted by an ST-automaton that is not accepted by any

special ST-automaton.

In chapter four, we define operations on ST-automata over a fixed alphabet I as union,

intersection, concatenation, raising to the powers, ω, *, and #. We show that applying those

operations to languages defined by ST-automata the obtained languages are also definable

using ST-automata.
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Chapter 1

Introduction

1.1 Notation

Before defining the notion of the ST-automata, we introduce the terminology and present the

basic facts concerning ordinal numbers and their arithmetic that is used in this dissertation.

The ordinal number β is the set of all ordinals less than β . Then the relation of order ≤ is

the inclusion relation ⊆, and the operation of taking the upper bound on a set of ordinals is

the operation of union.

The class of all ordinals will be denoted by ord, the class of all successor ordinals will be

denoted by succ, and the class of all limit ordinals will be denoted by lim.

The smallest limit ordinal that is the set of natural numbers will be denoted byω or ℵ0 and

the first uncountable ordinal will be denoted by ω1 or ℵ1.

The arithmetical operations on ordinals are defined inductively as follows:

α+ 0= α,

α+ 1= α∪ {α} ,

α+ (β + 1) = (α+ β) + 1,

α+ ζ= sup {α+ β : β < ζ} ,

where α, β ∈ ord, and ζ ∈ lim.

Let (βα)α<γ for γ ∈ ord be a transfinite sequence of ordinals. The sum of that sequence
∑

α<γ

βα, is defined by induction on γ as follows:

if γ= 0, then
∑

α<0

βα = 0,

1



CHAPTER 1. INTRODUCTION 2

if γ= σ+ 1, then
∑

α<γ

βα =
∑

α<σ

βα + βσ,

if γ ∈ lim, then
∑

α<γ

βα = sup

¨

∑

α<θ

βα : θ < γ

«

, where θ ∈ ord.

We will denote by cf(β) the cofinality of any limit ordinal β .

We will denote by P(S) the family of all subsets of the set S.

sup(A) =
⋃

A is the supremum of the set A, where A is a set of ordinals.

dom( f ) is the domain of the function f .

rng( f ) is the range of the function f .

We denote by f � β the restriction of f to β .

Finally, we will denote by � the end of a proof.

1.2 Preliminaries

In this part, we show some lemmas, theorems, propositions, and definitions that will be used

in the proofs of our main results.

The following definitions, theorems, and lemma are from [3].

Definition 1.2.1. A partial ordering on a class X is a binary relation that is anti-reflexive and

transitive. A linear ordering on X is a partial ordering in which any two different elements are

comparable. A well-ordering on a class X is a linear ordering on X such that for every x ∈ X

the class {y ∈ X : y < x} is a set and each nonempty subset of X has the smallest element.

Definition 1.2.2. A set a is transitive if and only if every element of a is also a subset of a.

Definition 1.2.3. A set a is an ordinal number (or just an ordinal) if it is transitive and every

element of a is also transitive.

Lemma 1.2.4. Every nonempty class of ordinals has a smallest element.

Theorem 1.2.5. Every set can be well-ordered.

Theorem 1.2.6. Let (X ,<) be a well-ordering. Then there exists a unique ordinal δ, and a unique

bijection φ : δ→ X , that preserves the order.

Definition 1.2.7. A successor ordinal is any ordinal of the form β = α+1, for some ordinal α.

If β is a nonzero ordinal that is not a successor ordinal, then we say that β is a limit ordinal.
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Definition 1.2.8. Let X be a set. The cardinality of X , denoted by |X | is the smallest ordinal α

such that there exists a bijection f : X → α.

Definition 1.2.9. A cardinal number or just cardinal is an ordinal that is the cardinality of

some set.

Definition 1.2.10. Let α be a limit ordinal and A⊆ α. We say that A is unbounded in α (cofinal

in α) if and only if for every β < α, there exists γ ∈ A, with β < γ.

Definition 1.2.11. Let α be any limit ordinal. The cofinality of α denoted by cf(α) is the

smallest cardinal κ such that there is an unbounded subset A of α with |A|= κ.

Definition 1.2.12. Let κ be an infinite cardinal. We say that κ is regular if and only if the

cofinality of κ is equal κ. Otherwise, κ is said to be singular.

Definition 1.2.13. Let θ be a limit ordinal with cf(θ )>ω and C ⊆ θ . We say that C is a closed

in θ if and only if sup(D) ∈ C ∪ {θ} , for every nonempty D ⊆ C . A club in θ is a subset of θ

that is closed and unbounded in θ . If θ is a regular cardinal, then C is closed in θ if and only

if for every D ⊆ C with |D|< θ , we have sup(D) ∈ C .

Definition 1.2.14. Let (A,<) be a well-ordering, α be an ordinal, and f : α → A, be any

function. We say that f is a continuous function if and only if for every B ⊆ α that is bounded

in α we have f (sup(B)) = sup { f (β) : β ∈ B} . If f is a strictly increasing, then f is continuous

if and only if for every limit ordinal γ < α, we have f (γ) = sup { f (β) : β < γ} . We say that f

is a normal function if and only if it is both continuous and strictly increasing (preserves the

ordering).

Definition 1.2.15. Let θ be a limit ordinal with cf(θ )>ω. A subset S of θ is called a stationary

set in θ if and only if it has a nonempty intersection with any club in θ .

The following definitions are from [6].

Definition 1.2.16. Let G = (M , W, E) be a bipartite graph with V = M ∪W , and α be an

ordinal. A string in G is a transfinite sequence f : α→ V that is injective.

Definition 1.2.17. Let G = (M , W, E) be a bipartite graph with V = M ∪W , and f : α −→ V

be an injective function where α is an ordinal. We say that f is saturated at β < α if and only

if

f (β) ∈ M implies that E ( f (β)) ⊆ { f (γ) : γ < β}.

We say that f is saturated in G iff it is saturated at every β < α.
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Definition 1.2.18. Let G = (M , W, E) be a bipartite graph with V = M ∪W, and E ⊆ M ×W,

and f : α→ V be a saturated injective sequence in G. The µ-margin of f (denoted µ( f )) is an

element of Z∞ = Z∪{∞,−∞} defined by transfinite induction on α as follows:

If α= 0, then µ( f ) = 0,

If α= β + 1, then

µ( f ) =







µ( f � β) + 1 if f (β) ∈W ;

µ( f � β)− 1 if f (β) ∈ M .

If α is a limit ordinal, then µ( f ) = liminf
β→α

µ( f �β).

Definition 1.2.19. Let G be a bipartite graph. G is a µ-admissible if and only if for every

saturated string f in G we have µ( f )≥ 0, where µ( f ) is the µ-margin of f .

The following lemma is from [4].

Lemma 1.2.20. If θ is a limit ordinal, A⊆ θ is an unbounded set in θ , and g : η→ A is an order

preserving bijective function where η ∈ ord, then η is also a limit ordinal with cf(η) = cf(θ ).

The following definitions are from [3].

Definition 1.2.21. Let G = (M , W, E) be a bipartite graph. A subgraph G′ = (M ′, W ′, E′) of G

is saturated if and only if it is induced (E′ = E ∩ (M ′ ×W ′)) and E [M ′] ⊆W ′.

Definition 1.2.22. Let G = (M , W, E) be a bipartite graph. If M ′ ⊆ M , and W ′ ⊆ W, then

G(M ′, W ′) is the subgraph of G induced by M ′ ∪W ′.

Definition 1.2.23. Let G = (M , W, E) be a bipartite graph, and L ={Lβ : β < η} be a family

of subgraphs Lβ =
�

Mβ , Wβ , Eβ
�

of G for each β < η, where η is a limit ordinal. The union and

join of L are defined respectively by

⋃

{Lβ : β < η}=

�

⋃

β<η

Mβ ,
⋃

β<η

Wβ ,
⋃

β<η

Eβ

�

,

and
∨

{Lβ : β < η}= G

�

⋃

β<η

Mβ ,
⋃

β<η

Wβ

�

.

Definition 1.2.24. Let G be a bipartite graph and A = (M1, W1, E1), B = (M2, W2, E2) be two

subgraphs of G. The join, union, and difference of A and B are defined respectively by A∨ B =
G(M1 ∪M2, W1 ∪W2), A∪ B = (M1 ∪M2, W1 ∪W2, E1 ∪ E2), and A\ B = A(M1\M2, W1\W2).
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Definition 1.2.25. Let G = (M , W, E) be a bipartite graph. A sequence G = (Gα : α≤ ξ) of

saturated subgraphs of G is a ξ-tower in G if and only if Gα is a subgraph of Gβ for each

α < β ≤ ξ, and for every limit ordinal α≤ ξ the graph Gα is the union of all Gβ with β < α.

Definition 1.2.26. Let G = (M , W, E) be a bipartite graph. A ξ-ladder in G is a sequence

L=
�

Lβ : β < ξ
�

of pairwise disjoint subgraphs of G such that G = (Gα : α≤ ξ) is a ξ-tower,

where Gα is the join of all Lβ for each β < α.

G = (Gα : α≤ ξ) is called the tower associated with L .

Every Lβ is a rung of the ladder L . If G = (Gα : α≤ ξ) is a ξ-tower, then L=
�

Lβ : β < ξ
�

is the associated ξ-ladder where Lβ = Gβ+1\Gβ for each β < ξ.

G (L ) is called a tower (ladder) if it is a ξ-tower (ξ-ladder) for some ordinal ξ.

Definition 1.2.27. Let G = (M , W, E) be a bipartite graph and G′ = (M ′, W ′, E′) be a subgraph

of G. We say G′ is critical in G (or just critical) if and only if G′ has a matching from W ′ to M ′

and each such matching using all vertices in M ′.

Definition 1.2.28. Let G = (M , W, E) be a bipartite graph and

K = {1} ∪ {η : η > ℵ0, and η is a regular cardinal} .

We will define a η-obstruction for each η ∈ K . The graph G is a 1-obstruction if G\{a} is critical

for some a ∈ M . If η ∈ Kr{1}, then G is a η-obstruction if there is a η-ladderL=(Lα : α < η)
in G such that G is the union of all rungs Lα for α < η, and the following properties hold:

1. For each α < η, the rung Lα of L is either a µ-obstruction for some µ ∈ K ∩ η or is of

the form (∅, {w},∅) for some w ∈W. We will say that Lα is trivial in the second case.

2. The set S = {α < η : Lα is a µ-obstruction for some µ ∈ K ∩η} is stationary in η.

G is said to be an obstruction if there exists a η ∈ K such that G is a η-obstruction. We say

that G′ is an obstruction in the bipartite graph G if G′ is a saturated subgraph of G and G′ is an

obstruction. We say that G has an obstruction if and only if there exists an obstruction G′ in G.

The following definition is from [1].

Definition 1.2.29. Let G = (M , W, E) be a bipartite graph. We say that G is c-admissible if and

only if G has no 1-obstruction.

Nash-Williams defined the concept of q-admissibility for a bipartite graph G (see [1, 6]).

Theorem 1.2.30. [Aharoni [1]] A bipartite graph is c-admissible if and only if it is q-admissible.
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Theorem 1.2.31. [Wojciechowski [6]] A bipartite graph is q-admissible if and only if it is µ-

admissible.

The following definitions are from [7].

Definition 1.2.32. Let I be an alphabet. A word over I is a function u : α→ I , where α ∈ ord.

The following is a definition of the operation of concatenation for words.

Definition 1.2.33. Let
�

uβ
�

β<α
be a sequence of words over the alphabet I such that uβ :

σβ → I , and σβ is an ordinal for each β < α. The concatenation of this sequence denoted by

◦
�

uβ
�

β<α
is a word u : σα→ I , where σα =

∑

β<ασβ , such that

u(δ) = uγ(ζ) for each δ < σα,

where γ=max{β < α : δ ≥ σβ} and ζ is such that δ = σγ + ζ.

If α= n is a finite, then we will write u0 ◦ u1 ◦ . . . ◦ un−1 instead of ◦
�

uβ
�

β<α
.

The following is a definition of the operation of concatenation for classes of words.

Definition 1.2.34. Let A and B be two classes of words over the same alphabet. The class A◦B

is defined as follows:

A◦ B = {u0 ◦ u1 : u0 ∈ A, and u1 ∈ B}.

The following are definitions of the operations of raising to the power *, and # for classes of

words.

Definition 1.2.35. If A is a class of words and α is an ordinal, then

Aα = {u : u= ◦
�

uβ
�

β<α
, uβ ∈ A for each β < α},

A∗ =
⋃

n<ω

An,

A# =
⋃

δ∈ord

Aδ.

We prove the following lemmas and proposition and we use them in proving the main

results of this thesis.

Lemma 1.2.36. If D is any set of ordinals and sup (D) is a successor ordinal, then sup (D) ∈ D.

Proof. Assume that D is any set of ordinals with sup(D) is a successor ordinal. Thus sup (D) =
β + 1 for some ordinal β . Then β is not an upper bounded on D, so there is an element

γ ∈ D such that β < γ. Now since sup (D) = β + 1, we have γ ≤ β + 1. Thus γ = β + 1 so

sup (D) ∈ D.
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Proposition 1.2.37. Let θ =
∑

β<ηαβ , such that η ∈ lim, and αβ ∈ ord, αβ > 0, for each β < η.

Then cf(θ ) = cf(η).

Proof. Assume cf(η) = δ and we want to prove cf(θ ) ≤ δ. Since cf(η) = δ, then there exists

a function f : δ→ η, such that rng( f ) is unbounded in η. Now we want to define a function

g : δ→ θ , with range of g unbounded in θ . Define g as follows:

g(γ) =
∑

β< f (γ)

αβ , for each γ < δ.

Now we want to prove rng(g) is unbounded in θ . Let α < θ and since θ =
∑

β<ηαβ , then

α <
∑

β<δαβ , for some δ < η, but rng( f ) unbounded in η, so we get σ < δ, with f (σ) > δ.

Therefore

g(σ) =
∑

β< f (σ)

αβ >
∑

β<δ

αβ > α.

Therefore, rng(g) is unbounded in θ . Thus implies cf(θ )≤ δ.

Now assume cf(θ ) = δ and we want to prove cf(η)≤ δ. Since cf(θ ) = δ, then there exists a

function f : δ→ θ , with rng( f ) unbounded in θ . Now we want to define a function g : δ→ η,

with rng(g) unbounded in η. Define g as follows:

g(γ) = δ, if and if f (γ)≥
∑

β<δ

αβ , for each γ < δ,

where δ < η, smallest such ordinal.

Now we want to prove rng(g) is unbounded in η. Let α < η, then α′ =
∑

β<ααβ < θ , but

rng( f ) is unbounded in θ , so we get σ < δ, with f (σ)> α′. Assume

f (σ) =
∑

β<λ

αβ ,

for some λ < η. Therefore, g(σ) = λ and since

f (σ) =
∑

β<λ

αβ >
∑

β<α

αβ = α
′,

hence g(σ) = λ > α. Therefore rng(g) is unbounded in η. Thus implies cf(η) ≤ δ. Thus

cf(η) = cf(θ ).

Lemma 1.2.38. If θ =
∑

β<η θβ , where η ∈ lim, with cf(η) > ω, and θβ > 0, for each β < η,
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then

δ =

(

∑

β<σ

θβ : σ < η

)

is a club in θ .

Proof. We want to prove δ is unbounded and closed in θ . First we want to proveδ is unbounded

in θ . Let α < θ . Then for some σ < η, α <
∑

β<σ θβ , and since η ∈ lim, then there is γ < η

with γ > σ, so

δ 3
∑

β<γ

θβ >
∑

β<σ

θβ > α.

Therefore δ is unbounded in θ .

Now we want to prove δ is closed in θ . Let D ⊆ δ, with | D |< θ . we want to prove

sup(D) ∈ δ. If sup(D) ∈ D, then done. Assume sup(D) /∈ δ. Then sup(D) ∈ lim, by lemma

1.2.36. Now, since | D |< θ , then D is bounded by some ordinal in θ . Thus,

D =

(

∑

β<σ

θβ : σ ∈ Γ

)

, for some Γ ⊆ η.

So Γ is bounded by some ordinal in η, then σ = sup(Γ ) < η. Thus sup(D) =
∑

β<σ θβ ∈ δ.

Hence, D is closed in θ . Therefore, D is a club in θ .

Lemma 1.2.39. Let α be a limit ordinal, S be a finite set, and f : α→ S be any function. If

{β < α : f (β) ∈ S}

is unbounded in α, then there exists s ∈ S such that

{β < α : f (β) = s}

is unbounded in α.

Lemma 1.2.40. Let β = σ+ θ be any ordinal such that θ 6= 0. Then

1. β ∈ lim if and only if θ ∈ lim.

2. If β , and θ are limit ordinals, then cf(β) = cf(θ ).

Proof. Assume β = σ+ θ is an ordinal with θ 6= 0.

Proof of (1). β ∈ lim if and if θ ∈ lim.
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Assume first β ∈ lim, and we want to prove θ ∈ lim . By way of a contradiction let θ ∈ succ,

then θ = δ + 1, for some δ ∈ ord. Thus, β = σ + θ = σ + δ + 1, so β ∈ succ, which is a

contradiction because β ∈ lim. Conversely, assume θ ∈ l im, and we want to prove β ∈ lim .

Again assume by way of a contradiction β ∈ succ, then β = δ + 1, for some δ ∈ ord. Thus,

β = σ + θ = δ + 1, so θ = γ+ 1, for some γ ∈ ord, thus θ ∈ succ, which is a contradiction

because θ ∈ lim.

Proof of (2). If β , and θ are limit ordinals, then cf(β) = cf(θ ).
Assume β and θ are limit ordinals. First we want to prove

cf(β)≤ cf(θ ).

Assume cf(β) = δ, for some δ ∈ ord, and we want to prove δ ≥ cf(θ ). Now since cf(β) = δ,

then there is a function g : δ → β , with ran(g) unbounded in β . Now define f : δ → θ , as

follows:

f (γ) =

¨

σ+ 1 if g(γ)≤ σ
g(γ) if g(γ)> σ

«

.

It is remains to prove rng( f ) is unbounded in θ . Let α < θ and we want to prove there is

λ ∈ rng( f ), with λ > α. Now since α < θ , then α < β = σ+ θ , so there is an ordinal ν < δ,

with g(ν)> α, because rng(g) is unbounded in β . Then either g(ν)≤ σ, or g(ν)> σ.

Assume g(ν)≤ σ, then λ= f (ν) = σ+1> α, and if g(ν)> σ, then λ= f (ν) = g(ν)> α.

Hence, rng( f ) is unbounded in θ . Therefore, δ ≥ cf(θ ).
Now we want to prove cf(β)≥ cf(θ ).
Assume cf(θ ) = δ, for some δ ∈ ord, and we want to prove δ ≤ cf(β). Now since cf(θ ) = δ,

then there is a function g : δ → θ , with rng(g) unbounded in θ . Now define f : δ → β , as

follows:

f (γ) = g(γ), for each γ < δ.

It is remains to prove rng( f ) is unbounded in β . Let α < β and we want to prove there is

λ ∈ rng( f ), with λ > α. Now since α < β = σ+ θ , so either α > σ, or α≤ σ.

Assume first α > σ, then α < θ , so there is an ordinal ν < δ, with g(ν)> α, because ran(g)
is unbounded in θ , thus λ= f (ν) = g(ν)> α.

Now let α ≤ σ. σ + 1 < θ and since rng(g) is unbounded in θ , then there is ε < δ with

g(ε) > σ + 1, but λ = f (ε) = g(ε) > σ + 1 > σ ≥ α. Hence rng( f ) is unbounded in β .

Therefore, δ ≥ cf(β).
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1.3 Main Definitions And Results

Let I be an alphabet. A word over I is a function u : α→ I , where α is an ordinal. The class of

all words u over I is denoted by I#.

There are different methods to characterize formal languages. In this thesis we indicate

two of them, namely ST-automata and operations on ST-automata. We will have in view the

generalization of those methods for describing subclasses of I#.

Several definitions of automata over words that are defined on ordinals have been proposed

previously.

In chapter two in our thesis, we introduce a new concept of automata, namely, stationary

automaton or ST-automata and this concept is analogous to the definition of TF-automaton by

Wojciechowski [7].
In chapter two first we introduce the following definition:

Definition. (2.1.1): Let α be an ordinal, S be any set of states and R : α→ S be any function.

Then for each β ∈ lim, β ≤ α, we define the following:

supβ(R) = {s ∈ S : {γ < β : R(γ) = s} is cofinal in β}.

Also, in chapter three we define the following:

(3.1.1): Let α be an ordinal, S be any set of states, P (S) be the set of all subsets of S and

H : α→ S ∪P (S) be any function. Then for each β ∈ lim, β ≤ α, we define

sup′
β
(H) = supβ(H)∩ S.

Wojciechowski [7], defined TF-quasiautomaton, that is, a TF-quasiautomaton is a system Q =
(S, I , T ), where S is a finite set of states, I is a finite alphabet and

T ⊂ {S ∪P (S)} × I × S

is the set of transitions. He also defined a TF-automaton, that is, a TF-automaton over I is a

system A = (S, I , T,ψ,F ), where Q = (S, I , T ) is a TF-quasiautomaton, ψ ∈ S ∪P (S) is the

initial situation and F ⊂ S ∪P (S) is the set of final situations. Also, he defined an accepting

run of TF-automaton, that is, a run of A on u where u : α→ I , and α ∈ ord, (called II-run in

[7] ) is a function H : α+ 1→ S ∪P (S) such that:

1. H(0) =ψ.

2. H(β) ∈ S, for every successor ordinal β < α.
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3. H(β) = sup′
β
(H) for every limit ordinal β ≤ α.

4. (H(β), u(β), H(β + 1)) ∈ T, for every β < α.

A run H ofA on u is an accepting run if and only if H(α) ∈ F .

The language of A denoted by L (A ) is a class of all words u in I# such that there exists

an accepting run ofA on u.

In our work, we modify the TF-automaton definition and incorporate stationary subsets of

limit ordinals of uncountable cofinality to get to the new concept to the automata.

In the following several chapters, we will present the following main definitions, and re-

sults.

1. In chapter two, first we introduce the following definitions, a ST-automaton over an al-

phabet concept (see definition 2.1.3), a word over an alphabet (see definition 2.1.4), an

accepting run of ST-automaton , and the language of ST-automatonA denoted byL (A )
(see definition 2.1.5), and the language for a bipartite graph G denoted by L (G), (see

definition 2.1.7).

Then we combining the results from Aharoni [1], Wojciechowski [6] , and Aharoni, Nash-

Williams, Shelah [2], we show that this new concept of the automaton allows us to make

a connection with graph theory, and we prove the following main theorem by using Corol-

lary 2.2.1, and Theorem 2.2.2.

Theorem (2.2.3): There exists an ST-automaton A over an alphabet I = {M , W} such

that for every bipartite graph G = (M , W, E) with |M ∪W | ≤ ℵ1 the following are equiv-

alent:

(a) G has a matching.

(b) L (G)∩L (A ) =∅.

2. In chapter three, we introduce a new concept of automaton which we call a special ST-

automaton (see definition 3.1.4). The aim of introducing this concept is to compare

TF-automata in [7] and ST-automata. First we prove the following main result:

Theorem (3.2.1): Let I be a finite alphabet and C be a subclass of I#. Then the fol-

lowing conditions are equivalent:

(a) C =L (A ′) whereA ′ is a TF-automaton over I .

(b) C =L (A ) whereA is a special ST-automaton over I .
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Then we show that in general the concept of ST-automata is stronger then the concept of

TF-automata by using the above theorem, giving a counter example 3.2.2, and proving

the following theorem:

Theorem (3.2.3): There does not exists a special automatonA = (S, I , T, Z , F), over an

alphabet I = {a} such that L (A ) = {u} , where u :ω1→ I , and S is a countable set.

3. Wojciechowski [8], defined the operation of concatenation for classes of words (see def-

inition 1.2.34), and the operations of raising to the power * and # for classes of words

(see definition 1.2.35). He also in [7] defined such operations on TF-automata as union,

intersection, concatenation, and raising to the powersω, *, # . He used these definitions

to prove the following theorem:

Theorem: IfA andA ′ are TF-automata then:

• L (A ∪A ′) =L (A )∪L (A ′).

• L (A ∩A ′) =L (A )∩L (A ′).

• L (A ◦A ′) =L (A ) ◦L (A ′).

• L (A ∗) = (L (A ))∗.

• L (A ω) = (L (A ))ω.

• L
�

A #
�

= (L (A ))#.

In chapter four, in an analogous way we introduce definitions of operations for ST-

automata and we use these definitions to prove the corresponding theorem, that Wo-

jciechowski proved in [7] on classes of words accepting by TF-automaton (above the-

orem). That means, we show that applying those operations to languages defined by

ST-automata the produce languages that are also definable using ST-automata as follows:

• First we define the union ST-automaton (see definition 4.1.1), and we prove the following

main result:

Theorem (4.1.2): LetA = (S, I , T, Z , F) andA ′ = (S′, I , T ′, Z ′, F ′) be two ST-automata

over I , such that S ∩ S′ = ;. Then L (A ∪A ′) =L (A )∪L (A ′).

• Second we introduce definition of the intersection ST-automaton (see definition 4.2.1),

and we prove the following main result:

Theorem (4.2.2): LetA = (S, I , T, Z , F) andA ′ = (S′, I , T ′, Z ′, F ′) be two ST-automata

over I such that S and S′ are finite sets of states. Then L (A ∩A ′) =L (A )∩L (A ′).
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• Also, we define the concatenation ST-automaton (see definition 4.3.1), and we get to the

following main theorem:

Theorem (4.3.2): LetA = (S, I , T, Z , F) andA ′ = (S′, I , T ′, Z ′, F ′) be two ST-automata

over I such that S ∩ S′ = ;. Then L (A ◦A ′) =L (A ) ◦L (A ′).

• After that, we introduce the definition of ST-automaton, that is, raising to the power * of

ST-automaton (see definition 4.4.1) and we prove the following theorem:

Theorem (4.4.2): If A = (S, I , T, Z , F) is a ST-automaton over I , with Z is a finite set,

then L (A ∗) = (L (A ))∗.

• Subsequently, we define a ST-automaton, that is, raising to the powerω of ST-automaton

(see definition 4.5.1) and we prove the following theorem:

Theorem (4.5.2): If A = (S, I , T, Z , F) is a ST-automaton over I , with Z is a finite set,

then L (A ω) = (L (A ))ω.

• Finally, we introduce the definition of a ST-automaton, that is, raising to the power # of

ST-automaton (see definition 4.6.1) and we prove the following main result:

Theorem (4.6.2): If A = (S, I , T, Z , F) is a ST-automaton over I , with Z is a finite set,

then L
�

A #
�

= (L (A ))#.



Chapter 2

ST-automata

In this chapter, we introduce ST-automaton (stationary automaton) over an alphabet con-

cept and define an accepting run of ST-automaton. Then we prove motivating result for ST-

automata.

2.1 Basic Definitions

First we define stationary automata.

Definition 2.1.1. Let α be an ordinal, S be any set of states and R : α→ S be any function. For

each β ∈ lim, β ≤ α we define the following:

1. supβ(R) = {s ∈ S : {γ < β : R(γ) = s} is cofinal in β}.

2. statβ(R) = {s ∈ S : {γ < β : R(γ) = s} is stationary in β}, whenever cf(β)>ω.

Definition 2.1.2. A ST-quasiautomaton over I is a system Q = (S, I , T ), where S is a set of

states, I is an alphabet and

T ⊆ (S × I × S)∪ (P (S)× S)∪ (P (S)×P (S)× S)

is a set of transitions.

Definition 2.1.3. A stationary automaton over I (ST-automaton) is a systemA = (S, I , T, Z , F),
where Q = (S, I , T ) is a ST-quasiautomaton, denoted by Q(A ), Z ⊆ S is a set of initial states

and F ⊆ S is a set of final states.

Definition 2.1.4. Let I be an alphabet. A word over I is a function u : α→ I , where α ∈ ord.

The class of all words u over I is denoted by I#.

14
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Now we define an accepting run of ST-automaton on a word and the language of ST-automaton.

Definition 2.1.5. Let A = (S, I , T, Z , F) be a ST-automaton over I and u : α → I be a word

over I , α ∈ord. A run ofA on u is a function R : α+ 1→ S such that:

1. For each β < α, we have

(R(β), u(β), R(β + 1)) ∈ T.

2. For each β ≤ α, that is a limit ordinal with cf(β) =ω, we have

(supβ(R), R(β)) ∈ T.

3. For each β ≤ α, that is a limit ordinal with cf(β)>ω, we have

(supβ(R), statβ(R), R(β)) ∈ T.

A partial run ofA on u is a function R : α→ S such that (1) holds for all β such that β+1< α

and (2),(3) hold for all β < α.

A run R : α+1→ S ofA on u is an initial run if and only if R(0) ∈ Z , and a final run if and

only if R(α) ∈ F . A run ofA on u is an accepting run if and only if it is both initial and final.

Definition 2.1.6. The language of ST-automatonA over I (L (A )) is a class of all words u in

I# such that there exists an accepting run ofA on u.

The following is a definition of the language of a bipartite graph.

Definition 2.1.7. Let G = (M , W, E) be a bipartite graph, where E ⊆ M ×W , I = {M , W} be

an alphabet and L (G) be a set of transfinite words over I define as follows:

let f : α −→ V be an injective function from α ∈ ord into V = M ∪W . We say that f is a

saturated at β < α if and only if

if f (β) ∈ M , implies that E ( f (β)) ⊆ { f (γ) : γ < β}.

We say that f is saturated in G if and only if it is saturated at every β < α.

Now for each saturated sequence f : α −→ V, we assign the word u = u( f ) : α −→ I such

that for each β < α:

u(β) =







W if f (β) ∈W ;

M if f (β) ∈ M .

Define

L (G) = {u( f ) : f is a saturated string in G} .
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2.2 Motivation Result

We obtain the following corollary from definitions 1.2.19 and 1.2.29, and theorems 1.2.30 and

1.2.31.

Corollary 2.2.1. Let G be a bipartite graph. Then G has a 1-obstruction if and only if there exists

a saturated string f in G such that µ( f )< 0.

Theorem 2.2.2. [Aharoni, Nash-Williams, Shelah [2]] A bipartite graph G has a matching if and

only if there exists no obstruction in G.

Now we prove the following motivating theorem of this thesis by using the above corollary

and theorem.

Theorem 2.2.3. There exists a ST-automatonA over an alphabet I = {M , W} such that for every

bipartite graph G = (M , W, E) with |M ∪W | ≤ ℵ1 the following are equivalent:

1. G has a matching.

2. L (G)∩L (A ) =∅.

Proof. Definition of A .

We define ST-automatonA = (S, I , T, Z , F) as follows :

The set of states is

S = {0̂, 1̂, 2̂, . . . } ∪ {0̄, 1̄, 2̄, . . . } ∪ { S©, N , ®},

the alphabet is

I = {W, M},

the set of initial states is

Z = {0̄, S©, N},

the set of final states is

F = {®},

and the set of transitions

T ⊆ (S × I × S)∪ (P (S)× S)∪ (P (S)×P (S)× S)

is defined as follows:
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The fact that (s, a, t) ∈ S × I × S belongs to T will be denoted by s
a
−→ t. We take:

N
W
−→ N , N

W
−→ S©, S©

W
−→ 1̂, S©

M
−→ N , S©

M
−→ S©, 0̄

M
−→®, 0̂

M
−→ N , 0̂

M
−→ S©.

For each i ≥ 0, we take

ī
W
−→ i + 1, and î

W
−→Õi + 1.

For each i > 0, we define

ī
M
−→ i − 1, and î

M
−→Õi − 1.

If C ⊆ {0, 1, . . . }, then we will denote

C̄ =
�

ī : i ∈ C
	

, and Ĉ =
�

î : i ∈ C
	

.

To denote that a pair (A, s) ∈ P (S)× S belongs to T, we will write A−→ s.

If C 6=∅ define:

C̄ →min(C) and Ĉ →Úmin(C).

Moreover, if A⊆ S and A∩ {N , S©} 6=∅, then

A−→ N and A−→ S©.

To denote that a triple (A, B, s) ∈ P (S) × P (S) × S belongs to T, we will write (A, B) −→ s.

Define

(C̄ , D̄)→min(C) and (Ĉ , D̂)→Úmin(C).

Moreover, if S©∈ B, then

(A, B)→®.

(2) implies (1). Assume that (1) is false, that is, G has no matching. We want to define

a transfinite word u ∈ I# such that u ∈ L (G) ∩L (A ); thus, we need a saturated string f in

G such that u( f ) ∈ L (A ). By Theorem 2.2.2 there is a η-obstruction G′ in G for some η ∈ K .

Since G has ℵ1 vertices, it follows that η ∈ {1,ℵ1}. We will define a saturated string f in G for

η ∈ {1,ℵ1}.

The case when η= 1.

Assume that η = 1. Let f be a saturated string in G such that µ( f ) < 0. Such f exists by

Corollary 2.2.1. Without loss of generality, we can assume that µ( f �δ) ≥ 0 for each δ <

dom ( f ). Let θ = dom( f ) and u = u( f ) : θ → I . Define an accepting run R : θ + 1→ S of A
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on u as follows:

The choice of f implies that, θ is a successor ordinal. Let θ = β + 1 and

R(γ) = µ( f �γ) for each γ < θ , and

R(θ ) =®.

It is clear that R(0) = 0̄ ∈ Z . It is remains to satisfy the following conditions:

1. For each α < θ we have

(R(α), u(α), R(α+ 1)) ∈ T.

2. For each α≤ θ that is a limit ordinal with cf(α) =ω, we have

(supα(R), R(α)) ∈ T.

3. For each α≤ θ that is a limit ordinal with cf(α)>ω, we have

(supα(R), statα(R), R(α)) ∈ T.

First we satisfy condition (1). For each α < θ we have

(R(α), u(α), R(α+ 1)) = (µ( f � α), u(α),µ
�

f � (α+ 1
�

)

and since µ( f �δ)≥ 0 for each δ < dom ( f ) , so we get

(R(α), u(α), R(α+ 1)) = (ī, W, i + 1) ∈ T

for each i ≥ 0.

Now we want to prove condition (2). For each α≤ θ that is a limit ordinal with cf(α) =ω,

we want to prove

(supα(R), R(α)) ∈ T.

Now since

supα(R) = {s ∈ S : {γ < α : R(γ) = s} is cofinal in α},

then we get supα (R) ⊆ {0̄, 1̄, 2̄, . . . }, and

R(α) = µ( f �α) = liminf
β→α

µ( f �β) =min
�

supα(R)
�

.
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Hence,

(supα(R), R(α)) ∈ T.

It is remains to prove condition three, that is, for each α ≤ θ that is a limit ordinal with

cf(α)>ω, we have

(supα(R), statα(R), R(α)) ∈ T.

Since

supα(R) = {s ∈ S : {γ ∈ α : R(γ) = s} is cofinal in α}

and

statα(R) = {s ∈ S : {γ ∈ α : R(γ) = s} is stationary in α},

whenever cf(α)>ω, so we get supα (R) ⊆ {0̄, 1̄, 2̄, . . . }, statα(R) ⊆ {0̄,1̄, 2̄, . . . }, and

R(α) = µ( f �α) = liminf
β→α

µ( f �β) =min
�

supα(R)
�

.

Hence,

(supα(R), statα(R), R(α)) ∈ T.

The case when η= ℵ1.

LetL =
�

Lβ : β < η
�

be a η-ladder in G′. For each β < η, we have Lβ is either a 1-obstruction

or Lβ is trivial. For each β < η, if Lβ is a 1-obstruction, then let fβ be a saturated string in Lβ
such that µ

�

fβ
�

< 0 (see 2.2.1). Let θβ = dom( fβ), then θβ is a successor ordinal, µ
�

fβ�γ
�

≥ 0

for each γ < θβ , and uβ = u
�

fβ
�

∈ L (A ), as in case η = 1, and let fβ be the empty string

when Lβ is trivial.

For each β < η, let Lβ =
�

Mβ , Wβ , Eβ
�

and f ′
β

: θ ′
β
→ Mβ ∪Wβ be a string in Lβ for some

θ ′
β
≥ θβ such that f ′

β
�θβ = fβ and f ′

β
(γ) ∈Wβ for γ ≥ θβ with Wβ ⊆ rng

�

f ′
β

�

. Clearly such f ′
β

is also saturated. Note that if Lβ is trivial, then θβ = 0 and θ ′
β
= 1.

To obtain the string f we combine all the strings f ′
β

together. Formally, the domain of f is

the sum

θ =
∑

β<η

θ ′
β
,

and if γ < θ , and ρ is the smallest ordinal with
∑

β<ρ θ
′
β
≤ γ , then

f (γ) = f ′
ρ

�

γ′
�

,
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where γ′ < θ ′
ρ

is such that

γ=
∑

β<ρ

θ ′
β
+ γ′.

Let u = u( f ). We will show that u ∈ L (A ). We have θ = dom (u). To obtain an accepting

run R : θ +1→ S ofA on u, first we define a partial run Rβ : θ ′
β
→ S ofA on uβ = u

�

f ′
β

�

, for

each β < η, and combine them together.

Now for each β < η, we define Rβ as follows:

• If Lβ is trivial, then θβ = 0.

Define Rβ : {0} → S be such that Rβ(0) = N .

• If Lβ is a 1-obstruction, then θβ ≥ 1.

Define Rβ : θ ′
β
→ S as follows:

Rβ(0) = S©,

Rβ(γ) =
Ûµ
�

fβ�γ
�

, for every 0< γ < θβ ,

Rβ(γ) = N for every θβ ≤ γ < θ ′β .

Now we want to show Rβ is a partial run of A on uβ . The following three conditions have to

be satisfied:

1. For each α such that α+ 1< θ ′
β
, we have

(Rβ(α), uβ(α), Rβ(α+ 1)) ∈ T.

2. For each α < θ ′
β

that is a limit ordinal with cf(α) =ω, we have

(supα(Rβ), Rβ(α)) ∈ T.

3. For each α < θ ′
β

that is a limit ordinal with cf(α)>ω, we have

(supα(Rβ), statα(Rβ), Rβ(α)) ∈ T.

First, we want to verify condition 1. If θβ = θ ′β = 1, then there is nothing to verify. If θβ = 1,

and θ ′
β
≥ 2, then uβ(0) = M and

(Rβ(0), uβ(0), Rβ(1)) = ( S©, M , N) ∈ T.
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If 2≤ α+ 1< θ ′
β
, then

(Rβ(α), uβ(α), Rβ(α+ 1)) = (N , W, N) ∈ T.

Assume θβ ≥ 2, then uβ(0) =W and

(Rβ(0), uβ(0), Rβ(1)) = ( S©, W, 1̂) ∈ T.

If α+ 1= θβ < θ ′β , then

(Rβ(α), uβ(α), R(α+ 1)) = (0̂, M , N) ∈ T

For each α such that 0< α+ 1< θβ , we consider two cases:

• uβ(α) =W.

• uβ(α) = M .

If uβ(α) =W, then Rβ(α) = î, for some i ≥ 0 and

�

Rβ(α), uβ(α), Rβ(α+ 1)
�

= (Ûµ
�

fβ � α
�

, uβ(α),
Ûµ

�

fβ � (α+ 1
�

) = (î, W,Õi + 1) ∈ T.

If uβ(α) = M , then Rβ(α) = î, for some i ≥ 1 and

�

Rβ(α), uβ(α), Rβ(α+ 1)
�

= (Ûµ
�

fβ � α
�

, uβ(α),
Ûµ

�

fβ � (α+ 1
�

) = (î, M ,Õi − 1) ∈ T.

when θβ + 1≤ α+ 1< θ ′
β

we have

�

Rβ(α), uβ(α), Rβ(α+ 1)
�

= (N , W, N) ∈ T.

Now we want to verify condition 2. Let α < θ ′
β

be a limit ordinal with cf(α) =ω. We want to

prove

(supα(Rβ), Rβ(α)) ∈ T.

Assume α < θβ , then we have

supα(Rβ) = {s ∈ S : {γ < α : Rβ(γ) = s} is cofinal in α} ⊆ {0̂, 1̂, 2̂, . . . }

and

Rβ(α) =
Ûµ
�

fβ � α
�

= Ûlim inf
γ→α

µ
�

fβ�γ
�

= Ûmin(supα(Rβ)).
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Hence,

(supα(Rβ), Rβ(α)) ∈ T.

Note that we can’t have α= θβ , since θβ is a successor ordinal.

If θβ < α < θ
′
β
, then

(supα(Rβ), Rβ(α)) = ({N}, N) ∈ T.

It is remains to satisfy the condition 3. Let α < θ ′
β

be a limit ordinal with cf(α) > ω, and we

want to show

(supα(Rβ), statα(Rβ),Rβ(α)) ∈ T.

Assume first that α < θβ . For each A, B ⊆ {0̂, 1̂, 2̂,...} and s ∈ S we have (A, B, s) ∈ T if and only

if (A, s) ∈ T. Therefore a similar argument as above shows that

(supα(Rβ), statα(Rβ),Rβ(α)) ∈ T.

The remaining case is when θβ < α < θ
′
β
.

Now since θ ′
β
= dom

�

f ′
β

�

, f ′
β

: θ ′
β
→ Mβ ∪Wβ , and |M ∪W | ≤ ℵ1, then α < θ ′

β
≤ ℵ1, but

cf(α)>ω, thus there is no such α.

Therefore, for each β < η, Rβ is a partial run ofA on uβ .

Definition of the run R.

Formally, R is define as follows. The domain of R is θ + 1, where

θ =
∑

β<η

θ ′
β
.

If δ < θ , then let ρ < η be the smallest ordinal with
∑

β<ρ θ
′
β
≤ δ and let

R(δ) = Rρ
�

δ′
�

,

where δ′ < θ ′
ρ

is such that

(2.2.1) δ =
∑

β<ρ

θ ′
β
+δ′.

Moreover, let R(θ ) =®.

Now we want to prove R is an accepting run ofA on u= u( f ). That means we must prove

that R(0) ∈ Z , R(θ ) ∈ F and the following conditions hold:
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1. For each δ < θ , we have

(R(δ), u(δ), R(δ+ 1)) ∈ T.

2. For each δ ≤ θ that is a limit ordinal with cf(δ) =ω, we have

(supδ(R), R(δ)) ∈ T.

3. For each δ ≤ θ that is a limit ordinal with cf(δ)>ω, we have

(supδ(R), statδ(R), R(δ)) ∈ T.

By the definition of R, we get R(θ ) = ® ∈ F . Now we want to show that R(0) ∈ Z . If L0 is

trivial, then

R(0) = R0(0) = N ∈ Z .

Assume that L0 is a 1-obstruction, then

R(0) = R0(0) = S©∈ Z .

It is remains to prove the above three conditions.

First, for each δ ≤ θ , let δ′ be as in (2.2.1).

Now we want to prove condition (1), that is, for each δ < θ , we have

(R(δ), u(δ), R(δ+ 1)) ∈ T.

Now, if δ′ + 1< θ ′
ρ
, then

(R(δ), u(δ), R(δ+ 1)) = (Rρ(δ
′), uρ(δ

′), Rρ(δ
′ + 1)) ∈ T

because Rρ is a partial run.

Assume δ′ + 1= θ ′
ρ
, then we consider the following cases:
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• Assume Lρ is trivial. then θ ′
ρ
= 1, δ′ = 0 and

(R(δ), u(δ), R(δ+ 1)) = (Rρ
�

δ′
�

, uρ
�

δ′
�

, Rρ
�

δ′ + 1
�

)

= (Rρ(0), uρ(0), Rρ+1(0))

=







(N , W, S©) Lρ+1 is nontrivial

(N , W, N) Lρ+1 is trivial

∈ T

.

• Assume Lρ is a 1-obstraction.

If θ ′
ρ
= θρ, then

Rρ
�

δ′
�

= 0̂ and u
�

δ′
�

= M ,

and if θ ′
ρ
> θρ, then

Rρ
�

δ′
�

= N and u
�

δ′
�

=W.

Moreover,

Rρ+1(0) =







N Lρ+1 is trivial

S© Lρ+1 is nontrivial
.

In each case we have

(R(δ), u(δ), R(δ+ 1)) = (Rρ(δ
′), uρ(δ

′), Rρ+1(0)) ∈ T.

Now we want to prove second condition: let δ ≤ θ be a limit ordinal with cf(δ) =ω, and we

want to satisfy

(supδ(R), R(δ)) ∈ T.

Since cf(θ ) = cf(η)>ω, by lemma 1.2.37, so we must have δ < θ .

We consider the following cases:

1. If δ′ > 0, and δ′ is a limit ordinal with cf(δ′) =ω.

2. If δ′ = 0, ρ = ξ+ 1, and θ ′
ξ

is a limit ordinal with cf
�

θ ′
ξ

�

=ω.

3. If δ′ = 0, and ρ is a limit ordinal with cf(ρ) =ω.
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Case (1).

We have

(supδ(R), R(δ)) = (supδ(Rρ), Rρ(δ
′)) ∈ T,

where δ′ < θ ′
ρ

is as in (2.2.1), since Rρ is a partial run.

Case (2).

Since θ ′
ξ

is a limit ordinal, then Lξ is a 1-obstraction, thus θξ is a successor ordinal so θξ < θ
′
ξ

and

supδ(R) = supθ ′
ξ
(Rξ) = {N}.

Moreover,

R(δ) = Rρ(0) =







N if Lρ is trivial

S© otherwise
,

and since ({N}, N) ∈ T, and ({N}, S©) ∈ T, we have

(supδ(R), R(δ)) ∈ T.

Case (3).

Assume δ′ = 0, and ρ is a limit ordinal with cf(ρ) = ω. For each β < ρ, we have Rβ(0) ∈
{N , S©}, thus

supδ(R)∩ {N , S©} 6=∅.

Moreover,

R(δ) = Rρ(0) =







N if Lρ is trivial

S© otherwise
.

Since (A, N) ∈ T and (A, S©) ∈ T whenever A∩ {N , S©} 6=∅, we have

(supδ(R), R(δ)) ∈ T.

Now we want to prove third condition: let δ ≤ θ be a limit ordinal with cf(δ)>ω, and we

want to satisfy

(supδ(R), statδ(R), R(δ)) ∈ T.



CHAPTER 2. ST-AUTOMATA 26

Now since θ = dom( f ), and |W ∪ M | ≤ ℵ1, then θ ≤ ℵ1. Thus δ ≤ ℵ1, but cf(δ) > ω, then

δ = ℵ1. Therefore, the only possible that we have δ = θ .

Now we will prove third condition when δ = θ . Assume δ is a limit ordinal with cf(δ)>ω,

we want to satisfy

(supδ(R), statδ(R), R(δ)) ∈ T.

Now,

R(δ) = R(θ ) =®,

and since (A, B,®) ∈ T, whenever S©∈ B, we have

(supδ(R), statδ(R), R(δ)) ∈ T,

so it is enough to show that S©∈ statδ(R).
Thus by the definition of statδ(R) = statθ (R), we must prove that the set

{λ < θ : R(λ) = S©} is stationary in θ .

Therefore we must prove this set has nonempty intersection with every club in θ . Let Γ ⊆ θ ,

be arbitrary club in θ . Now assume

∆=

(

∑

β<σ

θ ′
β

: σ < η

)

.

Thus ∆ is a club in θ , by lemma 1.2.38.

Moreover, Γ ∩∆ is also a club in θ . Now, define the function ϕ : η→ θ , by

ϕ(σ) =
∑

β<σ

θ ′
β

for each σ < η.

Then ϕ is a normal function and ϕ−1(Γ ∩∆) is a club in η, (see [4]). Now, since G’ is a

η-obstruction in G, so we get

S′ = {σ < η : Lσ is 1− obstruction} is stationary in η.

Thus,

S′ ∩ϕ−1(Γ ∩∆) 6= ;.

Let σ ∈ S′ ∩ϕ−1(Γ ∩∆). Thus, Lσ is a 1-obstruction, and ϕ(σ) ∈ Γ ∩∆.
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By the definition of ϕ we get

ζ= ϕ(σ) =
∑

β<σ

θ ′
β
,

and R(ζ) = Rσ(0) = S©, since Lσ is a 1-obstruction. Then,

ζ ∈ Γ ∩ {λ < θ : R(λ) = S©}.

Thus, for each club Γ in θ we get

Γ ∩ {λ < θ : R(λ) = S©} 6= ;,

which implying that,

{λ < θ : R(λ) = S©},

is a stationary set in θ . Therefore, S©∈ statδ(R). Hence,

(supδ(R), statδ(R), R(δ)) ∈ T.

Then R is an accepting run ofA on u. Thus, u ∈ L (A ). Therefore, L (A )∩L (G) 6= ;.

(1) implies (2).

Assume thatL (A )∩L (G) 6=∅. We want to show G has no matching, so it is enough to prove

that there exists an obstruction in G (see 2.2.2).

Let u ∈ L (A )∩L (G) be any element such that u : θ → I , where θ ∈ ord. Since

L (G) = {u( f ) : f is a saturated string in G} ,

implies that, u = u( f ) for some saturated string f : θ → M ∪W in G, and since u ∈ L (A )

is a class of all words u in I# such that there exists an accepting run of A on u, implies that

there exists an accepting run R : θ + 1→ S of A on u. Then R(θ ) =®. Now, we consider the

following cases:

(A1) If θ is a successor ordinal, then we will construct a 1-obstruction in G

(A2) If θ is a limit ordinal with cf(θ ) > ω, then we will construct a η-obstruction in G for

some η ∈ K .
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Case (A1).

Assume θ = β + 1, for some β ∈ ord, then R(β) = 0̄, since the only transition in S × I × S that

we have with R(θ ) =® is 0̄
M
−→®, thus

R(δ) ∈ {ī, i ∈ N} for each δ ≤ β ,

and u(β) = M .

Now we will construct a 1-obstraction in G. Thus, it is enough to show that µ( f )< 0, (see

2.2.1)

Claim that µ( f )< 0. Now by induction on δ ≤ β , we want to prove

R(δ) = µ( f � δ).

If δ = 0, then R(0) = 0̄= µ( f � 0) because

R(δ) ∈ {ī, i ∈ N} for each δ ≤ β ,

and the set of initial states is Z = {0̄, S©, N}.
Now assume the statement is true for δ, that is, R(δ) = µ( f � δ).
We want to prove it is true for δ+ 1≤ β . We know that

R(δ), R(δ+ 1) ∈ {ī, i ∈ N},

and there are just two transitions

�

ī, W, i + 1
�

, and
�

ī, M , i − 1
�

in S × I × S.

Now we consider the following two cases:

(B1) If (R(δ), u(δ), R(δ+ 1)) =
�

ī, W, i + 1
�

, then

R(δ) = ī, u(δ) =W, and R(δ+ 1) = i + 1.

Thus µ( f � δ) = i, by our assumption and R(δ) = ī. Now since f is a saturated sequence

in G and u(δ) =W, so we get f (δ) ∈W, which implies to

µ( f � (δ+ 1)) = µ( f � δ) + 1= i + 1.
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Therefore,

R(δ+ 1) = µ( f � δ+ 1).

(B2) If (R(δ), u(δ), R(δ+ 1)) =
�

ī, M , i − 1
�

, then

R(δ) = ī, u(δ) = M and R(δ+ 1) = i − 1.

Thus µ( f � δ) = i by our assumption and R(δ) = ī. Now since f is saturated in G and

u(δ) = M , so we get f (δ) ∈ M , which implies to

µ( f � (δ+ 1)) = µ( f � δ)− 1= i − 1.

Therefore,

R(δ+ 1) = µ( f � δ+ 1).

Thus, for each δ < θ , µ( f � δ) = R(δ).
Now we want to prove our claim, that is, µ( f )< 0. We know that

µ( f � β) = R(β) = 0̄,

so we get µ( f � β) = 0, and f (β) ∈ M because u(β) = M , and f is a saturated string in

G. Thus,

µ( f ) = µ( f � β)− 1= −1< 0.

Therefore, by using corollary 2.2.1 there is a 1-obstraction in G.

Case (A2).

Assume θ is a limit ordinal, then cf(θ )>ω because the only transitions leading to ® is either

�

0̄, M , ®
�

∈ S × I × S, or

�

supθ (R), statθ (R), R(θ )
�

∈ P (S)×P (S)×S,

so θ is either a successor ordinal or a limit ordinal with cf(θ ) > ω. Then we will construct a

ℵ1-obstruction G′ in G.

Let

A=
�

δ < θ : R(δ) ∈ { S©, N}
	

.

First we want to show A is a closed set in θ .
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Assume D ⊆ A, with |D| < θ . We want to show sup (D) ∈ A. We only need to consider the

case when sup (D) /∈ D. Then sup (D) is a limit ordinal (see 1.2.36). Assume δ = sup (D). Since

δ is a limit ordinal and R is an accepting run ofA on u, then

�

supδ(R), R(δ)
�

∈ T,

so by the definition of T, we get

supδ(R)∩
�

N , S©
	

6= ;, and R(δ) ∈
�

N , S©
	

so δ ∈ A. Therefore, A is a closed set in θ .

Now for each α ∈ A, α is either a successor ordinal or a limit ordinal with cf(α) =ω, by the

definition of the transitions set T ofA .

A is a well ordered by < on ordinals (see 1.2.5), so there is unique ordinal η and an order

preserving bijection g : η→ A, (see 1.2.6).

Now we want to prove η = ℵ1. Since R is an accepting run of A on u and θ is a limit

ordinal with cf(θ )>ω, then

�

supθ (R), statθ (R), R(θ )
�

=
�

supθ (R), statθ (R), ®
�

∈ T ,

thus

S©∈ statθ (R),

by the definition of T. Therefore,

�

δ < θ : R(δ) = S©
	

,

is stationary in θ , so it is unbounded and since

�

δ < θ : R(δ) = S©
	

⊆ A,

so we get A is unbounded, thus |A| ≥ cf(θ ) by the definition of cf(θ ) (see 1.2.11), and since

cf(θ ) > ω, so we get |A| ≥ ℵ1. Now since g is a bijection function, so we get |A| = |η|, and

since |η| ≤ η so we have ℵ1 ≤ η.

It is remains to prove η ≤ ℵ1. Assume by the way of a contradiction that η > ℵ1, thus

g(ℵ1) ∈ A. Assume g ′ = g � ℵ1, then rng(g ′) ⊆ g(ℵ1), since for each α ∈ rng(g ′), α = g(β) for
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some β < ℵ1, but g is an order preserving, then we get α= g(β)< g(ℵ1). Now since

ℵ1 = sup{δ : δ < ℵ1},

and g is a continuous function because g is strictly increasing and A is closed (see [4]), thus

g(ℵ1) = sup{g(δ) : δ < ℵ1}= sup
�

rng
�

g′
��

,

therefore, no element of g(ℵ1) is an upper bounded on rng(g′), because sup (rng(g′)) is the

least upper bounded, thus rng(g ′) is unbounded in g(ℵ1).
Now claim that,

cf(ℵ1) = cf(g(ℵ1)).

We want to prove the claim. Since g is an order preserving bijection so as g ′ : ℵ1 → rng(g′),
and rng(g ′) is unbounded in g(ℵ1), implies that

cf(ℵ1) = cf(g(ℵ1)),

by using lemma 1.2.20. Hence,

cf(g(ℵ1)) = ℵ1,

which is a contraction because g(ℵ1) ∈ A is either a successor ordinal or a limit ordinal with

cf(α) =ω. Therefore, η≤ ℵ1. Thus η= ℵ1.

For each β < η, let Lβ be a subgraph of G induced by

{ f (δ) : g(β)≤ δ < g(β + 1)}.

Let

G′ =
∨

{Lβ : β < η}.

We claim that, G′ is a η-obstruction in G. We will show that:

(C1) G′ is a saturated subgraph of G.

(C2) G′ is a η-obstruction.

Proof of (C1).

Vertices set of G′ = (M ′, W ′, E′) is a set{ f (δ) : δ < θ} by the definition of G′. First, we want

to show G′ is a saturated subgraph of G, that is, G′ is an induced (E′ = E ∩ (M ′ ×W ′)) and
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E [M ′] ⊆W ′. G′ is an induced since it is a join and E [M ′] ⊆W ′, since f is saturated in G.

Proof of (C2).

First, we want to construct a η-ladder L in G′, claim that L=
�

Lβ : β < η
�

. Now we want to

prove the claim, that is, we should prove the following:

L=
�

Lβ : β < η
�

is a sequence of pairwise disjoint subgraphs of G such thatG = (Gα : α≤ η)
is a η-tower, where Gα is the join of all Lβ for each β < α.

Since f is a string, then Lβ and Lα are disjoint when α 6= β . It is remains to show that,

G = (Gα : α≤ η) is a η-tower, that is, the following conditions hold:

(D1) G = (Gα : α≤ η) is a sequence of saturated subgraphs of G.

(D2) Gα is a subgraph of Gβ for each α < β ≤ η.

(D3) For every limit ordinal α≤ η, the graph Gα is the union of all Gβ with β < α.

Proof of (D1).

G = (Gα : α≤ η) is a sequence of saturated subgraphs of G. Since for every α≤ η, the vertices

set of Gα = (Mα, Wα, Eα) is

{ f (δ) : δ < g(α)}.

Then,

Eα = E ∩ (Mα ×Wα),

since

Gα =
∨

{Lβ : β < α},

and E(Mα) ⊆Wα, since f is a saturated string in G.

Proof of (D2) and (D2) .

It is clear from the definitions.

In order to show that G′ is a η−obstruction it is remains to satisfy the following:

(E1) G′ is the union of all rungs Lβ of L .

(E2) For each β < η, the rung Lβ of L is either a ηβ -obstruction for some ηβ < K ∩ η or Lβ
is trivial, that is, of the form (∅, {w},∅), for some w ∈W.

(E3) The set S′ = {β < η : Lβ is a 1-obstruction} is stationary in η.
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Proof of (E1).

It is clear from the definition of G′.

Proof of (E2).

First we want to prove for each β < η, the rung Lβ ofL is a ηβ -obstruction for some ηβ ∈ K∩η,

when

R(g(β)) = S©.

Moreover, ηβ = 1, because η= ℵ1, η < K ∩η, and

K = {1} ∪ {η : η > ℵ0 and η is a regular cardinal} .

Now we want to prove that, for each β < η, the rung Lβ of L is a 1-obstruction, that is, we

need to define a saturated string f ′ in Lβ with µ( f ′)< 0, by corollary 2.2.1.

First we want to define a saturated string f ′ in Lβ . It follows from the definition of T that

g(β + 1) is a successor ordinal since if g(β + 1) were a limit ordinal, then we must have

supg(β+1)(R)∩
�

N , S©
	

6= ;,

however,

{R(α) : g(β)< α < g(β + 1)} ⊆ {0̂, 1̂, 2̂, . . . }.

Assume g(β + 1) = g(β) + σ, such that σ is the unique ordinal with σ = ξ + 1. Define the

function f ′ : σ→ V such that

f ′(ν) = f (g(β) + ν) for every ν < σ.

It is clear that f ′ is a saturated string in Lβ . We will show by transfinite induction on δ where

0< δ ≤ ξ, that

R(δ) = Ûµ( f ′ � δ).

If δ = 1, then R(1) = 1̂, because the only transitions that we have start with S© are

�

S©, W, 1̂
�

,
�

S©, M , N
�

and
�

S©, M , S©
�

,

and if (R(0), u(0), R(1)) is either
�

S©, M , N
�

, or
�

S©, M , S©
�

, then ξ= 0, which is a contradic-
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tion because 0< δ ≤ ξ. Therefore, the only possibility that we have

(R(0), u(0), R(1)) =
�

S©, W, 1̂
�

,

thus R(1) = 1̂, and since u(0) =W, then f ′(0) ∈W implies that

µ
�

f ′ � 1
�

= µ
�

f ′ � 0
�

+ 1= 1,

therefore R(1) = Ûµ( f ′ � 1). And the rest of the prove as in case (A1).

It is remains to show that, µ( f ′)< 0.

Since g(β + 1) ∈ A, then g(β + 1) ∈
�

N , S©
	

, and since

g(β + 1) = g(β) + ξ+ 1,

thus R(g(β) + ξ) = 0̂, so µ( f ′ � g(β) + ξ) = 0, but we have f ′(g(β) + ξ) = M , then we get

µ
�

f ′
�

= µ
�

f ′ � g(β) + ξ
�

− 1,

which implies to µ( f ′)< 0.

Second we want to prove Lβ is trivial, that is, of the form (∅, {w},∅), for some w ∈ W

when

R(g(β)) = N

to prove that assume

R(g(β)) = N .

Now, since R is an accepting run ofA on u, so for each β < η,

(R(g(β)), u(g(β)), R(g(β) + 1)) = (N , a, t) ∈ T,

where t ∈ { S©, N} and a =W by the definition of transitions set T ofA , thus

g(β) + 1 ∈ A.

Now since Lβ is the subgraph of G induced by

{ f (δ) : g(β)≤ δ < g(β) + 1}= { f (g(β))},

but f (g(β)) ∈W, since u(g(β)) =W . This implies to Lβ is trivial.
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Proof of (E3).

Since
�

supθ (R), statθ (R), ®
�

∈ T,

then by the definition of T, we have

S©∈ statθ (R),

so

S′′ = {β < θ : R(β) = S©},

is a stationary set in θ . Not that g : η→ θ where rng(g) = A, is a continuous function because

g is a strictly increasing function and A is a closed set in θ and if ∆ is any club in η, thus g(∆)
is a club in θ (see [4]). Then,

g(∆)∩ S′′ 6= ;.

Thus, there is an element α ∈∆ such that g(α) ∈ S′′, so R(g(α)) = S©, hence the rung Lα is a

1-obstraction as we show that before in proof of E2, which implies to α ∈ S′, then α ∈ S′ ∩∆.

Hence

S′ ∩∆ 6= ;.

Therefore, S′ is a stationary set in η.



Chapter 3

Special ST-automata

In this part, we introduce a new concept of the automata, called a special ST-automata. We

study the relation between the concept of TF-automata and the concept of ST-automata. First,

we prove the equivalence relation between TF-automata and special ST-automata. Then, we

show that the ST-automata are stronger by giving a counter example of a language accepted

by ST-automata that is not accepted by any special ST-automata.

3.1 Basic Definitions

Definition 3.1.1. Let α be an ordinal, S be any set of states, P (S) be the set of all subsets of

S, and H : α→ S ∪P (S) be any function. Then for each β ∈ lim, β ≤ α we define

sup′
β
(H) = supβ(H)∩ S.

The following definitions are from [7].
First we recall a TF-automaton concept.

Definition 3.1.2. A TF-quasiautomaton is a system Q = (S, I , T ), where S is a finite set of

states, I is a finite alphabet and

T ⊆ (S ∪P (S))× I × S

is the set of transitions. A TF-automaton over I is a system A = (S, I , T,ψ,F ), where Q =
(S, I , T ) is a TF-quasiautomaton, denoted by Q(A ), ψ ∈ S ∪P (S) is the initial situation and

F ⊆ S ∪P (S) is the set of final situations.

The following is a definition of an accepting run of TF-automaton on a word.

36
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Definition 3.1.3. Let A = (S, I , T,ψ,F ) be a TF-automaton over I and u : α→ I be a word

over I , α ∈ ord. A run ofA on u (called II-run in [6] ) is a function H : α+1→ S∪P (S) such

that:

1. H(0) =ψ.

2. H(β) ∈ S, for every successor ordinal β < α.

3. H(β) = sup′
β
(H) for every limit ordinal β ≤ α.

4. (H(β), u(β), H(β + 1)) ∈ T, for every β < α.

A run H ofA on u is an accepting run if and only if H(α) ∈ F .

Define L (A ) to be the class of all words u in I# such that there exists an accepting run of

A on u.

Now we define a special ST-automaton over an alphabet.

Definition 3.1.4. LetA = (S, I , T, Z , F) be a ST-automaton over I and (A, B, s) ∈P (S)×P (S)×
S be a triple. A is a special ST-automaton over I if and only if S is a finite set of states and the

following condition holds:

(A, B, s) ∈ T if and only if (A, s) ∈ T.

Now we show the equivalent relation between TF-automata and special ST-automata by the

following main theorem.

3.2 Main Results

Theorem 3.2.1. Let I be a finite alphabet andC be a subclass of I#. Then the following conditions

are equivalent:

1. C =L (A ′) whereA ′ is a TF-automaton over I .

2. C =L (A ) whereA is a special ST-automaton over I .

Proof. (2) =⇒ (1).
Assume C =L (A ) such thatA = (S, I , T, Z , F) is a special ST-automaton over I . We want

to prove (1). That we should do the following:

(A1) ConstructA ′ = (S′, I , T ′,ψ,F ), a TF-automaton over I .
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(A2) C =L (A ′).

Proof of (A1).

Now we want to constructA ′ a TF-automaton over I . AssumeA ′ = (S′, I , T ′,ψ,F ), such

that S′ = S × S ∪ S. Define the function g :P (S′)→P (S) as the following:

g(A) = {s ∈ S : s ∈ A, or there is s′ ∈ S such that
�

s, s′
�

∈ A, or
�

s′, s
�

∈ A}.

DefineA ′ = (S′, I , T ′,ψ,F ) as follows:

ψ= Z ,

F = F ∪ A∪ {B ⊆ S′ : B 6= ;and (g(B), s) ∈ T for some s ∈ F} ∪ {
�

s, s′
�

: s′ ∈ F}, where

A=







{ψ} if Z ∩ F 6= ;

; if Z ∩ F = ;
.

It is remains to define the transition relation T ′ such that T ′ ⊆ (S′ ∪P (S′))× I × S′. Assume

T ′ = T1 ∪ T2 ∪ T3 ∪ T4,

where
T1 = T ∩ S × I × S,

T2 = {(ψ, a, s) :
�

s′, a, s
�

∈ T for some s′ ∈ψ},

T3 = {((s1, s2), a, s) : (s2, a, s) ∈ T},

T4 = {(B, a, (s1, s2)) : B 6= ;, (g(B), s1) ∈ T, and (s1, a, s2) ∈ T}.

It is clear that S′ is a finite set. Now since Z ⊆ S, so we getψ ∈ S′∪P (S′) and F ⊆ S′∪P (S′)
from the definition. ThereforeA ′ = (S′, I , T ′,ψ,F ) is a TF-automaton over I .

Proof of (A2).

Now we want to show C =L (A ′), and since C =L (A ) by (1), that means we want to

prove L (A ) =L (A ′). Thus we should prove the following:

(B1) L (A ) ⊆L (A ′).

(B2) L (A ′) ⊆L (A ).

Proof of (B1): L (A ) ⊆L (A ′).
Assume u ∈ L (A ), such that u : α→ I , where α ∈ ord, and we want to prove u ∈ L (A ′),

so it is enough to prove there is an accepting run H ofA ′ on u.
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If u is the empty word, then dom(u) = α= 0, and H : 1→ S′ ∪P (S′), such that

H(0) = H(α) =ψ,

is an accepting run ofA ′ on u. Therefore, u ∈ L (A ′).
Now assume u is a nonempty word. Since u ∈ L (A ), then there is an accepting run

R : α+ 1→ S ofA on u. Define H : α+ 1→ S′ ∪P (S′) such that

H(β) =







































ψ if β = 0,

R(1) if β = 1,

R(β) if β = δ+ 1, δ ∈ succ, δ+ 1≤ α,

(R(δ), R(δ+ 1)) if β = δ+ 1, δ ∈ lim, δ+ 1≤ α,

sup′
β
(H) if β ∈ lim, δ ≤ α.

Now we want to show that H is an accepting run of A ′ on u, that is, we want to show

H(α) ∈ F , and satisfy the following conditions:

1. H(0) =ψ.

2. H(β) ∈ S′, for every successor ordinal β < α.

3. H(β) = sup′
β
(H), for every limit ordinal β ≤ α.

4. (H(β), u(β), H(β + 1)) ∈ T ′, for every β < α.

It is clear that 1, 2 and 3 are hold from the definition of H.

Now we want to prove condition (4).

First assume β = 0

(H(0), u(0), H(1)) = (ψ, u(0), R(1)) ∈ T ′,

because

T2 = {(ψ, a, s) :
�

s′, a, s
�

∈ T for some s′ ∈ψ} ⊆ T ′,

and

(R(0), u(0), R(1)) ∈ T, R(0) ∈ Z =ψ,

since R is an accepting run ofA on u.

Second let β be a successor ordinal such that 0< β < α and we want to prove

(H(β), u(β), H(β + 1)) ∈ T ′.
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Assume β = δ+ 1, for some δ ∈ ord. Then we have the following cases:

• δ = 0.

• δ is a successor ordinal.

• δ is a limit ordinal.

Assume δ = 0, or δ is a successor ordinal, then we have

(H(β), u(β), H(β + 1)) = (R(β), u(β), R(β + 1)) ∈ T,

because R is an accepting run ofA on u, and since

T1 = T ∩ (S × I × S) ⊆ T ′,

implies to (H(β), u(β), H(β + 1)) ∈ T ′.

Now let δ be a limit ordinal and we want to show (H(β), u(β), H(β + 1)) ∈ T ′. We have

(H(β), u(β), H(β + 1)) = (H(δ+ 1), u(δ+ 1), H(δ+ 2))

= ((R(δ), R(δ+ 1)), u(δ+ 1), R(δ+ 2)),

and since R is an accepting run ofA on u, so we get

(R(δ+ 1), u(δ+ 1), R(δ+ 2)) ∈ T,

but

T3 = {((s1, s2), a, s) : (s2, a, s) ∈ T} ⊆ T ′,

implies to (H(β), u(β), H(β + 1)) ∈ T ′.

Finally, assume β < α be a limit ordinal and we want to prove (H(β), u(β), H(β + 1)) ∈ T ′.

Claim that, supβ(R) = g
�

sup′
β
(H)

�

, for every limit ordinal β ≤ α. Now let β ≤ α be a limit

ordinal and we want to prove our claim, assume s ∈ supβ(R), where

supβ(R) = {s
′ ∈ S : {δ < β : R(δ) = s′} is cofinal in β},

which implies to

C = {δ < β : R(δ) = s} is cofinal in β .
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Assume C ′ is the subset of C consisting of ordinals of the form ζ + 2 for some ordinal ζ,

C ′′ is the subset of C consisting of ordinals of the form ζ + 1 for some limit ordinal ζ, and

C ′′′ = C ∩ {δ : δ < β , δ ∈ lim}.
For each δ ∈ C ′, we have H(δ) = R(δ), so if C ′ is unbounded in β , then s ∈ supβ(H). Thus

s ∈ sup′β(H) and by the definition of g, we get s ∈ g
�

sup′β(H)
�

. Otherwise C ′′ is unbounded

in β , or C ′′′ is unbounded in β .

Assume C ′′ is unbounded in β . For each δ ∈ C ′′ with δ = ζ+ 1, and ζ is a limit ordinal we

have

H(δ) = (R(ζ), R(ζ+ 1)) = (s′, s)

for some s′ ∈ S. Since S is a finite set, then there is s′ ∈ S such that

{δ ∈ C ′′ : H(δ) =
�

s′, s
�

}

is unbounded in β by lemma 1.2.39. Thus,

�

s′, s
�

∈ sup′
β
(H)

and by the definition of g, we get s ∈ g
�

sup′β(H)
�

.

Now assume C ′′′ is unbounded in β . For each δ ∈ C ′′′, we have

H(δ+ 1) = (R(δ), R(δ+ 1)) = (s, s′)

for some s′ ∈ S. Since S is a finite set, there is s′ ∈ S such that

{δ+ 1< β : H(δ+ 1) =
�

s, s′
�

}

is unbounded in β by lemma 1.2.39. Thus

�

s, s′
�

∈ sup′
β
(H)

and by the definition of g, we get s ∈ g
�

sup′β(H)
�

. From above we get supβ(R) ⊆ g
�

sup′
β
(H)

�

.

It is remains to prove g
�

sup′
β
(H)

�

⊆ supβ(R). Assume s ∈ g
�

sup′
β
(H)

�

, then by the defini-

tion of g we get either s ∈ sup′
β
(H), or (s, s′) ∈ sup′

β
(H) for some s′ ∈ S, or (s′, s)∈ sup′

β
(H) for

some s′ ∈ S.

1. Assume s ∈ sup′
β
(H), and let

C = {δ < β : H(δ) = s} is cofinal in β .



CHAPTER 3. SPECIAL ST-AUTOMATA 42

Then R(δ) = H(δ) for each δ ∈ C , and δ = γ+ 2, for some γ ∈ ord from the definition

of H, which implies to

{δ < β : R(δ) = s}

is unbounded in β , therefore s ∈ supβ(R).

2. Assume(s, s′) ∈ sup′
β
(H), for some s′ ∈ S. Let

C = {δ < β : H(δ) =
�

s, s′
�

} is cofinal in β .

For each δ ∈ C , there is a limit ordinal ζ such that δ = ζ+1 by the definition of H. Then

R(ζ) = s for each ζ such that ζ+ 1 ∈ C . Then

{ζ < δ : R(ζ) = s}

is unbounded in β . Now since

{ζ < δ : R(ζ) = s} ⊆ {γ < β : R(γ) = s},

which implies to

{γ < β : R(γ) = s},

is unbounded in β . Thus s ∈ supβ(R).

3. Assume (s′, s) ∈ sup′
β
(H) for some s′ ∈ S. Let

C = {δ < β : H(δ) =
�

s′, s
�

} is cofinal in β .

Then, R(δ) = s for each δ ∈ C , δ ∈ lim and since

C ⊆ {γ < β : R(γ) = s}

so we get

{γ < β : R(γ) = s}

is unbounded in β . Thus s ∈ supβ(R).

From above we get g
�

sup′
β
(H)

�

⊆ supβ(R). Therefore supβ(R) = g
�

sup′
β
(H)

�

.

Now, letβ < α be a limit ordinal and we want to prove (H(β), u(β), H(β + 1)) ∈ T ′. Then

we have two cases: either cf(β) =ω, or cf(β)>ω.
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First letβ < α be a limit ordinal with cf(β) =ω. Since

(H(β), u(β), H(β + 1)) =
�

sup′
β
(H), u(β), (R(β), R(β + 1))

�

and
�

supβ(R), R(β)
�

∈ T, (R(β), u(β), R(β + 1)) ∈ T,

because R is an accepting run ofA on u. Now assume sup′
β
(H) 6= ; and since

supβ(R) = g
�

sup′
β
(H)

�

and T4 = {(B, a, (s1, s2)) : B 6= ;, (g(B), s1) ∈ T, (s1, a, s2) ∈ T} ⊆ T ′,

thus we have
�

sup′
β
(H), u(β), (R(β), R(β + 1))

�

∈ T ′,

which implies to (H(β), u(β), H(β + 1)) ∈ T ′. It is remains to prove sup′
β
(H) 6= ;. Assume by

the way of a contradiction that

sup′
β
(H) = supβ(H)∩ S′ = ;,

and since S′ is a finite set because S is finite, so for each s ∈ S′,

s /∈ supβ(H) =
�

s′ ∈ S′ :
�

δ < β : H(δ) = s′
	

cofinal in β
	

,

thus for each s ∈ S′,

{δ < β : H(δ) = s} bounded in β .

Take γ=mix {δ < β : H(δ) = s, s ∈ S′} , thus γ+1< β since β ∈ lim, and H(γ+ 1) ∈ S′ by the

definition of H. Now let H(γ+ 1) = t for some t ∈ S′, and

{δ < β : H(δ) = t} cofinal in β ,

then t ∈ supβ(H), therefore

t ∈ supβ(H)∩ S′ = sup′
β
(H),

which is a contradiction. Therefore sup′
β
(H) 6= ;.

Second assume β < α is a limit ordinal with cf(β)>ω.

Since R is an accepting run ofA on u, so we get

�

supβ(R), statβ(R), R(β)
�

∈ T,
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which implies to
�

supβ(R), R(β)
�

∈ T,

becauseA is a special ST-automaton over I , also we have (R(β), u(β), R(β + 1)) ∈ T because

R is an accepting run ofA on u, so we get (H(β), u(β), H(β + 1)) ∈ T ′, as above.

Now we want to show H(α) ∈ F . Then we discuss the following cases:

1. Assume α= 0.

If α= 0, then H(0) =ψ ∈ F .

2. If α= β + 1, and β is a successor ordinal.

Then H(α) = R(α), by the definition of H. Since R is an accepting run ofA on u, so we

get R(α) ∈ F ⊆F , thus implies to H(α) ∈ F .

3. If α= β + 1, andβ is a limit ordinal.

Then

H(α) = H(β + 1) = (R(β), R(β + 1)),

by the definition of H and since R is an accepting run of A on u, so we get R(α) =
R(β + 1) ∈ F, but {(s, s′) : s′ ∈ F} ⊆ F , which implies to H(α) ∈ F .

4. If α is a limit ordinal with cf(α) =ω.

By the definition of H,

H(α) = sup′
α
(H),

and since

{B ⊆ S : B 6= ;, (g(B), s) ∈ T for some s ∈ F} ⊆ F ,

so it is enough to show that sup′
α
(H) 6= ; and

�

g
�

sup′
α
(H)

�

, s
�

∈ T, for some s ∈ F. By the

same away above we can prove that sup′
α
(H) 6= ;. Now we know R is an accepting run

ofA on u, then
�

supα(R), R(α)
�

∈ T and R(α) ∈ F,

but

supα(R) = g
�

sup′
α
(H)

�

,

then sup′
α
(H) ∈ F , which implies to H(α) ∈ F .

5. If α is a limit ordinal with cf(α)>ω.

Since R is an accepting run ofA on u, we get

�

supα(R), statα(R), R(α)
�

∈ T,
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and sinceA is a special ST-automaton over I , so we get

�

supα(R), R(α)
�

∈ T,

and as above we get to H(α) ∈ F .

Then H is an accepting run ofA ′ on u, so u ∈ L (A ′). Therefore L (A ) ⊆L (A ′).

Proof of (B2): L (A ′) ⊆L (A ).
Take u ∈ L (A ′), such that u : α→ I where α ∈ ord, we want to prove u ∈ L (A ). Thus

there is an accepting run H : α+1→ S′∪P (S′) ofA ′ on u. That we should define an accepting

run R : α+ 1→ S ofA on u.

Assume u = ;, then dom(u) = 0. Therefore ψ = H(0) = H(α) ∈ F , because H is an

accepting run of A ′ on u, thus Z ∩ F 6= ; by the definition of F , so there exist an element

s ∈ Z ∩ F. Then define R(0) = R(α) = s, which is an accepting run ofA on u.

Now assume u 6= ;. Since ; /∈ F and (;, a, s′) /∈ T ′ for some s′ ∈ S′, a ∈ I , it follows that

ψ= H(0) 6= ;.
We define R as the following:

R(0) =







H(0) if H(0) ∈ S

s0 if H(0) ∈ P (S),

for some s0 ∈ H(0) =ψ is a fixed element and

R(β) =







































H(1) if β = 1,

H(β) if β = δ+ 1, δ ∈ succ, and β ≤ α,

s if H(β) = (s′, s) for some s′ ∈ S, β = δ+ 1, δ ∈ lim, and β ≤ α,

s if H(β) = (β + 1) = (s, s′) for some s′ ∈ S, β ∈ lim, and β < α,

s if
�

g
�

sup′
α
(H)

�

, s
�

∈ T, for some s ∈ F, and α ∈ l im.

Now we want to show that R is an accepting run of A on u, that is, we want to show R is

initial and final run, that is, R(0) ∈ Z and R(α) ∈ F and satisfy the following conditions:

1. For each β < α we have

(R(β), u(β), R(β + 1)) ∈ T.
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2. For each β ≤ α that is a limit ordinal with cf(β) =ω, we have

(supβ(R), R(β)) ∈ T.

3. For each β ≤ α that is a limit ordinal with cf(β)>ω, we have

(supβ(R), statβ(R), R(β)) ∈ T.

It is clear from the definition of R that is R(0) ∈ Z . Now we want to prove R(α) ∈ F. Since

u 6= ;, then α 6= 0. We will discuss the following cases:

1. Assume α= δ+ 1, and δ is a successor ordinal.

Then R(α) = H(α) ∈ F because H is an accepting run ofA ′ on u, which is state and by

the definition of F we get R(α) ∈ F.

2. Assume α= δ+ 1, and δ is a limit ordinal.

Then,

R(α) = s such that H(α) = H(δ+ 1) =
�

s′, s
�

for some s′ ∈ S,

and since H is an accepting run of A ′ on u, which implies to H(α) ∈ F , so we get

(s′, s) ∈ F and by the definition of F , we get s ∈ F, therefore R(α) ∈ F.

3. Assume α is a limit ordinal.

Then by the definition of R, we get

R(α) = s where s ∈ F and
�

g
�

sup′
α
(H)

�

, s
�

∈ T,

which implies to R(α) ∈ F.

Now we want to prove first condition, that is, for each β < α, we have

(R(β), u(β), R(β + 1)) ∈ T.

First assume β = 0, so we have two cases either R(0) = H(0) when H(0) ∈ S, or R(0) = s0,

when H(0) ∈ P (S).
If R(0) = H(0) when H(0) ∈ S, then

(R(0), u(0), R(1)) = (H(0), u(0), H(1)) ∈ T ′,



CHAPTER 3. SPECIAL ST-AUTOMATA 47

since H is an accepting run ofA ′ on u, and by the definition of T ′, we get

(R(0), u(0), R(1)) ∈ T1,

therefore (R(0), u(0), R(1)) ∈ T.

Now, if R(0) = s0 when H(0) ∈ P (S), then

(R(0), u(0), R(1)) = (s0, u(0), H(1)),

and since H is an accepting run of A ′ on u, then (ψ, u(0), H(1)) = (H(0), u(0), H(1)) ∈ T ′,

and by the definition of T ′, we get (R(0), u(0), R(1)) ∈ T.

Assume β = δ + 1 such that δ is a successor ordinal 0 < β < α, we want to prove

(R(β), u(β), R(β + 1)) ∈ T. We have

(R(β), u(β), R(β + 1)) = (H(β), u(β), H(β + 1)) ∈ T ′,

because H is an accepting run ofA ′ on u, thus we get by the definition of T ′,

(R(β), u(β), R(β + 1)) ∈ T1,

therefore (R(β), u(β), R(β + 1)) ∈ T.

Now assume β = δ + 1 such that δ is a limit ordinal 0 < β < α, and we want to show

(R(β), u(β), R(β + 1)) ∈ T. From the definition of R we get

R(β) = s such that H(β) =
�

s′, s
�

for some s′ ∈ S

and since H is an accepting run ofA ′ on u, so we get

��

s′, s
�

, u(β), R(β + 1)
�

= (H(β), u(β), H(β + 1)) ∈ T ′,

and since

T3 = {((s1, s2), a, s) : (s2, a, s) ∈ T} ⊆ T ′,

so we get

(s, u(β), R(β + 1)) ∈ T,

and since R(β) = s, because H(β) = (s′, s), then (R(β), u(β), R(β + 1)) ∈ T.

Finally assume β < α be a limit ordinal, and we want to show (R(β), u(β), R(β + 1)) ∈ T.
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By the definition of R, we get

R(β) = s and R(β + 1) = s′ such that H(β + 1) =
�

s, s′
�

for some s′ ∈ S.

Now

(R(β), u(β), R(β + 1)) =
�

s, u(β), s′
�

,

and since H is an accepting run ofA ′ on u, so we get

(H(β), u(β), H(β + 1)) ∈ T ′ and H(β) = sup′
β
(H),

which implies to

(H(β), u(β), H(β + 1)) =
�

sup′
β
(H), u(β),

�

s, s′
�

�

∈ T ′,

and by the definition of T4 we get
�

s, u(β), s′
�

∈ T,

and since (R(β), u(β), R(β + 1)) = (s, u(β), s′), (R(β), u(β), R(β + 1)) ∈ T.

Now we want to prove second condition, that is, for each β ≤ α that is a limit ordinal with

cf(β) =ω,

(supβ(R), R(β)) ∈ T.

Since H is an accepting run ofA ′ on u, so we get

(H(β), u(β), H(β + 1)) ∈ T ′ and H(β) = sup′
β
(H),

which implies to

(H(β), u(β), H(β + 1)) =
�

sup′
β
(H), u(β), H(β + 1)

�

∈ T ′.

Now by the definition of R, we get

R(β + 1) = s such that H(β + 1) =
�

s′, s
�

for some s′ ∈ S,

thus

(H(β), u(β), H(β + 1)) =
�

sup′
β
(H), u(β),

�

s′, s
�

�

∈ T ′,
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and by the definition of T ′, we get

�

sup′
β
(H), u(β),

�

s′, s
�

�

∈ T4,

which implies to
�

g
�

sup′
β
(H)

�

, s′
�

∈ T,

and we know that g
�

sup′
β
(H)

�

= supβ(R), therefore

�

supβ(R), s′
�

∈ T

and since

H(β + 1) =
�

s′, s
�

= (R(β), R(β + 1))

then
�

supβ(R), R(β)
�

∈ T.

Now we want to prove condition three, that is, for each β ≤ α that is a limit ordinal with

cf(β)>ω, we have

(supβ(R), statβ(R), R(β)) ∈ T.

SinceA is a special ST-automaton, then

(supβ(R), statβ(R), R(β)) ∈ T if and only if (supβ(R), R(β)) ∈ T,

and we show that (supβ(R), R(β)) ∈ T, for every limit ordinal β ≤ α. Then R is an accepting

run ofA on u, thus u ∈ L (A ). Therefore L (A ′) ⊆L (A ). Then from (B1) and (B2) we get

L (A ′) =L (A ), that is proof of (A2).

(1) =⇒ (2).
Assume C = L (A ′), such that A ′ = (S′, I , T ′,ψ,F ) is a TF-automaton over I . We want

to prove (2), that we should do the following:

(A1) ConstructA = (S, I , T, Z , F), a special ST-automaton over I .

(A2) C = L(A ).

Proof of (A1).
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We want to constructA = (S, I , T, Z , F), a special ST-automaton over I . Define

S = S′ ∪P
�

S′
�

,

Z = {ψ},

F =F ,

T = T ′ ∪ T1 ∪ T2,

where
T1 = {(A, B) : A⊆ S and B = A∩ S′}, and

T2 = {(A, C , B) : A, C ⊆ S and B = A∩ S′}.

First we want to show that,A is a special ST-automaton. SinceA ′ is a TF-automaton over I ,

then S′ is a finite set of states, so S is a finite set and from the definition of T1 and T2, we get

for each element (A, B, s) ∈ P (S)×P (S)× S,

(A, B, s) ∈ T if and only if (A, s) ∈ T.

Therefore,A is a special ST-automaton over I .

Proof of (A2).

Now we want to show C =L (A ), and since C =L (A ′) by (1), that means we want to

prove L (A ) =L (A ′). Thus we should prove the following:

(B1) L (A ′) ⊆L (A ).

(B2) L (A ) ⊆L (A ′).

Proof of (B1): L (A ′) ⊆L (A ).
Assume u ∈ L (A ′). We want to prove u ∈ L (A ), so it is enough to show that there is an

accepting run R ofA on u. Now since u ∈ L (A ′), then there is an accepting run H : α+ 1→
S′ ∪P (S′) ofA ′ on u. Define R : α+ 1→ S ofA on u, such that

R(β) = H(β) for each β ≤ α.

Now we want to show that R is an accepting run of A on u, that is, we want to show R is an

initial run and a final run, that is, R(0) ∈ Z , R(α) ∈ F, and satisfy the following conditions:

1. For each β < α we have

(R(β), u(β), R(β + 1)) ∈ T.
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2. For each β ≤ α that is a limit ordinal with cf(β) =ω, we have

(supβ(R), R(β)) ∈ T.

3. For each β ≤ α that is a limit ordinal with cf(β)>ω, we have

(supβ(R), statβ(R), R(β)) ∈ T.

First we want to show R is initial and final. By the definition of R, we get R(0) = H(0) = ψ,

because H is an accepting run ofA ′ on u, and since Z = {ψ}, which implies to R(0) ∈ Z . Now

we want to show R is final, again by the definition of R, we get R(α) = H(α) ∈ F , because H

is an accepting run of A ′ on u and by the definition of A , we get F = F , which implies to

R(α) ∈ F.

Now we want to prove first condition, that is, for each β < α, we have

(R(β), u(β), R(β + 1)) ∈ T.

Since H is an accepting run ofA ′ on u, then for each β < α we have

(H(β), u(β), H(β + 1)) ∈ T ′,

but T ′ ⊆ T, and R(β) = H(β) for each β ≤ α, which implies to (R(β), u(β), R(β + 1)) ∈ T for

each β < α.

We want to prove second condition, that is, for each β ≤ α that is a limit ordinal with

cf(β) =ω we have

(supβ(R), R(β)) ∈ T.

Let β ≤ α be a limit ordinal with cf(β) = ω so by the definition of R, we get R(β) = H(β) =
sup′

β
(H), because H is an accepting run ofA ′ on u, but we know by the definition of sup′

β
(H),

that

sup′
β
(H) = supβ(R)∩ S′,

and T1 = {(A, B) : A⊆ S and B = A∩ S′} ⊆ T, thus (supβ(R), R(β)) = (supβ(R), sup′
β
(H)) ∈ T.

Finally the third condition holds becauseA is a special ST-automaton and second condition

holds.

Proof of (B2): L(A ) ⊆ L(A ′).
Assume u ∈ L(A ). We want to prove u ∈ L(A ′), so it is enough to show that there is an
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accepting run H ofA on u. Now since u ∈ L(A ), then there is an accepting run R : α+1→ S

ofA on u. Define H : α+ 1→ S′ ∪P (S′) ofA ′ on u, such that

H(β) = R(β) for each β ≤ α.

Now we want to show that H is an accepting run ofA ′ on u, that is, we want to show H(α) ∈ F
and satisfy the following conditions:

1. H(0) =ψ.

2. H(β) ∈ S′, for every successor ordinal β < α.

3. H(β) = sup′
β
(H) for every limit ordinal β ≤ α.

4. (H(β), u(β), H(β + 1)) ∈ T ′, for every β < α.

First we want to prove H(α) ∈ F . By the definition of H, we get H(α) = R(α) ∈ F, because R

is an accepting run ofA on u, and since F =F , which implies to H(α) ∈ F .

Now we want to prove first condition, that is, H(0) = ψ. By the definition of H, we get

H(0) = R(0) ∈ Z , because R is an accepting run ofA on u, but Z = {ψ}, so we get H(0) =ψ.

The second condition holds since for every successor ordinal β = δ+1, δ ∈ ord and β < α,

we have

(R(δ), u(δ), R(δ+ 1)) ∈ T,

but T = T ′ ∪ T1 ∪ T2, which implies to

(R(δ), u(δ), R(δ+ 1)) ∈ T ′, and

T ′ ⊆
�

S′ ∪P
�

S′
��

× I × S′,

thus we get R(β) = R(δ+ 1) ∈ S′.

We want to prove third condition, that is, H(β) = sup′
β
(H) for every limit ordinal β ≤ α.

Let β be any limit ordinal, β ≤ α. Then either cf(β) =ω, or cf(β)>ω.

First assume cf(β) =ω, and since R is an accepting run ofA on u, then
�

supβ(R), R(β)
�

∈ T,

which implies to
�

supβ(R), R(β)
�

∈ T1, but T1 = {(A, B) : A⊆ S and B = A∩ S′}, then

R(β) = supβ(R)∩ S′, and supβ(H) = supβ(R),

thus

R(β) = supβ(H)∩ S′ = sup′
β
(H),
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but we have by the definition of H, that H(α) = R(α), therefore H(α) = sup′
β
(H).

Now let cf(β)>ω, and since R is an accepting run ofA on u, then
�

supβ(R), statβ(R), R(β)
�

∈
T, which implies to

�

supβ(R), statβ(R), R(β)
�

∈ T2, but T2 = {(A, C , B) : A, C ⊆ S and B = A∩S′},
then

R(β) = supβ(R)∩ S′, and supβ(H) = supβ(R),

thus

R(β) = supβ(H)∩ S′ = sup′
β
(H),

but we have by the definition of H, that H(α) = R(α), therefore H(α) = sup′
β
(H).

Now we want to satisfy the last condition. Since R is an accepting run of A on u, so we

get for each β < α

(R(β), u(β), R(β + 1)) ∈ T,

thus by the definition of T,

(R(β), u(β), R(β + 1)) ∈ T ′

and by the definition of H, we get (H(β), u(β), H(β + 1)) ∈ T ′. Therefore H is an accepting

run ofA ′ on u, then u ∈ L (A ′). ThusL (A ) ⊆L (A ′). From (B1) and (B2) we getL (A ) =
L (A ′).

The following example and theorem are showing that the concept of ST-automata is stronger

than from the concept of TF-automata.

Example 3.2.2. LetA = (S, I , T, Z , F) be a ST-automaton over an alphabet I = {a} , such that

S = {z, f } ,

Z = {z} ,

F = { f } , and

T = {(z, a, z), ({z} , z), ({z} , {z} , f )} .

Define u :ω1→ I , by u(δ) = a, for each δ < ω1, and R :ω1 + 1→ S, as the following:

R(δ) = z, for each δ < ω1, and

R(ω1) = f .

Then R is an accepting run ofA on u. Therefore, L (A ) = {u} . ButA is not a ST-special au-

tomaton over I . Assume by the way of a contradiction that there exists a special ST-automaton,
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that is, for any A, B ⊆ S and s ∈ S, the following condition holds:

(A, s) ∈ T if and if (A, B, s) ∈ T.

Therefore ({z} , f ) ∈ T, because ({z} , {z} , f ) ∈ T. Then there exists a limit ordinal α < ω1,

with cf(α) =ω, such that
�

supα(R), R(α)
�

= ({z} , f ).

Now define u′ : α→ I , by u(δ) = a, for each δ < α, and R′ : α+ 1→ S, as the following:

R′(δ) = z, for each δ < α, and

R′(α) = f .

Hence R′ is an accepting run ofA on u′. Therefore u′ ∈ L (A )which is a contradiction because

L (A ) = {u} and u 6= u′. Hence,A is not a special ST-automaton over I .

Theorem 3.2.3. There does not exists a special ST-automatonA = (S, I , T, Z , F) over an alphabet

I = {a} such that L (A ) = {u} , where u :ω1→ I , and S is a countable set.

Proof. Assume by the way of a contradiction there is a special ST-automatonA = (S, I , T, Z , F)
such that L (A ) = {u} , u :ω1→ I , I = {a} and S is a countable set. Now sinceA is a special

ST-automaton, that is, for any A, B ⊆ S and s ∈ S, the following condition holds:

(A, s) ∈ T if and if (A, B, s) ∈ T,

and since L (A ) = {u} , then there exists an accepting run R : ω1 + 1 → S of A on u. Then

R(0) ∈ Z , R(ω1) ∈ F, and the following three conditions hold:

1. For each β < ω1 we have

(R(β), u(β), R(β + 1)) ∈ T.

2. For each β ≤ω1 that is a limit ordinal with cf(β) =ω, we have

(supβ(R), R(β)) ∈ T.

3. For each β ≤ω1 that is a limit ordinal with cf(β)>ω, we have

(supβ(R), statβ(R), R(β)) ∈ T.
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Now since cf(ω1) =ω1 >ω, then by third condition we get

(supω1(R), statω1(R), R(ω1)) ∈ T,

and sinceA is a special ST-automaton, then (supω1(R), R(ω1)) ∈ T.

Assume first S is a finite set.

Now since

supω1(R) = {s ∈ S : {γ < ω1 : R(γ) = s} is cofinal in ω1},

then let
supω1

(R) = {s1, s2, s3, . . . , sn} , and

S \ supω1(R) = {sn+1, sn+2, . . . , sm} .

We know R is an accepting run of A on u, and since S \ supω1(R) = {sn+1, sn+2, . . . , sm} , so

that for each i = n+ 1, n+ 2, . . . , m, there exists αi <ω1, such that R(α) 6= si for α > αi.

Choose δ to be largest element in {αn+1,αn+2, . . . ,αm} , and since

supω1(R) = {s1, s2, s3, . . . , sn} ,

so that there exists
β1 > δ such that R(β1) = s1,

β2 > β1 such that R(β2) = s2,
...

...

βn > βn−1 such that R(βn) = sn,

βn+1 > βn such that R(βn+1) = s1,

βn+2 > βn+1 such that R(βn+2) = s2,
...

...

βn+n > βn+(n−1) such that R(βn+n) = sn,
...

...

and we will keep doing that infinitely many times we will get to the following sequence:

β1 < β2 < · · ·< βn < βn+1 < · · ·< βn+n < βn+n+1 < . . . .

Define

θ = sup {βi : i = 1, 2, . . . } .

It is clear that θ ∈ lim, cf(θ ) =ω and supθ (R) = supω1
(R), and since (supω1(R), R(ω1)) ∈ T, so
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we get

(supθ (R), R(ω1)) ∈ T.

Now define the word,

u′ : θ → I such that u′(α) = a for each α < θ , and

R′ : θ + 1→ S such that
R′(γ) = R(γ) for each γ < θ , and

R′(θ ) = R(ω1).

It is remains to show R′ is an accepting run of A on u′, that is, R′(0) ∈ Z , R(θ ) ∈ F, and the

following three conditions hold:

1. For each β < θ we have

(R′(β), u′(β), R′(β + 1)) ∈ T.

2. For each β ≤ θ that is a limit ordinal with cf(β) =ω we have

(supβ(R
′), R′(β)) ∈ T.

3. For each β ≤ θ that is a limit ordinal with cf(β)>ω, we have

(supβ(R
′), statβ(R

′), R′(β)) ∈ T.

It is clear that R′ is an accepting run of A on u′, by the definition of R and since R is an

accepting run ofA on u. Therefore u′ ∈ L (A ) which is a contradiction becauseL (A ) = {u}
and u 6= u′. Hence {u} is not accepting by a special ST-automaton.

Second assume S is an infinite set and since

supω1(R) = {s ∈ S : {γ < ω1 : R(γ) = s} is cofinal in ω1},

then we have the following cases:

1. The set supω1
(R), and S \ supω1(R) are infinite.

2. The set supω1
(R) is finite and S \ supω1(R) is infinite.

3. The set supω1
(R), is infinite and S \ supω1(R) is finite.

First we will discuss case (1):
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Assume,

supω1
(R) = {s1, s2, s3, . . .} , and

S \ supω1(R) = {t1, t2, t3, . . . } .

We know R is an accepting run ofA on u, and since S \ supω1(R) = {t1, t2, t3, . . . } , so that for

each i = 0,1, 2, . . . there exists αi <ω1 such that R(α) 6= si for α > αi.

Choose

δ = sup {αi : i = 1,2, 3, . . .} ,

then δ ∈ lim, and δ < ω1, and since

supω1(R) = {s1, s2, s3, . . .} ,

so that there exists
β1 > δ such that R(β1) = s1,

β2 > β1 such that R(β2) = s2,

β3 > β2 such that R(β3) = s3,
...

...

βω = sup {βi : i < β}

βω+1 > βω such that R(βω+1) = s1,

βω+2 > βω+1 such that R(βω+2) = s2,
...

...

and we will keep doing that we will get to the following sequence:

β1 < β2 < β3 < . . . .

Define

θ = sup {βδ : δ <ω ·ω} .

It is clear that θ ∈ lim, cf(θ ) =ω and supθ (R) = supω1
(R), and since (supω1(R), R(ω1)) ∈ T, so

we get

(supθ (R), R(ω1)) ∈ T.

Now define the word,

u′ : θ → I , such that u′(α) = a, for each α < θ , and
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R′ : θ + 1→ S, such that
R′(γ) = R(γ), for each γ < θ , and

R′(θ ) = R(ω1).

It is clear that R′ is an accepting run ofA on u′, by the definition of R and since R is an accepting

run of A on u. Therefore, u′ ∈ L (A ), which is a contradiction because L (A ) = {u} and

u 6= u′. Hence, {u} is not accepted by a special ST-automaton.

Similar to the cases above we can prove case (2) and (3).



Chapter 4

Operations on ST-automata

In this chapter, we define the basic operations on ST-automata over an alphabet as union, inter-

section, concatenation, raising to the powersω,*, and #. Furthermore, we show that applying

these operations to languages defined by ST-automata, the produced languages are also defin-

able using ST-automata.

4.1 Union Operation

First we define the union ST-automaton as follows:

Definition 4.1.1. LetA = (S, I , T, Z , F) andA ′ = (S′, I , T ′, Z ′, F ′) be two ST-automata over I

such that S ∩ S′ = ;. Define the union ST-automaton over I ofA andA ′ denoted byA ∪A ′

as follows:

let

A ∪A ′ =
�

S′′, I , T ′′, Z ′′, F ′′
�

,

such that
S′′ = S ∪ S′,

Z ′′ = Z ∪ Z ′,

F ′′ = F ∪ F ′, and

T ′′ = T ∪ T ′.

Then we prove the following theorem that shows applying the union operation to languages

defined by ST-automata, the produce language that is also definable using ST-automaton.

Theorem 4.1.2. Let A = (S, I , T, Z , F) and A ′ = (S′, I , T ′, Z ′, F ′) be two ST-automata over I ,

such that S ∩ S′ = ;. Then L (A ∪A ′) =L (A )∪L (A ′).

59
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Proof. Assume A = (S, I , T, Z , F) and A ′ = (S′, I , T ′, Z ′, F ′) are two ST-automata over I such

that

A ∪A ′ =A ′′ =
�

S′′, I , T ′′, Z ′′, F ′′
�

.

We want to prove the following:

1. L (A ∪A ′) ⊆L (A )∪L (A ′).

2. L (A )∪L (A ′) ⊆L (A ∪A ′).

By the definition ofA ′′ we get the following:

S′′ = S ∪ S′,

Z ′′ = Z ∪ Z ′,

F ′′ = F ∪ F ′, and

T ′′ = T ∪ T ′.

proof of (1) . L (A ∪A ′) ⊆L (A )∪L (A ′).

Assume u ∈ L (A ∪A ′), such that u : α→ I and α ∈ ord. Then there is an accepting run

R : α + 1 → S′′ of A ′′ on u. We want to prove u ∈ L (A ) ∪L (A ′). Since R is an accepting

run of A ′′ on u, then either R(0) ∈ Z , or R(0) ∈ Z ′′. If R(0) ∈ Z , then all values of R are in S

because S ∩ S′ = ; and T ′′ = T ∪ T ′. Then R is an accepting run of A on u. Thus u ∈ L (A ),
therefore u ∈ L (A )∪L (A ′). Similarly, if R(0) ∈ Z ′, then u ∈ L (A ′). Thus in either case we

get u ∈ L (A )∪L (A ′).

proof of (2). L (A )∪L (A ′) ⊆L (A ∪A ′).

Assume u ∈ L (A ) ∪ L (A ′), such that u : α → I and α ∈ ord. Then either u ∈ L (A ), or

u ∈ L (A ′). Without loss of generality, we can assume u ∈ L (A ). Then there is an accepting

run R : α + 1 → S of A on u. It is clear that R is an accepting run of A ′′ on u. Then u ∈
L (A ∪A ′).

4.2 Intersection Operation

Next we define the intersection ST-automaton as follows:

Definition 4.2.1. Let A = (S, I , T, Z , F) and A ′ = (S′, I , T ′, Z ′, F ′) be two ST-automata over

I such that S and S′ are finite sets of states. If A ⊆ S × S′, then we define π1(A) and π2(A) as
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follows:
π1(A) = {s ∈ S :

�

s, s′
�

∈ A for some s′ ∈ S′} and

π2(A) = {s′ ∈ S′ :
�

s, s′
�

∈ A for some s ∈ S}.

Define the intersection ST-automaton over I ofA andA ′ denoted byA ∩A ′ as follows:

let

A ∩A ′ =
�

S′′, I , T ′′, Z ′′, F ′′
�

.

such that
S′′ = S × S′,

Z ′′ = Z × Z ′,

F ′′ = F × F ′,

T ′′ = T1 ∪ T2 ∪ T3,

where

T1 = {(s, a, t) : s = (s1, s2), t = (t1, t2), (s1, a, t1) ∈ T, and (s2, a, t2) ∈ T ′},

T2 = {(A, s) : A⊆ S′′, s = (s1, s2), (π1(A), s1) ∈ T, and (π2(A), s2) ∈ T ′}, and

T3 = {(A, B, s) : A, B ⊆ S′′, s = (s1, s2), (π1(A),π1(B), s1) ∈ T, and (π2(A),π2(B), s2) ∈ T ′}.

Then by proving the following theorem we show that, applying the intersection operation

to languages defined by ST-automata, the produce language that is also definable using ST-

automaton.

Theorem 4.2.2. Let A = (S, I , T, Z , F) and A ′ = (S′, I , T ′, Z ′, F ′) be two ST-automata over I

such that S and S′ are finite sets of states. Then L (A ∩A ′) =L (A )∩L (A ′).

Proof. Assume A = (S, I , T, Z , F) and A ′ = (S′, I , T ′, Z ′, F ′) are two ST-automata over I , and

S, S′ are finite sets of states such that

A ∩A ′ =A ′′ =
�

S′′, I , T ′′, Z ′′, F ′′
�

.

We want to prove the following:

(A1) L (A ∩A ′) ⊆L (A )∩L (A ′).

(A2) L (A )∩L (A ′) ⊆L (A ∩A ′).
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By the definition ofA ∩A ′, we get to the following:

S′′ = S × S′,

Z ′′ = Z × Z ′,

F ′′ = F × F ′, and

T ′′ = T1 ∪ T2 ∪ T3,

where

T1 = {(s, a, t) : s = (s1, s2), t = (t1, t2), (s1, a, t1) ∈ T, and (s2, a, t2) ∈ T ′},

T2 = {(A, s) : A⊆ S′′, s = (s1, s2), (π1(A), s1) ∈ T, and (π2(A), s2) ∈ T ′}, and

T3 = {(A, B, s) : A, B ⊆ S′′, s = (s1, s2), (π1(A),π1(B), s1) ∈ T, and (π2(A),π2(B), s2) ∈ T ′}.

Proof of (A1). L (A ∩A ′) ⊆L (A )∩L (A ′).

Assume u ∈ L (A ∩A ′), such that u : α→ I and α ∈ ord. Then there exists an accepting

run R : α+ 1→ S′′ ofA ′′ on u. We want to prove u ∈ L (A )∩L (A ′). Then we should prove

u ∈ L (A ) and u ∈ L (A ′).
First we want to prove u ∈ L (A ). Thus we need to define an accepting run H : α+ 1→ S

ofA on u. Now we define H as follows:

H(β) = s, when R(β) = (s, t) for each β ≤ α.

Now we want to prove H is an accepting run ofA on u. That we should prove the following:

H(0) ∈ Z , H(α) ∈ F, and satisfies the following conditions:

1. For each β < α we have

(H(β), u(β), H(β + 1)) ∈ T.

2. For each β ≤ α that is a limit ordinal with cf(β) =ω, we have

(supβ(H), H(β)) ∈ T.

3. For each β ≤ α that is a limit ordinal with cf(β)>ω, we have

(supβ(H), statβ(H), H(β)) ∈ T.
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Since R is an accepting run ofA ′′ on u, then R(0) ∈ Z ′′, and R(α) ∈ F ′′, thus

R(0) =
�

s, s′
�

, for some
�

s, s′
�

∈ Z′′, and

R(α) =
�

t, t ′
�

, for some
�

t, t′
�

∈ F′′.

By the definition of H we get H(0) = s ∈ Z , and H(α) = t ∈ F .

It is remains to prove the above three conditions. First we want to satisfy condition (1).

Assume β < α, and we want to show

(H(β), u(β), H(β + 1)) ∈ T.

Since R is an accepting run ofA ′′ on u, then (R(β), u(β), R(β + 1)) ∈ T ′′, so

(R(β), u(β), R(β + 1)) ∈ T1,

let

(R(β), u(β), R(β + 1)) = (s, a, t) where

s = (s1, s2), t = (t1, t2), (s1, a, t1) ∈ T and (s2, a, t2) ∈ T ′.

Then by the definition of H, we get

(H(β), u(β), H(β + 1)) = (s1, a, t1),

but (s1, a, t1) ∈ T, therefore (H(β), u(β), H(β + 1)) ∈ T.

Now we want to satisfy condition (2). Let β ≤ α be a limit ordinal with cf(β) =ω and we

want to prove

(supβ(H), H(β)) ∈ T.

Since R is an accepting run ofA ′′ on u, then

(supβ(R), R(β)) ∈ T ′′,

so (supβ(R), R(β)) ∈ T2, but

T2 = {(A, s) : s = (s1, s2) and (π1(A), s1) ∈ T, (π2(A), s2) ∈ T ′},
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therefore (π1

�

supβ(R)
�

, s1) ∈ T, where R(β) = (s1, s2). Claim that

supβ(H) = π1

�

supβ(R)
�

,

therefore,

(supβ(H), H(β)) = (π1

�

supβ(R)
�

, s1) ∈ T.

It is remains to prove our claim. We know that,

π1

�

supβ(R)
�

= {s ∈ S :
�

s, s′
�

∈ supβ(R) for some s′ ∈ S′}, and

supβ(H) = {s ∈ S : {γ < β : H(γ) = s} is cofinal in β}.

Now, let s ∈ π1

�

supβ(R)
�

, then (s, s′) ∈ supβ(R) for some s′ ∈ S′, implies to

D = {γ < β : R(γ) =
�

s, s′
�

},

is cofinal in β , therefore D ⊆ D′, such that

D′ = {γ < β : H(γ) = s},

is also cofinal in β , this implies to s∈ supβ(H). Therefore π1

�

supβ(R)
�

⊆ supβ(H).
Now we want to prove supβ(H) ⊆ π1

�

supβ(R)
�

. Let s ∈ supβ(H) be a fixed element. Then

D = {γ < β : H(γ) = s},

is cofinal in β . For each s′ ∈ S′, let

Ds′ = {γ < β : R(γ) =
�

s, s′
�

},

then

D =
⋃

s′∈S′
Ds′ .

Since S′ is a finite set, then there exists s′ ∈ S′ such that Ds′ is cofinal in β , to show that suppose

by the way of a contradiction that, for each s′ ∈ S′, Ds′ is not cofinal in β . Thus for each s′ ∈ S′,

let γs′ < β is an upper bounded on Ds′ . Now choose

γ=max{γs′ : s′ ∈ S′},

exists since S′ is a finite set, therefore γ is an upper bounded on D, thus γ < β and that is a
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contradiction because D is cofinal in β .

That implies to (s, s′) ∈ supβ(R), hence s ∈ π1

�

supβ(R)
�

. Then supβ(H) ⊆ π1

�

supβ(R)
�

.

Therefore π1

�

supβ(R)
�

= supβ(H).
Finally, we want to satisfy condition three. Let β ≤ α be a limit ordinal with cf(β) > ω,

and we want to prove

(supβ(H), statβ(H), H(β)) ∈ T.

Since R is an accepting run ofA ′′ on u, then

(supβ(R), statβ(R), R(β)) ∈ T ′′,

therefore (supβ(R), statβ(R), R(β)) ∈ T3, but

T3 = {(A, B, s) : s = (s1, s2) and (π1(A),π1(B), s1) ∈ T, (π2(A),π2(B), s2) ∈ T ′},

which implies to

(π1

�

supβ(R)
�

,π1

�

statβ(R)
�

, s1) ∈ T where R(β) = (s1, s2).

Claim that

supβ(H) = π1

�

supβ(R)
�

, and stat(H) = π1

�

statβ(R)
�

,

therefore (supβ(H), statβ(H), H(β)) ∈ T.

It is remains to prove our claim. We show early that supβ(H) = π1

�

supβ(R)
�

. Now we want

to prove statβ(H) = π1

�

statβ(R)
�

. We know that,

statβ(H) = {s ∈ S : {γ < β : H(γ) = s} is stationary in β}, and

π1

�

statβ(R)
�

= {s ∈ S :
�

s, s′
�

∈ statβ(R) for some s′ ∈ S′}.

Let s ∈ π1

�

statβ(R)
�

, then (s, s′) ∈ statβ(R) for some s′ ∈ S′, implies to

D = {γ < β : R(γ) =
�

s, s′
�

},

is stationary in β , therefore D ⊆ D′, such that

D′ = {γ < β : H(γ) = s},

is also stationary in β , this implies to s∈ statβ(H). Therefore π1

�

statβ(R)
�

⊆ statβ(H).
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Now we want to prove statβ(H) ⊆ π1

�

statβ(R)
�

. Let s ∈ statβ(H) be a fixed element, then

D = {γ < β : H(γ) = s},

is a stationary set in β . For each s′ ∈ S′, let

Ds′ = {γ < β : R(γ) =
�

s, s′
�

},

then

D =
⋃

s′∈S′
Ds′ .

Since S′ is a finite set, then there exists s′ ∈ S′ such that Ds′ is stationary in β , to show that

suppose by the way of a contradiction Ds′ is not stationary in β for every s′ ∈ S′. Thus for every

s′ ∈ S′, there is a club Cs′ in β such that Cs′ ∩ Ds′ = ;. Let

C = ∩s′∈S′Cs′ ,

is also a club because S′ is finite, which implies to

C ∩ D = ;,

which is a contradiction because C is a club in β and D is stationary in β . Then (s, s′) ∈ statβ(R),
which implies to s ∈ π1

�

supβ(R)
�

. Then statβ(H) ⊆ π1

�

statβ(R)
�

.

Hence π1

�

statβ(R)
�

= statβ(H). Therefore, H is an accepting run of A on u. Then u ∈
L (A ). By the same way we can show that u ∈ L (A ′). Therefore L (A ∩A ′) ⊆ L (A ) ∩
L (A ′).

Proof of (A2). L (A )∩L (A ′) ⊆L (A ∩A ′).

Assume u ∈ L (A )∩L (A ′), and u : α→ I where α ∈ ord. Then u ∈ L (A ) and u ∈ L (A ′)
therefore there exists an accepting run R : α+1→ S ofA on u and an accepting run R′ : α+1→
S′ ofA ′ on u. Now we want to define an accepting run H ofA ′′ on u. Define H : α+ 1→ S′′

as follows:

H(β) =
�

R(β), R′(β)
�

, for each β ≤ α.

Now we want to prove H is an accepting run of A ′′ on u, that is, H(0) ∈ Z ′′, H(α) ∈ F ′′ and

satisfies the following conditions:
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1. For each β < α we have

(H(β), u(β), H(β + 1)) ∈ T ′′.

2. For each β ≤ α that is a limit ordinal with cf(β) =ω, we have

(supβ(H), H(β)) ∈ T ′′.

3. For each β ≤ α that is a limit ordinal with cf(β)>ω, we have

(supβ(H), statβ(H), H(β)) ∈ T ′′.

First we want to prove H(0) ∈ Z ′′ and H(α) ∈ F ′′. We have R and R′ are accepting runs of A
andA ′ on u respectively and by the definition of H, we get H(0) ∈ Z ′′, and H(α) ∈ F ′′.

Now we want to show condition (1). let β < α, and we want to prove

(H(β), u(β), H(β + 1)) ∈ T ′′.

Again since R and R′ are accepting runs ofA andA ′ on u respectively, then (R(β), u(β), R(β+
1)) ∈ T and (R′(β), u(β), R′(β + 1)) ∈ T ′, and since

T1 = {(s, a, t) : s = (s1, s2), t = (t1, t2) (s1, a, t1) ∈ T and (s2, a, t2) ∈ T ′},

thus

(H(β), u(β), H(β + 1)) = (
�

R(β), R′(β)
�

, u(β),
�

R(β + 1), R′(β + 1)
�

) ∈ T1,

therefore, (H(β), u(β), H(β + 1)) ∈ T ′′.

Now we want to show condition two. Let β ≤ α be a limit ordinal with cf(β) =ω, and we

want to prove

(supβ(H), H(β)) ∈ T ′′.

Since R and R′ are accepting runs of A and A ′ on u respectively, then (supβ(R), R(β)) ∈ T

and (supβ(R
′), R′(β)) ∈ T ′. Since H(β) = (R(β), R′(β)) and

T2 = {(A, s) : s = (s1, s2) and (π1(A), s1) ∈ T, (π2(A), s2) ∈ T ′},

so its enough to show that

�

π1

�

supβ(H)
�

, R(β)
�

∈ T and
�

π2

�

supβ(H)
�

, R′(β)
�

∈ T ′.
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Therefore, it is suffices to show that

π1

�

supβ(H)
�

= supβ(R) and π
�

supβ(H)
�

= supβ(R
′),

and by the same way early we can show that.

Now we want to prove condition (3). Let β ≤ α be a limit ordinal with cf(β)>ω, and we

want to prove

(supβ(H), statβ(H), H(β)) ∈ T ′′.

Since R and R′ are accepting runs ofA andA ′ on u respectively, then (supβ(R), statβ(R), R(β)) ∈
T and (supβ(R

′), statβ(R′), R′(β)) ∈ T ′. Since H(β) = (R(β), R′(β)), and

T3 = {(A, B, s) : s = (s1, s2) and (π1(A),π1(B), s1) ∈ T, (π2(A),π2(B), s2) ∈ T ′},

so its enough to show that

�

π1

�

supβ(H)
�

,π1

�

statβ(H)
�

, R(β)
�

∈ T and
�

π2

�

supβ(H)
�

,π2

�

statβ(H)
�

, R′(β)
�

∈ T ′.

Therefore, it is suffices to show that

π1

�

supβ(H)
�

= supβ(R) and π
�

statβ(H)
�

= statβ(R) and

π2

�

supβ(H)
�

= supβ(R
′) and π

�

statβ(H)
�

= statβ
�

R′
�

,

and by the same way early we can show that.

Then H is an accepting run ofA ′′ on u. Thus, u ∈ L (A ∩A ′).ThereforeL (A )∩L (A ′) ⊆
L (A ∩A ′). From proof of (A1), and (A2), we get L (A ∩A ′) =L (A )∩L (A ′).

Then we define the concatenation ST-automaton as the following:

4.3 Concatenation Operation

Then we define the concatenation ST-automaton as the following:

Definition 4.3.1. LetA = (S, I , T, Z , F) andA ′ = (S′, I , T ′, Z ′, F ′) be two ST-automata over I

such that S ∩ S′ = ;. Define the concatenation ST-automaton over I of A and A ′ denoted by

A ◦A ′ as follows:

let

A ◦A ′ =
�

S′′, I , T ′′, Z ′′, F ′′
�

,
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such that
S′′ = S ∪ S′,

Z ′′ =







Z if ; /∈ L (A )

Z ∪ Z ′ if ; ∈ L (A )
,

F ′′ =







F ′ if ; /∈ L (A ′)

F ∪ F ′ if ; ∈ L (A ′)
,

T ′′ = T ∪ T ′ ∪ T1 ∪ T2 ∪ T3,

where

T1 = {
�

s, a, s′
�

: s ∈ S, a ∈ I , s′ ∈ Z ′ such that (s, a, t) ∈ T for some t ∈ F},

T2 = {
�

A, s′
�

: A⊆ S, s′ ∈ Z ′ such that (A, t) ∈ T for some t ∈ F}, and

T3 = {
�

A, B, s′
�

: A, B ⊆ S, s′ ∈ Z ′ such that (A, B, t) ∈ T for some t ∈ F}.

By proving the following theorem we show that, applying the concatenation operation to lan-

guages defined by ST-automata, the produce language that is also definable using ST-automaton.

Theorem 4.3.2. Let A = (S, I , T, Z , F) and A ′ = (S′, I , T ′, Z ′, F ′) be two ST-automata over I

such that S ∩ S′ = ;. Then L (A ◦A ′) =L (A ) ◦L (A ′).

Proof. Assume A = (S, I , T, Z , F) and A ′ = (S′, I , T ′, Z ′, F ′) are two ST-automata over I such

that S ∩ S′ = ;. LetA ◦A ′ =A ′′ = (S′′, I , T ′′, Z ′′, F ′′). By the definition ofA ◦A ′, we get

S′′ = S ∪ S′,

Z ′′ =







Z if ; /∈ L (A )

Z ∪ Z ′ if ; ∈ L (A )
,

F ′′ =







F ′ if ; /∈ L (A ′)

F ∪ F ′ if ; ∈ L (A ′)
,

T ′′ = T ∪ T ′ ∪ T1 ∪ T2 ∪ T3,

where

T1 = {
�

s, a, s′
�

: s ∈ S, a ∈ I , s′ ∈ Z ′ such that (s, a, t) ∈ T for some t ∈ F},

T2 = {
�

A, s′
�

: A⊆ S, s′ ∈ Z ′ such that (A, t) ∈ T for some t ∈ F}, and

T3 = {
�

A, B, s′
�

: A, B ⊆ S, s′ ∈ Z ′ such that (A, B, t) ∈ T for some t ∈ F}.
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We want to prove the following:

(A1) L (A ◦A ′) ⊆L (A ) ◦L (A ′).

(A2) L (A ) ◦L (A ′) ⊆L (A ◦A ′).

Proof of (A1). L (A ◦A ′) ⊆L (A ) ◦L (A ′).
Assume u ∈ L (A ◦A ′) such that u : α→ I , and α ∈ ord. Then there is an accepting run

R : α+ 1→ S′′ of A ′′ on u. We want to prove u ∈ L (A ) ◦L (A ′). Since L (A ) and L (A ′)
are two classes of words over the same alphabet I , then

L (A ) ◦L
�

A ′
�

= {u0 ◦ u1 : u0 ∈ L (A ) and u ∈ L
�

A ′
�

},

so we need to show that

u= u0 ◦ u1,

for some u0 ∈ L (A ), and u1 ∈ L (A ′), where u0 : α0→ I , and u1 : α1→ I , with α = α0 +α1,

and α0,α1 ∈ ord. Now since R is an accepting run ofA ′′ on u, and S′′ = S∪S′, so we have the

following two cases:

(B1) Either R(α) ∈ S,

(B2) Or R(α) ∈ S′.

Case (B1). If R(α) ∈ S.

Since R is an accepting run ofA ′′ on u, then R(α) ∈ F ′′, but R(α) ∈ S, and S ∩ S′ = ; thus

we must have R(α) ∈ F , therefore ; ∈ L (A ′). Hence choose

α0 = α, α1 = 0 and u0 = u, u= ;.

It is clear that H : α0+1→ S , with H = R is an accepting run ofA on u0. Therefore u0 ∈ L (A ).
Now since ; ∈ L (A ′), then H ′ is an accepting run ofA ′ on u1. Then u1 ∈ L (A ′).
Therefore u0 ∈ L (A ) and u1 ∈ L (A ′). Hence u ∈ L (A )◦L (A ′). Therefore,L (A ◦A ′) ⊆

L(A ) ◦L (A ′).

Case (B2). If R(α) ∈ S′.

Assume B = {γ≤ α : R(γ) ∈ S′}. Then B 6= ; because R(α) ∈ S′, therefore choose

α0 =min(B)

α1 such that α= α0 +α1 and
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u0 = u �α0
, and u1(δ) = u(α0 +δ) for each 0≤ δ ≤ α1.

Now we want to define H : α0 + 1→ S and H ′ : α1 + 1→ S′ to be accepting runs of A on u0

andA ′ on u1 respectively. Then we have two cases:

(C1) Either α0 = 0,

(C2) Or α > 0.

Case (C1). Assume α0 = 0.

Since α0 =min(B) and α0 = 0, then the only possibility that we have R(0) ∈ S′ by the definition

of B. Since R is an accepting run of A ′′ on u, then R(0) ∈ Z ′′, but R(0) ∈ S′, so we must have

R(0) ∈ Z ′, and by the definition of A ′′ we get that ; ∈ L (A ). Thus there is t ∈ Z ∩ F such

that H(0) = H(α0) = t, therefore H is an accepting run ofA on u0. Then u0 ∈ L (A ).
Define H ′ = R, it is clear that H ′ is an accepting run ofA ′ on u1. Thus u1 ∈ L (A ′).
Therefore u0 ∈ L (A ) and u1 ∈ L (A ′). Hence u ∈ L (A )◦L (A ′). Therefore,L (A ◦A ′) ⊆

L(A ) ◦L (A ′).

Case (C2). Assume α0 > 0.

We need to define H and H ′. Now since α0 = min(B), then R(α0) ∈ S′, by the definition of B,

therefore

R(δ) ∈ S for each δ < α0.

Then we will discuss the following cases:

(D1) If α0 is a successor ordinal.

(D2) If α0 is a limit ordinal.

Case (D1). If α0 is a successor ordinal.

Assume α0 = σ+ 1, for some σ ∈ ord. Now Since R is an accepting run ofA ′′ on u, then

(R(σ), u(σ), R(σ+ 1)) = (R(σ), u(σ), R(α0)) ∈ T ′′

but R(σ) ∈ S, u(σ) ∈ I , and R(α0) ∈ S′, thus we must have (R(σ), u(σ), R(σ+ 1)) ∈ T1, by the

definition of T ′′, but

T1 = {
�

s, a, s′
�

: s ∈ S, a ∈ I , s′ ∈ Z ′ such that there is t ∈ F with (s, a, t) ∈ T},

therefore,

R(σ+ 1) = R(α0) ∈ Z ′ and (R(σ), u(σ), t) ∈ T,
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for some t ∈ F.

Now we define H and H ′ as the following:

First define H : α0 + 1→ S by

H(β) =







R(β) for each β < α0.

t β = α0.

Define H ′ : α1 + 1→ S′ by

H ′(δ) = R(α0 +δ) for 0≤ δ ≤ α1.

Now we want to prove H is an accepting run of A on u0, that is, H(0) ∈ Z , H(α0) ∈ F and

satisfies the following conditions:

1. For each β < α0 we have

(H(β), u0(β), H(β + 1)) ∈ T.

2. For each β ≤ α0 that is a limit ordinal with cf(β) =ω, we have

(supβ(H), H(β)) ∈ T.

3. For each β ≤ α0 that is a limit ordinal with cf(β)>ω, we have

(supβ(H), statβ(H), H(β)) ∈ T.

First we want to show that H(0) ∈ Z , and H(α0) ∈ F. Since R is an accepting run of A ′′ on u,

then R(0) ∈ Z ′′ but α0 > 0 and as we show early that

R(δ) ∈ S for each δ < α0,

therefore R(0) ∈ S but R(0) ∈ Z ′′, this implies to R(0) ∈ Z , hence H(0) ∈ Z , since H(0) = R(0)
by the definition of H and by the definition of H it is clear that H(α0) ∈ F .

It is remains to prove the three conditions.

Now we want to prove condition (1). Let β < α0, and we want to prove

(H(β), u0(β), H(β + 1)) ∈ T.
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Since R is an accepting run ofA ′′ on u, then (R(β), u(β), R(β + 1)) ∈ T ′′, for each β < α, but

(H(β), u0(β), H(β + 1)) = (R(β), u �α0
(β), R(β + 1)) = (R(β), u(β), R(β + 1))

for each β < α0, by the definition of H and u0 and R(δ) ∈ S for each δ < α0, therefore

(H(β), u0(β), H(β + 1)) ∈ T.

Hence, for each β < α0, we get (H(β), u0(β), H(β + 1)) ∈ T.

Next we want to prove condition (2). Let β ≤ α0 be a limit ordinal with cf(β) =ω and we

want to prove

(supβ(H), H(β)) ∈ T.

Again since R is an accepting run ofA ′′ on u, then (supβ(R), R(β)) ∈ T ′′ for each limit ordinal

β , where β ≤ α, with cf(β) =ω. We know that,

supβ(H) = {s ∈ S : {γ < β : H(γ) = s} is cofinal in β} and

supβ(R) = {s ∈ S′′ : {γ < β : R(γ) = s} is cofinal in β}.

It is remains to show that for any limit ordinal β ≤ α0 we have that supβ(H) = supβ(R) and

this is clear for each β < α0, since H(β) = R(β) for β < α0, by the definition of H and

in this case supβ(R) ⊆ P (S), and R(β) ∈ S, but (supβ(R), R(β)) ∈ T ′′ for each limit ordinal,

β ≤ α, therefore for any limit ordinal β < α0 we have that

(supβ(H), H(β)) = (supβ(R), R(β)) ∈ T,

and for β = α0,

(supβ(H), H(β)) = (supβ(H), t) =
�

supβ(R), t
�

∈ P (S)× S,

which implies to for any limit ordinal β ≤ α0, (supβ(H), H(β)) ∈ T.

Now we want to prove condition (3). Let β ≤ α0 that is a limit ordinal with cf(β)>ω, we

want to prove

(supβ(H), statβ(H), H(β)) ∈ T.

Again since R is an accepting run of A ′′ on u, then (supβ(R), statβ(R), R(β)) ∈ T ′′. We know

that,

supβ(H) = {s ∈ S : {γ < β : H(γ) = s} is cofinal in β}, and
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statβ(H) = {s ∈ S : {γ < β : H(γ) = s} is stationary in β},

so it is enough to show that for any limit ordinal β ≤ α0 , we have that supβ(H) = supβ(R) and

statβ(H) = statβ(R).
By the same way above we can see that supβ(H) = supβ(R), and statβ(H) = statβ(R).

Therefore, for each limit ordinal β ≤ α0, with cf(β)>ω, we get (supβ(H), statβ(H), H(β)) ∈ T.

Therefore H satisfies the three conditions. Hence H is an accepting run ofA on u0. There-

fore u0 ∈ L (A ).
As we define before H ′ : α1 + 1→ S′ with

H ′(δ) = R(α0 +δ) for 0≤ δ ≤ α1.

Now we want to prove H ′ is an accepting run ofA ′ on u1, that is, H ′(0) ∈ Z ′, H ′(α1) ∈ F ’ and

satisfies the following conditions:

1. For each β < α1 we have

(H ′(β), u1(β), H ′(β + 1)) ∈ T ′.

2. For each β ≤ α1 that is a limit ordinal with cf(β) =ω, we have

(supβ(H
′), H ′(β)) ∈ T ′.

3. For each β ≤ α1 that is a limit ordinal with cf(β)>ω, we have

(supβ(H
′), statβ(H

′), H ′(β)) ∈ T ′.

First we want to prove H ′(0) ∈ Z ′, and H ′(α1) ∈ F ′. By the definition of H ′ we get H ′(0) =
R(α0) ∈ Z ′ as we shown early and H ′(α1) = R(α0 +α1) = R(α) ∈ F ′′ because R is an accepting

run ofA ′′ on u but we have R(α) ∈ S′, so we must have R(α) ∈ F ′. Hence H ′(α1) ∈ F ′.

It is remains to prove the three conditions.

Now we want to prove condition (1). Let β < α1 and we want to prove (H ′(β), u1(β), H ′(β+
1)) ∈ T ′. Since R is an accepting run of A ′′ on u, then (R(β), u(β), R(β + 1)) ∈ T ′′, for each

β < α, but

(H ′(β), u1(β), H ′(β + 1)) = (R(α0 + β), u(α0 + β), R(α0 + β + 1))

for each β ≤ α1, by the definition of H ′ and u1 and we have (H ′(β), u1(β), H ′(β+1)) ∈ S′×I×S′,
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so we must have

(H ′(β), u1(β), H ′(β + 1)) ∈ T ′.

Therefore, for each β < α1, we get (H ′(β), u1(β), H ′(β + 1)) ∈ T ′.

Next we want to prove condition (2). Let β ≤ α1 be a limit ordinal with cf(β) =ω and we

want to prove

(supβ(H
′), H ′(β)) ∈ T ′.

Again since R is an accepting run of A ′′ on u, then (supα0+β(R), R(α0 + β)) ∈ T ′′ for each

β ≤ α1.

supβ(H
′) = {s ∈ S′ : {γ < β : H ′(γ) = s} is cofinal in β} and

supβ(R) = {s ∈ S′′ : {γ < β : R(γ) = s} is cofinal in β}.

By lemma 1.2.40, we getα0+β ≤ α is a limit ordinal with cf(α0 + β) =ω, and since supβ(H ′) =
supα0+β(R) and in this case supα0+β(R) ⊆ P (S

′), and R(α0 + β) ∈ S′, but (supα0+β(R), R(α0 +
β)) ∈ T ′′ for each β < α, therefore for any limit ordinal β ≤ α1 we have that

(supβ(H
′), H ′(β)) = (supα0+β

(R), R(α0 + β)) ∈ T ′,

which implies that, for any limit ordinal β ≤ α1, with cf(β) =ω, (supβ(H
′), H ′(β)) ∈ T ′.

Now we want to prove condition (3). Let β ≤ α1 be a limit ordinal with cf(β) > ω, we

want to prove

(supβ(H
′), statβ(H

′), H ′(β)) ∈ T ′.

By lemma 1.2.40, we get α0 + β < α is a limit ordinal with cf(α0 + β) > ω, and since R is an

accepting run ofA ′′ on u, then (supα0+β(R), statα0+β(R), R(α0 + β)) ∈ T ′′. We have

supβ(H
′) = {s ∈ S : {γ < β : H ′(γ) = s} is cofinal in β}, and

statβ(H
′) = {s ∈ S : {γ < β : H ′(γ) = s} is stationary in β},

so for any limit ordinal β ≤ α1 , we have that supβ(H ′) = supα0+β(R) and statβ(H ′) = statα0+β(R).
Therefore, for each limit ordinal β ≤ α1, with cf(β)>ω, we get (supβ(H

′), statβ(H ′), H ′(β)) ∈
T ′, by the same way in condition (2). Thus, H ′ satisfies the three conditions.

Hence, H ′ is an accepting run of A ′ on u1. Therefore u1 ∈ L (A ′). Hence u ∈ L (A ) ◦
L (A ′). Therefore, L (A ◦A ′) ⊆ L(A ) ◦L (A ′).

Case (D2). If α0 is a limit ordinal.
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Assumeα0 is a limit ordinal and we want to define H and H ′. Then either cf(α0) = ω, or

cf(α0)>ω.

Assume first cf(α0) =ω, and since
�

supα0
(R), R(α0)

�

∈ T ′′ because R is an accepting run of

A ′′ on u, and we have supα0
(R) ⊆ P (S) because R(δ) ∈ S for each δ < α0, and R(α0) ∈ Z ′

since α0 = min(B), and R is an accepting run of A ′′ on u, therefore the only possibility that

we have
�

supα0
(R), R(α0)

�

∈ T2. Then there an element t ∈ F such that
�

supα0
(R), t

�

∈ T.

Now we define H : α0 + 1→ S as the following:

H(β) =







R(β) for each β < α0,

t β = α0.

Define H ′ : α1 + 1→ S′ as follows:

H ′(δ) = R(α0 +δ) foreach 0≤ δ ≤ α1.

And by the same way as in case α0 is a successor ordinal we can show that H and H ′ are ac-

cepting runs of A on u0 and A ′ on u1 respectively. Therefore, u0 ∈ L (A ) and u1 ∈ L (A )
′.

Then u ∈ L (A ) ◦L (A ′). Therefore L (A ◦A ′) ⊆L (A ) ◦L (A ′).

Second assume cf(α0) > ω. Since
�

supα0
(R), stat(R), R(α0)

�

∈ T ′′ because R is an accepting

run of A ′′ on u, and we have supα0
(R) ⊆ P (S) and statα0

(R) ⊆ P (S) because R(δ) ∈ S for

each δ < α0, and R(α0) ∈ Z ′ since α0 =min(B), and R is an accepting run ofA ′′ on u, therefore

the only possibility that we have
�

supα0
(R), statα0

(R), R(α0)
�

∈ T2. Then there exists an element

t ∈ F such that
�

supα0
(R), statα0

(R), t
�

∈ T.

Now we define H : α0 + 1→ S as the following:

H(β) =







R(β) for each β < α0,

t β = α0.

Define H ′ : α1 + 1→ S′ as follows:

H ′(δ) = R(α0 +δ) for 0≤ δ ≤ α1.

And by the same way as in case α0 is a successor ordinal we can show that H and H ′ are ac-

cepting runs of A on u0 and A ′ on u1 respectively. Therefore u0 ∈ L (A ) and u1 ∈ L (A )
′.

Then u ∈ L (A ) ◦L (A ′). Therefore L (A ◦A ′) ⊆L (A ) ◦L (A ′).
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Proof of (A2). L (A ) ◦L (A ′) ⊆L (A ◦A ′).
Assume u ∈ L (A ) ◦L (A ′), such that u : α→ I , and α ∈ ord. Then

u= u0 ◦ u1, such that

u(δ) = u0(δ) for δ < α0 and u(α0 +δ) = u1(δ) for 0≤ δ ≤ α1

for some u0 ∈ L (A ), u0 : α0→ I and u1 ∈ L (A ′), u1 : α1→ I , α0,α1 ∈ ord with α= α0+α1.

We want to prove u ∈ L (A ◦A ′), so we need to define an accepting run R of A ′′ on u.

Now since u0 ∈ L (A ) and u1 ∈ L (A ′), then there are accepting runs H : α0 + 1→ S of A
on u0 and H ′ : α1 + 1→ S′ ofA ′ on u1.

Now we want to define an accepting run R : α+ 1→ S′′, ofA ′′ on u. Define R as follows:

R(δ) = H(δ), if and if δ < α0,

R(α0 +δ) = H ′(δ), if and if 0≤ δ ≤ α1.

We want to prove R is an accepting run of A ′′ on u, that we should prove the following

R(0) ∈ Z ′′, R(α) ∈ F ′′ and satisfies the following conditions:

1. For each β < α we have

(R(β), u(β), R(β + 1)) ∈ T ′′.

2. For each β ≤ α that is a limit ordinal with cf(β) =ω, we have

(supβ(R), R(β)) ∈ T ′′.

3. For each β ≤ α that is a limit ordinal with cf(β)>ω, we have

(supβ(R), statβ(R), R(β)) ∈ T ′′.

We will consider the following two cases:

(B1) If α0 = 0.

(B2) If α0 > 0.

Case (B1). If α0 = 0.

Then α1 = α. Then u0 = ; and u1 = u and since H is an accepting run of A on u0, then

u0 = ; ∈ L (A ), which implies to R(0) ∈ Z ′, by the definition of A ′′. Therefore R = H ′ and
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there is nothing to prove.

Case (B2). If α0 > 0.

Second assume α0 > 0. Then we will discuss the following two cases:

(C1) If α0 is a successor ordinal.

(C2) If α0 is a limit ordinal.

Case (C1). If α0 is a successor ordinal.

We want to prove R is an accepting run of A ′′ on u. Then assume α0 = σ + 1, for some

σ ∈ ord. Now we want to prove R(0) ∈ Z ′′, and R(α) ∈ F ′′.

By the definition of R we get R(0) = H(0) ∈ Z , and R(α) = H ′(α1) ∈ F ′ because H is

an accepting run of A on u0, and H ′ is an accepting run of A ′ on u1, then R(0) ∈ Z ′′ and

R(α) ∈ F ′′, by the definition ofA ′′.

It is remains to prove the three conditions.

Now we want to prove condition (1). Assume β < α. Then we have two cases either β ≤ α0

or α0 < β < α and we want to prove

(R(β), u(β), R(β + 1)) ∈ T ′′.

First assume β ≤ α0. By the definition of R, we get for each β < α0,

(R(β), u(β), R(β + 1)) = (H(β), u0(β), H(β + 1)).

Since H is an accepting run ofA on u0, then (R(β), u(β), R(β+1)) ∈ T, hence for each β < α0,

we get (R(β), u(β), R(β + 1)) ∈ T ′′, by the definition of T ′′.

Second assume β = α0 = σ+ 1, for some σ ∈ ord, then

(R(σ), u(σ), R(σ+ 1)) = (H(σ), u0(σ), H ′(0)).

So it is enough to show

(H(σ), u0(σ), H ′(0)) ∈ T ′′,

in particular we will show that

(H(σ), u0(σ), H ′(0)) ∈ T1.

Now since H ′ is an accepting run of A ′ on u1, then H ′(0) ∈ Z ′, and since H is an accepting
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run of A on u0, then H(α0) ∈ F, and (H(σ), u0(σ), H(σ+ 1)) = (H(σ), u0(σ), H(α0)) ∈ T, so

we are done.

Now assume α0 < β < α. Hence β = α0 + δ, for 0 ≤ δ < α1 and by the definition of R

we get

(R(β), u(β), R(β + 1)) = (H ′(δ), u1(δ), H ′(δ+ 1))

Since H ′ is an accepting run of A ′ on u1, then (R(β), u(β), R(β + 1)) ∈ T ′, hence for each

α0 < β < α, we get (R(β), u(β), R(β + 1)) ∈ T ′′, by the definition of T ′′.

Therefore, for each β < α, we have (R(β), u(β), R(β + 1)) ∈ T ′′.

Next we want to prove condition (2). Assume β ≤ α, that is a limit ordinal with cf(β) =ω,

then we have two cases either β < α0 or α0 < β ≤ α and we want to prove

(supβ(R), R(β)) ∈ T ′′.

Not that β 6= α0, because α0 is a successor ordinal.

First assume β < α0. By the definition of R we get for each β < α0, supβ(R) = supβ(H)
and R(β) = H(β), therefore

(supβ(R), R(β)) = (supβ(H), H(β)) ∈ T,

since H is an accepting run of A on u0, hence for each β < α0, we get (supβ(R), R(β)) ∈ T ′′

by the definition of T ′′.

Now assume α0 < β ≤ α. Hence β = α0 + δ, for 0 < δ ≤ α1 and by the definition of R

we get

supβ(R) = supδ
�

H ′
�

, and R(β) = H ′(δ),

therefore

(supβ(R), R(β)) = (supδ(H
′), H ′(δ)) ∈ T ′,

since H ′ is an accepting run of A ′ on u1, and δ ≤ α1 is a limit ordinal with cf(δ) = ω, by

lemma 1.2.40, then by the definition of T ′′, we get (supβ(R), R(β)) ∈ T ′′ for each α0 < β ≤ α.

Therefore (supβ(R), R(β)) ∈ T ′′, for every limit ordinal β ≤ α with cf(β) =ω.

Now we want to prove condition (3). Let β ≤ α be a limit ordinal with cf(β)>ω, we want

to prove

(supβ(R), statβ(R), R(β)) ∈ T ′′.
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We have two cases either β < α0 or α0 < β ≤ α1, note that also we don’t need β = α0, since

α0 is a successor ordinal.

First assume β < α0. By the definition of R we get supβ(R) = supβ(H), statβ(R) = statβ(H)
and R(β) = H(β), therefore

(supβ(R), statβ(R), R(β)) = (supβ(H), statβ(H), H(β)) ∈ T,

since H is an accepting run ofA on u0, hence for each β < α0, we get (supβ(R), statβ(R), R(β)) ∈
T ′′ by the definition of T ′′.

Now assume α0 < β ≤ α. Hence β = α0 + δ, for 0 < δ ≤ α1, and by the definition of R

we get

supβ(R) = supδ
�

H ′
�

, stat(R) = statδ
�

H ′
�

and R(β) = H ′(δ),

therefore

(supβ(R), statβ(R), R(β)) = (supδ(H
′), statδ

�

H ′
�

, H ′(δ)) ∈ T ′,

since H ′ is an accepting run of A ′ on u1, and δ is a limit ordinal with cf(δ) > ω, by lemma

1.2.40, then by the definition of T ′′, we get (supβ(R), statβ(R), R(β)) ∈ T ′′ for each α0 < β ≤ α.

Thus for every limit ordinal β ≤ α with cf(β)>ω, (supβ(R), statβ(R), R(β)) ∈ T ′′.

Therefore, R satisfies the three conditions. Then R is an accepting run of A ′′ on u. There-

fore u ∈ L (A ◦A ′).

Case (C2). If α0 is a limit ordinal.

Then we want to prove R is an accepting run ofA ′′ on u. By the same way when α0 ∈ succ

we can prove R(0) ∈ Z ′′, and R(α) ∈ F ′′.

It is remains to prove the three conditions.

First we want to prove condition (1), that is, For each β < α, we have

(R(β), u(β), R(β + 1)) ∈ T ′′.

Then we have two cases either β ≤ α0, or α0 < β ≤ α. We can show that by the same way

when α0 ∈ succ except for β = α0.

Now assume β = α0, then

(R(β), u(β), R(β + 1)) = (R(α0), u(α0), R(α0 + 1)) = (H ′(0), u1(0), H ′(1)) ∈ T ′,
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since H ′ is an accepting run ofA ′ on u1. Therefore, for each β < α,we get (R(β), u(β), R(β +
1)) ∈ T ′′

Next we want to prove condition (2). Assume β ≤ α that is a limit ordinal with cf(β) =ω,

then we have two cases either β ≤ α0, or α0 < β ≤ α and we want to prove

(supβ(R), R(β)) ∈ T ′′.

Also we can show that by the same way when α0 ∈ succ except for β = α0.

Now assume β = α0, then we want to prove

(supα0
(R), R(α0)) ∈ T ′′.

In particular we want to prove (supα0
(H), H ′(0)) ∈ T2, because

(supα0
(R), R(α0)) = (supα0

(H), H ′(0)).

It is clear by the definition of R, that supα0
(R) = supα0

(H) ⊂ S, and since H ′ is an accepting

run of A ′ on u1, then R(α0) = H ′(0) ∈ Z ′, but H is an accepting run of A on u0, and α0 is a

limit ordinal then H(α0) ∈ F, and (supα0
(H), H(α0)) ∈ T. Thus by the definition of T2 we get

(supα0
(R), R(α0)) ∈ T2. Therefore, for each β ≤ α, that is a limit ordinal with cf(β) = ω, we

get (supβ(R), R(β)) ∈ T ′′.

Finally we want to prove condition (3). Assume β ≤ α, that is a limit ordinal with cf(β)>
ω, then we have two cases either β ≤ α0 or α0 < β ≤ α and we want to prove

(supβ(R), statβ(R), R(β)) ∈ T ′′.

Also we can show that by the same way when α ∈ succ except for β = α0.

Now assume β = α0, then we want to prove

(supα0
(R), statα0

(R), R(α0)) ∈ T ′′.

In particular we want to prove (supα0
(H), statα0

(H), H ′(0)) ∈ T3, because

(supα0
(R), statα0

(R), R(α0)) = (supα0
(H), statα0

(H), H ′(0)).

It is clear by the definition of R, that supα0
(R) = supα0

(H) ⊂ S, and statα0
(R) = statα0

(H) ⊂ S

and since H ′ is an accepting run of A ′ on u1, then R(α0) = H ′(0) ∈ Z ′, but H is an accepting

run ofA on u0, and α0 is a limit ordinal then H(α0) ∈ F, and (supα0
(H), statα0

(H), H(α0)) ∈ T.
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Thus by the definition of T3 we get (supα0
(R), statα0

(H), R(α0)) ∈ T3, where

T3 = {
�

A, B, s′
�

: A, B ⊆ S, s′ ∈ Z ′ such that (A, B, t) ∈ T for some t ∈ F}.

Therefore, for each β ≤ α that is a limit ordinal with cf(β)>ω, we show (supβ(R), statα0
(H), R(β)) ∈

T ′′. Thus, R satisfies the three conditions. Hence u ∈ L (A ◦A ′), which implies to L (A ) ◦
L (A ′) ⊂L (A ◦A ′).

From (A1), and (A2) we get L (A ) ◦L (A ′) =L (A ◦A ′).

4.4 * -Operation

Next, we define the *-ST-automaton as follows:

Definition 4.4.1. Let A = (S, I , T, Z , F) be a ST-automaton over I with Z 6= ;. Define the

*-ST-automaton over I ofA , orA ∗ = (S′, I , T ′, Z ′, F ′) as follows:

S′ = S × {0, 1} ,

Z ′ = Z × {1} ,

F ′ = Z ′,

T ′ = T1 ∪ T2 ∪ T3,

where

T1 = {((s, 0), a, (t, 0)) : (s, a, t) ∈ T}∪

{(A× {0} , (t, 0)) : A⊆ S, and (A, t) ∈ T}∪

{(A× {0} , B × {0} , (t, 0)) : A, B ⊆ S, and (A, B, t) ∈ T} ,

T2 =
�

((s, 0), a, (t, 1)) :
�

s, a, t ′
�

∈ T for some t ′ ∈ F, and (t, 1) ∈ F ′
	

∪
�

(A× {0} , (t, 1)) : A⊆ S,
�

A, t ′
�

∈ T for some t ′ ∈ F, and (t, 1) ∈ F ′
	

∪
�

(A× {0} , B × {0} , (t, 1)) : A, B ⊆ S,
�

A, B, t ′
�

∈ T for some t ′ ∈ F, and (t, 1) ∈ F ′
	

,

T3 = {((s, 1), a, (t, 0)) : (s, a, t) ∈ T} .

If Z = ;, then defineA ∗ = ({s} , I ,;, {s} , {s}), for any s ∈ S.

Then we prove the following theorem that show, applying the * operation to languages

defined by ST-automata, the produce language that is also definable using ST-automaton.
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Theorem 4.4.2. If A = (S, I , T, Z , F) is a ST-automaton over I , with Z is a finite set, then

L (A ∗) = (L (A ))∗.

Proof. AssumeA = (S, I , T, Z , F) is a ST-automaton over I , with Z is a finite set and we want

to proveL (A ∗) = (L (A ))∗, such thatA ∗ = (S′, I , T ′, Z ′, F ′). We want to prove the following:

(A1) L (A ∗) ⊆ (L (A ))∗.

(A2) (L (A ))∗ ⊆L (A ∗).

If Z 6= ;, then by the definition ofA ∗ we get to the following:

S′ = S × {0, 1} ,

Z ′ = Z × {1} ,

F ′ = Z ′,

T ′ = T1 ∪ T2 ∪ T3,

where

T1 = {((s, 0), a, (t, 0)) : (s, a, t) ∈ T}∪

{(A× {0} , (t, 0)) : A⊆ S, and (A, t) ∈ T}∪

{(A× {0} , B × {0} , (t, 0)) : A, B ⊆ S, and (A, B, t) ∈ T} ,

T2 =
�

((s, 0), a, (t, 1)) :
�

s, a, t ′
�

∈ T for some t ′ ∈ F, and (t, 1) ∈ F ′
	

∪
�

(A× {0} , (t, 1)) : A⊆ S,
�

A, t ′
�

∈ T for some t ′ ∈ F, and (t, 1) ∈ F ′
	

∪
�

(A× {0} , B × {0} , (t, 1)) : A, B ⊆ S,
�

A, B, t ′
�

∈ T for some t ′ ∈ F, and (t, 1) ∈ F ′
	

,

T3 = {((s, 1), a, (t, 0)) : (s, a, t) ∈ T} .

If Z = ;, then defineA ∗ = ({s} , I ,;, {s} , {s}) for any s ∈ S.

Proof of (A1). L (A ∗) ⊆ (L (A ))∗.
First we want to prove (A1), that is, L (A ∗) ⊆ (L (A ))∗. We can assume Z 6= ;, since if

Z = ;, thenA ∗=({s} , I ,;, {s} , {s}), for some s∈S, hence L (A ∗) = {;} , and since L (A ) = ;,
then (L (A ))∗ = {;} , therefore L (A ∗) = (L (A ))∗.

So we can assume that Z 6= ;. Now let u ∈ L (A ∗), such that u : α→ I , and α ∈ ord. Since

; ∈ (L (A ))∗, so we can assume u 6= ;. Then there exists an accepting run R : α+ 1→ S′ of
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A ∗ on u. We want to prove u ∈ (L (A ))∗, and since

(L (A ))∗ =
⋃

n<ω

(L (A ))n,

such that for each n<ω,

(L (A ))n = {u : u= ◦
�

uβ
�

β<n
, u ∈ L (A ) for each β < n}.

We will find n<ω, such that u ∈ (L (A ))n. First we show that

C =
�

β ≤ α : R(β) ∈ F ′
	

,

is finite.

Suppose by the way of a contradiction that C is infinite. Let C = {αi : i < η} , where η is

an infinite ordinal and αi < α j, for each i < j < η. Let

σ = sup {αi : i <ω} ,

then σ ∈ lim, so

supσ(R) = {s ∈ S′ : {γ < σ : R(γ) = s} is cofinal in σ}.

Since Z is finite so F ′ is finite because F ′ = Z × {1} , then there is (t, 1) ∈ F ′ such that

(t, 1) ∈ supσ(R) which is a contradiction since R is an accepting run of A ∗ on u, then either
�

supσ(R), R(σ)
�

∈ T ′, when cf(σ) = ω, or
�

supσ(R), statσ(R), R(σ)
�

∈ T ′, when cf(σ) > ω,

and there are no (A, s) ∈ T ′ and (A, B, s) ∈ T ′, with (s, 1) ∈ A. Therefore C is a finite set. Let

n= |C | − 1.

Now define that, for each i and 0≤ i < n, θi ∈ ord such that

αi + θi = αi+1, and

ui : θi → I , is such that

ui(δ) = u(αi +δ), for all δ < θi,

then we get,

u= ◦(ui)i<n, and α=
∑

i<n

θi.
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Now, since for each i with 0 ≤ i < n, αi ∈ C , then R(αi) ∈ F ′, and F ′ = Z × 1, so define

Ri : θi + 1→ S, as the following:

Ri(0) = s, such that R(αi) = (s, 1), for some (s, 1) ∈ F ′,

Ri(δ) = s, such that R(αi +δ) = (s, 0), forall 0< δ < θi, and

Ri(θi) = t ′,

such that we get to t ′ as the following:

we consider two cases either αi+1 is a successor ordinal, or a limit ordinal.

First assume αi+1 is a successor ordinal.

Then let αi+1 = σ+ 1, for some σ ∈ ord, and since R is an accepting run ofA ∗ on u, then

(R(σ), u(σ), R(αi+1)) ∈ T ′,

but for each 0≤ i < n, R(αi+1) ∈ F ′ = Z×{1} , because αi+1 ∈ C , then let R(αi+1) = (t, 1), thus

(R(σ), u(σ), R(αi+1)) ∈ T2,

by the definition of T2, which implies to

(R(σ), u(σ), R(αi+1)) = ((s, 0), u(σ), (t, 1)),

such that (s, u(σ), t ′) ∈ T, for some t ′ ∈ F.

Second assume αi+1 is a limit ordinal. Then either cf(αi+1) =ω, or cf(αi+1)>ω.

First assume cf(αi+1) =ω, then

�

supαi+1
(R), R(αi+1)

�

∈ T ′,

since R is an accepting run ofA ∗ on u, but R(αi+1) ∈ F ′ = Z × {1} , because αi+1 ∈ C , then let

R(αi+1) = (t, 1), thus
�

supαi+1
(R), R(αi+1)

�

∈ T2,

by the definition of T2, which implies to

�

supαi+1
(R), R(αi+1)

�

= (A× {0} , (t, 1)),
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for some A⊆ S and (A, t ′) ∈ T, for some t ′ ∈ F.

Now assume cf(αi+1)>ω, then

�

supαi+1
(R), statαi+1

(R), R(αi+1)
�

∈ T ′,

since R is an accepting run ofA ∗ on u, but R(αi+1) ∈ F ′ = Z × {1} , because αi+1 ∈ C , then let

R(αi+1) = (t, 1), thus
�

supαi+1
(R), statαi+1

(R), R(αi+1)
�

∈ T2,

by the definition of T2, which implies to

�

supαi+1
(R), statαi+1

(R), R(αi+1)
�

= (A× {0} , B × {0} , (t, 1)),

for some A, B ⊆ S and (A, B, t ′) ∈ T, for some t ′ ∈ F.

So it is remains to prove for each 0 ≤ i < n, Ri is an accepting run ofA on ui. That is, we

must prove that, for each 0≤ i < n, Ri(0) ∈ Z , Ri(θi) ∈ F and satisfies the following conditions:

1. For each β < θi, we have

(Ri(β), ui(β), Ri(β + 1)) ∈ T.

2. For each β ≤ θi that is a limit ordinal with cf(β) =ω, we have

(supβ(Ri), Ri(β)) ∈ T.

3. For each β ≤ θi that is a limit ordinal with cf(β)>ω, we have

(supβ(Ri), statβ(Ri), Ri(β)) ∈ T.

Choose i, such that 0≤ i < n and we want to prove Ri is an accepting run ofA on ui. First, we

want to prove Ri(0) ∈ Z , and R(θi) ∈ F, and that is clear by the definition of Ri. It is remains

to prove above three conditions.

Now we want to prove condition (1). Let β < θi, and we want to prove

(Ri(β), ui(β), Ri(β + 1)) ∈ T.

Since R is an accepting run of A ∗ on u, then (R(αi + β), u(αi + β), R(αi + β + 1)) ∈ T ′. Now

we will discuss the following cases:
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(B1) If β = 0.

(B2) If 0< β < θi.

Case (B1). If β = 0.

Then

(R(αi + β), u(αi + β), R(αi + β + 1)) = (R(αi), u(αi), R(αi + 1)) ∈ T ′,

and since αi ∈ C , then R(αi) ∈ F ′ = Z × {1} , so

(R(αi + β), u(αi + β), R(αi + β + 1)) = (R(αi), u(αi), R(αi + 1)) ∈ T3,

so by the definition of T3, we get

(R(αi), u(αi), R(αi + 1)) = ((s, 1), a, (t, 0)),

for some (s, a, t) ∈ T and by the definition of Ri and ui we get

(R(0), u(0), R(1)) = (s, a, t) ∈ T.

Case (B2). If 0< β < θi.

Then αi < αi + β < αi+1, and

(R(αi + β), u(αi + β), R(αi + β + 1)) ∈ T ′,

since R is an accepting run ofA ∗ on u, and since R(αi + β) = (s, 0), R(αi + β + 1) = (t, 0) for

some t, s ∈ S, thus

(R(αi + β), u(αi + β), R(αi + β + 1)) = ((s, 0), a, (t, 0)) ∈ T1,

by the definition of T1, which implies to

(Ri(β), ui(β), Ri(β + 1)) = ((s, a, t)) ∈ T,

by the definition of Ri, u and T1.

Therefore, from (B1), and (B2) we get for each β < θi, we have

(Ri(β), ui(β), Ri(β + 1)) ∈ T.
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Next we want to prove condition (2). Assume β ≤ θi, that is a limit ordinal with cf(β) =ω,

and we want to prove

(supβ(Ri), Ri(β)) ∈ T.

We have two cases:

(C1) Either β < θi,

(C2) Or β = θi.

Case (C1). Assume β < θi.

Now, since β is a limit ordinal in θi, with cf(β) = ω, then αi + β is a limit ordinal in α,

with cf(αi + β) = ω, by lemma 1.2.40, and we know R is an accepting run of A ∗ on u, then

(supαi+β(R), R(αi +β)) ∈ T ′ and since R(αi + β) = (s, 0), then (supαi+β(R), R(αi +β)) ∈ T1 and

since

(supαi+β(R), R(αi + β)) =
�

supβ(Ri)× {0} , (Ri(β), 0)
�

,

then (supβ(Ri), Ri(β)) ∈ T by the definition of T1.

Case (C2). Assume β = θi.

Since β is a limit ordinal with cf(β) = ω, then αi + θi = αi+1 is a limit ordinal in α, with

cf(αi+1) =ω, by lemma 1.2.40, thus (supαi+1
(R), R(αi+1)) ∈ T ′ and since R(αi+1) = (t, 1), then

(supαi+1
(R), R(αi+1)) ∈ T2 and

(supαi+1
(R), R(αi+1)) =

�

supθi
(Ri)× {0} , (t, 1)

�

,

and since αi+1 is a limit ordinal with cf(αi+1) =ω, so Ri(θi) = t ′ and (supθi
(Ri), Ri(θi)) ∈ T by

the definition of T2.

Therefore, from (C1), and (C2) we get, for each β ≤ θi that is a limit ordinal with cf(β) =ω,

we have

(supβ(Ri), Ri(β)) ∈ T.

Finally we want to prove condition (3). Assume β ≤ θi, that is a limit ordinal with cf(β)>
ω, and we want to prove

(supβ(Ri), statβ(Ri), Ri(β)) ∈ T.

Then we have the following cases:

(D1) Either β < θi,

(D2) Or β = θi.
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Case (D1). Let β < θi.

Since R is an accepting run ofA ∗ on u, and β is a limit ordinal in θi, with cf(β)>ω, then

αi + β is a limit ordinal in α, with cf(αi + β)>ω, by lemma 1.2.40, thus

(supαi+β(R), statαi+β
(R), R(αi + β)) ∈ T ′,

and since R(αi + β) = (s, 0), then (supαi+β(R), statαi+β
(R), R(αi + β)) ∈ T1, and since

(supαi+β(R), statαi+β(R), R(αi + β)) =
�

supβ(Ri)× {0} , supβ(Ri)× {0} , (Ri(β), 0)
�

,

then by the definition of T1 we get (supβ(Ri), statβ(Ri), Ri(β)) ∈ T.

Case (D2). Let β = θi.

Since β is a limit ordinal with cf(β) > ω, then αi + θi = αi+1 is a limit ordinal in α, with

cf(αi+1) > ω, by lemma 1.2.40, thus (supαi+1
(R), statαi+1

(R), R(αi+1)) ∈ T ′ and since R(αi+1) =
(t, 1), then (supαi+1

(R), statαi+1
(R), R(αi+1)) ∈ T2, and since

(supαi+1
(R), statαi+1

(R), R(αi+1)) =
�

supθi
(Ri)× {0} , statθi

(Ri)× {0} , (t, 1)
�

.

but αi+1 is a limit ordinal with cf(αi+1)>ω, so Ri(θi) = t ′ and (supθi
(Ri), statθi

(Ri), Ri(θi)) ∈ T

by the definition of T2.

Therefore, from (D1), and (D2) we get, for each β ≤ θi that is a limit ordinal with cf(β)>
ω, (supβ(Ri), statβ(Ri), Ri(β)) ∈ T.

Hence, the three conditions are achieved. Then, Ri is an accepting run ofA on ui. There-

fore, Ri is an accepting run of A on ui, for each 0 ≤ i < n. Hence u ∈ (L (A ))∗. Therefore,

L (A ∗) ⊆ (L (A ))∗.

Proof of (A2). (L (A ))∗ ⊆L (A ∗).
Assume u ∈ (L (A ))∗, such that u : α→ I , for some α ∈ ord.

If u= ;, then u ∈ L (A ∗), since Z 6= ;, then there exist s ∈ Z with (s, 1) ∈ Z ′ = F ′, so define

R : 1→ S′ such that R(0) = R(α) = (s, 1), and that is an accepting run ofA ∗ on u.

Now assume u 6= ;, and we need to define an accepting run R : α+1→ S′ ofA ∗ on u. Now

since u ∈ (L (A ))∗, and

(L (A ))∗ =
⋃

n<ω

(L (A ))n,

such that for each n<ω,

(L (A ))n = {u : u= ◦
�

uβ
�

β<n
, uβ ∈ L (A ) for each β < n}.
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Then there exist n<ω such that u ∈ (L (A ))n and

u= ◦(ui)i<n, ui ∈ L (A ) for each i < n.

Since u 6= ;, then n > 0, and we can assume that for all i < n, ui 6= ;. Let ui : θi → I , θi ∈ ord,

θi 6= 0, and αi =
∑i−1

j=0 θ j, for each i < n. And

u(αi +δ) = ui(δ), for all δ < θi.

Then α=
∑

i<n
θi.

Now, since for each i < n, ui ∈ L (A ), then for each i < n, there exist an accepting run

Ri : θi + 1→ S ofA on ui.

We want to prove u ∈ L (A ∗). Define R : α+ 1→ S′ as follows:

R(αi) = (Ri(0), 1), for each i < n,

R(αi +δ) = (Ri(δ), 0), for each 0< δ < θi, i < n

R(α) = (t, 1),

for an element(t, 1) ∈ F ′ such element exist because Z 6= ;, then F ′ = Z × {1} 6= ;.
So it is remains to prove R is an accepting run of A ∗ on u. That is, we must prove that

R(0) ∈ Z ′, R(α) ∈ F ′ and satisfies the following conditions:

1. For each β < α, we have

(R(β), u(β), R(β + 1)) ∈ T ′.

2. For each β ≤ α that is a limit ordinal with cf(β) =ω, we have

(supβ(R), R(β)) ∈ T ′.

3. For each β ≤ α that is a limit ordinal with cf(β)>ω, we have

(supβ(R), statβ(R), R(β)) ∈ T ′.

First we want to prove R(0) ∈ Z ′, and R(α) ∈ F ′.

By the definition of R we get R(0) = R(α0) = (R0(0), 1) but R0(0) ∈ Z because R0 is an

accepting run ofA on u0, so we get R(0) ∈ Z ′ and R(α) ∈ F ′, it is clear by the definition of R.

It is remains to prove the three conditions.
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Now we want to prove condition (1). Let β < α and we want to prove (R(β), u(β), R(β +
1)) ∈ T ′. We have the following cases:

(B1) Either β = 0,

(B2) Or 0< β < α.

Case (B1). Assume β = 0.

Since R0 is an accepting run ofA on u0, then

(R0(0), u0(0), R0(1)) ∈ T,

but by the definition of R, we get

(R(0), u(0), R(1)) = ((R0(0), 1), u0(0), (R0(1), 0)),

hence (R(0), u(0), R(1)) ∈ T3, by the definition of T3, then (R(0), u(0), R(1)) ∈ T ′.

Case (B2). Assume 0< β < α.

Now, assume i − smallest ordinal such that β < αi+1, then there is unique δ < θi such that

β = αi +δ.

We want to prove

(R(β), u(β), R(β + 1)) ∈ T ′.

Then we have two cases either δ = 0, or δ > 0.

First assume δ = 0, then β = αi, so by the definition of R, we get

(R(β), u(β), R(β + 1)) = (R(αi), u(αi), R(αi + 1)) = ((Ri(0), 1), ui(0), (Ri(1), 0))

and since for each n> i, Ri is an accepting run ofA on ui, then (Ri(0), ui(0), Ri(1)) ∈ T, hence

(R(β), u(β), R(β + 1)) ∈ T3,

by the definition of T3. Therefore (R(β), u(β), R(β + 1)) ∈ T ′.

Second assume δ > 0, and we want to prove (R(β), u(β), R(β + 1)) ∈ T ′. Since for each n> i,

Ri is an accepting run of A on ui, and δ < θi, then (Ri(δ), ui(δ), Ri(δ + 1)) ∈ T, and by the

definition of R we get

(R(β), u(β), R(β + 1)) = ((Ri(δ), 0), ui(δ), (Ri(δ+ 1), 0)) ∈ T1.
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Thus (R(β), u(β), R(β + 1)) ∈ T ′.

Therefore from (B1), and (B2) we get for each β < α, (R(β), u(β), R(β + 1)) ∈ T ′.

Next we want to prove condition (2). Assume β ≤ α, that is a limit ordinal with cf(β) =ω,

and we want to prove

(supβ(R), R(β)) ∈ T ′.

We have two cases:

(C1) Either β < α,

(C2) Or β = α=
∑

i<n
θi.

Case (C1). If β < α.

Let i−smallest ordinal such that β < αi+1, then there is unique δ < θi such that β = αi+δ.

Then we have two cases either δ > 0, or δ = 0.

Now let δ = 0, then β = αi = θ0 + θ1 + · · ·+ θi−1. We want to prove (supβ(R), R(β)) ∈ T2. By

the definition of R, we get

R(β) = R(αi) = (Ri(0), 1) ∈ F ′,

since for each n > i, Ri is an accepting run of A on ui, and θi−1 ∈ lim, with cf(θi−1) = ω
because β ∈ lim, with cf(β) =ω, by lemma 1.2.40, which give us Ri−1(θi−1) ∈ F and

�

supθi−1
(Ri−1), Ri−1(θi−1)

�

∈ T, and

(supβ(R), R(β)) =
�

supθi−1
(Ri−1)× {0} , (Ri(0), 1)

�

∈ T2,

by the definition of T2, therefore (supβ(R), R(β)) ∈ T ′.

Assume δ > 0, and we want to prove (supβ(R), R(β)) ∈ T. Then δ < θi, and δ ∈ lim with

cf(δ) = ω because β ∈ lim, with cf(β) = ω by lemma 1.2.40. Now, since for each n > i, Ri is

an accepting run ofA on ui, then

�

supδ(Ri), Ri(δ)
�

∈ T,

and since

(supβ(R), R(β)) =
�

supδ(Ri)× {0} , (Ri(δ), 0)
�

∈ T1,

then (supβ(R), R(β)) ∈ T ′.

Case (C2). Assume β = α=
∑

i<n
θi.
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We want to prove (supβ(R), R(β)) ∈ T. By the definition of R, we get

R(β) = R(α) = (t, 1) ∈ F ′,

and Rn−1 is an accepting run ofA on un−1, and θn−1 ∈ lim, with cf(θn−1) =ω because β ∈ lim,

with cf(β) =ω, by lemma 1.2.40, which give us Rn−1(θn−1) ∈ F and

�

supθn−1
(Rn−1), Rn−1(θn−1)

�

∈ T, and

(supβ(R), R(β)) =
�

supθn−1
(Rn−1)× {0} , (t, 1)

�

∈ T2,

by the definition of T2, therefore (supβ(R), R(β)) ∈ T ′.

Therefore, from (C1), and (C2) we get, for each β ≤ α that is a limit ordinal with cf(β) =ω,

(supβ(R), R(β)) ∈ T ′.

Finally we want to prove condition (3). Assume β ≤ α, β = αi + δ, that is a limit ordinal

with cf(β)>ω, and we want to prove

(supβ(R), statβ(R), R(β)) ∈ T ′.

We have two cases:

(D1) Eitherβ < α,

(D2) Or β = α=
∑

i<n
θi.

Case (D1). β < α.

Let i−smallest ordinal such that β < αi+1, then there is unique δ < θi such that β = αi+δ.

Then we have two cases either δ > 0, or δ = 0.

Now let δ = 0, then β = αi = θ0+θ1+· · ·+θi−1. We want to prove (supβ(R), statβ(R), R(β)) ∈ T.

By the definition of R, we get

R(β) = R(αi) = (Ri(0), 1) ∈ F ′,

since for each n > i, Ri is an accepting run of A on ui, and θi−1 ∈ lim, with cf(θi−1) > ω
because β ∈ lim, with cf(β)>ω, by lemma 1.2.40, which gives us Ri−1(θi−1) ∈ F and

�

supθi−1
(Ri−1), statθi−1

(Ri−1), Ri−1(θi−1)
�

∈ T, and

(supβ(R), statβ(R), R(β)) =
�

supθi−1
(Ri−1)× {0} , statθi−1

(Ri−1)× {0} , (Ri(0), 1)
�

∈ T2,

by the definition of T2, therefore (supβ(R), statβ(R), R(β)) ∈ T ′.
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Assume δ > 0.β = αi+δ, and we want to prove (supβ(R), statβ(R), R(β)) ∈ T ′. Then δ < θi,

and δ ∈ lim with cf(δ)>ω because β ∈ lim, with cf(β)>ω by lemma 1.2.40. Since for each

n> i, Ri is an accepting run ofA on ui, then

�

supδ(Ri), statδ(Ri), Ri(δ)
�

∈ T,

and since

(supβ(R), statβ(R), R(β)) =
�

supδ(Ri)× {0} , statδ(Ri)× {0} , (Ri(δ), 0)
�

,

then (supβ(R), statβ(R), R(β)) ∈ T1. Therefore, (supβ(R), statβ(R), R(β)) ∈ T ′.

Case (D2). Assume β = α=
∑

i<n
θi.

We want to prove (supβ(R), statβ(R), R(β)) ∈ T2. By the definition of R, we get

R(β) = R(α) = (t, 1) ∈ F ′

and Rn−1 is an accepting run of A on un−1, and θn−1 ∈ lim, with cf(θn−1) > ω because β ∈
lim, with cf(β)>ω, by lemma 1.2.40, which give us Rn−1(θn−1) ∈ F and

�

supθn−1
(Rn−1), statθn−1

(Rn−1), Rn−1(θn−1)
�

∈ T, and

(supβ(R), statβ(R), R(β)) =
�

supθn−1
(Rn−1)× {0} , statθn−1

(Rn−1)× {0} , (t, 1)
�

,

then by the definition of T2, we get (supβ(R), statβ(R), R(β)) ∈ T2. Therefore (supβ(R), statβ(R), R(β)) ∈
T ′.

Therefore, from (D1), and (D2) we get, for each β ≤ α, that is a limit ordinal with cf(β)>
ω, (supβ(R), statβ(R), R(β)) ∈ T ′. Hence, R satisfies the three conditions.

Thus, R is an accepting run of A ∗ on u. Hence, u ∈ L (A ∗). This implies to (L (A ))∗ ⊆
L (A ∗). From proof of (A1), and (A2) we get L (A ∗) = (L (A ))∗.

4.5 ω−Operation

The following is a definition of theω-ST-automata.

Definition 4.5.1. LetA = (S, I , T, Z , F) be ST-automaton over I . Then define theω-ST-automaton
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over I ofA , orA ω = (S′, I , T ′, Z ′, F ′) as follows:

S′ = S × {0, 1} ∪
�

s f

	

, such that s f /∈ S × {0, 1} ,

Z ′ = Z × {1} ,

F ′ =

¨
�

s f

	

if ; /∈ L (A )
�

s f

	

∪ Z ′ if ; ∈ L (A )

«

, and

T ′ = T1 ∪ T2 ∪ T3 ∪ T4,

where

T1 = {((s, 0), u, (t, 0)) : (s, a, t) ∈ T}∪

{(A× {0} , (t, 0)) : A⊆ S, and (A, t) ∈ T}∪

{(A× {0} , B × {0} , (t, 0)) : A, B ⊆ S, and (A, B, t) ∈ T} ,

T2 =
�

((s, 0), a, (t, 1)) :
�

s, a, t ′
�

∈ T for some t ′ ∈ F, and (t, 1) ∈ Z ′
	

∪
�

(A× {0} , (t, 1)) : A⊆ S,
�

A, t ′
�

∈ T for some t ′ ∈ F, and (t, 1) ∈ Z ′
	

∪
�

(A× {0} , B × {0} , (t, 1)) : A, B ⊆ S,
�

A, B, t ′
�

∈ T for some t ′ ∈ F, and (t, 1) ∈ Z ′
	

,

T3 = {((s, 1), a, (t, 0)) : (s, a, t) ∈ T} , and

T4 =
��

A, s f

�

: A⊆ S × {0,1} such that there is s ∈ S with (s, 1) ∈ A
	

.

Then we prove the following theorem that show, applying the ω operation to languages

defined by ST-automaton, the produce language that is also definable using ST-automaton.

Theorem 4.5.2. If A = (S, I , T, Z , F) is a ST-automaton over I , with Z is a finite set, then

L (A ω) = (L (A ))ω.

Proof. AssumeA = (S, I , T, Z , F) is a ST-automaton over I , with Z is a finite set and we want

to prove L (A ω) = (L (A ))ω, such that A ω = (S′, I , T ′, Z ′, F ′). Thus we should prove the

following:

(A1) L(A ω) ⊆ (L (A ))ω.

(A2) (L (A ))ω ⊆L (A ω).
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By the definition ofA ω, we get

S′ = S × {0, 1} ∪
�

s f

	

, such that s f /∈ S × {0,1} ,

Z ′ = Z × {1} ,

F ′ =

¨
�

s f

	

if ; /∈ L (A )
�

s f

	

∪ Z ′ if ; ∈ L (A )

«

, and

T ′ = T1 ∪ T2 ∪ T3 ∪ T4,

where

T1 = {((s, 0), u, (t, 0)) : (s, a, t) ∈ T}∪

{(A× {0} , (t, 0)) : A⊆ S, and (A, t) ∈ T}∪

{(A× {0} , B × {0} , (t, 0)) : A, B ⊆ S, and (A, B, t) ∈ T} ,

T2 =
�

((s, 0), a, (t, 1)) :
�

s, a, t ′
�

∈ T for some t ′ ∈ F, and (t, 1) ∈ Z ′
	

∪
�

(A× {0} , (t, 1)) : A⊆ S,
�

A, t ′
�

∈ T for some t ′ ∈ F, and (t, 1) ∈ Z ′
	

∪
�

(A× {0} , B × {0} , (t, 1)) : A, B ⊆ S,
�

A, B, t ′
�

∈ T for some t ′ ∈ F, and (t, 1) ∈ Z ′
	

,

T3 = {((s, 1), a, (t, 0)) : (s, a, t) ∈ T} , and

T4 =
��

A, s f

�

: A⊆ S × {0,1} such that there is s ∈ S with (s, 1) ∈ A
	

.

Proof of (A1). L (A ω) ⊆ (L (A ))ω.

We can assume Z 6= ;, since if Z = ;, then Z ′ = ; and L (A ) = ;, and so (L (A ))ω = ;,
and L (A ω) = ;, therefore L (A ω) = (L (A ))ω.

So we can assume Z 6= ;. Let u ∈ L (A ω), such that u : α→ I , and α ∈ ord. Then there is

an accepting run R : α+ 1→ S′ ofA ω on u. We want to prove u ∈ (L (A ))ω, when

(L (A ))ω = {u : u= ◦(ui)i<ω, ui ∈ L (A ) for each i <ω}.

Now if u = ;, then ; ∈ L (A ω), therefore Z ′ ∩ F ′ 6= ;, so R(0) = R(α) = (s, 1), for some

(s, 1) ∈ Z ′ ∩ F ′, hence F ′ =
�

s f

	

∪ Z ′, thus ; ∈ L (A ), by the definition of F ′. Therefore

; ∈ (L (A ))ω. Thus u ∈ (L (A ))ω.

Now, assume u 6= ;. So the only we need to discuses the following two cases:

(B1) R(α) ∈ Z ′.
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(B2) R(α) = s f .

Case (B1). If R(α) ∈ Z ′.

In this case ; ∈ L (A ). Then by an argument similar to the proof of the previous theorem

we can write u= u0◦u1◦· · ·◦un, such that ui 6= ;, for each i ≤ n and n≥ 0. Then u ∈ (L (A ))ω.

Case (B2). If R(α) = s f .

We will show that

u= ◦(ui)i<ω, ui 6= ;, ui ∈ L (A ) for each i <ω.

Define

C =
�

σ < α : R(σ) ∈ Z ′
	

=
�

αβ : β < η
	

,

where η is an ordinal with αβ < αγ, for each β < γ < η. Now we want to prove η =ω. Since

R(α) = s f , the only way to get s f in our transition in T4, so we get α ∈ limit with cf(α) = ω.

Therefore supα(R) = A, for some A ⊆ S × {0, 1} , such that there is s ∈ S with (s, 1) ∈ A. Thus

η ≥ ω. Now suppose η > ω. Let C ′ = {αi : i <ω} , and δ = sup(C ′), then δ < α, since if

δ = α, then αω is an upper bound on C ′, so δ ≤ αω < α, hence R(δ) = s f and by the definition

of T4, we get supδ(R) = B, for some B ⊆ S × {0,1} , such that there is s ∈ S with , (s, 1) ∈ B

which is a contraction so C ′ = C and η=ω.

Let C = {αi : i <ω} . Now define that, for each i and 0≤ i <ω, θi ∈ ord such that

αi + θi = αi+1, and

ui : θi → I , is such that

ui(δ) = u(αi +δ), for all δ < θi,

then we get,

u= ◦(ui)i<ω, and α=
∑

i<ω

θi.

Now since for each i with i <ω, αi ∈ C , then R(αi) ∈ Z ′, and Z ′ = Z×1, so define Ri : θi+1→
S, as the following:

Ri(0) = s, such that R(αi) = (s, 1),

Ri(δ) = s, such that R(αi +δ) = (s, 0), for all 0< δ < θi, and

Ri(θi) = t ′,
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such that we get to t ′ as the following: we consider two cases either αi+1 is a successor ordinal

or limit ordinal. First assume αi+1 is a successor ordinal, then let αi+1 = σ+1, for someσ ∈ ord,

and since R is an accepting run ofA ω on u, then

(R(σ), u(σ), R(αi+1)) ∈ T ′,

but R(αi+1) ∈ Z ′ = Z × {1} , because αi+1 ∈ C , then let R(αi+1) = (t, 1), for some t ∈ Z , thus

(R(σ), u(σ), R(αi+1)) ∈ T2,

by the definition of T2, which implies to

(R(σ), u(σ), R(αi+1)) = ((s, 0), u(σ), (t, 1)),

such that (s, u(σ), t ′) ∈ T, for some t ′ ∈ F.

Second assume αi+1 is a limit ordinal, then either cf(αi+1) =ω or cf(αi+1)>ω.

First assume cf(αi+1) =ω, then

�

supαi+1
(R), R(αi+1)

�

∈ T ′,

since R is an accepting run ofA ω on u, but R(αi+1) ∈ Z ′ = Z ×{1} , because αi+1 ∈ C , then let

R(αi+1) = (t, 1), for some t ∈ Z , thus

�

supαi+1
(R), R(αi+1)

�

∈ T2,

by the definition of T2, which implies to

�

supαi+1
(R), R(αi+1)

�

= (A× {0} , (t, 1)),

for some A⊆ S, and (A, t ′) ∈ T for some t ′ ∈ F.

Now assume cf(αi+1)>ω, then

�

supαi+1
(R), statαi+1

(R), R(αi+1)
�

∈ T ′,

since R is an accepting run ofA ω on u, but R(αi+1) ∈ Z ′ = Z ×{1} , because αi+1 ∈ C , then let

R(αi+1) = (t, 1), for some t ∈ Z , thus

�

supαi+1
(R), statαi+1

(R), R(αi+1)
�

∈ T2,
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by the definition of T2, which implies to

�

supαi+1
(R), statαi+1

(R), R(αi+1)
�

= (A× {0} , B × {0} , (t, 1)),

for some A, B ⊆ S, and (A, B, t ′) ∈ T for some t ′ ∈ F.

Now by the same way in previous theorem we can prove that Ri is an accepting run of A
on ui, for each i < ω. Therefore ui ∈ L (A ), for each i < ω, hence u ∈ (L (A ))ω. Therefore

L (A ω) ⊆ (L (A ))ω.

Proof of (A2). (L (A ))ω ⊆L (A ω).
Assume u ∈ (L (A ))ω, such that u : α→ I , for some α ∈ ord.

If u= ;, then ; ∈ L (A ), since

(L (A ))ω = {u : u= ◦(ui)i<ω, u ∈ L (A ) for each i <ω}.

Then there exists s ∈ F ∩ Z , so define R : 1→ S′ such that R(0) = R(α) = (s, 1), and that is an

accepting run ofA ω on u.

Now assume u 6= ;, and we need to define an accepting run R : α + 1 → S′ of A ω on u.

Now since u ∈ (L (A ))ω, then

u= ◦(ui)i<ω, ui ∈ L (A ) for each i <ω.

Since u 6= ;, then we can assume that for each i < ω, ui 6= ;. Let ui : θi → I , θi ∈ ord,

θi 6= ;, for each i <ω and αi =
∑i−1

j=0 θ j, for each i <ω.

u(αi +δ) = ui(δ), for all δ < θi and i <ω.

Then α=
∑

i<ω
θi. Since for each i <ω, ui ∈ L (A ), then there are accepting runs Ri : θi+1→ S

ofA on ui, for each i <ω. Then we have two cases:

(B1) ; /∈ L (A ).

(B2) ; ∈ L (A ).

Case (B1). If ; /∈ L (A ).
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Now, we want to prove u ∈ L (A ω). Define R : α+ 1→ S′ as follows:

R(αi) = (Ri(0), 1), for each i <ω,

R(αi +δ) = (Ri(δ), 0), for each 0< δ < θi, i <ω

R(α) = s f .

Now we want to prove R is an accepting run ofA ω on u. That is we must prove that, R(0) ∈ Z ′,

R(α) ∈ F ′ and satisfies the following conditions:

1. For each β < α, we have

(R(β), u(β), R(β + 1)) ∈ T ′.

2. For each β ≤ α that is a limit ordinal with cf(β) =ω, we have

(supβ(R), R(β)) ∈ T ′.

3. For each β ≤ α that is a limit ordinal with cf(β)>ω, we have

(supβ(R), statβ(R), R(β)) ∈ T ′.

First we want to prove R(0) ∈ Z ′, and R(α) ∈ F ′. By the definition of R we get R(0) = R(α0) =
(R0(0), 1) but R0(0) ∈ Z because R0 is an accepting run of A on u0 so we get R(0) ∈ Z ′ and

R(α) ∈ F ′, it is clear by the definition of R.

It is remains to prove the three conditions. Now we want to prove condition (1). Let β < α

and we want to prove

(R(β), u(β), R(β + 1)) ∈ T ′.

We discuss the following cases:

(C1) If β = 0.

(C2) If 0< β < α.

Case (C1). If β = 0.

Since R0 is an accepting run ofA on u0, then

(R0(0), u0(0), R0(1)) ∈ T,

but by the definition of R, we get

(R(0), u(0), R(1)) = ((R0(0), 1), u0(0), (R0(1), 0)),
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hence (R(0), u(0), R(1)) ∈ T3, by the definition of T3, then (R(0), u(0), R(1)) ∈ T ′.

Case (C2). If 0< β < α.

Let i−smallest ordinal such that β < αi+1, then there is unique δ < θi, such that β = αi+δ.

We want to prove

(R(β), u(β), R(β + 1)) ∈ T ′.

Then we have two cases either δ = 0, or δ > 0.

First assume δ = 0, then β = αi, so by the definition of R, we get

(R(β), u(β), R(β + 1)) = (R(αi), u(αi), R(αi + 1)) = ((Ri(0), 1), ui(0), (Ri(1), 0))

and since for each i <ω, Ri is an accepting run ofA on ui, then (Ri(0), ui(0), Ri(1)) ∈ T, hence

(R(β), u(β), R(β + 1)) ∈ T3,

by the definition of T3. Therefore (R(β), u(β), R(β + 1)) ∈ T ′.

Second assume δ > 0, and we want to prove (R(β), u(β), R(β + 1)) ∈ T ′. Since for each

i <ω, Ri is an accepting run ofA on ui, and δ < θi, then (Ri(δ), ui(δ), Ri(δ+1)) ∈ T, and by

the definition of R we get

(R(β), u(β), R(β + 1)) = ((Ri(δ), 0), ui(δ), (Ri(δ+ 1), 0)) ∈ T1.

Thus (R(β), u(β), R(β + 1)) ∈ T ′. Thus, from (C1), and (C2) we get for each β < α, we have

(R(β), u(β), R(β + 1)) ∈ T ′.

Next we want to prove condition (2). Assume β ≤ α, β = αi + δ, that is a limit ordinal

with cf(β) =ω, and we want to prove

(supβ(R), R(β)) ∈ T ′.

We have two cases:

(D1) β < α.

(D2) β = α.

Case (D1). If β < α.

Let i−smallest ordinal such that β < αi+1, then there is unique δ < θi such that β = αi+δ.

Then we have two cases either δ > 0, or δ = 0.
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Now let δ = 0, then β = αi = θ0 + θ1 + · · ·+ θi−1.We want to prove (supβ(R), R(β)) ∈ T2.

By the definition of R, we get

R(β) = R(αi) = (Ri(0), 1) ∈ Z ′,

since for each i < ω, Ri is an accepting run of A on ui, and θi−1 ∈ lim, with cf(θi−1) = ω
because β ∈ lim, with cf(β) =ω, by lemma 1.2.40, which gives us Ri−1(θi−1) ∈ F and

�

supθi−1
(Ri−1), Ri−1(θi−1)

�

∈ T, and

(supβ(R), R(β)) =
�

supθi−1
(Ri−1)× {0} , (Ri(0), 1)

�

∈ T2,

by the definition of T2, therefore (supβ(R), R(β)) ∈ T ′.

Assume δ > 0, where β = αi+δ, and we want to prove (supβ(R), R(β)) ∈ T1. Then δ < θi,

and δ ∈ lim with cf(δ) =ω because β ∈ lim, with cf(β) =ω, by lemma 1.2.40. Since for each

ω> i, Ri is an accepting run ofA on ui, then

�

supδ(Ri), Ri(δ)
�

∈ T,

and since

(supβ(R), R(β)) =
�

supδ(Ri)× {0} , (Ri(δ), 0)
�

∈ T1,

then (supβ(R), R(β)) ∈ T ′.

Case (D2). If β = α.

Now assume β = α=
∑

i<ω
θi. We want to prove (supβ(R), R(β)) ∈ T ′. By the definition of R,

we get

R(β) = R(α) = s f ∈ F ′.

It is clear that, supβ(R) = A ⊆ S × {0, 1} , and there is s ∈ S with (s, 1) ∈ A, since Z ′ is finite

and R(αi) = (Ri(0), 1), for each i < ω. Therefore, (supβ(R), R(β)) ∈ T4, so (supβ(R), R(β)) ∈
T ′. Therefore, from (D1), and (D2) we get for every limit ordinal β ≤ α, with cf(β) = ω,

(supβ(R), R(β)) ∈ T ′.

Now we want to prove condition (3). Notes that, β 6= α, because cf(α) = ω by lemma

1.2.37, so assume β < α, such that i − smallest ordinal with β < αi+1, then there is unique

δ < θi such that β = αi +δ that is a limit ordinal with cf(β)>ω, and we want to prove

(supβ(R), stateβ(R), R(β)) ∈ T ′.
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Then we have two cases either δ > 0, or δ = 0.

First, letδ = 0, then β = αi = θ0+θ1+· · ·+θi−1.We want to prove (supβ(R), stateβ(R), R(β)) ∈
T2. By the definition of R, we get

R(β) = R(αi) = (Ri(0), 1) ∈ Z ′,

since for each i < ω, Ri is an accepting run of A on ui, and θi−1 ∈ lim, with cf(θi−1) > ω
because β ∈ lim, with cf(β)>ω, by lemma 1.2.40, which gives us Ri−1(θi−1) ∈ F and

�

supθi−1
(Ri−1), statθi−1

(Ri−1), Ri−1(θi−1)
�

∈ T, and

(supβ(R), stateβ(R), R(β)) =
�

supθi−1
(Ri−1)× {0} , stateθi−1

(Ri−1)× {0} , (Ri(0), 1)
�

∈ T2,

by the definition of T2, therefore (supβ(R), stateβ(R), R(β)) ∈ T ′.

Assume δ > 0, where β = αi + δ, and we want to prove (supβ(R), stateβ(R), R(β)) ∈ T1.

Then δ < θi, and δ ∈ lim with cf(δ) > ω because β ∈ lim, with cf(β) > ω, by lemma 1.2.40.

Since for each i <ω, Ri is an accepting run ofA on ui, then

�

supδ(Ri), stateδ(Ri), Ri(δ)
�

∈ T,

and since

(supβ(R), stateβ(R), R(β)) =
�

supδ(Ri)× {0} , stateδ(Ri)× {0} , (Ri(δ), 0)
�

∈ T1,

then (supβ(R), stateβ(R), R(β)) ∈ T ′.

Therefore, R satisfies the three condition, hence R is an accepting run of A ω on u. Then

u ∈ L (A ω). Thus, (L (A ))ω ⊆L (A ω).

Case (B2). If ; ∈ L (A ).
We want to prove u ∈ L (A ω). Then we have two cases either

u= ◦(ui)i<ω, u ∈ L (A ) for each i <ω, or

u= u0 ◦ u1 ◦ · · · ◦ un, such that ui 6= ; for each i ≤ n and n≥ 0.

If u = ◦(ui)i<ω, ui ∈ L (A ) for each i <ω, then by the same proof of case (B1), we can show

that u ∈ L (A ω).
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Now assume that u= u0 ◦ u1 ◦ · · · ◦ un. Define R : α+ 1→ S′ as follows:

R(αi) = (Ri(0), 1), for each i < n,

R(αi +δ) = (Ri(δ), 0) for each 0< δ < θi, i < n

R(α) = (t, 1),

for an element(t, 1) ∈ Z ′ such element exist because Z 6= ;, then Z ′ = Z × {1} 6= ;. Then

u ∈ L (A ω), also by the same proof for the previous theorem. Therefore, from (A1) and (A2)

we get L (A ω) = (L (A )).

4.6 #−Operation

Finally, we define the #-ST-automata as follows:

Definition 4.6.1. Let A = (S, I , T, Z , F) be a ST-automaton over I with Z 6= ;. Define the

#-ST-automaton over I ofA , orA # = (S′, I , T ′, Z ′, F ′) as follows:

S′ =S × {0,1} ,

Z ′ =Z × {1} ,

F ′ =Z ′,

T ′ =T1 ∪ T2 ∪ T3 ∪ T4,

where

T1 = {((s, 0), a, (t, 0)) : (s, a, t) ∈ T}∪

{(A× {0} , (t, 0)) : A⊆ S, and (A, t) ∈ T}∪

{(A× {0} , B × {0} , (t, 0)) : A, B ⊆ S, and (A, B, t) ∈ T} ,

T2 =
�

((s, 0), a, (t, 1)) :
�

s, a, t ′
�

∈ T for some t ′ ∈ F, and (t, 1) ∈ Z ′
	

∪
�

(A× {0} , (t, 1)) : A⊆ S,
�

A, t ′
�

∈ T for some t ′ ∈ F, and (t, 1) ∈ Z ′
	

∪
�

(A× {0} , B × {0} , (t, 1)) : A, B ⊆ S,
�

A, B, t ′
�

∈ T for some t ′ ∈ F, and (t, 1) ∈ Z ′
	

,

T3 = {((s, 1), a, (t, 0)) : (s, a, t) ∈ T} ,
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T4 =
�

(A, (t, 1)) : A⊆ S′ such that there is s ∈ S with (s, 1) ∈ A, and (t, 1) ∈ Z ′
	

∪
�

(A, B, (t, 1)) : A, B ⊆ S′ such that there is s ∈ S with (s, 1) ∈ A, and (t, 1) ∈ Z ′
	

.

If Z = ;, then defineA # = ({s} , I ,;, {s} , {s}), for any s ∈ S.

The following theorem shows that, applying the # operation to languages defined by ST-

automaton, the produce language that is also definable using ST-automaton.

Theorem 4.6.2. If A = (S, I , T, Z , F) is a ST-automaton over I , with Z is a finite set, then

L
�

A #
�

= (L (A ))#.

Proof. Assume A = (S, I , T, Z , F) is a ST-automaton over I , with Z is a finite and we want to

prove L
�

A #
�

= (L (A ))#, such thatA # = (S′, I , T ′, Z ′, F ′). We want to prove the following:

(A1) L
�

A #
�

⊆ (L (A ))#.

(A2) (L (A ))# ⊆L
�

A #
�

.

If Z 6= ;, then by the definition ofA #, we get to the following:

S′ =S × {0,1} ,

Z ′ =Z × {1} ,

F ′ =Z ′,

T ′ =T1 ∪ T2 ∪ T3 ∪ T4,

where

T1 = {((s, 0), a, (t, 0)) : (s, a, t) ∈ T}∪

{(A× {0} , (t, 0)) : A⊆ S, and (A, t) ∈ T}∪

{(A× {0} , B × {0} , (t, 0)) : A, B ⊆ S, and (A, B, t) ∈ T} ,

T2 =
�

((s, 0), a, (t, 1)) :
�

s, a, t ′
�

∈ T for some t ′ ∈ F, and (t, 1) ∈ Z ′
	

∪
�

(A× {0} , (t, 1)) : A⊆ S,
�

A, t ′
�

∈ T for some t ′ ∈ F, and (t, 1) ∈ Z ′
	

∪
�

(A× {0} , B × {0} , (t, 1)) : A, B ⊆ S,
�

A, B, t ′
�

∈ T for some t ′ ∈ F, and (t, 1) ∈ Z ′
	

,

T3 = {((s, 1), a, (t, 0)) : (s, a, t) ∈ T} ,

T4 =
�

(A, (t, 1)) : A⊆ S′ such that there is s ∈ S with (s, 1) ∈ A, and (t, 1) ∈ Z ′
	

∪
�

(A, B, (t, 1)) : A, B ⊆ S′ such that there is s ∈ S with (s, 1) ∈ A, and (t, 1) ∈ Z ′
	

.
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If Z = ;, then defineA # = ({s} , I ,;, {s} , {s}), for any s ∈ S.

We can assume Z 6= ;, since if Z = ;, then A # = ({s} , I ,;, {s} , {s}), for some s ∈ S, hence

L
�

A #
�

= {;} , and since L (A ) = ;, then (L (A ))# = {;} , therefore L
�

A #
�

= (L (A ))#.

So we can assume Z 6= ;.

Proof of (A1). L
�

A #
�

⊆ (L (A ))#.

Let u ∈ L
�

A #
�

, such that u : α→ I , and α ∈ ord. Since ; ∈ (L (A ))#, so we can assume

u 6= ;. Then there is an accepting run R : α+1→ S′ ofA # on u. We want to prove u ∈ (L (A ))#

and since

(L (A ))# =
⋃

γ∈ord

(L (A ))γ,

such that for each γ ∈ ord,

(L (A ))γ = {u : u= ◦
�

uβ
�

β<γ
, uβ ∈ L (A ) for each β < γ}.

We will find γ ∈ ord, such that u ∈ (L (A ))γ. Let

C =
�

β ≤ α : R(β) ∈ Z ′
	

=
�

αβ : β < γ
	

, where γ ∈ ord.

Now define that, for each i and 0≤ i < γ, θi ∈ ord such that

αi + θi = αi+1, and

ui : θi → I , is such that

ui(δ) = u(αi +δ), for all δ < θi,

then we get,

u= ◦(ui)i<γ, and α=
∑

i<γ

θi.

Now since for each i with 0 ≤ i < γ, αi ∈ C , then R(αi) ∈ Z ′, and Z ′ = Z × 1, so define

Ri : θi + 1→ S, as the following:

Ri(0) = s such that R(αi) = (s, 1), for some (s, 1) ∈ Z ′,

Ri(δ) = s such that R(αi +δ) = (s, 0), for all 0< δ < θi, and

Ri(θi) = t ′,

such that we get to t ′ as the following: we consider two cases either αi+1 is a successor ordinal
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or limit ordinal. First assume αi+1 is a successor ordinal, then let αi+1 = σ+1, for someσ ∈ ord,

and since R is an accepting run ofA # on u, then

(R(σ), u(σ), R(αi+1)) ∈ T ′,

but R(αi+1) ∈ Z ′ = Z × {1} , because αi+1 ∈ C , then let R(αi+1) = (t, 1), thus

(R(σ), u(σ), R(αi+1)) ∈ T2,

by the definition of T2, which implies to

(R(σ), u(σ), R(αi+1)) = ((s, 0), u(σ), (t, 1)),

such that (s, u(σ), t ′) ∈ T, for some t ′ ∈ F.

Second assume αi+1 is a limit ordinal, then either cf(αi+1) =ω or cf(αi+1)>ω.

First assume cf(αi+1) =ω, then

�

supαi+1
(R), R(αi+1)

�

∈ T ′,

since R is an accepting run ofA # on u, but R(αi+1) ∈ Z ′ = Z ×{1} , because αi+1 ∈ C , then let

R(αi+1) = (t, 1), thus
�

supαi+1
(R), R(αi+1)

�

∈ T2,

by the definition of T2, which implies to

�

supαi+1
(R), R(αi+1)

�

= (A× {0} , (t, 1)),

for some A⊆ S and (A, t ′) ∈ T, for some t ′ ∈ F.

Now assume cf(αi+1)>ω, then

�

supαi+1
(R), statαi+1

(R), R(αi+1)
�

∈ T ′,

since R is an accepting run ofA # on u, but R(αi+1) ∈ Z ′ = Z ×{1} , because αi+1 ∈ C , then let

R(αi+1) = (t, 1), thus
�

supαi+1
(R), statαi+1

(R), R(αi+1)
�

∈ T2,

by the definition of T2, which implies to

�

supαi+1
(R), statαi+1

(R), R(αi+1)
�

= (A× {0} , B × {0} , (t, 1)),
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for some A, B ⊆ S and (A, B, t ′) ∈ T, for some t ′ ∈ F.

So it is remains to prove for each i < γ, Ri is an accepting run ofA on ui. That is, we must

prove that, for each i < γ, Ri(0) ∈ Z , Ri(θi) ∈ F and satisfies the following conditions:

1. For each β < θi we have

(Ri(β), ui(β), Ri(β + 1)) ∈ T.

2. For each β ≤ θi that is a limit ordinal with cf(β) =ω, we have

(supβ(Ri), Ri(β)) ∈ T.

3. For each β ≤ θi that is a limit ordinal with cf(β)>ω, we have

(supβ(Ri), statβ(Ri), Ri(β)) ∈ T.

Let i < γ, and we want to prove Ri is an accepting run ofA on ui.

First we want to prove Ri(0) ∈ Z , and Ri(θi) ∈ F, and that is clear by the definition of Ri.

It is remains to prove the three conditions. Now we want to prove condition (1). Let β < θi,

and we want to prove

(Ri(β), ui(β), Ri(β + 1)) ∈ T.

Since R is an accepting run ofA # on u, then (R(αi + β), u(αi + β), R(αi + β + 1)) ∈ T ′.

We have two cases:

(B1) β = 0.

(B2) 0< β < θi.

Case (B1). β = 0.

Then

(R(αi + β), u(αi + β), R(αi + β + 1)) = (R(αi), u(αi), R(αi + 1)) ∈ T ′,

and since αi ∈ C , then R(αi) ∈ F ′ = Z × {1} , so

(R(αi + β), u(αi + β), R(αi + β + 1)) = (R(αi), u(αi), R(αi + 1)) ∈ T3,

so by the definition of T3, we get

(R(αi), u(αi), R(αi + 1)) = ((s, 1), a, (t, 0)),
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for some (s, a, t) ∈ T and by the definition of Ri and ui we get

(Ri(0), ui(0), Ri(1)) = (s, a, t) ∈ T.

Case (B2). 0< β < θi.

Now assume 0< β < θi. Then αi < αi + β < αi+1 and

(R(αi + β), u(αi + β), R(αi + β + 1)) ∈ T ′,

since R is an accepting run ofA # on u, and since R(αi + β) = (s, 0), R(αi + β + 1) = (t, 0) for

some t, s ∈ S, thus

(R(αi + β), u(αi + β), R(αi + β + 1)) = ((s, 0), a, (t, 0)) ∈ T1,

by the definition of T1, which implies to

(Ri(β), ui(β), Ri(β + 1)) = ((s, a, t)) ∈ T,

by the definition of Ri, ui and T1.

Therefore from (B1) and (B2), we get for each β < θi, (Ri(β), ui(β), Ri(β + 1)) ∈ T.

Next we want to prove condition (2). Assume β ≤ θi, that is a limit ordinal with cf(β) =ω,

and we want to prove

(supβ(Ri), Ri(β)) ∈ T.

We have two cases:

(C1) β < θi.

(C2) β = θi.

Case (C1). β < θi.

Let β < θi. Now since β is a limit ordinal in θi, with cf(β) =ω, then αi+β is a limit ordinal

in α, with cf(αi + β) = ω, by lemma 1.2.40, and we know R is an accepting run of A # on u,

then (supαi+β(R), R(αi+β)) ∈ T ′ and since R(αi + β) = (s, 0), then (supαi+β(R), R(αi+β)) ∈ T1

and since

(supαi+β(R), R(αi + β)) =
�

supβ(Ri)× {0} , (Ri(β), 0)
�

,

then (supβ(Ri), Ri(β)) ∈ T, by the definition of T1.

Case (C2). β = θi.
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Let β = θi, and since β is a limit ordinal with cf(β) = ω, then αi + θi = αi+1 is a limit

ordinal in α, with cf(αi+1) = ω, by lemma 1.2.40, thus (supαi+1
(R), R(αi+1)) ∈ T ′ and since

R(αi+1) = (t, 1), then (supαi+1
(R), R(αi+1)) ∈ T2 and

(supαi+1
(R), R(αi+1)) =

�

supθi
(Ri)× {0} , (t, 1)

�

,

and since αi+1 is a limit ordinal with cf(αi+1) =ω, so Ri(θi) = t ′ and (supθi
(Ri), Ri(θi)) ∈ T by

the definition of T2.

Then from (C1), and (C2) we get, for every β ≤ θi, that is a limit ordinal with cf(β) = ω,

(supβ(Ri), Ri(β)) ∈ T.

Finally we want to prove condition (3). Assume β ≤ θi, that is a limit ordinal with cf(β)>
ω, and we want to prove

(supβ(Ri), statβ(Ri), Ri(β)) ∈ T.

Then we have two cases:

(D1) β < θi.

(D2) β = θi.

Case (D1). β < θi.

First let β < θi. Since R is an accepting run ofA # on u, and β is a limit ordinal in θi, with

cf(β)>ω, then αi + β is a limit ordinal in α, with cf(αi + β)>ω, by lemma 1.2.40, thus

(supαi+β(R), statαi+β
(R), R(αi + β)) ∈ T ′

and since R(αi + β) = (s, 0), then

(supαi+β(R), statαi+β
(R), R(αi + β)) ∈ T1

and since

(supαi+β(R), statαi+β(R), R(αi + β)) =
�

supβ(Ri)× {0} , supβ(Ri)× {0} , (Ri(β), 0)
�

,

then by the definition of T1, we get (supβ(Ri), statβ(Ri), Ri(β)) ∈ T.

Case (D2). β = θi.

Now let β = θi, and since β is a limit ordinal with cf(β)>ω, then αi + θi = αi+1 is a limit

ordinal in α, with cf(αi+1) > ω, by lemma 1.2.40, thus (supαi+1
(R), statαi+1

(R), R(αi+1)) ∈ T ′
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and since R(αi+1) = (t, 1), then (supαi+1
(R), statαi+1

(R), R(αi+1)) ∈ T2 and since

(supαi+1
(R), statαi+1

(R), R(αi+1)) =
�

supθi
(Ri)× {0} , statθi

(Ri)× {0} , (t, 1)
�

.

and sinceαi+1 is a limit ordinal with cf(αi+1)>ω, so Ri(θi) = t ′ and (supθi
(Ri), statθi

(Ri), Ri(θi)) ∈
T by the definition of T2. Thus, from (D1), and (D2) we get, for each β ≤ θi that is a limit

ordinal with cf(β) > ω, (supβ(Ri), statβ(Ri), Ri(β)) ∈ T. Hence, Ri is satisfying the three con-

ditions. Therefore, Ri is an accepting run ofA on ui, for each i < γ. Then u ∈ (L (A ))#.

Therefore L
�

A #
�

⊆ (L (A ))#

Proof of (A2). (L (A ))# ⊆L
�

A #
�

.

Assume u ∈ (L (A ))#, such that u : α→ I , for some α ∈ ord. If u = ;, then ; ∈ L
�

A #
�

,

since Z 6= ;, then there exist s ∈ Z with (s, 1) ∈ Z ′ = F ′, so define R : 1 → S′ such that

R(0) = R(α) = (s, 1), and that is an accepting run ofA # on u. Now assume u 6= ; and we need

to define an accepting run R : α+ 1→ S′ ofA # on u. Now since u ∈ (L (A ))#, and

(L (A ))# =
⋃

γ∈ord

(L (A ))γ,

such that for each γ ∈ ord,

(L (A ))γ = {u : u= ◦
�

uβ
�

β<γ
, uβ ∈ L (A ) for each β < γ}.

Then there exists γ ∈ ord, such that u ∈ (L (A ))γ and

u= ◦(ui)i<γ, ui ∈ L (A ) for each i < γ.

Since u 6= ;, then γ > 0, and we can assume that for all i < γ, ui 6= ;. Let ui : θi → I ,

θi ∈ ord, θi 6= 0 for each i < γ and αi =
∑

j<i
θ j, for each i < γ.

u(αi +δ) = ui(δ), for all δ < θi, i < γ.

Then α=
∑

i<γ
θi. Since for each i < γ, ui ∈ L (A ), then there is an accepting run Ri : θi+1→ S

ofA on ui. Now we want to prove u ∈ L
�

A #
�

. Define R : α+ 1→ S′ as follows:

R(αi) = (Ri(0), 1), for each i < γ,

R(αi +δ) = (Ri(δ), 0), for each 0< δ < θi, i < γ,

R(α) = (t, 1),
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such element (t, 1) ∈ F ′, exists since Z 6= ;. So it is remains to prove R is an accepting run ofA #

on u. That is we must prove that, R(0) ∈ Z ′, R(α) ∈ F ′ and satisfies the following conditions:

1. For each β < α we have

(R(β), u(β), R(β + 1)) ∈ T ′.

2. For each β ≤ α that is a limit ordinal with cf(β) =ω, we have

(supβ(R), R(β)) ∈ T ′.

3. For each β ≤ α that is a limit ordinal with cf(β)>ω, we have

(supβ(R), statβ(R), R(β)) ∈ T ′.

First we want to prove R(0) ∈ Z ′, and R(α) ∈ F ′. By the definition of R we get R(0) = R(α0) =
(R0(0), 1) but R0(0) ∈ Z because R0 is an accepting run of A on u0 so we get R(0) ∈ Z ′ and

R(α) ∈ F ′, it is clear by the definition of R. It is remains to prove the three conditions.

Now we want to prove condition (1). Let β < α we want to prove

(R(β), u(β), R(β + 1)) ∈ T ′.

Then we have the following cases:

(B1) β = 0.

(B2) 0< β < α.

Case (B1). β = 0.

Assume β = 0. Since R0 is an accepting run ofA on u0, then

(R0(0), u0(0), R0(1)) ∈ T,

but by the definition of R, we get

(R(0), u(0), R(1)) = ((R0(0), 1), u0(0), (R0(1), 0)),

hence (R(0), u(0), R(1)) ∈ T3, by the definition of T3, then (R(0), u(0), R(1)) ∈ T ′.

Case (B2). 0< β < α.
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Let i−smallest ordinal such that β < αi+1, then there is unique δ < θi such that β = αi+δ.

Now, we want to prove

(R(β), u(β), R(β + 1)) ∈ T ′.

Then we have two cases either δ = 0, or δ > 0.

First assume δ = 0, then β = αi, so by the definition of R, we get

(R(β), u(β), R(β + 1)) = (R(αi), u(αi), R(αi + 1)) = ((Ri(0), 1), ui(0), (Ri(1), 0))

and since for each i < γ, Ri is an accepting run ofA on ui, then (Ri(0), ui(0), Ri(1)) ∈ T, hence

(R(β), u(β), R(β + 1)) ∈ T3,

by the definition of T3. Therefore (R(β), u(β), R(β + 1)) ∈ T ′.

Second assume δ > 0, and we want to prove (R(β), u(β), R(β + 1)) ∈ T ′. Since for each

i < γ, Ri is an accepting run ofA on ui, and δ < θi, then (Ri(δ), ui(δ), Ri(δ+ 1)) ∈ T, and by

the definition of R we get

(R(β), u(β), R(β + 1)) = ((Ri(δ), 0), ui(δ), (Ri(δ+ 1), 0)) ∈ T1.

Thus (R(β), u(β), R(β + 1)) ∈ T ′.

Therefore from (B1) and (B2), we get for each β < α, (R(β), u(β), R(β + 1)) ∈ T ′.

Next we want to prove condition (2). Assume β ≤ α, that is a limit ordinal with cf(β) =ω
and we want to prove

(supβ(R), R(β)) ∈ T ′.

We have two cases:

(C1) β < α.

(C2) β = α.

Case (C1). β < α.

First let β < α and i − smallest ordinal such that β < αi+1, then there is unique δ < θi

such that β = αi +δ. Then we have two cases either δ > 0, or δ = 0.

Now let δ = 0, then β = αi =
∑

j<i
θ j, and also we have two cases either i ∈ succ, or i ∈ lim.

First assume i ∈ succ, so i = σ + 1. We want to prove (supβ(R), R(β)) ∈ T2. By the definition

of R, we get

R(β) = R(αi) = (Ri(0), 1) ∈ F ′,
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since for each i < γ, Ri is an accepting run ofA on ui, and θσ ∈ lim, with cf(θσ) =ω because

β ∈ lim, with cf(β) =ω, by lemma 1.2.40, which give us Rσ(θσ) ∈ F and

�

supθσ(Rσ), Rσ(θσ)
�

∈ T, and

(supβ(R), R(β)) =
�

supθσ(Rσ)× {0} , (Ri(0), 1)
�

∈ T2,

by the definition of T2, therefore (supβ(R), R(β)) ∈ T ′.

Now assume i ∈ lim, and we want to prove (supβ(R), R(β)) ∈ T4. Then

(supβ(R), R(β)) = (supαi
(R), R(αi)) = (supαi

(R), (Ri(0), 1)),

and supβ(R) = A⊆ S′ and there is s ∈ S with (s, 1) ∈ A, since Z ′ is finite and R
�

α j

�

=
�

R j(0), 1
�

,

for each j < i, i ∈ lim. Therefore (supβ(R), R(β)) ∈ T4, so (supβ(R), R(β)) ∈ T ′.

Assume δ > 0, where β = αi+δ, and we want to prove (supβ(R), R(β)) ∈ T1. Then δ < θi,

and δ ∈ lim with cf(δ) =ω because β ∈ lim, with cf(β) =ω by lemma 1.2.40. Since for each

i < γ, Ri is an accepting run ofA on ui, then

�

supδ(Ri), Ri(δ)
�

∈ T,

and since

(supβ(R), R(β)) =
�

supδ(Ri)× {0} , (Ri(δ), 0)
�

∈ T1,

then (supβ(R), R(β)) ∈ T ′.

Case (C2). β = α.

Now assume β = α =
∑

i<γ
θi. We want to prove (supβ(R), R(β)) ∈ T ′. Then we have two

cases, either γ= σ+1, or γ ∈ lim. First assume γ= σ+1, and we want to prove (supβ(R), R(β)) ∈
T2. By the definition of R, we get

R(β) = R(α) = (t, 1) ∈ F ′ = Z ′,

and since for each i < γ, Ri is an accepting run of A on ui, and θσ ∈ lim, with cf(θσ) = ω
because β ∈ lim, with cf(β) =ω, by lemma 1.2.40, which give us Rσ(θσ) ∈ F and

�

supθσ(Rσ), Rσ(θσ)
�

∈ T, and

(supβ(R), R(β)) =
�

supθσ(Rσ)× {0} , (t, 1)
�

∈ T2,

by the definition of T2, therefore (supβ(R), R(β)) ∈ T ′.
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Now assume γ ∈ lim, and we want to prove (supβ(R), R(β)) ∈ T4. Then by the definition of

R, we get

R(β) = R(α) = (t, 1) ∈ F ′ = Z ′.

It is clear that, supβ(R) = A⊆ S′ and there is s ∈ S with (s, 1) ∈ A, since Z ′ is finite and R(αi) =
(Ri(0), 1), for each i < γ, γ ∈ lim. Therefore (supβ(R), R(β)) ∈ T4, so (supβ(R), R(β)) ∈ T ′.

Then from (C1), and (C2) we get for each β ≤ α that is a limit ordinal with cf(β) = ω,

(supβ(R), R(β)) ∈ T ′.

Finally we want to prove condition (3). Assume β ≤ α, that is a limit ordinal with cf(β)>
ω, and we want to prove

(supβ(R), statβ(R), R(β)) ∈ T ′.

We have two cases:

(D1) β < α.

(D2) β = α.

Case (D1). β < α.

Let i−smallest ordinal such that β < αi+1, then there is unique δ < θi such that β = αi+δ.

Then we have two cases either δ > 0, or δ = 0.

Now let δ = 0, then β = αi =
∑

j<i
θ j, and also we have two cases either i ∈ succ, or i ∈ lim.

First assume i ∈ succ, so i = σ+1. We want to prove (supβ(R), statβ(R), R(β)) ∈ T2. By the

definition of R, we get

R(β) = R(αi) = (Ri(0), 1) ∈ F ′ = Z ′,

and since for each i < γ, Ri is an accepting run of A on ui, and θσ ∈ lim, with cf(θσ) > ω
because β ∈ lim,with cf(β)>ω, by lemma 1.2.40, which give us Rσ(θσ) ∈ F and

�

supθσ(Rσ), statθσ(Rσ), Rσ(θσ)
�

∈ T, and

(supβ(R), statβ(R), R(β)) =
�

supσ(Rσ)× {0} , statθσ(Rσ)× {0} , (Ri(0), 1)
�

∈ T2,

by the definition of T2, therefore (supβ(R), statβ(R), R(β)) ∈ T ′.

Now assume i ∈ lim, and we want to prove (supβ(R), statβ(R), R(β)) ∈ T4. Then

(supβ(R), statβ(R), R(β)) = (supαi
(R), statαi

(R), R(αi)) = (supαi
(R), statαi

(R), (Ri(0), 1)),

and supβ(R) = A ⊆ S′ and there is s ∈ S with (s, 1) ∈ A, since Z ′ is a finite set and R
�

α j

�

=
�

R j(0), 1
�

, for each j < i, i ∈ lim. Therefore (supβ(R), statβ(R), R(β)) ∈ T4, so (supβ(R), statβ(R), R(β)) ∈
T ′.
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Assume δ > 0, and we want to prove (supβ(R), statβ(R), R(β)) ∈ T1. Then δ < θi, and

δ ∈ lim with cf(δ) > ω because β ∈ lim, with cf(β) > ω by lemma 1.2.40. Since for each

i < γ, Ri is an accepting run ofA on ui, then

�

supδ(Ri), statδ(Ri), Ri(δ)
�

∈ T,

and since

(supβ(R), statβ(R), R(β)) =
�

supδ(Ri)× {0} , statδ(Ri)× {0} , (Ri(δ), 0)
�

,

then (supβ(R), statβ(R), R(β)) ∈ T1. Therefore (supβ(R), statβ(R), R(β)) ∈ T ′.

Case (D2). β = α.

Now assume β = α=
∑

i<γ
θi. We want to prove (supβ(R), statβ(R), R(β)) ∈ T ′. Then we have

two cases, either γ= σ+ 1, or γ ∈ lim.

First assume γ = σ+ 1, and we want to prove (supβ(R), statβ(R), R(β)) ∈ T2. Then by the

definition of R, we get

R(β) = R(α) = (t, 1) ∈ F ′ = Z ′,

and since for each i < γ, Ri is an accepting run of A on ui, and θσ ∈ lim, with cf(θσ) > ω
because β ∈ lim, with cf(β)>ω, by lemma 1.2.40, which give us Rσ(θσ) ∈ F and

�

supθσ(Rσ), statθσ(Rσ), Rσ(θσ)
�

∈ T, and

(supβ(R), statβ(R), R(β)) =
�

supθσ(Rσ)× {0} , statθσ(Rσ)× {0} , (t, 1)
�

∈ T2,

by the definition of T2, therefore (supβ(R), R(β)) ∈ T ′.

Now assume γ ∈ lim, and we want to prove (supβ(R), statβ(R), R(β)) ∈ T4. Then by the

definition of R, we get

R(β) = R(α) = (t, 1) ∈ F ′ = Z ′.

It is clear that, supβ(R) = A ⊆ S′, statβ(R) = B ⊆ S′, and there is s ∈ S with (s, 1) ∈ A, since

Z ′ is a finite and R(αi) = (Ri(0), 1), for each i < γ, γ ∈ lim.

Therefore (supβ(R), statβ(R), R(β)) ∈ T4, so (supβ(R), statβ(R), R(β)) ∈ T ′. Hence from

(D1), and (D2) we get, for each β ≤ α that is a limit ordinal with cf(β)>ω, (supβ(R), statβ(R), R(β)) ∈
T ′.

Therefore R is an accepting run of A # on u, hence u ∈ L
�

A #
�

. Therefore (L (A ))# ⊆
L
�

A #
�

. Hence (L (A ))# =L
�

A #
�

.



Chapter 5

Future Work

The first objective is to try to prove main theorem 2.2.3 with a bound on |W ∪M | that is larger

than ℵ1 or without any bound, that is, prove that there exists an ST-automatonA over {M , W}
such that every bipartite graph G = (M , W, E) has a matching if and only if L(G)∩ L(A ) =∅.

Another direction for future work could be defining analogs of Büchi automata, Muller

automata, deterministic automata and finding relationships with the original definitions (see

[5]).
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