
Graduate Theses, Dissertations, and Problem Reports 

2018 

Plasmon-Enhanced Optical Sensing by Engineering Metallic Plasmon-Enhanced Optical Sensing by Engineering Metallic 

Nanostructures Nanostructures 

Peng Zheng 
West Virginia University, pzheng1@mix.wvu.edu 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

 Part of the Analytical Chemistry Commons, Materials Science and Engineering Commons, 

Nanoscience and Nanotechnology Commons, and the Optics Commons 

Recommended Citation Recommended Citation 
Zheng, Peng, "Plasmon-Enhanced Optical Sensing by Engineering Metallic Nanostructures" (2018). 
Graduate Theses, Dissertations, and Problem Reports. 3710. 
https://researchrepository.wvu.edu/etd/3710 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F3710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/132?utm_source=researchrepository.wvu.edu%2Fetd%2F3710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=researchrepository.wvu.edu%2Fetd%2F3710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=researchrepository.wvu.edu%2Fetd%2F3710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=researchrepository.wvu.edu%2Fetd%2F3710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/3710?utm_source=researchrepository.wvu.edu%2Fetd%2F3710&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


i 
 

0 

Plasmon-Enhanced Optical Sensing by 

Engineering Metallic Nanostructures 

 

 

Peng Zheng 

 

 

Dissertation submitted 

to Benjamin M. Statler College of Engineering and Mineral Resources 

at West Virginia University 

 

in partial fulfillment of the requirements for the degree of 

 

Doctor of Philosophy in 

Materials Science and Engineering 

 

 

Nianqiang Wu, Ph.D., Chair 

Ever J. Barbero, Ph.D. 

Yon Rojanasakul, Ph.D. 

Lisa Holland, Ph.D. 

Terence Musho, Ph.D. 

Kostas Sierros, Ph.D. 

 

 

 

 

Department of Mechanical and Aerospace Engineering 

Morgantown, West Virginia, United States 

2018 

 

 

Keywords: Localized Surface Plasmon Resonance, Optical Sensing, Biosensor, Metallic 

Nanostructures, Surface-Enhanced Raman Scattering, Plasmon-Enhanced Fluorescence, 

Nanopyramid Array, Nanocube, Discrete Dipole Approximation, Finite-Difference Time-Domain 

Copyright 2018 Peng Zheng  



ii 
 

0 

Abstract 
 Plasmon-Enhanced Optical Sensing by Engineering Metallic 

Nanostructures 

Peng Zheng 

 

        The world’s booming population projected to reach 10 billion by 2050 causes enormous 

stresses on environmental safety, food supply, and healthcare, which in return threatens human 

civilizations. One of the most promising solutions lies at innovating point-of-care (POC) sensing 

technologies to conduct detection of environmental hazards, monitoring of food safety, and early 

diagnosis of diseases in a timely and accurate manner. The discovery of surface-enhanced 

spectroscopy in the 1970s has significantly stimulated research on light-matter interaction which 

gives rise to enhanced optical phenomena such as surface-enhanced Raman scattering (SERS), 

plasmon-enhanced fluorescence (PEF), and particularly, they have found enormous applications 

in optical sensing. To fully exploit surface-enhanced spectroscopy to advance sensing technologies, 

it requires innovations in the sensor design as well as the plasmonic metallic nanostructures, which 

is exactly the focus of this dissertation. Owing to their strong capabilities of revealing molecular 

fingerprints and conducting single molecule analysis, both SERS and PEF have received extensive 

research interests. Since SERS directly correlates with the local electromagnetic (EM) field 

enhancement, it is featured by the simplicity in signal amplification. However, high SERS spectral 

resolution cannot be achieved without a tightly focused laser beam, which compromises the design 

of SERS-based POC sensing platforms. In contrast, the emission nature of fluorescence makes 

PEF easily coupled with POC readers, but optimal PEF requires a delicate control of the separation 

distance between the fluorophore and the nanostructure to minimize fluorescence quenching. 

SERS and PEF are essentially two complementary techniques and both hold great promise for 

POC sensing technologies. 

 

        In the dissertation, in the first place, two label-free SERS sensors have been developed aiming 

to reduce the number of elements used in a sensor, which could potentially minimize interference, 

reduce the cost, and enhance the performance. In this regard, a label-free SERS sensor for mercury 

ions (Hg2+) detection has been developed based on functionalized gold nanoparticles, which 

employs a small molecule 4-mercaptobenzoic acid to capture mercury ions. A coordination bond 

formed only in the presence of mercury ions produces a new SERS peak at 374 cm-1, allowing 

unique detection of mercury ions. The other label-free SERS sensor has been developed for nitrite 

(NO2
-) detection following the mechanism of Griess reaction based on the plasmonic coupling 

between gold nanostars and silver nanopyramid arrays. A newly formed azo compound produces 

at least three characteristic SERS peaks at 1140 cm-1, 1389 cm-1, and 1434 cm-1, which allow a 

highly specific detection of nitrite. While label-free SERS sensing has proved effective to enhance 

the performance, the need for a tightly focused laser beam hinders SERS from being easily coupled 

with POC readers for rapid signal readout. 
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        To address this limitation of SERS, on-chip PEF sensors have been developed, which can be 

inserted into POC readers for rapid signal readout. Optimizing PEF usually requires a delicate 

control of the separation distance between the fluorophore and the nanostructure to balance the 

excitation and emission enhancement which have different distance dependence. In addition to the 

separation distance, scattering has been found to be strongly correlated with quantum efficiency 

enhancement, which has been established as another tuning parameter in optimizing PEF. By 

making PEF work in the near-infrared (NIR) biological transparency window, the strength of PEF 

is further manifested by its compatibility with biological matrix featured as low background 

interference and high penetration depth. As a proof of concept, a NIR fluorescent biosensor has 

been developed for detection of traumatic brain injury biomarker in the blood plasma. The 

selection of a gold nanopyramid array pattern as the sensing platform not only generates intense 

localized EM field for the excitation enhancement, but also allows all the tests to be conducted 

using a POC fluorescence reader. 

 

        While noble metals such as gold and silver are often used in developing sensing technologies 

as they support strong localized surface plasmon resonance (LSPR), it remains an open question 

as whether they could be replaced by alternative inexpensive metals such as copper and aluminum 

without compromising the performance. The discovery of a strong and sharp LSPR on copper 

nanoparticles when the shape is made cubic strongly suggests this possibility. By means of a 

numeric and theoretical study, it is found that the observed LSPR on copper nanocubes originates 

from the corner mode which survives damping as it is spectrally separated from the interband 

transitions. Compared to the dipole mode of a gold nanosphere of the same volume, a copper 

nanocube displays a comparable extinction coefficient but a local EM field enhancement 7.2 times 

larger. Furthermore, a film-coupled copper nanocube system has been designed for plasmon-

enhanced NIR fluorescence. Because of the coupling between the copper nanocube and the 

underlying film, a plasmonic cavity mode is generated and featured as a spectrally tunable LSPR 

and an intense local EM field. By tailoring the resonance to the NIR wavelength region, the film-

coupled copper nanocube system has been demonstrated to support a large NIR fluorescence 

enhancement owing to the strong excitation enhancement and the quantum efficiency enhancement.  
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Chapter 1: Background 

1.1 Motivation 

        Human civilizations have been around for about 6,000 years. Since industrialization in the 

1800s, the resilience of human to Earth has improved dramatically. However, after entering 21st 

century, humanity comes to a crossroad never seen before. The world’s population has reached 7.6 

billion in 2017 and is projected to reach 10 billion by 2050. The booming population causes 

enormous stresses on environmental safety, food supply, and healthcare, which in return threaten 

human civilizations. The three sectors, i.e. environmental safety, food supply, and healthcare, make 

up one of the most important intercorrelated systems on earth. While environmental safety and a 

steady supply of food are essential to ensure the welfare of humans, social stability benefited from 

the welfare would significantly enhance environmental and food safety. 

 

        However, the welfare of humans is at risk. Mining and motor vehicle emission contributes a 

major source of toxic heavy metals, which ends up in aquatic system. Widespread utilization of 

fertilizers in agriculture produces excessive nutrients, which imposes a far-reaching influence on 

the sustainable supply of food. Diseases, especially cancers and occasional outbreaks of infectious 

diseases impose grave threats to human beings. These challenges not only need to be addressed 

individually, but also as a system thanks to the intercorrelation nature. Therefore, it is imperative 

to come up with effective solutions to address all these issues associated with the three sectors.  

1.2 Objective 

        A lesson learnt from past crisis in human history alludes to preventative measures. The 

objective of the dissertation is thus to develop sensing systems which could serve as preventative 

measures to address issues associated with environmental and food safety as well as healthcare. 

Specifically, the proposed sensing systems shall be able to conduct monitoring of environmental 

and food safety as well as conduct health diagnosis. To meet the needs, the following objectives 

have been identified as of paramount importance: 

• The proposed sensing systems shall be adaptive. They shall be able to conduct sensing of 

elements relevant to the environmental and food safety as well as healthcare; 

• They shall address limitations of existing approaches, such as sensitivity, selectivity, anti-

inference, rapidity, cost-effectiveness, and user-friendliness; 

• They shall have the potential to be integrated into field-deployable portable devices. 
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1.3 Significance 

        With an expanding knowledge of challenges surrounding humans, there are more stringent 

requirements for sensing systems. However, existing sensing systems such as chromatography- 

and immunoassay-based approaches cannot meet all the requirements. This gap prompts 

exploration of alternative innovative solutions. The proposed sensing systems are expected to 

address this gap by innovations at transforming the capabilities of existing sensing systems or at 

developing alternative sensing mechanisms. The proposed research is significant in that: 

• It refreshes understanding of the capability and limitations of existing sensing systems; 

• It explores possibility of transforming and innovating existing sensing capabilities to 

address challenges surrounding humans; 

• It innovates sensing mechanisms to help adapt sensing systems in complex settings, which 

is otherwise unachievable.  
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Chapter 2: Introduction 

2.1 Surface-Enhanced Spectroscopy 

        The discovery of extraordinarily enhanced Raman signal on a roughened silver film over four 

decades ago has stimulated extensive research interests in surface-enhanced spectroscopy, such as  

surface-enhanced Raman scattering (SERS), plasmon-enhanced fluorescence (PEF), tip-enhanced 

Raman scattering (TERS), surface-enhanced hyper Raman scattering (SEHRS), just to name a 

few.1-6 Surface-enhanced spectroscopy employs surface plasmon resonance, which is the coherent 

oscillation of free electrons at the interface between any two materials with opposite signs of the 

real part of the dielectric function, to improve both the in- and out-coupling of photons with a 

molecule or a molecule-like emitter, such as semiconductor quantum dots. As a result, the rate of 

absorption and emission processes can be modified by orders of magnitude. 

 

        Acting as the basis of plasmon-enhanced optical sensing, surface-enhanced spectroscopy has 

dramatically transformed sensing technologies. It not only advanced the performance (especially 

sensitivity) never seen before and miniaturized the sensing device unachievable previously, but 

also opened opportunities for completely new functionalities. Those concepts seemingly far away 

two decades ago such as single-molecule detection and ultramicroscopy are gradually becoming a 

reality. The miniaturization of sensing devices thanks to the advancement of nanofabrication 

technologies has made it possible to develop highly integrated nanosensors. Impressively, new 

functionalities are gradually added to these sensing devices by bridging with optoelectronics, 

which allows digitalized and programmable sensing. It is not exaggerating that surface-enhanced 

spectroscopy is quietly making a transformational impact on the interdisciplinary field of 

analytical chemistry, nano-optics, materials science, and physics. Recently, surface-enhanced 

spectroscopy has found enormous applications in environment, agriculture, healthcare, and 

national security. The miniaturization nature also makes it highly promising for development of 

point-of-care sensing technologies. 

 

 

Figure 2.1 Two-level approximation for atom-light interaction. 
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2.1.1 Atom-Light Interaction 

        To understand surface-enhanced spectroscopy, it is necessary to look at spectroscopy in the 

first place. Spectroscopy originates from atom-light interaction. However, the wave nature of light 

makes it very difficult for an atom to absorb light due to the intrinsic size mismatch. Just consider 

an atom of ~ 0.1 to 0.5 nm versus the visible light wavelength of ~500 to 700 nm. The reason why 

light could still be absorbed is because of its particle nature. A direct consequence is that the atomic 

absorption cross section is typically very small. This is the reason why it is necessary to improve 

the absorption cross section by means of surface-enhanced spectroscopy. In the meanwhile, once 

light is absorbed, it would take a considerable amount of time for the atom to emit a photon. The 

time taken is called lifetime of the excited atomic state and could range from picoseconds (10-12 s) 

to nanoseconds (10-9 s) for a typical photoluminescence event. The lifetime is a very important 

parameter, as it decides how long the atom could stay excited before returning to the ground state 

by emitting a photon. Usually, longer lifetime makes the atom more likely to interact with nearby 

species, ending up being less likely to emit a photon. Since emission spectrum is the key to 

numerous spectroscopy, it is necessary to bring the excited atom back to the ground state 

radiatively as soon as possible.  

 

        Atom-light interaction can be represented by a simplified two-level atomic system as shown 

in Figure 2.1. The atom is initially at the ground state 𝐸1 with an electron population of 𝑁1. Under 

incident illumination, only the photons with an angular frequency 𝜔 meeting the condition ℏ𝜔 =

𝐸2 − 𝐸1 will be absorbed, with the atom making an upward transition to the excited state 𝐸2 and 

populated with 𝑁2. The timescale for the absorption process is in the order of 10-15 s. Under the 

perturbation of vacuum field, the excited atom has the tendency to transit back to the ground state 

𝐸1  and at the same time emit a photon. However, this is a spontaneous process with photons 

randomly emitted independent of the incident field and made possible only because of the 

perturbation of the vacuum field. The timescale for the spontaneous emission is in the order of 10-

12 s to 10-9 s. Such a lifetime is usually long enough for the excited atom to participate various 

catalytical reactions by transferring its energy to nearby species rather than emitting a photon. This 

is one of the reasons why fluorescence can be quenched. 

 

        In an extreme case, if the incident field is extraordinarily strong, not only absorption but also 

emission could be stimulated. The stimulated emission is a highly coherent process and inherits 

all the features from the incident field. It also acts as the basis of laser, or light amplification by 

stimulated emission of radiation.  
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Figure 2.2 Schematic Raman scattering. 

2.1.2 Raman Scattering: Fourth Power Rule 

        One of the important consequences of atom-light interaction is Raman scattering, which is an 

energy Stokes-shifted process, as shown in Figure 2.2. Initially, the atom is excited from a specific 

vibrational level at the ground state to a virtual excited state (although it could also be a real 

electronic state, which gives resonant Raman scattering). During de-excitation process, the atom 

makes a downward transition back to the ground state but at a different vibrational level. This 

energy difference, usually tiny, is what is analyzed in Raman spectroscopy and features as a Raman 

shift. If ignoring the tiny energy difference during excitation and emission, the efficiency of Raman 

scattering scales with the fourth power of the incident field. Raman scattering is an intrinsically 

inefficient process. It occurs once out of millions of scattering events. Thus, it almost always needs 

to be enhanced by surface-enhanced spectroscopy. Fortunately, the fourth-power rule provides a 

straightforward route to improve the efficiency of Raman scattering and acts as the basis for the 

electromagnetic enhancement mechanism of SERS. Therefore, optimizing SERS falls on 

engineering plasmonic metallic nanostructures to support strong local fields. 

 

 

Figure 2.3 Schematic fluorescence process. 
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2.1.3 Fluorescence 

        Another important consequence of atom-light interaction is fluorescence, which has a similar 

excitation process except that the atom makes an upward transition to a real electronic energy state. 

However, the emission process is different. A schematic fluorescence process is shown in Figure 

2.3. Since the atom will spend a considerable amount of time at the excited state before making a 

downward transition back to the ground state, it has a good chance of interacting with nearby 

species and unavoidably lose part of its energy, which contributes to non-radiative decay. The 

radiative process during atomic de-excitation under the perturbation of vacuum field is responsible 

for the fluorescence emission where photons are emitted to the far field by coupling to the 

continuum of vacuum states in free space. The spontaneous emission nature makes fluorescence a 

random and an unregulated process. The emission probability for an excited atom is often 

quantified by the ratio of the radiative to the overall decay rate and termed as quantum efficiency. 

Generally, fluorescence is a much more efficient process than Raman scattering although 

fluorescence could be quenched while Raman scattering would not. Typical fluorescence cross 

sections are in the order of 10-20 m2 as compared to 10-33 m2 for non-resonant Raman scattering. 

In addition, visible fluorophores usually have a much higher quantum efficiency than near-infrared 

counterparts. That’s because the narrower energy levels for near-infrared fluorophores make it 

more likely for energy transfer to happen, ending up with a much higher non-radiative decay rate.  

     

        Unlike Raman spectroscopy where the efficiency of Raman scattering scales with the fourth 

power of excitation field, fluorescence requires a delicate balance between excitation enhancement 

and emission probability. While the excitation enhancement is the same as that of Raman scattering 

which scales with the square of the incident field, an optimized emission needs non-radiative decay 

to be suppressed in order to minimize fluorescence quenching. The excitation enhancement and 

emission probability have different distance dependence. Therefore, they cannot be optimized 

simultaneously. Instead, a compromise must be made. This is also the reason why the fluorescence 

enhancement is a distance-dependent phenomenon and why it is important to study surface-

enhanced spectroscopy to optimize fluorescence. Therefore, it is necessary to engineer plasmonic 

metallic nanostructures which not only support strong local fields, but also can improve the 

emission probability. 
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Figure 2.4 Atom-cavity interaction (left) and density of states function (right). 

2.1.4 Fluorescence Modification by Atom-Cavity Interaction 

        The mechanism of surface-enhanced spectroscopy can be understood by considering the 

interaction between an optical cavity and an atom confined inside, as shown in Figure 2.4. It is 

worth mentioning that an optical cavity is a generalized concept and can represent any system 

supporting optical resonance, such as photonic crystals and plasmonic nanostructures. Now 

consider a single-mode cavity with a resonant frequency 𝜔𝑐 and linewidth ∆𝜔𝑐, and an atomic 

transition frequency  𝜔0. Being inside the cavity, the atom experiences an excitation enhancement 

which is made possible by the enhanced local electric field owing to optical confinement. The 

electric field enhancement can be quantified by the quality factor 𝑄 =
𝜔𝑐

∆𝜔𝑐
. In the meanwhile, the 

atom can also experience radiative decay modification due to the modified local density of optical 

states by the cavity. The modification of the local density of optical states can be quantified by the 

Purcell factor 𝐹𝑃 given by 

 

 𝐹𝑃 =
3𝑄(

𝜆
𝑛)3

4𝜋2𝑉0

Δ𝜔𝑐
2

4𝛿𝜔2 + Δ𝜔𝑐
2
 (2.1) 

 

where 𝜆 is the incident wavelength, 𝑛 is the refractive index inside the cavity, 𝑉0 is the volume of 

the cavity, and 𝛿𝜔 is the detuning defined as 𝛿𝜔 = 𝜔0 − 𝜔𝑐. The atom will experience the most 

radiative decay enhancement quantified by a large Purcell factor 𝐹𝑃  when the detuning 𝛿𝜔 

approaches zero, i.e. the atomic transition in resonance with the optical cavity. The consequence 

is that the quantum efficiency will be modified from 

 

 𝑄𝐸0 =
𝜏𝑟𝑎𝑑

𝜏𝑟𝑎𝑑 + 𝜏𝑛𝑟
 (2.2) 

to  
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 𝑄𝐸𝑛𝑒𝑤 =
𝐹𝑃𝜏𝑟𝑎𝑑

𝐹𝑃𝜏𝑟𝑎𝑑 + 𝜏𝑛𝑟
 (2.3) 

 

provided that the atomic intrinsic non-radiative decay rate 𝜏𝑛𝑟 is unaffected and that no any other 

new non-radiative decay channels are introduced, which is a reasonable approximation.  

 

 

Figure 2.5 Distance dependence of plasmon-enhanced fluorescence. 

2.2 Distance Dependence of Plasmon-Enhanced Fluorescence 

        Till now, the distance between the atom and the cavity has not been explicitly discussed since 

the local field the atom experiences inside the cavity is uniform. Suppose an open optical cavity, 

i.e. a gold nanoparticle, and a two-level atom separated by a distance of 𝑑 from it, as shown in 

Figure 2.5. In this case, the atom-cavity separation distance matters. It is not difficult to see that 

the local field the atom experiences decays radially from the gold nanoparticle. The way in which 

the local field decays with respect to the separation distance is consequential. It not only modulates 

the excitation enhancement which scales with the square of the local field, but also modifies the 

atomic transition rates. 

 

        The distance dependence of the excitation enhancement is related to the decaying profile of 

the local field for the gold nanoparticle. As the local field of the point dipole-like gold nanoparticle 

has 
1

𝑑3  dependence, the excitation enhancement would then have 
1

𝑑6  dependence. The distance 

dependence of the emission enhancement is more complex but can be understood by considering 

the following scenarios. 

 

        For 𝑑 = 0  when the atom touches the gold nanoparticle, charge transfer leads to almost 

complete fluorescence quenching.  

 

        For 𝑑 ≈ 𝑑0 , the atom-cavity interacts in the Forster Resonance Energy Transfer (FRET) 
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regime where both the atom and the gold nanoparticle can be modelled as point dipole and they 

interact through dipole-dipole interaction. The Foster distance 𝑑0  is defined as the separation 

distance where the FRET efficiency is 50%. The FRET efficiency is given as 

 

 
𝐸𝐹𝑅𝐸𝑇 =

1

1 + (
𝑑
𝑑0

)6
 

(2.4) 

 

        Given the large difference of the timescale between the atomic spontaneous emission (10-12 s 

to 10-9 s) and the plasmon dephasing (10-15 s), the excited atom would rapidly de-excite through 

plasmon decay channels. If absorption dominates the plasmon decay, the excited atom would 

primarily de-excite through heat dissipation and ends up quenching fluorescence. Otherwise, decay 

of the excited atom would be dominated by radiative emission to the far field through the plasmon 

scattering and simultaneously enhanced by the plasmon. In other words, the direction for the 

quantum efficiency modification in this regime is decided not only by the Purcell effect, but also 

by the competition between the absorption and scattering on the plasmonic gold nanoparticle, 

which will be discussed in Chapter 4.1. 

 

        For 0 < 𝑑 < 𝑑0, although the FRET efficiency is close to unit, the breakdown of the point-

dipole approximation for the gold nanoparticle indicates that non-radiative higher-order plasmon 

modes dominate, which lead to strong fluorescence quenching.  

 

        For 𝑑 > 𝑑0, the atom-cavity interacts in the Purcell regime. Owing to a drastic decrease of 

the FRET efficiency between the excited atom and the gold nanoparticle, the atom would be less 

likely to experience absorption-induced quenching. Instead, the increase of the local density of 

optical states at the plasmon resonance frequency would improve the radiative decay rate for the 

excited atom, ending up improving the quantum efficiency despite at the expense of compromising 

the excitation enhancement. 

 

        Given the complex distance dependence, optimizing PEF requires a delicate control of the 

atom-cavity separation distance to balance the excitation enhancement and the quantum efficiency, 

where an optimized separation distance usually occurs in the range of 10 to 20 nm.  
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Figure 2.6 Quantum efficiency modification due to the new non-radiative decay channels introduced 

by the absorption of the optical cavity. In this figure, it is assumed that 𝑄𝐸0 = 0.1, 𝐹𝑃 = 100, and 

𝐸𝐹𝑅𝐸𝑇 = 100%.  

2.3 Purcell Effect on Plasmonic Metallic Nanostructures 

        While it is generally true that the imaginary part of the dielectric function for dielectric 

nanostructures is close to zero and barely contributes to any absorption-induced non-radiative 

decay, it is a different story for plasmonic metallic nanostructures, which are featured by a large 

number of free electrons and thus a large imaginary part of the dielectric function. Consequently, 

the absorption of plasmonic metallic nanostructures opens a new non-radiative decay channel 

represented by 𝜏𝑎𝑏𝑠. As absorption-induced non-radiative decay would occur only when there is 

energy transfer between the excited atom and the plasmonic metallic nanostructure, the absorption-

induced non-radiative decay rate would be modified by the FRET efficiency. Therefore, a more 

generalized representation of the quantum efficiency can be given by 

 

 𝑄𝐸 =
𝐹𝑃𝜏𝑟𝑎𝑑

𝐹𝑃𝜏𝑟𝑎𝑑 + 𝜏𝑎𝑏𝑠 + 𝜏𝑛𝑟
 (2.5) 

 

        By combining Equation (2.2) and Equation (2.5), the quantum efficiency enhancement is 

obtained and given by 

 

 

𝑄𝐸

𝑄𝐸0
=

𝐹𝑃

𝐹𝑃𝑄𝐸0 +
𝜏𝑎𝑏𝑠

𝜏𝑟𝑎𝑑
𝑄𝐸0 + (1 − 𝑄𝐸0)

 (2.6) 

 

        From Equation (2.5), if the normalized absorption-induced non-radiative decay 
𝜏𝑎𝑏𝑠

𝜏𝑟𝑎𝑑
  is 
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significant, the quantum efficiency is not necessarily improved by a large Purcell factor. Instead, 

it could be reduced. In Figure 2.6, it is assumed that the intrinsic quantum efficiency is 0.1 and the 

Purcell factor is 100. The quantum efficiency modification is shown to be dependent on the 

normalized absorption-induced non-radiative decay rate 
𝜏𝑎𝑏𝑠

𝜏𝑟𝑎𝑑
 . For plasmonic metallic 

nanostructures dominated by absorption, a considerable amount of energy would be dissipated as 

heat due to electron-electron collisions. Therefore, the Purcell factor is not always an appropriate 

quantification for the modification of the quantum efficiency, especially when high-loss materials 

are involved. 

 

        It is worth mentioning that in Equation (2.6), the Purcell factor 𝐹𝑃 and the term 
𝜏𝑎𝑏𝑠

𝜏𝑟𝑎𝑑
 can be 

directly calculated in commercial simulation software, such as Lumerical FDTD. While the Purcell 

factor 𝐹𝑃  quantifies the normalized radiative decay rate and can be obtained from the power 

monitor group, the term 
𝜏𝑎𝑏𝑠

𝜏𝑟𝑎𝑑
 basically quantifies the normalized non-radiative decay rate owing to 

Ohmic losses and can be obtained from the power monitor group around the atomic dipole-gold 

nanoparticle system. Therefore, the quantum efficiency modification could be directly calculated 

by FDTD. 

 

 

Figure 2.7 Dependence of the quantum efficiency modification 𝑄𝐸/𝑄𝐸0 on the intrinsic quantum 

efficiency 𝑄𝐸0. In this figure, it is assumed that 𝜏𝑎𝑏𝑠 = 0.1𝜏𝑟𝑎𝑑, 𝐹𝑃 = 100, and 𝐸𝐹𝑅𝐸𝑇 = 100%.. 

2.4 Why does Intrinsic Quantum Efficiency Matter? 

        Another point worth mentioning is that an atom with a small intrinsic quantum efficiency is 

more likely to experience quantum efficiency enhancement. It can be understood from Equation 

(2.6). A small intrinsic quantum efficiency indicates a large intrinsic non-radiative decay rate 𝜏𝑛𝑟. 
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As the quantum efficiency 𝑄𝐸 is a monotonic function of the Purcell factor 𝐹𝑃, when 𝜏𝑛𝑟 is larger, 

or equivalently 𝑄𝐸0 is smaller, the quantum efficiency tends to be more easily improved under the 

influence of the Purcell effect. The dependence of the quantum efficiency modification 𝑄𝐸/𝑄𝐸0 

on the intrinsic quantum efficiency 𝑄𝐸0  is shown in Figure 2.7, where it is assumed that the 

absorption-introduced non-radiative decay rate 𝜏𝑎𝑏𝑠 = 0.1𝜏𝑟𝑎𝑑 and 𝐹𝑃 = 100. This explains why 

a small quantum efficiency tends to be more easily improved. 

 

 

Figure 2.8 A comparison of surface plasmon polariton (SPP) and localized surface plasmon 

resonance (LSPR).7 

2.5 Surface Plasmon Resonance 

        Surface plasmon, also called quasiparticle, is the direct result of the quantization of collective 

oscillation of conduction band electrons in solids.8 The plasma frequency of a metal 𝜔𝑝 = √
𝑛𝑒

2

𝑚𝑒𝑓𝑓𝜖0
 

is an intrinsic property of the material with 𝑛𝑒 being the electron density and meff being the effective 

mass.9 Surface plasmon resonance occurs in two different types: surface plasmon polariton (SPP) 

and localized surface plasmon resonance (LSPR).7 SPP is fundamentally a propagating 

electromagnetic plane wave trapped at the interface between metal and dielectric. Due to the 
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intrinsic smaller wavevector of the free space light line compared to the dispersion relation of SPP 

in Figure 2.8, which indicates there is a lack a momentum conservation, SPP cannot be directly 

excited. Usually, a prism or grating is needed to supply the additional wavevector needed. With 

the development of nanofabrication, periodic nanostructures have also become increasingly used 

to excite SPP as the periodic structure acts as a grating. SPP decays up to 200 nm in the form of 

an evanescent field perpendicular to the metal surface and it can also radiatively mediate energy 

transfer.10-11 In contrast, LSPR can be directly excited on a subwavelength nanoparticle. Due to the 

excitation of LSPR, the gold nanoparticle shown in Figure 2.8 just acts as a lens, concentrating the 

incident light to a small volume on the surface of the nanoparticle, thus creating a very high near 

field which decays ~10 nm. With a small size (<15 nm), the nanoparticle absorbs light strongly 

and finally converts the light into heat due to electron-electron collisions. For a large size (>15 

nm), much of the absorbed light gets scattered to the far field. The interesting effect of the size on 

the transition from absorption-dominated to scattering-dominated extinction along with the strong 

near field has many implications in surface-enhanced spectroscopy.12-13 

2.6 Surface-Enhanced Raman Scattering 

        SERS is an optical process where the chance of Raman scattering, a weak inelastic scattering, 

is drastically improved by the aid of surface plasmon resonance.12, 14-15 Normal Raman scattering 

occurs approximately once in a million; SERS could improve that process by orders of magnitude. 

SERS enhancement is often attributed to electromagnetic (EM) enhancement and chemical 

enhancement.16-17 EM enhancement offers a SERS enhancement factor up to 1012; in comparison, 

chemical enhancement is only able to contribute a mild SERS enhancement in the order of 102. 

Since EM enhancement is much larger than chemical enhancement, it has been exploited much 

more extensively in SERS applications. By a careful design of the nanostructure, a SERS 

enhancement factor of 1014 has been reported, which allows single molecule detection.18 

 

        There are many advantages with SERS. For instance, it can reveal molecular spectral 

fingerprint without any water interference; it is capable of multiplex detection with only minimal 

sample preparation; it is a high-throughput technique and can be used in point-of-care (POC) 

applications.12, 14-15 If only considering EM enhancement, SERS enhancement is approximately 

proportional to the fourth power of local EM field enhancement, making it straightforward to 

engineer high-performance SERS substrates. Because of these advantages, SERS is one of the 

most popular techniques in optical sensing applications.   

 

        Conventional SERS sensors are based on colloidal Au nanoparticles.19 Since Au nanoparticles 

support localized surface plasmon resonance (LSPR), the absorbed Raman molecule would benefit 

from LSPR and produces SERS signals. However, colloidal nanoparticles are vulnerable to 

aggregation, they are not suitable to be directly implemented in building SERS sensors. To 

overcome colloidal nanoparticle aggregation, shell-isolated nanoparticle-enhanced Raman 
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spectroscopy (SHINERS) is used, in which colloidal nanoparticles are protected by a thin silica 

shell.20 The SHINERS structure allows Raman molecules to be sandwiched between the silica shell 

and the nanoparticle, which end up as a SERS probe. This structure is water-soluble thanks to a 

hydrophilic silica surface, which further enables easy surface functionalization.21 

 

        The performance of SERS probes is dependent on the type of nanoparticles used. While Ag 

nanoparticles have an overall stronger plasmon strength than any other metallic nanoparticles, Au 

nanoparticles are most often used owing to the chemical stability. Strong LSPR is often found on 

Au nanoparticles with sharp features where surface charge density is high and can be easily 

polarized.22-23 Candidate Au nanostructures for SERS probes include Au nanorods, Au nanostars, 

and Au nanopyramid arrays, all of which support strong LSPR at their respective sharp regions. 

 

        Two-dimensional (2D) plasmonic nanoarrays are also exploited for SERS.24-25 In a 2D 

plasmonic nanoarray, not only LSPR, but also SPP can be excited, which significantly provides 

additional enhancement channels for SERS.26-27 2D plasmonic nanoarrays can be directly used as 

a SERS sensing platform as well as be integrated with SERS probes. The biggest advantage of an 

integration is an enhanced performance because of plasmonic coupling between the SERS probe 

and the 2D plasmonic nanostructure, which could provide highly sensitive SERS sensing.28-29 

 

        Such a design has been implemented in biosensing in biological fluids.28-29 Take an 

immunoassay-based SERS biosensor as an example. The SERS probe and the 2D plasmonic 

nanoarray are initially functionalized with capture and detection antibodies. Upon the addition of 

the analyte which is the antigen, the immune-reaction would make the SERS probe captured on 

the 2D plasmonic nanoarray. After washing away excessive SERS probes which are not captured 

due to immuno-reactions, SERS signals can be detected from the 2D plasmonic nanoarray and 

scales with the concentration of the analyte in presence. If a near-infrared wavelength such as 785 

nm is used as the excitation source and considering that the SERS signal is specific to the Raman 

molecule sandwiched in the SERS probe, minimal interference is expected from the surrounding 

environment. SERS sensors based on this mechanism have been demonstrated for detection of 

heavy metals and cancer biomarkers in human saliva and blood plasma. 

 

        Despite all these merits mentioned above, SERS unavoidably suffers from quite a few 

drawbacks, some of which are even fundamental to the technique itself. First, SERS sensors almost 

always require a SERS probe or a Raman molecule to transduce the SERS signal, because many 

of the analytes either are Raman inactive or display uncharacteristic Raman spectra. Second, the 

nature of scattering in SERS suggests that any scattering events from either the surrounding 

environment or interfering substances could blur the SERS signal by producing either specific 

interfering peaks or a strong background. This would significantly compromise the performance 

of SERS. Third, since intrinsic Raman scattering is too weak, it always needs to be amplified 

before any practical applications can happen. However, the SERS enhancement could vary 

enormously due to poor quality of colloidal nanoparticles or 2D plasmonic nanostructures. More 
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importantly, high SERS spectral resolution requires a tightly focused beam, which significantly 

hinders the development of SERS-based POC sensor devices. 

2.7 Plasmon-Enhanced Fluorescence 

        Similar to SERS, PEF is an optical process where the fluorescence emission is improved 

under the influence of surface plasmon resonance.4, 30 PEF can also reveal molecular spectral 

fingerprint without any water interference and achieves single molecule detection. More 

importantly, PEF has its own unique features.  

 

        First, the cross section of fluorescence is much larger than Raman scattering.31 A typical cross 

section for fluorescence is ~10-20 m2, whereas that for non-resonant and resonant Raman is ~10-33 

m2 and ~10-29 m2, respectively, which is a difference of 9~13 orders of magnitude! Therefore, even 

in the absence of plasmon enhancement, fluorescence is a highly competitive technique.  

 

        Second, fluorescence is robust with strong anti-interference capability. Fluorescence consists 

of a two-step process: absorption at a shorter wavelength and emission at a longer wavelength after 

a rapid relaxation process (Stokes shift). Although some substances may absorb or emit at the same 

wavelength as fluorescence, it is very rare for a substance to both absorb and emit at the same 

wavelengths as fluorescence. This unique feature makes fluorescence highly advantageous. 

 

        Third, fluorescence emission is not always improved under the influence of surface plasmon 

resonance; it can also be quenched.32 Fluorescence enhancement consists of excitation 

enhancement and emission enhancement. The excitation enhancement is the same for both SERS 

and PEF, which scales with the square of local EM field enhancement. However, the emission 

enhancement for fluorescence does not has a simple relationship with the local EM field 

enhancement. Instead, the probability for the excited carriers to radiatively decay depends on the 

available local density of optical states, which is determined by the Purcell factor. Moreover, the 

energy of the excited carriers could decay non-radiatively due to the absorption-induced energy 

loss by the plasmonic metallic nanostructures, which, if out-competes with the radiative 

counterpart, could lead to fluorescence quenching as well. Therefore, engineering PEF is a delicate 

task to balance the radiative and non-radiative decay. 

 

        Since most visible quantum dots and dyes are highly fluorescent with the quantum efficiency 

close to 100%, they often do not need additional emission enhancement. Rather, they tend to be 

quenched when coupled with metallic nanostructures with the reason given in Section 2.1.6. But 

in the visible wavelength range, photobleaching could occur. Visible light could damage biological 

substances and induce addition background interference. Therefore, visible fluorescence is not 

ideal for sensing in biological samples.  
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        It is known that there are three biological transparency windows in the NIR wavelength range 

where there is minimal scattering and background fluorescence interference from biological 

matrix.33 The first biological window (NIR-I) spans from 700 to 950 nm; the second (NIR-II) from 

1000 to 1350 nm; the third (NIR-III) from 1550 to 1870 nm. They offer a great opportunity to 

employ NIR fluorescence for sensing in biological samples. However, NIR fluorophores are also 

known for a small intrinsic quantum efficiency. They are not suitable to be directly applied in NIR 

biosensing. Fortunately, PEF offers a solution.  

 

        The way plasmon mediates fluorescence is based tuning the distance between the fluorophore 

and the plasmonic nanostructure. The optimal distance varies for different plasmonic 

nanostructures, but in general, 10 ~ 20 nm is the typical range in which radiative decay dominates, 

contributing to overall fluorescence enhancement. Based on this, various nanostructures which can 

support strong surface plasmon resonance have been fabricated for this purpose.34-37 

 

        In a typical plasmon-enhanced fluorescence configuration, a gold nanorod as a plasmonic 

nanostructure is initially functionalized with biotin disulfide.38-39 Disulfide has a strong affinity 

towards gold surface and the biotin can interact with streptavidin. Therefore, streptavidin can be 

then functionalized to gold surface by biotin-streptavidin interaction. As the streptavidin has two 

binding sites, the other biotin which is at one end of a dye Cy5 labelled ssDNA sequence is then 

linked to gold nanrod by means of biotin-streptavidin. The ssDNA sets the dye a certain distance 

away from gold nanorod surface and by manipulating the number of DNA bases, as the length can 

be accurately tuned by simply changing the number of DNA bases. At an optimal distance, the 

plasmonic field contributes to the fluorescence enhancement of Cy5 by coupling the fluorophore 

dipole with surface plasmon dipole and then being scattered as fluorescence emission to the far 

field. The fluorescence imaging shows the fluorescence from Cy5 has been increased by around 

30 times when linked to gold nanorod compared to free-standing Cy5. The dye also experiences a 

lifetime shortening, which can be ascribed to a faster radiative decay rate thanks to the modulation 

of surface plasmon on gold nanorod. 

 

        With gold nanorod as a typical gold nanoparticle which supports surface plasmon resonance, 

various two-dimensional plasmonic nanostructures have also been fabricated. Gold nanohole 

arrays, gold nanopyramid arrays, gold nanoring arrays, gold nanorod arrays, gold nanotriangle 

arrays, et al. are all capable of providing a strong plasmonic field, coupling with the fluorophore 

dipole. 

2.8 Rational of Selection of Nanoparticles/Nanostructures 

        In what follows, design of SERS and PEF sensors as well as study of inexpensive alternative 

plasmonic material will be introduced. 
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        Chapter 3.1 is about design of a gold nanoparticle dimer-based SERS sensor for mercury 

detection; Chapter 3.2 is on design of an on-chip gold nanostar-coupled silver nanopyramid array-

based SERS sensor for nitrite detection. The reason why gold nanosphere is selected in Chapter 

3.1 is because of its robust and well-studied surface chemistry. Although gold nanosphere is limited 

by the maximum achievable local fields, this issue can be overcome by the dimer structure where 

the plasmonic gap mode supports a large local field. In chapter 3.2, the selection of silver 

nanopyramid array is because 1-naphthylamine bonds to silver surface rather than gold surface. 

The selection of gold nanostar to couple with silver nanopyramid array is because gold nanostar 

supports strong local fields at the sharp tips, which is good for SERS. 

 

        Chapter 4.1 is on the elucidation of the role of scattering in PEF. The selection of silver 

nanosphere is because it is easy to tune its optical properties from being dominated by absorption 

to by scattering. This gives a unique window to study the role scattering plays in PEF. Chapter 4.2 

is about a PEF sensor for traumatic brain injury biomarker detection in blood plasma. The rational 

for the selection of gold nanopyramid array is because it not only supports near-infrared plasmon 

resonance but also can generate strong local fields for excitation enhancement. 

 

        Chapter 5.1 is on the investigation of inexpensive alternative plasmonic metal. The reason 

why copper nanocube is selected is because copper is found to support a strong plasmon resonance 

only when the shape is made cubic. Chapter 5.2 is on the study of film-coupled copper nanocube 

for near-infrared fluorescence. This is an extension of Chapter 5.1 and strives to demonstrate that 

the inexpensive copper nanocube could be made spectrally tunable and useful in PEF.   
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Chapter 3: Plasmonic Nanostructures for Surface-

Enhanced Raman Scattering Sensing 

3.1 A SERS Sensor for Mercury (II) Detection 

3.1.1 Introduction 

Heavy metal pollution imposes a threat on human health.1-2 Hg2+ is one of the most toxic 

cations, which causes damage to the central nervous system and other organs.3-4 Significant effort 

has been made to develop sensors for detection of Hg2+ ions. One of the most appealing sensors is 

based on colorimetric transduction.5-8 Gold nanoparticles (NPs) in an aqueous solution display a 

range of colors from red to blue due to the excitation of localized surface plasmon resonance 

(LSPR). The addition of target cations can induce the aggregation of Au NPs modified with small 

molecules, leading to a change in the color of solution. The colorimetric sensor is simple, 

straightforward, and requires minimal instrumentation. However, it has a low sensitivity, and 

aggregation of Au NPs can lead to sediment of Au NPs on the bottom of aqueous solution, limiting 

the dynamic detection range of assay. 

 

Surface-enhanced Raman scattering (SERS) has emerged as a powerful technique in building 

sensitive sensors.9-13 The SERS signal can be amplified using plasmonic nanostructures, including 

colloidal NPs and the patterned nanostructures via either electromagnetic enhancement, chemical 

enhancement, or a combination of both.12, 14-15 Recently SERS biosensors have been exploited for 

Hg2+ detection based on the formation of gold nanostar dimers or a hierarchical structure of gold 

nanostars on a gold nanohole array.10, 16-17 In these SERS sensors, a thymine nucleobase (T) has 

been used to capture the Hg2+ ions by forming the T-Hg-T structure; and a Raman label has been 

used to track the SERS signal. 

 

Herein, we report a SERS biosensor using a small molecule as the molecular recognition 

probe. The molecular probe enables a very simple but highly sensitive and selective approach for 

the detection of Hg2+ based on a newly emerging peak. 

3.1.2 Methods 

Chemicals and Materials 

Chloroauric acid trihydrate (HAuCl4·3H2O), trisodium citrate dihydrate (Na3C6H5O7·2H2O, 
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ACS, 90.0+%), sodium hydroxide, silver nitrate (AgNO3, Premion, 99.995%), calcium nitrate 

tetrahydrate (Ca(NO3)2·4H2O, 99.0%), iron(III) nitrate nonahydrate (Fe(NO3)3·9H2O, 98+%), 

copper(II) nitrate hemi(pentahydrate) (Cu(NO3)2·2.5H2O), and yttrium(III) nitrate hexahydrate 

(Y(NO3)3·6H2O, 99.9%) were purchased from Alfa Aesar (Ward Hill, MA). 4-mercaptobenzoic 

acid (technical grade, 90%), 2,6-pyridinedicarboxylic acid (99%), mercury nitrate 

((HgNO3)2·2H2O),and chromium(III) nitrate nonahydrate (Cr(NO3)3·9H2O) were purchased from 

Sigma-Aldrich (St Louis, MO). Methylmercury (II) chloride (standard solution in H2O was 

purchased from VWR International. Aluminium nitrate nonahydrate (Al(NO3)3·9H2O, 99+%) was 

from Acros Organics (Fair Lawn, NJ). Zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 98%) was from 

Strem Chemicals (Newburyport, NA). Deionized (D.I.) water was produced by using a Milli-Q 

Millipore system (18.2 MΩ cm, Millipore Corp., Billerica, MA). 

 

 

 

Preparation of Gold Nanoparticles 

1.0 mL of 20.0 mM chloroauric acid was added to 50.0 mL of deionized (D.I.) water and 

heated to boiling. Then, 2.0 mL of 38.8 mM trisodium citrate solution was added. The reaction 

lasted 30 min under stirring. The absorption spectrum of synthesized gold nanoparticles was 

characterized using a Shimadzu UV-2550 spectrometer (Figure 3.1). 

 

10.0 L of 10.0 mM freshly prepared 4-mercaptobenzoic acid (MBA) was added to 10.0 mL 

of as-prepared gold nanoparticles; and it was kept stirring overnight. Then Au@MBA 

nanoparticles were obtained without any purification, as the amount of MBA is far from excessive 

in order to keep gold nanoparticles from aggregation. The absorption peak of Au@MBA barely 

Figure 3.1 UV-Visible spectra of the as-prepared gold nanoparticles, Au@MBA solution, and a mixed 

solution of Au@MBA and PDCA. 
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shifted compared to that of the as-synthesized gold nanoparticles, as shown in Figure 3.1. 

 

Hg2+ Detection 

The Raman spectroscopy (iRaman plus, Model# BWS465, B&W Tek) with an excitation 

wavelength of 785 nm was used to take all Raman spectra. 

 

Before Hg2+ detection, 2 L of 10 mM masking reagent 2,6-pyridinedicarboxylic acid (PDCA) 

was spiked with 10 L of Au@MBA nanoparticles at pH 7. The addition of PDCA did not induce 

the aggregation of gold nanoparticles, as confirmed by the UV-Vis spectrum in Figure 5.1. Then 2 

L of different concentrations of Hg2+ from 10 ppt to 500 ppb was added to the above solution and 

left it incubation overnight before Raman characterizations. 

 

During Raman characterization, 0.5 L of the above solution was dropped on the gold film 

substrate (purchased from Amsbio, Catalogue No. AU.1000.ALSI). A 785 nm laser was used to 

illuminate it while a Timeline Acquisition was used to obtain the SERS spectra in a time interval 

of 1 second with an integration time of 1 second as well. At the beginning, the SERS spectra were 

barely seen. As the water solvent evaporated under laser illumination, which left gold nanoparticles 

increasingly concentrated, the SERS spectra of MBA gradually showed up. Seconds before the 

solution became dried, a new peak at 374 cm-1 appeared. This peak was attributed to a coordinate 

bond involving Hg2+, shown in Figure 3.2(d).  
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Finite Difference Time Domain Simulations 

        Optiwave software was used to conduct simulation. The simulation cell was constructed with 

a 1 nm of grid size. A plane wave of 785 nm was used as the input source. 

 

Principal Component Analysis 

Principal component analysis (PCA) was performed on the SERS spectra to demonstrate the 

improved selectivity achieved by the addition of PDCA into the sensing assay. PCA is an 

orthogonal linear transformation that transforms the data to a new coordinate system, in which the 

first coordinate (i.e., the first principal component) represents the direction of the greatest 

variability, and the second coordinate the direction of the second greatest variability, and so on.  

Figure 3.2 (a) Gold NPs functionalized with MBA; (b) coupling of Au NPs in the presence of metal ions; 

the zoom-in area and the corresponding electric field distribution shown in (c) and (e) for free-standing 

gold NPs and in (d) and (f) for coupled ones. 
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3.1.3 Results and Discussions 

In this work, a SERS sensor is developed for Hg2+ detection using the gold NPs functionalized 

with 4-mercaptobenzoic acid (MBA), noted as Au@MBA, as shown in Figure 3.2(a) and (c). The 

carboxylic group enables the Au@MBA to be water soluble. When metal ions are absent in the 

aqueous solution, the Au@MBA NPs are kept distant from each other due to repulsion. The SERS 

peak intensity of MBA is relatively weak (Figure 3.3). 

 

 

 

When metal ions are present, the carboxylic group captures the metal ions due to the 

coordinate bond formed with Hg2+, leading to gold NP dimers, trimers and et al., as shown in 

Figure 3.2(b) and (d). The small gap between the adjacent Au@MBA NPs creates strong “hot spot”, 

amplifying the electromagnetic field remarkably, as shown in Figure 3.2(e) and (f). Consequently, 

the SERS peak intensity of MBA increases considerably (Figure 3.3). More importantly, a 

fingerprint SERS peak appears at 374 cm-1 due to the binding of Hg2+ to the Au@MBA NPs (Figure 

3.3). It is worth noting that the peak at 337 cm-1 disappeared after the Hg2+ ions are captured 

between the Au@MBA NPs (Figure 3.3). In addition, this phenomenon does not happen in the 

presence of CH3Hg+. Moreover, no evident SERS signal can be detected when Hg2+ is present in 

the non-functionalized Au NP suspension, ruling out the possible interference from chemicals used. 

Therefore, the 374 cm-1 peak comes from a Raman vibration of the newly formed coordinate bond 

involving Hg2+, shown in Figure 3.2(d). 

Figure 3.3 SERS spectra comparison. A mixture of Au-Hg2+ without MBA does not generate SERS 

peaks; Au@MBA exhibits the characteristic peaks of MBA; the Au@MBA-Hg2+ complex generates a 

fingerprint peak at 374 cm-1. Other major peak assignments: ν(COO-) (337 cm-1, 1580 cm-1), ν(CC) (1074 

cm-1, 1580 cm-1), δ(COO-) (840 cm-1), δ(CH) (1136, cm-1, 1183 cm-1), γ(CC) (520 cm-1, 718 cm-1). 
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Although previous SERS sensors have been developed for Hg2+ detection, a Raman label has 

been used besides the use of a molecular recognition probe. In contrast, for the present SERS assay, 

the binding of Hg2+ with the molecular recognition probe, MBA, generates a fingerprint SERS 

peak, which makes it unnecessary to use a Raman label. 

 

The selectivity of Au@MBA-based SERS assay toward Hg2+ was tested and tuned. When the 

other metal ions (M) were present in the Au@MBA-based SERS assay, where M stands for Al3+, 

Cr2+, Cu2+, Fe3+, Y3+, Zn2+, Ca2+, Pb2+, As2+, Cd2+, respectively, the SERS spectra were acquired 

from the Au@MBA-based SERS assay one by one (Figure 3.4). The presence of any of three metal 

ions (Pb2+, As2+ and Cd2+) induced a SERS peak at 374 cm-1. In order to overcome this cross-

selectivity problem, a reagent of 2,6-pyridinedicarboxylic acid (PDCA) was used as a mask agent.5, 

11, 18 When Hg2+ co-exists with other metal ions such as Pb2+, As2+ and Cd2+ in the absence of 

PDCA (see Case 1 in Figure 3.5), these metal ions could be captured by MBA, leading to coupling 

of gold NPs. Consequently, any among Hg2+, Pb2+, As2+ or Cd2+ contributes to the new SERS peak 

at 374 cm-1, as shown in Figure 3.4(b). When PDCA is present but in the absence of Hg2+ (see Case 

2 in Figure 3.5), the free-standing PDCA molecules capture all the metal ions because PDCA has 

higher bonding affinity toward other metal ions than Hg2+. Consequently, the Au@MBA NPs keep 

distant from each other. When Hg2+ co-exists with other metal ions in the presence of PDCA (see 

Case 3 in Figure 3.5), all the other metal ions are captured by PDCA. The free Hg2+ ions are 

captured by MBA, leading to coupling of Au@MBA NPs, generating the SERS peak at 374 cm-1, 

as shown in Figure 3.4(a). Hence the addition of PDCA enables the selective detection of Hg2+. 

 

 

Figure 3.4 Effect of PDCA addition on the selectivity of sensing assay. (a) SERS spectra obtained from 

the sensing assay in the presence of PDCA when individual M ions (where M= Hg2+, Al3+, Cr2+, Cu2+, 

Fe3+, Y3+, Zn2+, Ca2+, Pb2+, As2+, Cd2+) or a mixture of the above metal ions is present in the sensing 

assay; (b) SERS spectra obtained from the sensing assay in the absence of PDCA when individual M 

ions (where M= Hg2+, Al3+, Cr2+, Cu2+, Fe3+, Y3+, Zn2+, Ca2+, Pb2+, As2+, Cd2+) or a mixture of the above 

metal ions is present in the sensing assay. 
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 Figure 3.5 Schematic mechanism of PDCA in masking other metal ions 
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Principal component analysis (PCA) was performed to quantify the effect of the PDCA 

addition on the selectivity of Au@MBA-based SERS assay. PCA was first carried out on the SERS 

spectra obtained from the sensing assay in the absence of PDCA when individual M ions (where 

M= Hg2+, Al3+, Cr2+, Cu2+, Fe3+, Y3+, Zn2+, Ca2+, Pb2+, As2+, Cd2+) or a mixture of the above metal 

ions is present in the sensing assay (Figures 3.4(b) and 3.6). 

 

 
 

The PCA results are shown in Figure 3.7(a) that illustrates the two-dimensional coordinate 

plane with the axes being the first two principal components; and each point in the graph represents 

the projection of a spectrum onto the two-dimensional space, which corresponds to a specific 

cation of a certain concentration. Each spectrum is projected as a point in the resulting principal 

component space, and the confidence ellipse is generated for the Hg2+ points. The ellipse is the 95% 

confidence region estimated from the all the Hg2+ points. It can be seen from Figure 3.7(a) that the 

points of Hg2+ with varying concentrations are mixed with the points of other metal ions, which 

indicates that the sensing assay without PDCA exhibits poor selectivity toward Hg2+ detection. In 

contrast, Figure 3.7(b) provides the counterpart PCA results obtained from the SERS spectra of 

the sensing assay with PDCA (Figures 3.4(a) and 8). It clearly shows that a cluster of Hg2+ points 

with different concentrations in the ellipse are separated completely from the other metal ions. 

Thus, the PCA results have further confirmed the role of PDCA in improving the selectivity.  

 

Figure 3.6 SERS spectra obtained from the sensing assay at different levels of Hg2+ ions in the absence 

of PDCA. The concentrations of Hg2+ from the bottom spectrum to the top one are: 50 ppt, 100 ppt, 500 

ppt, 1 ppb, 10 ppb, and 50 ppb, respectively. 
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Figure 3.7 Principal component analysis of the SERS spectra obtained from the sensing assay in the 

absence of PDCA (a), and in the presence PDCA (b). 
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The Au@MBA-based SERS assay was used to quantitatively measure the Hg2+ concentration 

in the presence of 10 mM PDCA at pH 7 (Figure 3.8(a)). The intensity of SERS peak at 374 cm-1 

increased with an increase of the Hg2+ concentration in a range of 10 ppt up to 500 ppb. The peak 

intensity was linearly correlated to the logarithmic concentration of Hg2+ with a correlation 

coefficient of R2=0.96 (Figure 3.8(b)). The limit of detection (LOD) was estimated to be about 5 

ppt based on the definition of 3δ/s, where δ is the standard deviation and s is the slope.19 Such high 

sensitivity can be attributed to the “hot spots” generated at the gaps between any adjacent coupled 

gold NPs in the presence of Hg2+, as shown in Figure 3.2(f). Finite-difference time domain (FDTD) 

simulation was conducted to confirm the high electromagnetic field generated at the gap between 

two coupled gold NPs, which shows that the maximum electromagnetic field enhancement factor 

(E/E0)
4 can be as high as 107 at a 1 nm gap, as shown in Figure 3.9. This was why the SERS signal 

can still be detected when the Hg2+ was down to the ppt level. 

 

It is worth noting that the stability of plasmonic gold nanoparticles is dependent on the ionic 

strength of an aqueous solution where gold nanoparticles stay. Gold nanoparticles are instable 

when they are present in the aqueous solution with high ionic strength. In contrast, gold 

nanoparticles are stable when they are in the aqueous solution with low ionic strength. In this 

project, the SERS sensor based on the gold nanoparticles will be applied to river and lake water as 

well as tap water. However, the SERS sensor cannot be applied to the aqueous solution with high 

ionic strength, such as blood.  

 

 

Figure 3.8 (a) SERS spectra obtained from the sensing assay in the presence of PDCA at different 

concentrations of Hg2+ (10 ppt, 50 ppt, 100 ppt, 500 ppt, 1 ppb, 5 ppb, 10 ppb, 50 ppb, 100 ppb, and 500 

ppb); (b) Calibration curve showing the SERS peak intensity at 374 cm-1 versus the logarithmic 

concentration of Hg2+. 
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3.1.4 Conclusion 

In conclusion, the fingerprint SERS peak at 374 cm-1 obtained from Au@MBA-Hg2+ assay 

can be used to sensitively quantify the Hg2+ concentration with a LOD of 5 ppt. Good selectivity 

for Hg2+ was achieved using a masking agent of PDCA. The detection scheme based on the MBA-

functionalized Au NPs provided a new simple and effective approach for development of SERS 

sensors without Raman labels. 

 

  

Figure 3.9 FDTD simulations (a) The electric field distribution at a 1 nm gap between two coupled gold 

nanoparticles. The SERS enhancement factor (E/E0)4 is ~107; (b) Gap-dependent SERS enhancement 

factor. 
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3.2 A SERS Sensor for Nitrite Detection 

3.2.1 Introduction 

Nutrient pollution, which primarily originates from extensive usage of fertilizers and 

livestock waste, pose a threat on the ecological system.1-3 It was estimated that 11011 kg of 

reactive nitrogen were released annually from nitrogen fertilizers around the world in the last 

decade, and ended up in aquatic systems in the form of nitrogen-containing compounds such as 

nitrite.4-6 Nitrite is accountable for the rampant growth of eutrophication and algae in water 

bodies.7-8 It can enter the food chain, and is taken by human. It is found to be correlated with the 

cause of methemoglobinemia in infants. Therefore, it is imperative to monitor nitrite in aquatic 

systems. 

 

A common method for nitrite screening is Griess Test, which is based on the formation of a 

red pink color after the reaction between Griess reagents and the nitrite sample.9-11However, the 

colorimetric nature makes Griess Test vulnerable to interferences from colored sample matrices, 

and suffer from poor sensitivity. Nitrite can also be measured quantitatively using chromatography 

methods,12-13which act as the golden standard and is sensitive to part-per-billion level in drinking 

water. But considering the sophisticated operational procedure, high cost and immobility of ion 

chromatography, it is not suitable for routine monitoring of nitrite in field. Nowadays, efforts have 

been devoted to the development of inexpensive, rapid, portable and user-friendly sensors based 

on electrochemistry and fluorescence.14-21 However, the reported sensors show high noise levels 

and limited sensitivity. 

 

It is well known that combination of the sensing signal labels/reporters with molecular 

recognition probes is required for most types of prevailing sensors in order to capture specific 

analytes and to transduce the sensing signal. For example, for detection of antigens or small 

molecule analytes, antibodies or aptamers are usually used as the molecular recognition probes to 

capture antigens or small molecule analytes; and fluorescent labels or redox probes are typically 

used to transduce the sensing signal. Compared to colorimetric, electrochemical and fluorescent 

sensors, the SERS devices can recognize the molecular spectral fingerprints of analytes and/or 

transduce the sensing signal by directly acquiring the SERS spectrum of analytes.22-26 This unique 

feature of SERS not only enables high selectivity and strong resistance to the interference in the 

complex sample matrix, but also may eliminate the use of the sensing signal labels/reporters or/and 

the molecular recognition probes in devices, which simplifies the design of sensors, and saves the 

cost. SERS sensors have been widely used for biomarker detection, environmental pollutant 

monitoring, drug and explosive measurement, and etc.27-29 Currently, SERS sensors build on the 

plasmonic nanostructures as the SERS substrates, such as Au and Ag in the form of colloidal 

nanoparticles or two-dimensional (2D) nanoarray pattern-based chips.30-31 The 2D plasmonic 
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nanoarray pattern-based chips are of particular interest because they are able to generate “hot spots” 

in a large space, amplifying the SERS signal.32-35 However, it still remains a significant challenge 

in massive production of reproducible 2D plasmonic nanoarray pattern-based chips as the SERS 

substrate.36-37 

 

In the present work, a facile SERS sensor has been developed for nitrite detection by coupling 

gold nanostars onto an ordered silver nanopyramid array pattern. The sensor transduces the SERS 

spectral fingerprints of an azo group, which is formed only in the presence of nitrite in the assay, 

allowing detection of nitrite without the aid of any antibody or aptamer. In the meanwhile, the 

plasmonic coupling between the Au nanostars and the Ag nanopyramid array pattern generates the 

intense “hot spots”, enormously amplifying the SERS intensity of the newly formed azo group. 

Furthermore, the long-range ordered array of Ag nanopyramid makes it possible to amplify the 

SERS signals reproducibly. All these combined features of the SERS sensor not only improve the 

sensitivity toward nitrite detection, but also enable selectivity and reproducibility.  

3.2.2 Methods 

Chemicals and Materials 

Polystyrene microspheres (diameters of 500, 600, and 1000 nm) were purchased from 

Thermo Scientific. Sodium hydrobromide (99%), polyvinylpyrrolidone (average molecular weight 

10,000), N,N-dimethylformamide (ACS reagent, ≥99.8%), 4-aminothiophenol (97%), 1-

naphthylamine (≥99.0%), sodium nitrite (ACS reagent, ≥97.0%), and hydrochloric acid (36.5-

38.0%) were purchased from Sigma-Aldrich. Chloroauric acid trihydrate (ACS, 99.99%) and 

trisodium citrate dehydrate (ACS, 90.0+%) were purchased from Alfa Aesar. Quartz slides were 

purchased from AdValue Technology. River water sample was collected from Monongahela River 

near Evansdale Campus of West Virginia University in Morgantown, West Virginia. DI water was 

produced by Milli-Q Millipore system (18.2 MΩ cm, Millipore Corp., Billerica, MA) and was 

used for washing and reactions. All chemicals were directly obtained from commercial vendors 

and used without further purification. 

 

Ag Nanopyramid Array Fabrication 

The Ag nanopyramid array patterns were fabricated on the quartz slides (roughly 1 cm × 1 

cm) in the cleanroom by nanosphere lithography,38-39 as shown in Figure 3.10. Specifically, the 

quartz slides were first cleaned by immersing into acid piranha (the ratio of sulfuric acid to 

hydrogen peroxide is 3:1) at 90 °C for 1 hour. Caution: acid piranha is very dangerous and needs 

to be handled with extreme care! The quartz slides were then rinsed thoroughly using deionized 

(D.I.) water, and further cleaned three times by consecutive sonication in ethanol and D.I. water, 

respectively. Afterwards, a monolayer of polystyrene microsphere (PS) was dip-coated on the 

quartz slides in a hexagonal pattern. The diameter of PS was varied from 500 nm and 600 to 1000 

nm to tune the optical response of the resulting pyramid array. After that, a 5 nm thick titanium 
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layer and a 200 nm thick silver film were deposited onto the quartz slides by e-beam evaporator. 

The PS beads were removed by sonication in methanol for five minutes and blown to dry using 

compressed air, resulting in the hexagonally ordered Ag nanopyramid array patterns. 

 

 
 

Au Nanostar Synthesis 

The Au nanostars were synthesized using a two-step approach reported previously.38 To begin 

with, the Au nanoseeds were first synthesized. 1 mL of 1 wt% chloroauric acid was first added to 

90 mL of D.I. water, followed by 2 mL of 38.8 mM trisodium citrate solution. Afterwards, 1 mL 

of 0.075 wt% sodium hydrobromide solution was added into the above solution and kept reacting 

overnight. Subsequently, polyvinylpyrrolidone was dissolved into a 50 mL of Au nanoseed 

solution; and the mixture was stirred for 24 hours. In order to synthesize the Au nanostars, 82 μL 

of 50 mM chloroauric acid was added into a 15 mL of 10 mM polyvinylpyrrolidone solution, which 

was followed by the addition of 43 μL of Au nanoseeds. The mixture was stirred overnight before 

being centrifuged and washed using ethanol and water. The washing and centrifugation steps were 

repeated three times before the obtained Au nanostars were finally dissolved into ethanol. 

 

Instruments and Characterization 

Titanium and silver were deposited using an e-beam evaporator (Kurt J Lesker, 

Model#LAB18). Ag nanopyramid arrays were characterized under a JEOL JSM-7600F scanning 

electron microscope (SEM). The Au nanostars were characterized using a JEOL JEM-2100F 

transmission electron microscope (TEM). An Ocean Optics USB 4000 spectrometer was used to 

Figure 3.10 Protocol for Ag nanopyramid array fabrication. 
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acquire the reflection spectra of the fabricated Ag nanopyramid arrays. Raman spectra were 

acquired using the iRaman plus (Model# BWS465, B&W Tek) with an excitation wavelength of 

785 nm. 

 

FDTD Simulation 

Optical properties of the Ag nanopyramid array patterns, the Au nanostars were studied using 

finite different time domain (FDTD) simulation. FDTD software is commercially available from 

Optiwave Systems Inc. A grid size of 1 nm was used to construct the simulation cell. A plane wave 

with a center wavelength of 600 nm was used as the input light source. The wavelength-dependent 

refractive index of silver was taken from Palik.40 The refractive index of quartz slides was modeled 

as a constant of 1.53. Periodic boundary conditions were applied for all simulations. 

 

SERS Measurement 

The Au nanostars were first functionalized with 4-aminothiophenol (4-ATP). Specifically, 10 

uL of 10 mM 4-ATP in ethanol was added into 10 mL of Au nanostars. The mixture was stirred 

overnight before being centrifuged and washed three times to remove excessive 4-ATP molecules 

using D.I. water. It was then dissolved in D.I. water, resulting in the Au star@ATP nanoparticles. 

The pH of Au star@ATP nanoparticle solution was adjusted to ~3.5 using 2 M hydrochloric acid. 

 

The Ag nanopyramid array patterns were functionalized with 1-naphthylamine (1-NA). 

Specifically, an Ag nanopyramid array was incubated into 10 mL of 10 mM 1-NA ethanolic 

solution overnight, forming Ag nanopyramid@NA. It was then rinsed using ethanol to remove 

excessive 1-NA molecules and dried using compressed air. 

 

Standard nitrite solutions with concentrations of 1 pg/mL, 10 pg/mL, 100 pg/mL, 1 ng/mL, 

10 ng/mL, 100 ng/mL, 1 μg/mL, 10 μg/mL, 100 μg/mL, and 1 mg/mL were prepared by dissolving 

sodium nitrite into D.I. water, respectively.  

 

In order to calibrate the sensor for nitrite detection, 5 µL of standard nitrite solutions was first 

mixed with 50 µL of Au nanostar@ATP solution. The mixed solution was immediately dispensed 

onto the surface of a Ag nanopyramid@NA substrate. After 10 minutes of incubation, the Ag 

nanopyramid@NA was washed using D.I. water and dried using compressed air. SERS spectra 

were then acquired from the surface of the Ag nanopyramid array substrate. In this process, the 

laser power was set at 10% of the full power (>320 mW at laser port, 420 mW Max from the 

vendor) with an integration exposure time of 10 s for each measurement. 

 

To detect nitrite in river water, the water sample was first treated by natural sedimentation for 

a week, and then further purified by filtration using a filter paper prior to measurement. The 

procedure for SERS measurement was the same as above. 



38 
 

0 

3.2.3 Results and Discussions 

Optical Properties of Ag Nanopyramid Array and Au Nanostars 

Fabricated by nanosphere lithography38-39 with the procedure shown in Figure 3.10, the Ag 

nanopyramid arrays exhibited a tetrahedron shape with three sharp edges and a needle-like tip at 

the apex, as shown in Figure 3.11(a) and (b). 67 objectives were measured for the Ag nano 

pyramids based on the SEM images. The average size of Ag nano pyramids was ~207 nm in height 

and ~120 nm in base length with the standard deviations of 17 nm and 18 nm. Based on Mie theory, 

the overall extinction of a metal particle includes the contributions of both light absorption and 

scattering. A plasmonic particle can absorb or scatter light when localized surface plasmon 

resonance (LSPR) is excited by incident light, which is dependent on the particle size. When the 

particle is small (typically less than 50 nm), light absorption is dominant while light scattering is 

negligible. When the particle is large (for example, 100 nm in a diameter), light scattering is strong 

while absorption is weak. Given that the Ag nanopyramid was quite large (~200 nm in height and 

~120 nm in base length), light scattering was dominant in the present work. 

 

 

 

Figure 3.11 (a) and (b) SEM images of the Ag nanopyramid array pattern; (c) TEM image of the Au 

nanostars (inset shows a single Au nanostar); (d) Measured and simulated back reflection spectra for the 

Ag nanopyramid array pattern and absorption spectra for the Au nanostars. The back reflection and 

absorption intensities in (d) have been normalized for comparision. 
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25 objectives were measured for the Au nanostars based on the SEM and TEM images. The 

average size of Au nanostars was 80 nm with a standard deviation of 6 nm. The Au nanostars 

showed an average size of 80 nm, as shown in Figure 3.11(c). Despite the difference in shape, the 

Au nanostars and the Ag nanopyramid array pattern exhibited similar surface plasmon resonance 

spectral features with both the peaks centered at around 785 nm, which was also confirmed by the 

calculated UV-Visible spectra, as shown in Figure 3.11(d). The consistency between the simulated 

and the measured spectra implied predictability of optical properties as well as controllability of 

the obtained geometries, allowing design of the optimal SERS substrates with aid of finite-

difference time-domain (FDTD) simulation. Furthermore, the spectral overlap suggested an 

intense electron wave function interaction, leading to plasmonic coupling between the Ag 

nanopyramid array and the Au nanostar under a 785 nm laser excitation. 

 

 

 

Prior to sensor construction, FDTD simulation was implemented to study plasmon modes as 

well as plasmonic coupling, which could give an insight of the origin of the electromagnetic 

enhancement. We modelled the scenario of an Au nanostar sitting on one face of an Ag 

Figure 3.12 (a) Simulated electromagnetic field distribution and SERS enhancement factor for various coupling 

scenarios between a silver nanopyramid and a gold nanostar with an excitation wavelength of 785 nm. The 

gap distance was set as 1 nm for the Au nanostar coupled with the silver nanopyramid, or with a silver film, 

with a SiO2 nanopyramid array. The arrows in the simulated electric field distribution indicate the polarization 

directions 
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nanopyramid (Figure 3.12), which is also the most probable coupling case. The separation distance 

between the Au nanostar and the Ag nanopyramid was set as 1 nm, which is the approximate length 

of the newly formed azo compound bridging the Ag nanopyramid and the Au nanostar, as shown 

in Figure 3.13. The input plane wave was polarized in a way to enable the strongest plasmonic 

coupling. The simulated electromagnetic field distribution suggested that the Ag nanopyramid 

array predominately displayed vertex and edge plasmon modes, whereas the Au nanostar exhibited 

a tip plasmon mode. Upon plasmonic coupling, intense gap plasmon modes were generated at the 

1 nm gap between an Au nanostar and an Ag nanopyramid, which was exactly the origin of the 

electromagnetic field enhancement. The SERS enhancement factor consisting of an excitation 

enhancement (|E785|/|E785
0|)2 and the emission enhancement (|E862|/|E862

0|)2 was also calculated, 

where E785 and E862 are the EM field at the excitation wavelength (785 nm) and the Stokes-shifted 

wavelength (862 nm) for the coupling normalized by the EM field at incident wavelengths E785
0 

and E862
0, respectively. It was found that an SERS enhancement factor 

(|E785|/|E785
0|)2·(|E862|/|E862

0|)2 of ~4×1010 was achieved when an Au nanostar sitting on the face of 

an Ag nanopyramid. That is, the Raman intensity of the molecules at the gap would be amplified 

~4×1010 times. As a comparison, a factor of ~5×106 was achieved for either an individual Au 

nanostar or an individual Ag nanopyramid. 

 

Operating Mechanism of Sensor 

        As shown in Figure 3.13(a), when the nitrite ions are present in the assay, the diazotization 

reaction between 1-naphthylamine (1-NA) and 4-aminothiophenol (4-ATP) happens,9-10 producing 

an azo compound which exhibited the SERS fingerprints. This eliminates the use of any Raman 

reporter in the SERS sensor design for detection of nitrite. The SERS sensor consisted of the Ag 

nanopyramid array pattern and the Au nanostars, which are initially functionalized with 1-NA and 

4-ATP, respectively, as shown in Figure 3.13(b). The nitrite ions first react with the amine group 

of 4-ATP under an acidic condition, leading to the formation of diazonium compounds. The 

diazonium compounds further react with 1-NA, producing the azo compounds. As a result, the Au 

nanostars are covalently connected to the Ag nanopyramid array via the formation of the azo group. 

These newly formed azo group not only displays a SERS spectral fingerprint, but also benefits 

from the intense EM field enhancement thanks to the “hot spots” between the Ag nanopyramid 

and the Au nanostars. The mechanism was verified by the SERS spectra in Figure 3.14(a). The 

newly formed azo groups exhibited at least three new SERS peaks at 1140 cm-1, 1389 cm-1, and 

1434 cm-1 as compared to the 4-ATP functionalized Au nanostars and the 1-NA functionalized Ag 

nanopyramid array. The uniformity of the substrate was also studied by detecting the SERS signal 

at 15 random locations across the 1-NA functionalized Ag nanopyramid array. The relative 

standard deviation (RSD) was found to be 6.6%. Furthermore, the SERS sensor was tested 

separately against the possibly interfering inorganic compounds such as NaNO3, NaCl, Na2SO4, 

KCl, and K3PO4. As shown in Figure 3.14(b), the SERS sensor barely responded to any of the 

above inorganic compounds. Since the new SERS peaks were solely related to the azo group 

formed by the diazotization reaction in the presence of nitrite. This unique feature can significantly 

improve the signal-to-noise ratio, allowing the SERS sensor to specifically detect nitrite with 
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minimal interference. In addition, unlike other SERS-based immunoassays or DNA-based SERS 

biosensors which heavily rely on expensive biological reagents such as antibodies and DNA, this 

SERS sensor employed only two small molecules (1-NA and 4-ATP). This makes the sensor cost-

effective without compromising the performance. 

 

 

 

Figure 3.13 Mechanism of nitrite detection with the SERS sensor. (a) Reaction: 1-naphthylamine (1-NA) 

and 4-aminothiophenol (4-ATP) reacts in the presence of nitrite ions under acidic condition, generating an 

azo compound with a SERS fingerprint (marked using a red color); (b) Detection scheme: the 1-NA 

functionalized Ag nanopyramid array captures the 4-ATP functionalized Au nanostar via formation of the 

azo compound. 
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Calibration of SERS Sensor 

The SERS sensor was calibrated using the standard nitrite solutions. The concentration ranged 

from 1 pg/mL to 1 mg/mL with an interval of 1 order of magnitude. It is noted that the SERS 

spectra in Figure 3.15(a) were intentionally offset for a better visualization of the spectra evolution. 

After the addition of a nitrite solution, three new SERS peaks at 1140 cm-1, 1389 cm-1, and 1434 

cm-1 showed up as expected (Figure 3.15(a)). The SERS intensity became intensified with an 

increase in the concentration of nitrite. All these three peaks can be used for quantification of the 

nitrite concentration based on the statistical analysis. Because the 1140 cm-1 peak responded to 

nitrite most sensitively although the difference among the three characteristic SERS peaks is 

Figure 3.14 (a) SERS spectra comparison: the new azo compound produces three characteristic SERS 

peaks from the azo group at 1140 cm-1, 1389 cm-1, and 1434 cm-1 as compared to the 1-NA functionalized 

Ag nanopyramid array and the 4-ATP functionalized Au nanostar; (b) Selectivity test: possibly interfering 

compounds K3PO4, KCl, Na2SO4, NaCl, and NaNO3 were tested separately but resulted in barely 

detectable SERS peak at 1140 cm-1. 
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marginal as shown in Figure 3.16, it was selected to build the calibration curve for nitrite detection. 

The SERS intensity of the 1140 cm-1 peak was plotted as a function of the logarithmic 

concentration of nitrite (Figure 3.15(b)), which showed a continuous SERS intensity increase till 

saturation with increasing the nitrite concentration. In the linear response region, the calibration 

curve was fitted with an equation of y=703x+868, R2=99%, where y is the measured intensity of 

the SERS peak at 1140 cm-1, x is the logarithmic concentration of nitrite, as shown in Figure 3.15(c). 

The limit of detection (LOD) was calculated to be 0.6 pg/mL based on three times signal-to-noise 

ratio. The SERS sensor showed lower LOD than the common techniques used for nitrite detection, 

such as chromatography and Griess test. The LODs are typically 1.6~75 ppb and 23~115 ppb for 

chromatography41-42 and Griess test43, respectively. Such a low LOD for the SERS sensor resulted 

from the SERS enhancement factor of ~1010, demonstrating high sensitivity of the SERS sensor. 

The SERS sensor also displayed an extended linear detection range spanning from 1 pg/mL to 10 

ug/ml. This will endow the sensor with a wide range of applications for detection of either trace 

amount of nitrite or heavily accumulated nitrite pollutant in river, lake, pond, and etc. It is 

noteworthy that U.S. Environmental Protection Agency (EPA) regulates that the maximum 

contaminant level (MCL) for nitrite in drinking water is 1.0 µg/mL, which falls into the linear 

detection range of the SERS sensor. In addition, the selection of a single characteristic SERS peak 

at 1140 cm-1 to build the calibration curve was further justified by comparing with the full spectrum 

analysis using principle component analysis (PCA), as shown in Figure 3.17, where the response 

of the SERS sensor to nitrite concentration variation is very similar. Comparison of the response 

of the SERS sensor to varying nitrite concentrations between using the single SERS peak at 1140 

cm-1 and using the full spectrum analysis by PCA was also shown in Figure 3.18, where the 

difference is marginal.  
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Figure 3.15 SERS sensor calibration. (a) SERS spectra obtained at various concentrations of nitrite; (b) 

Plot of the intensity at 1140 cm-1 versus the logarithmic concentration of nitrite; (c) Fitting of the linear 

region in (b); The red dashed line shows the Maximum Contaminant Level of nitrite in drinking water 

regulated by EPA. 
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Figure 3.16 Fitting curves for different SERS peaks at 1140 cm-1, 1389 cm-1, and 1434 cm-1. The SERS 

peak at 1140 cm-1 gives the most sensitive response for nitrite detection. 
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Figure 3.17 Correlation matrix for the three characteristic SERS peaks at 1140 cm-1(var1), 1389 cm-1(var2), 

and 1434 cm-1(var3). The intensities of the three Raman shifts are identified as the potential predictors for 

the concentration of the target analyte. The pairwise correlations between the intensities at any two of the 

three Raman shifts have indicated that each intensity pair is nearly perfectly positively correlated with a 

correlation estimate of 0.99, which is graphically illustrated by the linear plots. The nearly perfect 

correlations suggest that the intensities at the three Raman shifts play nearly equivalent roles in the 

prediction of analyte concentrations. 
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Detection of Nitrite in River Water 

The SERS sensor was used to test the water samples taken from Monongahela River near the 

Evansdale campus of West Virginia University in Morgantown, West Virginia. It was treated by 

natural sedimentation and filtration prior to testing by the SERS sensor. After acquisition of 19 

SERS spectra from the sample, the nitrite level in river water sample was calculated according to 

the equation of the calibration curve: y=703x+868. It was found to be 105.94 ± 0.58 pg/mL (a mean 

value of 0.87 µg/mL with an upper limit of 3.3 µg/mL and a lower limit of 0.23 µg/mL) with a 

relative standard deviation (RSD) of 8.4%. In comparison, the sample was also tested by EPA 

300.0 Ion Chromatography (Exova Inc), where the nitrite concentration was found to be 1.00 

µg/mL, which was consistent with the result obtained by the SERS sensor. 

 

In short, a SERS sensor developed in the present work is highly sensitive and selective. The 

detection scheme developed in this work can be adapted for measuring other ions and small 

molecules. For rapid and convenient measurement of nitrite and small molecules, it is desirable to 

incorporate a sensor into a microfluidic chip to achieve automation, sample handling and friendly 

user interface. For promoting the SERS sensor development, optical readers of SERS sensor need 

to be further improved in terms of size and cost. 

3.2.4 Conclusion 

In summary, an ordered silver nanopyramid array pattern was successfully fabricated with 

nanosphere lithography. By coupling the gold nanostars to the silver nanopyramid array pattern, a 

Figure 3.18 Comparison of the response of the SERS sensor to varying nitrite concentrations between 

using the single SERS peak at 1140 cm-1(olive color) and using the full spectrum analysis by principal 

component analysis (PCA, orange color). (a) includes all the studied nitrite concentrations; (b) includes the 

nitrite concentrations in the linear response region. The difference between using a single SERS peak at 

1140 cm-1 and using full spectrum analysis by PCA is marginal.  
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SERS sensor was built to detection nitrite. The presence of nitrite not only created three unique 

SERS peaks at 1140 cm-1, 1389 cm-1, and 1434 cm-1 from the azo group, but also resulted in the 

formation of “hot spots” where the azo group were located at the gap between the gold nanostar 

and the silver nanopyramid. This unique sensing mechanism eliminated the use of any aptamer or 

antibody and enabled high sensitivity of the SERS sensor. As a result, the SERS sensor exhibited 

a LOD of 0.6 pg/mL toward nitrite detection in deionized water. The capability of the SERS sensor 

was demonstrated for nitrite detection in river water. The result showed that the SERS sensor was 

highly sensitive, selective and inexpensive; and it possessed unique advantages over the 

colorimetric, electrochemical and fluorescent devices for small molecule detection. 
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Chapter 4: Plasmon-Enhanced Fluorescence for 

Sensing 

4.1 Elucidating the Role of Scattering in Plasmon-Enhanced 

Fluorescence 

4.1.1 Introduction 

Optimizing plasmon-enhanced fluorescence (PEF) requires a delicate balance between the 

excitation rate enhancement and the quantum efficiency enhancement.1-7 The excitation rate 

enhancement originates from the distance-dependent local electric field enhancement and drops 

exponentially when the quantum emitter moves away from the plasmonic nanostrucure. The 

quantum efficiency enhancement is decided by the extent to which the radiative and non-radiative 

decay rate are respectively modified under the influence of the environment. In other words, when 

the modification of the radiative decay rate outcompetes that of the non-radiative decay rate, the 

quantum efficiency is enhanced. At a very short separation distance, the quantum emitter primarily 

couples through non-radiative resonant energy transfer to non-radiating higher-order plasmon 

modes and thus ends up experiencing reduced quantum efficiency.8 As the separation distance 

increases, the quantum emitter becomes more likely to be coupled with the dipole mode which 

dominates the plasmon field. The radiating nature of the dipole resonance enables the quantum 

emitter to experience a less reduction in quantum efficiency when the intrinsic quantum efficiency 

is high and an enhancement of quantum efficiency when the intrinsic quantum efficiency is low.9-

10 Given the large variation of quantum efficiency even at a subtle change of the separation between 

the quantum emitter and the nanostructure, the separation distance is deemed as a critical parameter 

in optimizing PEF.4, 11-13 By continuously varying the separation distance, the observed 

fluorescence can be tuned to transit from quenching to enhancement. 

 

An important parameter to consider in PEF is the Purcell effect.14 For an excited atomic state, 

the rate at which the atom spontaneously decays to the ground sate can be modified by tuning the 

local density of optical states. In other words, the spontaneous decay rate could be enhanced in the 

presence of additional optical modes, i.e. local density of optical states. This is made possible by 

spectrally and spatially coupling the quantum emitter to a cavity mode with a high Q-factor and a 

small modal volume. The increase of spontaneous decay rate is described by the Purcell factor and 

could lead to fluorescence enhancement provided that the modification of radiative component in 



54 
 

0 

the spontaneous decay rate outcompetes the non-radiative component.15-16 

 

In addition to the separation distance between the quantum emitter and the nanostructure and 

the Purcell factor, scattering has recently been phenomenally demonstrated to contribute to or 

correlate with the fluorescence enhancement.17-25 Although the role of scattering on PEF has not 

yet been systematically elucidated, the consensus is that scattering could make the quantum emitter 

more likely to radiate to the far field by coupling to the nanostructure. For instance, gold nanoshells 

were found to lead to large quantum efficiency improvement than gold nanorods due to a larger 

scattering cross section at the emission wavelength of the quantum emitter.17-18 

 

In this study, the role of scattering on PEF was systematically studied by means of finite-

difference time-domain (FDTD) based numeric simulation. For simplicity, the quantum emitter 

was modelled as an electric point dipole and represented by a two-level system. An Ag nanosphere 

with varying diameter was used as the plasmonic nanostructure with tunable scattering coefficients. 

The transition frequency of the quantum emitter was fixed at the localized surface plasmon 

resonance (LSPR) peak wavelength of the Ag nanosphere. The local electromagnetic (EM) field 

enhancement |E|2/|E0|2, Purcell factor, radiative decay rate enhancement, quantum efficiency 

enhancement, and fluorescence enhancement were calculated with respect to the varying 

separation distance between the quantum emitter and the Ag nanosphere as well as the diameter of 

the Ag nanosphere. It was found that scattering play dual roles in modulating both the local EM 

field and enhancing the quantum efficiency. Further calculation of the correlation coefficients 

among these parameters established a clear correlation relation between scattering and 

fluorescence enhancement. 

4.1.2 Results and Discussions 

Silver Nanosphere for Fluorescence Enhancement 

Since the contribution of scattering to extinction can be easily tuned by varying the diameter 

of an Ag nanosphere, the effect of scattering on PEF was studied by coupling a quantum emitter 

to an Ag nanosphere, as schematically shown in Figure 4.1(a). The quantum emitter was modelled 

as an electric point dipole and represented by a two-level system with a transition at the LSPR 

peak wavelength of the Ag nanosphere. As the Ag nanosphere diameter increased, the extinction 

transited from being dominated by absorption to scattering. At a diameter of approximately 55 nm, 

the extinction was equally split by absorption and scattering.  

 



55 
 

0 

 

 

To clearly show the effect of scattering, Ag nanospheres with a diameter of 20 nm and 80 nm 

were compared and they were abbreviated as Ag20 and Ag80 for simplicity. While the diameter of 

the Ag nanosphere affected the local EM field to some degree, it barely made a difference to the 

Purcell factor, as shown in Figure 4.1(c) and (d). Although Ag80 had a larger contribution to the 

excitation rate enhancement than Ag20 in Figure 1(c), the correlation between scattering and 

fluorescence enhancement was not entirely caused by the effect of scattering on the excitation rate 

enhancement, but also by the effect of scattering on the quantum efficiency enhancement. As 

shown in Figure 4.1(e), Ag80 showed a larger quantum efficiency enhancement than Ag20 owing 

to the scattering effect, which was further manifested by the fluorescence enhancement in Figure 

4.1(f). 

 

Figure 4.1 (a) Scheme showing a quantum emitter modelled as an electric point dipole was placed a 

varying distance away from the Ag nanosphere with a varying diameter; (b) The dependence of 

extinction, scattering, and absorption on the Ag nanosphere diameter; Comparison of the distance-

dependent (c) local EM field decay profile (d) Purcell factor (e) quantum efficiency enhancement and (f) 

fluorescence enhancement for Ag nanospheres with a diameter of 20 nm and 80 nm. The intrinsic 

quantum efficiency was set as 10%. 
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Comparison between Silver and Gold Nanospheres 

To understand whether the effect of scattering on PEF is a universal effect or just limited to 

the same type of material, Au nanospheres were studied under the same condition and compared 

with Ag nanospheres. At the smallest diameter considered, i.e. 20 nm, the Ag nanosphere exhibited 

larger extinction, scattering, and absorption coefficients than the Au nanosphere although the 

difference was marginal. When the diameter increased, the Ag nanosphere displayed increasingly 

larger extinction and scattering coefficients than the Au nanosphere, as shown in Figure 4.2(a). It 

was observed that the Ag nanosphere always exhibited larger fluorescence enhancement and 

quantum efficiency enhancement than the Au nanosphere regardless of the size and distance, 

although the difference of Purcell factor and local EM field enhancement between them remained 

marginal, as shown in Figure 4.2(b) and (c). The results indicated that the effect of scattering on 

PEF was universal regardless of the materials. 

 

Figure 4.2 (a) Comparison of the extinction, scattering, and absorption coefficients between Ag and Au 

nanospheres; Comparison of fluorescence enhancement factor, quantum efficiency enhancement, 

Purcell factor, and local EM field enhancement between Ag and Au nanospheres with a diameter of (b) 

20 nm and (c) 80 nm. 
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Tuning Ag Nanosphere 

Having established an intuitive understanding that scattering plays an important role in PEF 

through modifying the local EM field and enhancing the quantum efficiency, we proceed to 

systematically tune the Ag nanosphere diameter and separation distance between the quantum 

emitter and the Ag nanosphere in order to reveal the correlation relations among different 

parameters. Although Ag80 showed a larger local EM field than Ag20 in Figure 4.1(c), the local 

EM field was found not to increase monotonically with respect to the Ag nanosphere diameter. 

Interestingly, a maximum local EM field was reached at a diameter of around 55 nm, as shown in 

Figure 4.3(a). It is exactly the size at which absorption and scattering evenly split the extinction, 

indicating an equilibrium between the energy buildup and dissipation on the Ag nanosphere owing 

to the incoming excitation and radiative scattering. Different from the local EM field, the Purcell 

factor was barely size-dependent but decayed exponentially when the quantum emitter was moved 

away from the Ag nanosphere, as shown in Figure 4.3(b). Notably, the quantum efficiency 

enhancement exhibited a clear monotonic dependence on the Ag nanosphere diameter, or 

equivalently the scattering, as well as a separation distance dependence, as shown in Figure 4.3(c). 

The largest quantum efficiency enhancement could be found at a separation distance between 10 

to 25 nm. The fluorescence enhancement was also presented in Figure 4.3(d) by multiplying Figure 

4.3(a) and (c), accounting for both the excitation rate enhancement and the quantum efficiency 

enhancement. The largest fluorescence enhancement could be found at a separation distance 

between 5 and 15 nm. The slight decrease of the fluorescence enhancement when the Ag 

Figure 4.3 Systematic study of the effect of Ag nanosphere diameter and separation distance between 

the quantum emitter and the Ag nanosphere on (a) the local EM field enhancement (b) Purcell factor (c) 

quantum efficiency enhancement and (d) the fluorescence enhancement. The intrinsic quantum 

efficiency was set as 10%. Log scale was applied to the distance for better visualization. 
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nanosphere diameter exceeded 70 nm coincided with the decrease of the local EM field owing to 

a large energy dissipation rate caused by the increased radiative scattering. Therefore, as a matter 

of fact, scattering played dual roles in PEF. On one hand, it contributed to the quantum efficiency 

by allowing the quantum emitter to radiate more efficiently to the far field. On the other hand, the 

competition between scattering and absorption set an upper limit to the achievable local EM field 

enhancement. The resulting fluorescence was thus decided by the modulation of scattering on the 

quantum efficiency as well as the local EM field enhancement. 

 

 

 

Correlation Coefficients 

To further understand and clarify the relations among various parameters, correlation 

coefficients were calculated and presented in Figure 4.4 with respect to the intrinsic quantum 

efficiency and the separation distance between the quantum emitter and the Ag nanosphere. As 

expected, the intrinsic quantum efficiency did not play a role in the correlation relations. The 

separation distance not only modulated the excitation rate enhancement and quantum efficiency 

enhancement, but also defined three correlation regions, i.e. strongly-correlated region, weakly-

correlated region, and uncorrelated region. From figure 4.4(a) to (d), several observations can be 

Figure 4.4 Correlation coefficients between scattering and (a) Purcell factor (b) radiative decay rate (c) 

quantum efficiency enhancement and (d) fluorescence enhancement; similarly, correlation coefficients 

between fluorescence enhancement and (e) Purcell factor (f) radiative decay rate (g) quantum efficiency 

enhancement and (h) local EM field enhancement. The x-axis represents the intrinsic quantum 

efficiency. Log scale was applied to both the x- and y-axis. 
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made. Firstly, despite a strongly-correlated region observed at a separation distance larger than 30 

nm in Figure 4.4(a), scattering did not meaningfully correlate with the Purcell factor owing to the 

weak fluorescence enhancement in this region, as shown in Figure 4.3(d). Secondly, scattering 

strongly correlated with radiative decay rate at a separation distance larger than 10 nm as shown 

in Figure 4.4(b), implying that scattering could be a tuning parameter in radiative decay 

engineering. Most importantly, scattering was found to strongly correlate with the fluorescence 

enhancement because of the strong correlation between scattering and quantum efficiency 

enhancement, provided that the quantum emitter was kept at least 5 nm away from the Ag 

nanosphere to avoid fluorescence quenching. Similarly, the correlation coefficients between the 

fluorescence enhancement and the Purcell factor, radiative decay rate, quantum efficiency 

enhancement, and local EM field enhancement were calculated, as shown in Figure 4.4(e) to (h). 

The strong correlation between the fluorescence enhancement and the quantum efficiency 

enhancement further underscored the role of scattering, which directly contributed to the quantum 

efficiency enhancement. 

4.1.3 Conclusion 

In summary, the effect of scattering on PEF was systematically studied by considering the 

interaction between a quantum emitter and an Ag nanosphere. It was found that the effect of 

scattering on PEF was a universal phenomenon regardless of the materials. More importantly, 

scattering was found to play dual roles in PEF. It not only modulates the local EM field 

enhancement, but also monotonically enhances the quantum efficiency. This study suggests that, 

in additional to the separation distance between the quantum emitter and the Ag nanosphere, 

scattering is also an important tuning parameter in PEF. 
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4.2 Near-Infrared Fluorescent Biosensor for Traumatic Brain Injury 

Biomarker Detection 

4.2.4 Introduction 

Traumatic brain injury (TBI), primarily caused by falls and being struck by or against an 

object, accounts for about 30% of all injury deaths according to Centers for Disease Control and 

Prevention.1 While early treatment could effectively reduce short- and long-term adverse clinic 

outcomes, immediate diagnosis of TBI remains highly challenging owing to a lack of ultrasensitive 

point-of-care (POC) biosensor devices and the symptoms which may not appear until after days or 

even weeks. General guidelines currently widely in use for TBI screening, such as Glasgow Coma 

Scale, measurements for level of TBI, speech and language tests, and cognition and 

neuropsychological tests, proves ineffective, particularly for mild and moderate TBI or TBI at an 

early stage.2 Of more effective in screening, diagnosis, and prognosis are biomarkers, which are 

capable of revealing the full spectrum of biological disorders from initial manifestations to 

terminal stages.3-4 Currently widely acknowledged TBI biomarkers include glial fibrillary acidic 

protein (GFAP), S100-β, and neuron-specific enolase (NSE).5-6 However, it remains technically 

challenging to identify among complex biological environment a trace amount of the target and 

quantify it. Therefore, exploiting the full potential of TBI biomarkers falls on developing 

ultrasensitive POC biosensor devices which need also be compatible with the biological 

environment. 

 

Typical methods for protein biomarker detection include enzyme-linked immunosorbent 

assay (ELISA), liquid chromatography-mass spectrometry (LC-MS), and Western blot.7-9 Despite 

their superb sensitivity with a limit of detection (LOD) even down to pg/mL level for ELISA, it is 

difficult to transform them into POC biosensor devices, because they are either technically 

complex requiring significant professional expertise and sophisticated instrumentations or time-

consuming requiring tedious operational procedures.8 Recently, electrochemical methods have 

been implemented for TBI biomarkers detection given their strong performance as electrochemical 

biosensors, but most of them were only demonstrated in PBS buffer.10-15 They fall far short of the 

required compatibility with the biological environment while maintaining a high level of 

sensitivity. 

 

Recently, fluorescent biosensors have received increasing attention.16-20 However, most of 

current fluorescent biosensors transduce visible fluorescent signal, which is not compatible with 

biological environment. Our studies have shown that the visible fluorescence intensity drops 

significantly with abnormally emission peak broadening in biological fluids. They are not suited 

to be extended for biomarkers detection in biological samples. As compared to visible fluorescence, 
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NIR fluorescence only suffers a minimal interference in biological environment.21-23 This can be 

attributed to the unique features of the biological transparency windows, in which there is only 

low light absorbance and scattering by biological substances with significantly reduced 

autofluorescence. These unique features make NIR fluorescence especially advantageous over 

visible fluorescence in the biological environment. Furthermore, the availability of portable 

fluorescent readers in the market significantly stimulates research on NIR fluorescence-based POC 

biosensor devices. Nevertheless, NIR fluorophores usually exhibit a much less brightness as 

compared to the visible counterparts.24 Because their molecular energy levels are more likely to 

overlap with one another, there is a higher chance that non-radiative energy transfer could occur 

and end up significantly reducing the fluorescence intensity. Fortunately, the two-step process 

nature of fluorescence involving excitation and emission allows us to improve the brightness of 

NIR fluorophores by optimizing either the excitation, the emission, or both.25 

 

Plasmon-enhanced fluorescence are currently actively explored to improve the fluorescence 

emission. There are two mechanisms for plasmon-enhanced fluorescence: excitation enhancement 

and emission enhancement.19, 26-31 The excitation enhancement of plasmon-enhanced fluorescence 

is similar to that of surface-enhanced Raman scattering which scales with the square of the incident 

field. As the local field of the point dipole-like nanoparticle has 
1

𝑑3  dependence, the excitation 

enhancement would then have 
1

𝑑6  dependence. Therefore, the excitation enhancement is highly 

distance-dependent and decays rapidly when the separation distance between the fluorophore and 

the plasmonic nanostructure increases. In the emission process, the probability for the excited 

fluorophore to emit a photon depends on the competition between radiative and non-radiative 

decay, which is represented by the quantum efficiency. Based on Fermi’s golden rule, the 

spontaneous decay rate scales with the local optical density of states. Therefore, the emission 

enhancement could result from the increased local optical density of states introduced by the 

plasmonic nanostructure. Unfortunately, while minimizing the mode volume in which the local 

electric field is confined could maximize the excitation enhancement, it also introduces strong 

energy loss channels which could significantly decrease the quantum efficiency and end up 

compromising the overall fluorescence intensity. This phenomenon is especially obvious on open 

plasmonic metallic nanostructures, where the excitation enhancement is predominately responsible 

for the fluorescence enhancement.32-34 

 

In this study, a NIR fluorescent biosensor was developed for GFAP biomarker detection. The 

NIR fluorophore used is Dylight 755, which was labelled on the GFAP antibody. It has a peak 

excitation and emission wavelength of 755 nm and 775 nm, respectively, with an intrinsic quantum 

efficiency of 11.9%,35 which is among the highest in NIR fluorophores. A two-dimensional (2D) 

Au nanopyramid array pattern was fabricated on glass by nanosphere lithography36-37 and used as 

the biosensing platform after being functionalized with the GFAP capture antibody. As a proof-of-

concept, the NIR fluorescent biosensor has been demonstrated to detect GFAP biomarker in human 
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blood plasma with a LOD of 0.6 pg/mL. Notably, a portable POC fluorescence reader was used to 

conduct all the tests instead of the sophisticated spectrofluorometer. Finite-difference time-domain 

(FDTD) simulations were also implemented to identify the origin of the fluorescence enhancement 

as well as to calculate the enhancement factor. It was found that the observed fluorescence 

enhancement was primarily caused by a huge excitation enhancement due to the intense local 

electric field supported on the sharp corners and edges of the Au nanopyramid array substrate. 

 

 

 

4.2.5 Methods 

Chemicals and Materials 

(3-Mercaptopropyl) trimethoxysilane (95%), BSA (bovine serum albumin), phosphate 

buffered saline tablets, monoclonal anti-glial fibrillary acidic protein antibody produced in mouse 

(G3893-.2ML), glial fibrillary acidic protein human brain (345996-100UG), goat anti-human IgG 

polyclonal antibody, mice anti-goat IgG polyclonal antibody, IgG from human serum, sodium 

silicate solution (338443-1L), N-hydroxysuccinimide (NHS), and 1-ethyl-3-(3-(dimethylamino)-

propyl) carbodiimide (EDC), were purchased from Sigma-Aldrich. The IgG-free blood plasma 

was purchased from US Biological Life Science (P4252-56 Plasma, Human). Dylight 755 NHS 

Figure 4.5 Nanosphere lithography fabrication of gold nanopyramid array on glass substrate. Polystyrene 

beads with a diameter of 500 nm were used. 5 nm of titanium and 250 nm of gold were deposited. 
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Ester Microscale Antibody Labelling Kit and polystyrene microspheres with a diameter of 600 nm 

were purchased from Thermo Scientific. DI water used for washing and reactions was produced 

by Milli-Q Millipore system (18.2 MΩ cm, Millipore Corp., Billerica, MA). All chemicals 

obtained from commercial vendors and were directly used without further purification. 

 

 
 

Gold Nanopyramid Array Fabrication 

Au nanopyramid arrays were fabricated on glass slides (roughly 0.5 cm × 0.5 cm) by 

nanosphere lithography in the cleanroom,38 as shown in Figure 4.5. Prior to the fabrication, glass 

slides were cleaned by using acid piranha (the ratio of sulfuric acid to hydrogen peroxide is 3:1) 

at 90 °C for 1 hour. Caution: acid piranha is very dangerous and needs to be handled with extreme 

Figure 4.6 (a) SEM image of the as-fabricated Au nanopyramid arrays; (b) Statistic analysis of the pyramid 

base edge length, which was found to be 141 nm based on Gaussian fitting; (c) Comparison of the 

experimentally measured (solid olive curve) and FDTD-simulated (dash and dash dotted curves 

corresponding to two orthogonal polarizations shown as the blue arrows) reflection spectra with an input 

plane wave incident from the top; (d) Comparison of the fluorescence intensity of Dylight 755 with a 

concentration of 1 µg/mL on glass, Au film, and Au nanopyramid arrays coated with a layer of 2.4 nm silica. 
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care! They were subsequently rinsed with DI water, cleaned by ultrasonication three times in 

ethanol and DI water, respectively. After that, a monolayer of PS beads was dip-coated on glass 

slides, which formed a hexagonal pattern. Afterwards, a 5 nm thick titanium layer followed by a 

250 nm thick gold layer were deposited by e-beam evaporator. After removal of the PS beads by 

ultrasonication in methanol and being dried using compressed air, hexagonally ordered Au 

nanopyramid arrays were obtained, as shown in Figure 4.6. 

 

Thin Silica Coating of Gold Nanopyramid Array 

Following the protocol reported before,39 a thin layer of silica was conformationally grown 

on Au nanopyramid arrays. Specifically, the as-fabricated Au nanopyramid arrays were first 

incubated in the ethanolic solution of (3-Mercaptopropyl) trimethoxysilane with a concentration 

of 2 mM for 2 hours. After thorough DI water rinsing, those Au nanopyramid arrays were then 

incubated in sodium silicate solution (1.5 wt%, pH 8~9) at 90 °C for 2 days. In the meanwhile, Au 

film substrates as control samples were also coated with a thin layer of silica under the same 

conditions. Since it is very difficult to directly measure the actual thickness of silica grown on Au 

nanopyramid arrays, we assume that the silica grown on Au nanopyramid arrays has a similar 

thickness as the one grown on Au film, which can be characterized by ellipsometry. 

 

Dylight 755 Antibody Labelling 

Following the protocol provided by Thermo Scientific, the detection antibody was initially 

labelled with Dylight 755. Specifically, the concentration of detection antibody was adjusted to 1 

mg/mL in PBS buffer. Then 8 µL of Borate Buffer (0.67 M) was added to 100 µL of 1 mg/mL 

antibody in PBS. The mixed solution was further added to the Dylight Reagent vial containing 15 

µg Dylight 755 NHS ester power. After thorough mixing, the solution was incubated at room 

temperature for 1 h protected from light. To purify the Dylight-labelled antibody, the above 

solution was added to the purification resin and then centrifuged for 1 minute at 1000 × g. The 

obtained Dylight-labelled was stored at 4 °C in dark for future use. 

 

Operating Principle of Biosensor 

Initially, the detection antibody was labelled with Dylight 755; in the meanwhile, Au 

nanopyramid arrays were coated with a thin layer of silica and then functionalized with the capture 

antibody. To realize biosensing, capture antibody-functionalized Au nanopyramid arrays were first 

incubated into the analyte solution for 30 min. After thorough rinsing with PBS buffer, these Au 

nanopyramid arrays were then incubated into the Dylight-labelled detection antibody solution for 

another 30 min. After thorough rinsing with PBS buffer and dried using compressed air, the Au 

nanopyramid arrays were characterized by a portable POC fluorescence reader. The schematic 

operation principle was shown in Figure 4.7. 
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IgG Detection in PBS Buffer 

IgG with a series of concentrations of 1 pg/mL, 10 pg/mL, 100 pg/mL, 1 ng/mL 10 ng/mL, 

100 ng/mL, 1 µg/mL 10 µg/mL, and 100 µg/mL were prepared in PBS buffer. Detection IgG 

antibody was labelled with Dylight 755 following the above procedure; capture IgG antibody was 

immobilized on the silica-coated Au nanopyramid arrays. Following the above operation principle 

and the scheme in Figure 4.7, IgG detection was realized using the plasmonic fluorescent biosensor. 

 

GFAP Detection in Blood Plasma 

GFAP with a series of concentrations of 1 pg/mL 2 pg/mL, 5 pg/mL, 10 pg/mL, 20 pg/mL, 

50 pg/mL, 100 pg/mL, 200 pg/mL 500 pg/mL, 1 ng/mL, 2 ng/mL, 5 ng/mL, 10 ng/mL, 20 ng/mL, 

50 ng/mL and 100 ng/mL were prepared in blood plasma. Detection GFAP antibody was labelled 

with Dylight 755 following the above procedure; capture GFAP antibody was immobilized on the 

silica-coated Au nanopyramid arrays. Following the similar procedure for IgG detection, GFAP 

detection in blood plasma was realized.  

 

Instruments and Characterizations 

Titanium and gold layers were deposited by an e-beam evaporator (Kurt J Lesker, 

Model#LAB18). The thin silica layer grown on Au film was characterized by ellipsometry (J.A. 

Woollam M-2000U Ellipsometer), which gave a mean thickness of 2.4 nm from 3 independent 

samples. Au nanopyramid arrays were imaged using a JEOL JSM-7600F scanning electron 

microscope (SEM). An Ocean Optics USB 4000 spectrometer was used to take the reflection 

spectra of Au nanopyramid arrays. A compact point-of-care (cPOC) near-infrared fluorescence 

reader (cPoCLabFluo v2.3.0, LRE Medical GmbH, München, Germany) was used to read the 

fluorescence intensity of the biosensor; it has an excitation wavelength of 755 nm and collects 

fluorescence emission at a wavelength of 775 nm. 

 

 

Figure 4.7 Operating principle of the plasmonic fluorescent biosensor 
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Finite-Difference Time-Domain (FDTD) Simulations 

The software Lumerical FDTD Solutions was implemented to calculate the optical properties 

of Au nanopyramid arrays, the electric field enhancement, and the quantum efficiency 

enhancement. A mesh size of 2 nm was used in all simulations. The permittivity of gold used was 

from Johnson & Christy.40 The refractive index was set as 1.52 for the glass substrate. A plane 

wave was used as the input light source. Perfectly Matched Layer boundary conditions were 

imposed. An Au nanopyramid on glass was modelled to have a base edge length of 140 nm and a 

height of 250 nm in this work. 

4.2.6 Results and Discussions 

Physical and Optical Properties of Gold Nanopyramid Arrays 

Nanosphere lithography was implemented to fabricate Au nanopyramid arrays on glass 

substrates following a similar protocol we reported before,38 which can be found in Figure 4.5. 

The as-fabricated Au nanopyramids were arranged hexagonally with a base edge length of 141 nm, 

as shown in Figure 4.6(a) and (b). The plasmonic corner modes was spectrally visible and exhibited 

as a reflection peak at 735 nm, as shown in Figure 4.6(c). FDTD method was implemented to 

calculate the reflection spectra for an Au nanopyramid with a height of 250 nm and a base edge 

length of 140 nm on glass. Two orthogonal polarizations were considered, and the calculated 

reflection spectra were shown in Figure 4.6(c). The overall spectral line shapes were consistent 

with the experimentally measured one. The longest wavelength peaks were from the plasmonic 

corner modes while the second longest from the edge modes and other higher-order modes. It is 

noted that a lack of these fine features on the experimentally measured reflection spectrum can be 

reasonably attributed to the rounded corners and edges as well as random orientations for the 

fabricated Au nanopyramid arrays on a large area.  

 

To assess the performance of Au nanopyramid arrays in enhancing fluorescence, 10 µL of 1 

µg/mL Dylight 755 was drop-coated on a glass, an Au film, and an Au nanopyramid array substrate 

coated with a layer of ~2.4 nm silica. The purpose of coating a thin layer of silica on the Au 

nanopyramid array was to minimize fluorescence quenching due to direct contact between the 

metallic nanostructure and the fluorophore. Figure 4.6(d) shows the fluorescence enhancement 

factors normalized by the glass substrate. The fluorescence enhancement factors were found to be 

0.5 and 8 for Au film and silica-coated Au nanopyramid array, respectively. It indicates that the 

fluorescence got partially quenched on Au film but benefited 8 times enhancement on silica-coated 

Au nanopyramid array. Therefore, Au nanopyramid array substrates proved effective in amplifying 

the fluorescence intensity of NIR fluorophores. 

 

Assessing Performance of the Plasmonic Fluorescent Biosensor 

Prior to TBI biomarker detection, the plasmonic fluorescent biosensor was implemented to 

detect IgG in PBS buffer to assess its performance and identify the linear working concentration 
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range. In the first place, the IgG detection antibody was labelled with Dylight 755; the IgG capture 

antibody was immobilized on the silica-coated Au nanopyramid array, following the protocol in 

Figure 4.7. The presence of IgG allows the Dylight-labelled detection antibody to be captured onto 

the Au nanopyramid arrays. The measured fluorescence intensity from the Au nanopyramid arrays 

was found to increase with an increase of the added concentration of IgG till saturation. The linear 

working concentration range was identified to be from 1 pg/mL to 1 ng/mL in PBS buffer, as shown 

in Figure 4.8. In comparison, if built on a glass substrate, the fluorescent biosensor exhibited a 

much lower intensity and was unable to transduce a fluorescent signal until the concentration of 

IgG reached 1 ng/mL.  

 

 

 

TBI Biomarker Detection in Blood Plasma 

The protocol for GFAP biomarker detection was similar to the one for IgG detection in PBS 

buffer, but GFAP antibodies were used instead of IgG antibodies. The protocols for synthesis of 

Dylight-labelled GFAP detection antibody and detection of GFAP in blood plasma can be found 

in the Methods Section. Various concentrations of GFAP in blood plasma were tested using the 

plasmonic fluorescent biosensor, as shown in Figure 4.9(a). The glass substrate was used as a 

control under the same conditions. The plasmonic fluorescent biosensor transduced a fluorescent 

signal even when the GFAP was just 1 pg/mL in blood plasma; in contrast, the control on glass 

substrate did not respond until the GFAP hit 1 ng/mL. The fluorescent intensities for both increased 

with the GFAP concentration. However, the plasmonic fluorescent biosensor not only displayed a 

wider linear working concentration range from 1 pg/mL to 500 pg/mL, but also responded to lower 

concentrations of GFAP, as compared to the case on glass substrate shown in Figure 4.9(b). The 

Figure 4.8 Comparison of IgG detection in PBS buffer on Au nanopyramid arrays and on glass. It indicates 

that the linear working range of the plasmonic fluorescent biosensor is roughly from 1 pg/mL to 1 ng/mL. 
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linear working concentration range for the plasmonic fluorescent biosensor was fitted with an 

equation of y=127x+147, R2=97% with a limit of detection of 0.6 pg/mL toward GFAP biomarker 

in blood plasma, which was estimated based on three times signal-to-ratio.  

 

 

 

Compared to other immunoassays for GFAP detection, our plasmonic fluorescent biosensor 

displayed a lower LOD, as compared in Table 4.1, which makes it more sensitive to conduct 

analysis of trace amount of biomarkers. It is suitable to work in blood plasma with little 

interference thanks to the NIR fluorescence in the first biological transparency window. 

Furthermore, use of the portable POC fluorescence reader to conduct all the tests helps 

significantly simplify the detection process. In addition, the GFAP cutoff concentration, which was 

reported to be in the range of 30-290 pg/mL,41-44 also falls within the linear working concentration 

range of our plasmonic fluorescent biosensor. In summary, the plasmonic fluorescent biosensor 

demonstrated a strong capability for GFAP biomarker detection in human blood plasma. 

 

 

 

 

 

 

 

 

 

Figure 4.9 Detection of Glial Fibrillary Acidic Protein (GFAP) biomarker in blood plasma using based on Au 

nanopyramid arrays. (a) Performance comparison of the biosensor towards the detection of GFAP in blood 

plasma on the silica-coated Au nanopyramid arrays and on glass; (b) The linear working range extracted from 

(a). 
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Table 4.1 A summary of recent work on GFAP detection. 

Methods Transducer Solvent Detection Range LOD Source 

GFAP-imprinted 

polymer 

Electrochemical KCl and 

ferrocyanide 

0.2-10 µg/ml 0.04 µg/mL Ref.12 

Molecularly 

imprinted polymer 

Electrochemical PBS buffer 50-500 ng/mL 17 ng/mL Ref.10 

Immunoassay Colorimetric PBS buffer 1-100 ng/mL 10 ng/mL Ref.45 

Immunoassay Fluorescence Human serum 0.1-8 ng/mL 25 pg/mL Ref.46 

Immunoassay Electrochemical PBS buffer 1 pg/mL-100 ng/mL 1 pg/mL Ref.11 

Immunoassay Electrochemical PBS buffer 0.8-400 ng/mL 1 ng/mL Ref.13 

Immunoassay Electrochemical Human serum 1 pg/mL-100 ng/mL 1 pg/mL Ref.47 

Immunoassay Electrochemical PBS buffer 0.5-100 ng/mL 1 ng/mL Ref.15 

Immunoassay Electrochemical PBS buffer 2.9 pg/mL-2.9 µg/mL 2.9 pg/mL Ref.14 

Immunoassay Fluorescence Human plasma 1-500 pg/mL 0.6 pg/mL This work 

 

FDTD Calculation of Fluorescence Enhancement Factor 

To elucidate the origin of the fluorescence enhancement on Au nanopyramid arrays, FDTD 

calculations were implemented. The fluorophore was modeled as a classic point dipole and 

represented by a two-level system with a transition dipole moment of �⃗�. For weak excitation, the 

fluorescence is a two-step process involving excitation and emission. Plasmon-enhanced 

fluorescence usually consists of both excitation rate enhancement ( 𝛾𝑒𝑥𝑡/𝛾𝑒𝑥𝑡
0  ) and emission 

enhancement. The excitation enhancement is primarily caused by the huge amplification of the 

local field the fluorophore experiences and scales with the local electric field enhancement, as 

represented by: 

 
𝛾𝑒𝑥𝑡

𝛾𝑒𝑥𝑡
0 = |

�⃗� ∙ �⃗⃗�

�⃗� ∙ 𝐸0
⃗⃗⃗⃗⃗

|

2

 (4.1) 

where 𝐸0
⃗⃗⃗⃗⃗ and �⃗⃗� are the input electric field in vacuum and the total electric field the fluorophore 

experiences in the presence of the Au nanopyramid. Maximum excitation enhancement can be 

obtained when the transition dipole is aligned with the electric field, and this scenario was 

considered in calculation of the excitation enhancement of Au nanopyramid arrays. 
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        The emission enhancement basically quantifies the modification of the quantum efficiency of 

the fluorophore due to the change of the local optical density of states under the influence of the 

Au nanopyramid. In the absence of the Au nanopyramid, the intrinsic quantum efficiency (𝜂0) is 

given by: 

 𝜂0 =
𝛾𝑟

0

𝛾𝑟
0 + 𝛾𝑛𝑟

0  (4.2) 

where 𝛾𝑟
0 and 𝛾𝑛𝑟

0  are the intrinsic radiative and non-radiative decay rate. The presence of the Au 

nanopyramid modified the quantum efficiency to 𝜂 because additional non-radiative decay rate 

𝑟𝑎𝑏𝑠 was introduced, which could be caused by Ohmic losses in the system. The new quantum 

efficiency can be represented by: 

 𝜂 =
𝛾𝑟

𝛾𝑟 + 𝑟𝑎𝑏𝑠 + 𝑟𝑛𝑟
 (4.3) 

where 𝛾𝑟 and 𝛾𝑛𝑟 are the new radiative and intrinsic non-radiative decay rate under the influence 

of Au nanopyramid. Suppose the intrinsic non-radiative rate remains unchanged, i.e. 𝑟𝑛𝑟 = 𝛾𝑛𝑟
0 , 

the quantum efficiency enhancement can be evaluated by incorporating Equations (4.2) and (4.3), 

which is given by:48 

 
𝜂

𝜂0
=

𝛾𝑟

𝛾𝑟
0

𝛾𝑟

𝛾𝑟
0 𝜂0 +

𝛾𝑎𝑏𝑠

𝛾𝑟
0 𝜂0 + (1 − 𝜂0)

 (4.4) 

where 𝛾𝑟/𝛾𝑟
0 is the normalized radiative decay rate and can be obtained from the power monitor 

groups around the dipole in FDTD simulation software, 𝛾𝑎𝑏𝑠/𝛾𝑟
0 is the normalized non-radiative 

decay rate due to Ohmic losses and can be obtained from the power monitor groups around the 

dipole-Au nanopyramid system. Therefore, the fluorescence enhancement factor (EF) containing 

both components and can be evaluated as: 

 𝐸𝐹 =
𝛾𝑒𝑥𝑡

𝛾𝑒𝑥𝑡
0

𝜂

𝜂0
 (4.5) 

In our study, the near-infrared fluorophore used is Dylight 755, which has an intrinsic 

quantum efficiency of 11.9%, among the highest of near-infrared fluorophores. In calculating the 

excitation enhancement, two orthogonal polarizations were considered for the input light source; 

the transition dipole moment of Dylight 755 perpendicular and parallel to the surface of Au 

nanopyramid were both considered and averaged to give the quantum efficiency enhancement. A 

total of 121 points on the plane 10 nm away from the surface of the Au nanopyramid coated with 

a 2 nm silica were calculated to map the excitation enhancement, the emission enhancement, and 

the fluorescence enhancement. Given the size of the antibody and antigen as well as the silica layer, 
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calculation of planes 10 nm away from the surface of the Au nanopyramid was a reasonable choice 

and well justified. 

 

 

 

The calculated results were shown in Figure 4.10. Large excitation enhancement was found 

near and around the pyramid corner area. Notably, the quantum efficiency was reduced and 

minimized where the local electric field was maximized. This is because strong energy loss occurs 

when the electric field is tightly confined and thus contributes significantly to non-radiative decay. 

Nevertheless, the intense local electric field enhancement effectively compensated the quantum 

efficiency reduction and ended up enhancing the fluorescence across the entire nanostructure. A 

maximum fluorescence enhancement factor of 45 was achieved. In the meanwhile, large 

fluorescence enhancement factors could be found near and around the pyramid corner area. This 

Figure 4.10 Calculation of fluorescence enhancement factors. (a) Scheme of the three planes (blue, each 

being 10 nm away from the surface of Au nanopyramid) on which the local electric field enhancement, 

quantum efficiency enhancement, and fluorescence enhancement were calculated; (b) and (c) Local 

electric field enhancement under orthogonal polarizations shown as blue arrows; (d) quantum efficiency 

enhancement averaged from the dipole perpendicular and parallel to the surface of Au nanopyramid 

array; (e) and (f) fluorescence enhancement factors under orthogonal polarizations shown as blue arrows. 

Light was incident from the top. 
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indicated that the excitation enhancement was primarily responsible for the fluorescence 

enhancement on Au nanopyramid arrays.  

4.2.7 Conclusion 

        In summary, a plasmonic fluorescent biosensor was developed and has been demonstrated for 

GFAP biomarker detection in human blood plasma. Compared to other immunosensors for GFAP 

detection, this plasmonic fluorescent biosensor exhibited a lower LOD and strong compatibility 

with the biological environment due to the use of NIR fluorescence in the first biological 

transparent window. Notably, a portable POC fluorescence reader was used to conduct the test 

instead of the sophisticated spectrofluorometer. FDTD simulations were also implemented and 

identified that the excitation enhancement from the corners and edges of the Au nanopyramid was 

primarily responsible for the fluorescence enhancement.  
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Chapter 5: Inexpensive Plasmonic Copper 

Materials 

5.1 Localized Surface Plasmon Resonance of Copper Nanocubes 

5.1.1 Introduction 

Localized surface plasmon resonance (LSPR) is widely utilized in optoelectronics, biosensing, 

solar energy conversion, photochromics, invisibility cloak and other applications.1-6 Plasmonic 

materials developed so far are typically made of gold and silver. The relative high cost of gold and 

silver hinders the commercialization of plasmonic materials. Hence it is significant to search for 

low-cost and earth-abundant materials for plasmonic applications. Copper is much less expensive 

than gold ($0.01/g Cu vs. $40/g Au).7-8 Unfortunately, Cu nanostructures give an impression of 

weak and broad LSPR band because of its large imaginary part of the dielectric function.9-10 There 

are at least two factors contributing to the imaginary part of the dielectric function in metals: (i) 

intrinsic energy loss due to electron collisions, and (ii) interband transitions.11-12 The intrinsic 

energy loss can be modelled as a frequency-independent constant for a free-electron-like metal; 

and the influence of interband transitions is delocalized on the frequency scale, but only gaining 

strength above a material-dependent energy threshold. Unfortunately, the LSPR band of a Cu 

nanosphere predicted by Mie theory shows a large spectral overlap with the interband transitions 

owing to a low energy threshold at around 2.1 eV, leading to severe plasmon damping.13-15 

 

Despite an overall large imaginary part of the dielectric function for Cu in the wavelength 

range from the ultraviolet (UV) light through the near-infrared (NIR) regions, it is noted that there 

is a low-loss window between 620 nm (2 eV) and 720 nm (1.72 eV) where the imaginary part 

significantly drops and becomes comparable to those of Ag and Au. This makes it possible to 

realize strong plasmon in Cu nanostructures in such a narrow spectral window (620~720 nm, or 

2~1.72 eV). Van Duyne realized an intense and narrow LSPR peak at 698 nm (1.78 eV) on Cu 

nanotriangle arrays, which is comparable to the extinction spectral line shape of the Ag and Au 

nanotriangle arrays with similar dimensions.16 Sugawa demonstrated an intense LSPR peak at 675 

nm (1.84 eV) with the Cu half-shell array.17 Surprisingly, the experimental results show that Cu 

nanocubes displayed an intense LSPR peak with a narrow and asymmetric spectral line shape at 

around 585 nm (2.12 eV) where interband transitions have started contributing to the energy loss.18-

20 This contradicts the previous understanding that interband transitions strongly damp surface 

plasmon.14, 21 It is also noted that Cu nanocubes exhibited a single LSPR peak whereas Ag 
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nanocubes displayed multiple, which are correlated with different plasmon modes with surface 

polarization charges at the corner, edge and facet of the geometry.22-27 Also, both Cu and Ag 

nanospheres displayed a single LSPR peak due to the dipolar plasmon mode although the LSPR 

of Cu nanospheres is much weaker than that of Ag counterparts.19, 28 These discrepancies suggest 

that the origin of the single intense LSPR band with a narrow and asymmetric spectral line shape 

observed in Cu nanocubes may be much different from that of Ag nanocubes, which demands to 

be fully understood theoretically. 

 

This study aims to shed light on the origin of the strong and narrow LSPR band of Cu 

nanocubes. To account for the influence of interband transitions, the dielectric function is 

decomposed into a free-electron component and an interband transitions component. The plasmon 

modes are calculated with the discrete dipole approximation (DDA) method for a free-electron-

like Cu nanocube and a Cu nanocube under the influence of interband transitions, which suggests 

that all but one plasmon mode gets damped by the interband transitions. To unravel how interband 

transitions could interplay with the plasmon modes, a theoretical model is developed. According 

to this model, a free-electron-like nanocube displays multiple LSPR peaks corresponding to 

plasmon modes at the corner, edge, and facet. Under the influence of interband transitions, those 

plasmon modes get damped due to their spectral overlap with interband transitions, inducing a tail 

of broad background absorption. Only the plasmon mode near or below the threshold of interband 

transitions survives and maintains a free-electron-like spectral line shape. As a result, the cubic 

corner mode of a Cu nanocube with the lowest resonance energy near the threshold of interband 

transitions survives, and exhibits a distinct, strong and narrow LSPR peak. In addition, the 

extinction coefficient and the local electromagnetic field enhancement (EM) are investigated. We 

believe that the theoretical model developed in this study can be used to study plasmon modes for 

a nanoparticle of arbitrary shape under the influence of interband transitions, which will guide the 

design of plasmonic nanostructures, especially for inexpensive materials like Cu. 

5.1.2 Methods 

Chemicals and Materials 

Oleylamine (70%), trioctylphosphine oxide (TOPO, 90%), CuBr, toluene, n-hexane, acetone 

and ethanol were purchased from Sigma-Aldrich. All these chemicals were used as received 

without any further purification. 

 

Synthesis of Cu Nanocubes 

Cu nanocubes were synthesized with disproportionation of CuBr.19 CuBr (0.6 mmol) and 

TOPO (5 mmol) were dissolved into oleylamine (2 mL) in a three-neck flask with strong magnetic 

stirring at 80 °C under the nitrogen atmosphere. After 15 min, the resulting solution was rapidly 

heated up to 210 °C and refluxed at this temperature for 1 h before naturally cooling down to room 

temperature. The Cu nanocubes synthesized were separated and washed with hexane for two cycles 
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of centrifugation and redispersion. Finally, Cu nanocubes were dispersed into toluene by 

ultrasonication for 30 min. 

 

Characterizations 

Synthesized Cu nanocubes were characterized under a JEOL JSM-7600F scanning electron 

microscope (SEM) and a JEM 2100F transmission electron microscope (TEM) at an acceleration 

voltage of 200 kV. The extinction spectrum of Cu nanocubes was measured with a Shimadzu 2550 

UV-Visible spectrometer (UV 2401/2, Shimadzu). 

 

DDA Calculations 

Optical extinction spectra, EM field distributions and enhancement factors were calculated 

using an open source code, DDSCAT 7.3, developed by Draine et al.29 In DDA, the target object 

is represented by an array of point dipoles. The electromagnetic scattering problem can be solved 

exactly for an incident wave interacting with these point dipoles. In our study, a total of 125,000 

dipoles were used to represent a cubic shape with an edge length of 30 nm. The EM field was 

extracted at each peak wavelength. All the data of dielectric functions used are from Johnson & 

Christy.29 

 

Electron-Driven DDA (e-DDA) Calculations 

Electron energy loss spectroscopy (EELS) spectra were calculated using an open source code 

e-DDA v1.2,30 which was compiled based on the DDSCAT code developed by Draine et al.29 In 

our study using e-DDA, swift electron beams with an energy of 300 keV were used to replace the 

incident light. To excite the corner plasmon mode, we directed the trajectory of incident electrons 

to pass by the corner of the cube; to excite the facet plasmon mode which is difficult to be excited 

optically, we directed the trajectory of incident electrons to pass by the facet of the cube. 

 

Finite-Difference Time-Domain (FDTD) Simulation 

Surface polarization charge densities were calculated by Lumerical FDTD Solutions 8.15. A 

total-field scattered-field (TFSF) was used as the input light source. A mesh size of 0.5 nm was 

used. The dielectric function of Cu was from Johnson and Christy.29 For a free-electron-like Cu, 

the dielectric function was fitted using a Drude Model as shown in Eq. 1 with fitting parameters 

listed in Table S1. The background refractive index was fixed at 1.33. After the plasmon modes of 

free-electron-like Cu nanocube were determined by calculating the extinction spectrum, surface 

polarization charge densities were calculated at the peak wavelength of each mode for both free-

electron-like Cu nanocube and a Cu nanocube under the influence of interband transitions. 
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5.1.3 Results and Discussions 

Optical Properties of Cu Nanocubes 

Figure 5.1 shows the synthesized Cu nanocubes. A medium edge size of 30 nm was obtained 

from Figure 5.2. The Cu nanocubes, which were suspended in toluene, displayed a single, intense, 

narrow and asymmetric LSPR peak, as shown with the solid blue curve in Figure 5.3. The interband 

transitions of Cu (shaded light blue region in Figure 5.3) exhibited an energy threshold close to the 

Figure 5.1 (a) SEM and (b) TEM images of synthesized Cu nanocubes with a medium size of 30 nm (see 

the size histogram in Figure 5.2). 

Figure 5.2 Histogram of Cu nanocubes showing the size distribution, which was statistically counted 

based on the SEM image in Fig. 1 (a) and fitted using a Gaussian function. The mean size is found to 

be 30 nm with a standard deviation σ=1.92. 
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peak wavelength of Cu nanocubes. Surprisingly, the LSPR peak survived the damping by the 

interband transitions, and even exhibited a distinct asymmetric spectral line shape. The extinction 

spectrum of a single Cu nanocube with an edge length of 30 nm was also calculated using DDA 

and plotted with a dashed orange curve in Figure 5.3. It displayed a similar spectral line shape 

consistent with the measurement except for a slightly red-shifted LSPR peak position, which was 

ascribed to the roundness of the cubic corners.23 It is noted that the nanocubes used for all 

calculations in this paper were not rounded to ensure the consistency of data analysis with DDA- 

and finite-difference time-domain (FDTD)-based numerical simulations and theoretical modelling. 

The calculation takes 30 nm of edge length for the nanocubes as well as the data of dielectric 

functions from Johnson & Christy29 unless specified otherwise. 

 

 

 

Table 5.1 Parameters of Cu, Au, and Ag used in a Drude Model in Equation (5.1) to model free-electron 

dielectric functions. These parameters are from literature.22, 31-32 

 Ɛ∞ ɷp (eV) γ (eV) 

Cu 11.000 9.300 0.09550 

Au 9.700 8.890 0.07088 

Ag 4.039 9.172 0.02070 

 

Free-Electron Plasmon Modes 

To examine what the free-electron-like extinction spectra look like without considering the 

interband transitions, the dielectric function is decomposed into a free-electron component and an 

interband transitions component.11 The free-electron component can be modelled using a Drude 

Model (DM). The DM formula is given by 

Figure 5.3 Extinction spectra of measured Cu nanocubes (blue solid curve) and a single Cu nanocube 

calculated by DDA (dashed orange curve). The orange shaded region showing the extinction spectrum 

of a free-electron-like (Drude Model) Cu nanocube calculated by DDA. The shaded light blue region for 

interband transitions of Cu. 
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 휀(𝜔) = 휀∞ −
𝜔𝑝

2

𝜔2 + 𝑖𝛾𝜔
 (5.1) 

where 휀∞  is the high frequency permittivity, 𝜔𝑝  is the plasma frequency, and  is the damping 

constant. The parameters used in the Drude Model for Cu, Au and Ag were adopted from the 

literature22, 31-32 and tabulated in Table 5.1. Figure 5.4 shows the free-electron and interband 

transitions components of the dielectric functions for Cu, Au and Ag. In addition, the calculated 

free-electron-like extinction spectra for Cu, Au and Ag nanocubes by DDA were plotted in the 

orange shaded region in Figures 5.3, 5.5(a) and 5.5(b), respectively. Interestingly, additional 

plasmon modes were observed in the case of a Cu nanocube (Figure 5.3) and an Au nanocube 

(Figure 5.5(a)), whereas an Ag nanocube was able to maintain its multiple plasmon modes 

observed initially regardless of interband transitions, which can be ascribed to the high interband 

transitions energy threshold of Ag. Comparison of DDA-calculated extinction spectra with and 

without the influence of interband transitions suggests that interband transitions indeed strongly 

interact with the plasmon modes, which reshapes the extinction spectrum of a Cu nanocube. In 

short, the LSPR peak of Cu nanocubes is affected by the interband transitions rather than the 

number of plasmonic peaks. A single narrow and asymmetric LSPR peak will occur if there is no 

damping by the interband transitions. 
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Figure 5.4 Decomposing experimentally measured dielectric function (Ɛ1+i Ɛ2) from Johnson & Christy 

into a free-electron component (Ɛ1_Drude+i Ɛ2_Drude) using the Drude Model in Equation (5.1) and an 

interband transitions component (Ɛib1+i Ɛib2). (a) and (b) for Cu, (c) and (d) for Au, (e) and (f) for Ag. 
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Examining the Possibility of Fano Resonance 

The spectral line shape of a Cu nanocube looks different from the symmetric Lorentzian line 

shape, which is predicted for small spherical nanoparticles by Mie theory when the damping 

constant is small.33 Instead, the distinct narrow and asymmetric spectral line shape reminds us to 

check whether the distinct asymmetric line shape of Cu nanocubes is attributed to Fano resonance. 

 

While Fano resonance is ubiquitous in physics, it usually occurs in a two-level system in 

which coherent interaction between a discrete state and a continuum leads to a distinct asymmetric 

line shape.34 Although Fano resonance has been reported for the Au and Ag nanocubes, it was only 

possible in nanocube dimers where destructive interference occurs between highly confined and 

radiating gap plasmon modes or by a substrate-supported nanocube where the dark and bright 

plasmon modes are coupled with each other,22-23 which is not the case for Cu nanocubes in this 

work. So far very few studies have demonstrated Fano resonance in a single nanoplasmonic system 

except that interband transitions and nonlocal effects have been found to affect the spectral line 

shape of plasmon peaks.11, 35-36 It is noteworthy that a single Pd nanodisk can support the intrinsic 

Fano resonance due to the interference between the surface plasmons and the interband 

transitions.36 Therefore, we conducted fitting for the measured and calculated extinction spectra 

using the Fano formula 

Figure 5.5 Calculated extinction spectra of (a) an Au nanocube and (b) an Ag nanocube with an edge length 

of 30 nm. The olive dashed curves showing the DDA-calculated extinction spectra using the measured 

dielectric functions from Johnson & Christy; the orange shaded regions showing the DDA-calculated 

extinction spectra of free-electron-like (Drude Model) nanocubes; the shaded light blue regions showing 

interband transitions. 
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 𝜎𝐹𝑎𝑛𝑜(𝐸) = 𝜎0

(𝑞 + 휀)2

1 + 휀2
, 휀 =

𝐸 − 𝐸0

ℏ(
𝛾
2)

 (5.2) 

where 𝐸 = ℏ𝜔 is the photon energy, 𝑞 is the Fano parameter, 𝜎0 is the cross section far away from 

the Fano resonance. 휀  represents the reduced energy with 𝐸0  and 𝛾  being the Fano resonance 

energy and line width, respectively. The Fano parameter 𝑞  describes the phase shift of the 

continuum, and is the key parameter characterizing the asymmetric spectral line shape. In fact, the 

measured and calculated extinction spectra of the Cu nanocubes cannot be fit using the Fano 

formula. This suggests that the narrow and asymmetric LSPR band of Cu nanocubes was not 

induced by Fano resonance.  

 

Normal Modes of a Cu Nanocube 

Fuchs has developed a general approach to calculate the normal modes for nanoparticles of 

arbitrary shape.37 When this approach is applied to plasmonic nanostructures, the normal modes 

refer to surface plasmon modes, which primarily contribute to optical absorption. For small 

metallic nanoparticles less than 60 nm (e.g, 30 nm Cu nanocubes), absorption is predominately 

responsible for extinction. Hence this study does not distinguish between absorption and extinction 

while acknowledging the existence of a small contribution from scattering. Following Fuchs’s 

method,37 a theoretical model is adapted herein to provide an insight into the interaction between 

surface plasmons and interband transitions, and predict the extinction spectrum of a Cu nanocube. 

 

In the subwavelength regime, the retardation effect can be neglected safely. The susceptibility 

of a nanoparticle is then represented by the sum over all normal modes, which is given by 

 𝜒(𝜔) =
1

4𝜋
∑

𝐶(𝑚)

(
휀
휀ℎ

− 1)−1 + 𝑛𝑚𝑚

, ∑ 𝐶(𝑚) = 1

𝑚

 (5.3) 

where 𝑚 is the index of normal modes, 휀 is the dielectric function of the nanoparticle under 

study, and 휀ℎ is the dielectric constant of the host environment. The normal mode resonance 

frequencies are determined by the depolarization factor 𝑛𝑚 with the absorption strength given by 

𝐶(𝑚). For a nanosphere under uniform polarization, there is only a single mode thanks to the 

symmetry of the geometry. The depolarization factor of a nanosphere is 𝑛𝑚 =
1

3
, which results in 

the well-known resonance condition 
𝜀

𝜀ℎ
= −2 for a dipole mode.13 For a nanocube, there are at 

least nine normal modes. However, only six modes have significant strength, accounting for all 

but 7% of the absorption. The depolarization factors and absorption strengths for the six 

predominate modes of a nanocube have been previously determined:37 𝑛1 = 0.193, 𝑛2 = 0.251, 

𝑛3 = 0.294 , 𝑛4 = 0.396 , 𝑛5 = 0.605 , 𝑛6 = 0.719 , 𝐶(1) = 0.31 , 𝐶(2) = 0.31 , 𝐶(3) = 0.07 , 

𝐶(4) = 0.07 , 𝐶(5) = 0.13 , 𝐶(6) = 0.04 , with the rest negligible. These modes have surface 

polarization charges distributed on different parts of the geometry. The first and second modes 

have the highest amplitudes at the corner, but they have the lowest resonance energy. Therefore, 
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the corner modes can be most easily excited. The fifth and sixth modes have the highest resonance 

energies with surface polarization charges distributed on the facet, which makes them most 

difficult to be excited. 

 

 

Based on the susceptibility of a nanoparticle above, the absorption coefficient in the 

electrostatic approximation can be calculated as follows 

 𝛼(𝜔) = 4𝜋
𝜔

𝑐
√휀ℎ𝑉𝐼𝑚〈𝜒(𝜔)〉 (5.4) 

where c is the speed of light in vacuum and V is the volume of a Cu nanocube. It is noted that the 

absorption coefficient is decided by the imaginary part of the susceptibility, which can be 

calculated by the sum over all six normal modes. Following Fuchs method, the absorption spectra 

of a Cu nanocube were calculated using both the measured dielectric function from Johnson & 

Christy and the free-electron dielectric function fitted by a Drude Model in Equation (5.1). The 

absorption spectra calculated by the Fuchs method were consistent with the results by the DDA 

method (Figure 5.6). For the free-electron-like spectra calculated by both Fuchs and DDA methods, 

five out of the six dominant plasmon modes were uncovered with the remaining one beyond the 

energy range displayed. The plasmon modes, which were considerably overlapping with interband 

transitions, were significantly broadened and damped except for the one with a resonance 

frequency near the energy threshold of interband transitions. The calculation by Fuchs method 

further underscores the critical role of interband transitions that play in reshaping the spectral line 

shape. 

     

Based on observations above, we were motivated to understand the mechanism of interactions 

between interband transitions and surface plasmons from a theoretical perspective. To begin with, 

Figure 5.6 Calculated extinction spectra of a Cu nanocube by Fuchs method (olive color) and DDA 

method (orange color). The dashed and dash doted curves were calculated using the dielectric function 

from Johnson & Christy; the shaded data was calculated using a free-electron dielectric function fitted 

by a Drude Model in Equation (5.1). The parameters used in Drude Model were tabulated in Table 5.1. 
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we derived a general form for the absorption coefficient for a free-electron-like nanoparticle of 

arbitrary shape by combining Equations (5.1), (5.3), and (5.4), which is given by  

 𝛼(𝜔) =
√휀ℎ𝑉

𝑐
∑ 𝐶(𝑚)

𝑚

𝐴0𝜔2Ω2𝛾

(𝜔2 − Ω2)2 + (𝛾𝜔)2
 (5.5) 

 𝐴0 =
1

𝑛𝑚
+

휀ℎ − 1

𝑛𝑚𝜔𝑝
2

Ω2 (5.6) 

 
Ω =

𝜔𝑝

√1 + (
1

𝑛𝑚
− 1)휀ℎ

 
(5.7) 

If the damping constant 𝛾 , which is the frequency of electron collisions, is small, the 

absorption spectrum of a free-electron-like nanoparticle would have a symmetric Lorentzian 

spectral line shape. The resonance condition is established at 𝜔𝑟𝑒𝑠 = Ω, where the depolarization 

factor determines the resonance frequency. The line width can also be found as Γ = 𝛾, which has 

an origin of free electron collisions. 

 

When interband transitions are involved, a complex term 휀𝑖𝑏(𝜔) which was determined in 

Figure 5.4 is added to the Drude formula in Equation (5.1) to account for the contribution from 

interband transitions. The dielectric function is now represented by 

 휀(𝜔) = 1 −
𝜔𝑝

2

𝜔2+𝑖𝜔Γ
+ 휀𝑖𝑏(𝜔)      (5.8) 

 휀𝑖𝑏(𝜔) = 휀𝑖𝑏1(𝜔) + 𝑖휀𝑖𝑏2(𝜔) (5.9) 

 

where 휀𝑖𝑏1 and 휀𝑖𝑏2 represent the real and imaginary part of the component of interband transitions. 

The absorption coefficient for a nanoparticle under the influence of interband transitions can be 

similarly obtained by combining Equations (5.3), (5.4), (5.8), and (5.9), which is given by 

 𝛼𝑖𝑏(𝜔) =
√휀ℎ𝑉

𝑐
∑ 𝐶(𝑚)

𝑚

𝐴1𝜔5 + 𝐴2𝜔4 + 𝐴3𝜔3 + 𝐴4𝜔2

[(𝜔 − ∆𝜔0)2 − Ω𝑖𝑏
2]

2
+ [Γ(𝜔 − ∆𝜔0)]2

Ω𝑖𝑏
2   (5.10) 

 

        Parameters of 𝐴𝑠 (𝑠 = 1,2,3,4), ∆𝜔0, Ω𝑖𝑏, and Γ are given below 

 ∆𝜔0 =
𝛾휀𝑖𝑏2Ω𝑖𝑏

2

2𝜔𝑝
2

 (5.11) 

 𝐴1 =
(𝑛𝑚 − 1)(1 + 휀𝑖𝑏1) + 𝑛𝑚휀ℎ

𝑛𝑚(1 + 휀𝑖𝑏1) + (1 − 𝑛𝑚)휀ℎ

휀𝑖𝑏2

𝑛𝑚𝜔𝑝
2
 (5.12) 

 𝐴2 =
1 − 𝑛𝑚

𝑛𝑚(1 + 휀𝑖𝑏1) + (1 − 𝑛𝑚)휀ℎ

𝛾휀𝑖𝑏2
2

𝑛𝑚𝜔𝑝
2
 (5.13) 

 𝐴3 ≈ −
휀𝑖𝑏2

𝑛𝑚(1 + 휀𝑖𝑏1) + (1 − 𝑛𝑚)휀ℎ
 (5.14) 

 𝐴4 = 𝛾
2(1 + 휀𝑖𝑏1) −

휀ℎ

𝑛𝑚

𝑛𝑚(1 + 휀𝑖𝑏1) + (1 − 𝑛𝑚)휀ℎ
 (5.15) 
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Ω𝑖𝑏 =

𝜔𝑝

√1 + (
1

𝑛𝑚
− 1)휀ℎ + 휀𝑖𝑏1

 
(5.16) 

 Γ =
휀𝑖𝑏2Ω𝑖𝑏

2

𝑛𝑚𝜔𝑝
2

(𝜔 − ∆𝜔0) + 𝛾 (1 +
휀𝑖𝑏2

2 Ω𝑖𝑏
2

𝑛𝑚𝜔𝑝
2

) (5.17) 

The expression for the absorption coefficient 𝛼𝑖𝑏(𝜔) in Equation (5.10) is very general. If 

only considering free electrons, then 휀𝑖𝑏1 = 휀𝑖𝑏2 = 0. In this case, only 𝐴4 survives with ∆𝜔0 = 0, 

Ω𝑖𝑏 = Ω, and Γ = γ. This returns to the case when the absorption coefficient is obtained under a 

Drude Model. Therefore, all normal modes exhibit a symmetric Lorentzian line shape when the 

damping constant 𝛾 is very small. 

 

If interband transitions are taken into consideration, i.e. 휀𝑖𝑏1, 휀𝑖𝑏2 ≠ 0 , then all 𝐴𝑠  terms 

survive, i.e. 𝐴𝑠 ≠ 0. But since 휀𝑖𝑏1 and 휀𝑖𝑏2 are very small at and below the threshold of interband 

transitions (Figure 5.4), the resonance frequency, which is approximately given as 𝜔𝑟𝑒𝑠
𝑖𝑏 = Ω𝑖𝑏 +

∆𝜔0 ≈ 𝜔𝑟𝑒𝑠, would hardly undergo a shift. Neither would any significant broadening occur to the 

linewidth Γ  except for the radiative decay induced linewidth broadening. Therefore, interband 

transitions only mildly affect the normal modes at or below the energy threshold. These normal 

modes can well maintain their free-electron-like LSPR spectral features. Their resonance 

frequencies are basically determined by the shape-dependent depolarization factors. This is the 

reason why the LSPR observed on a Cu nanocube exhibits a free-electron-like extinction peak near 

the threshold of interband transitions.  

 

Interband transitions and surface plasmons come into full play above the threshold of 

interband transitions where 휀𝑖𝑏2 is significant, as shown in Figure 5.4(b), (d), and (f). Since 휀𝑖𝑏1 is 

small over the entire energy range considered, Ω𝑖𝑏 can always be approximated as Ω, which is then 

primarily dependent on the depolarization factor 𝑛𝑚. The most important factor contributing to the 

resonance frequency shift comes from 휀𝑖𝑏2, which adds the term ∆𝜔0 to the frequency shift. But if 

the intrinsic damping constant 𝛾 is small, as is true for noble metals, the amount of frequency shift 

∆𝜔0  would still be small. Therefore, interband transitions only mildly shift the resonance 

frequency if any. However, the linewidth Γ would be significantly broadened owing to an increase 

of 휀𝑖𝑏2 . The linewidth broadening would have two consequences: first, the resonance strength 

would decrease, which results in plasmon damping; second, the extinction spectrum would no 

longer exhibit a symmetric Lorentzian line shape. When the higher-order polynomials of 𝜔 adds 

to the numerator of the absorption coefficient, the spectral line shape would become more 

asymmetric with the tail titled upward toward the higher energy side. This is exactly the origin of 

the asymmetric extinction spectral line shape observed on Cu nanocubes. As the metal of Cu has 

a small intrinsic damping constant γ = 0.0950 eV ,31 the surviving plasmon mode near the 

threshold of interband transitions displays an intense and narrow LSPR peak. However, well above 

the energy threshold of interband transitions, surface plasmons get significantly damped, leaving 

a trail of broad background absorption, as shown in Figures 5.3 and 5.6. 
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As the susceptibility χ(w) in Equation (5.3) has a general form, and is applicable to a 

nanoparticle with an arbitrary shape, it allows the absorption coefficient derived in Equation (5.10) 

to be generalized in the subwavelength regime by parameterizing all the terms: 

 𝛼(𝜔) = ∑ 𝐶(𝑚)
𝐴𝑚1𝜔5 + 𝐴𝑚2𝜔4 + 𝐴𝑚3𝜔3 + 𝐴𝑚4𝜔2

(𝜔2 − 𝐵𝑚1
2 )2 + (𝐵𝑚2𝜔)2

 

𝑚

 (5.18) 

where m represents the number of resonances, Ams (s=1,2,3,4) are coefficients of higher-order 

polynomials of w, Bm1, and Bm2 determine the resonance frequency and spectral linewidth, 

respectively. To validate the generalized absorption coefficient, we applied it to fit the measured 

and DDA-calculated extinction spectra of Cu nanocubes. The generalized formula fits the 

extinction spectra perfectly (Figure 5.7) and allows us to extract the critical parameters, which are 

otherwise indirectly accessible in the extinction spectra such as the resonance frequency and 

linewidth as tabulated in Tables 2 to 4. For the Cu nancubes synthesized, although only one major 

LSPR peak is observed at the resonance energy wres=2.12 eV in Figure 5.7(a), they actually possess 

multiple plasmon modes which are damped but can be extracted from the fitting parameters in 

Table 2. A similar observation can also be made for DDA-calculated extinction spectrum in Figure 

5.7(b) and Table 5.3. If the influence of interband transitions is removed, those otherwise damped 

plasmon modes can be recovered by a free-electron-like Cu nanocube, displaying the distinct 

extinction spectral features, as shown in Figure 5.7(c). The fitting parameters are tabulated in Table 

4. In Figure 5.7(c), the two sharp and intense LSPR peaks with the lowest resonance energies are 

attributed to the most easily excitable corner plasmon modes, whereas a weak LSPR peak with the 

highest resonance energy is originated from the plasmon mode on the cubic facet, which is most 

difficult to be excited. 
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Figure 5.7 Extinction spectra fitting using the generalized absorption coefficient formula in Equation 

(5.18). (a) Measured extinction spectrum (thick blue) of synthesized Cu nanocubes and the fitted curve 

with the generalized absorption coefficient formula (orange); (b) Calculated extinction spectrum (orange 

hollow circles) of a Cu nanocube by DDA and the fitted curve (blue); (c) Calculated extinction spectrum 

(olive hollow circles) of a free-electron-like Cu nanocube by DDA and the fitted curve (red). The fitting 

parameters were tabulated in Table 5.2 to 5.4. 
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Table 5.2 Fitting parameters by the generalized absorption coefficient formula in Equation (5.18) for the 

measured extinction spectrum of synthesized Cu nanocubes. 

m Am1 Am2 Am3 Am4 Bm1 Bm2 

1 3.59 -14.71 13.87 2.65 2.12 0.15 

2 -0.99 7.67 -21.22 20.80 2.22 0.61 

3 17.87 -23.91 -13.23 -16.19 2.30 1.34 

4 -8.49 -25.22 -12.19 80.25 2.55 2.14 

5 1.41 -5.76 33.76 -40.28 2.81 3.21 

6 -9.22 19.76 -36.49 -123.19 4.72 5.01 

 

Table 5.3 Fitting parameters by the generalized absorption coefficient formula in Equation (5.18) for the 

DDA-calculated extinction spectrum of a Cu nanocube 

m Am1 Am2 Am3 Am4 Bm1 Bm2 

1 1.45 -6.95 10.74 -5.24 2.03 0.15 

2 -2.35 13.06 -24.27 15.17 2.20 0.54 

3 12.52 -11.84 -4.58 -15.58 2.39 1.68 

4 -5.74 -19.19 -9.16 78.74 2.60 2.00 

5 2.98 -4.10 33.90 -41.75 2.82 2.59 

6 -6.53 21.49 -35.89 -123.54 4.53 1.79 

 

Table 5.4 Fitting parameters by the generalized absorption coefficient formula in Equation (5.18) for the 

DDA-calculated free-electron-like extinction spectrum of a Cu nanocube 

m Am1 Am2 Am3 Am4 Bm1 Bm2 

1 0 0 0 0.04 2.10 0.10 

2 0 0 0 0.03 2.22 0.10 

3 0 0 0 0.12 2.32 0.15 

4 0 0 0 0.01 2.48 0.12 

5 0 0 0 0.07 2.65 0.20 

6 0 0 0 -0.99 3.20 3.00 

 

EELS Spectrum of a Cu Nanocube 

The single extinction peak with a narrow and asymmetric spectral line shape of a Cu nanocube 

is understood as a result of a shape-dependent depolarization factor and an interband transitions-

induced plasmon damping. Given that those damped plasmon modes only display weak spectral 

features in free-electron-like optical extinction spectra as shown in Figure 5.7, we are interested in 

probing them in order to give a full description of the plasmon modes of a Cu nanocube. Since 

those damped modes with higher resonance frequencies originate from plasmon modes on the facet, 

which are weakly coupled to light, they cannot be effectively optically excited. Instead of an 

optical excitation, these modes can be excited electronically. Therefore, we applied the electron-

driven discrete dipole approximation method (e-DDA) to calculate the electron energy loss 

spectroscopy (EELS) spectra associated with those plasmon modes. In the e-DDA method, we can 

specify the trajectory of incident electrons and selectively excite different plasmon modes. For 

instance, when the incident electrons take the trajectory along the corner of a Cu nanocube, the 
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corner modes can be excited. When parallel to the plane of a facet, the edge and facet modes can 

be excited. In our calculations, by guiding incident electrons to take two different trajectories, we 

were able to obtain two complementary spectra, as shown in Figure 5.8. The plasmon modes 

marked as (1) and (2) in Figure 5.8 can be excited either optically or electronically, whereas the 

plasmon modes marked as (3) and (4) can only be effectively excited electronically, since they are 

weakly coupled to light. 

 

 

 

Surface Polarization Charge Density 

To visualize how interband transitions affect each plasmon mode identified in Figure 5.8, we 

calculated the surface polarization charge densities at each mode’s peak wavelength using FDTD 

for a free-electron-like Cu nanocube and a Cu nanocube under the influence of interband 

transitions, as shown in Figure 5.9. Modes (1) through (4) in Figure 5.9 corresponds to the plasmon 

modes determined in Figure 5.8. From the calculated surface polarization charge densities, the 

free-electron-like Cu nanocube displays four well-distinguished plasmon modes, i.e. Mode (1): 

corner mode; Mode (2): corner mode with edge mode component; Mode (3): edge mode with 

corner and facet mode component; Mode (4): facet mode with edge mode component. These four 

modes are also confirmed by the study of EM field enhancement factors on a free-electron-like Cu 

nanocube as shown in Figure 5.10. Under the influence of interband transitions, however, surface 

polarization charge densities get drastically changed. As surface polarization charges on the cubic 

edge and facet cannot effectively sustain in the presence of interband transitions, they redistribute 

Figure 5.8 Comparison between EELS spectra and free-electron-like extinction spectrum of a Cu 

nanocube. The free-electron-like extinction spectrum (orange shaded region) displays two major peaks 

marked as (1) and (2). In EELS spectra: when the trajectory of incident electrons follows point A, plasmon 

modes with higher resonance energies marked as (3) and (4) can be excited, as shown by the olive 

dashed curve; similarly, plasmon modes with lower resonance frequencies marked as (1) and (2) can be 

excited as shown by the blue dash dotted curve when incident electrons follow the trajectory specified 

by point B. 
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at the cubic corner, which ends up damping the edge and facet modes. Because the corner mode is 

a thermodynamically favorable state, it accumulates a large number of surface polarization charges 

and generates the most intense EM field, as shown in Figure 5.10(a). 

 

 

Figure 5.9 Surface polarization charge distribution calculated by FDTD where Mode (1) through (4) 

correspond to the modes determined in Figure 5.8. The left column shows the surface polarization charge 

distribution on a free-electron-like Cu nanocube; the right column shows that of a Cu nanocube under 

the influence of interband transitions. The scale bar indicates the surface polarization charge density in 

C/m2. 
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Strong Plasmon of a Cu Nanocube 

From the measured and calculated extinction spectra of Cu nanocubes, the LSPR supported 

looks much stronger than what could be expected previously from Cu nanospheres. It is interesting 

to compare the LSPR of Cu nanocubes with those of Au nanocubes and nanospheres to check if a 

Cu nanostructure is an alternative plasmonic candidate to Au nanostructure. Therefore, the 

extinction spectrum of a Cu nanocube was calculated using DDA, and compared to those of the 

Cu nanosphere, Au nanocube and Au nansophere (Figure 5.11). The nanospheres and nanocubes 

calculated were modelled to be of the same volume, or equivalently the same effective radius. 

Therefore, for a cubic edge length of 30 nm, the spherical diameter used in calculation is about 36 

nm. Apparently, the LSPR peak of a Cu nanocube is much stronger and sharper than that of a Cu 

nanosphere. While it is not as strong as a Au nanocube, it does have an extinction coefficient 

comparable to that of an Au nanosphere, making it a promising alternative for light management. 

 

Figure 5.10 EM field distribution calculated by DDA for different plasmon modes supported on a free-

electron-like Cu nanocube. (a), (b), (c), and (d) corresponds to the plasmon mode marked as (1), (2), 

(3), and (4) in Figure 5.8, respectively. The EM field enhancement was calculated as |E|/|E0|. 
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Finally, the EM field enhancement factors (|E|/|E0|) for the cubic corner mode of a Cu 

nanocube was calculated using DDA, and compared to the cubic corner mode of a Au nanocube, 

the dipole modes of a Cu nanosphere and an Au nanosphere, as shown in Figure 5.12. It is found 

that the EM field enhancement factor for the cubic corner LSPR mode of a Cu nanocube is less 

than half that of a Au nanocube, but it is 7.2 times as large as that of a dipole mode of a Au 

nanosphere. This indicates that Cu nanocubes are alternative plasmonic nanostructures owing to 

the low cost, comparable extinction coefficient, and large EM field enhancement factor as 

compared to the Au nanospheres. 

Figure 5.11 DDA-calculated extinction spectra of an Au nanocube, a Cu nanocube, an Au nanosphere, 

and a Cu nanosphere. The cubes and spheres calculated are of the same volume, i.e., an edge length 

of 30 nm for cubes and a diameter of 36 nm for spheres. 
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5.1.4 Conclusion 

    The LSPR of metallic nanocubes was investigated with experiments, numerical calculation and 

theoretical modeling. The theoretical model can be generalized to study the plasmon modes for a 

nanoparticle of arbitrary shape under the influence of interband transitions in the subwavelength 

regime, and guide future design of plasmonic nanostructures. In summary, Cu nanospheres 

generally show a weak and broad LSPR peak due to the severe damping by the interband 

transitions in the same spectral region of LSPR. In contrast, Cu nanocubes exhibit a single strong 

and narrow LSPR peak. Both numerical and theoretical calculations reveal that the LSPR peak is 

originated from the cubic corner mode, which is also the sole plasmon mode surviving interband 

transitions-induced damping. By decomposing the dielectric function into a free-electron 

component and an interband transitions component, a free-electron-like Cu nanocube has been 

found to support multiple plasmon modes with surface polarization charges distributed on the 

corner, edge, and facet of the geometry. Since the cubic corner plasmonic mode has the resonance 

energy near the threshold of interband transitions, it survives the damping from the interband 

transitions, maintaining a free-electron-like intense LSPR peak. However, other plasmon modes 

are spectrally overlapped with interband transitions, and they consequently get damped 

Figure 5.12 EM field distributions and enhancement factors |E|/|E0| calculated by DDA for (a) a Cu 

nanocube, (b) an Au nanocube, (c) a Cu nanosphere, and (d) an Au nanosphere. The peak EM field 

intensity was used in the calculation of enhancement factor. 
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dramatically, leaving a broad background absorption titled upward at the higher energy side. In 

addition, the cubic corner mode of a Cu nanocube contributes to an extinction coefficient that is 

comparable to that of a Au nanosphere of the same volume, and yields a local EM field 

enhancement factor (|E|/|E0|) that is 7.2 times larger than that of the dipolar LSPR mode. In short, 

this work demonstrates that Cu nanocubes can be used as cost-effective plasmonic nanostructures. 
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5.2 Film-Coupled Copper Nanocube for Near-Infrared Fluorescence 

Enhancement 

5.2.1 Introduction 

Copper as a potential alternative low-cost plasmonic metal has found increasing research 

interest.1-5 However, the weak and broad localized surface plasmon (LSPR) resonance observed 

on most Cu nanoparticles significantly compromises the performance.4, 6 Broadening of the LSPR 

peak usually occurs because of an intrinsic energy loss caused by electron collisions and radiative 

decay. But for Cu nanoparticles, the interband transition also contributes to plasmon broadening 

and damping owing to the spectral overlap between the interband transition and the LSPR band.7-

8 Recently, by tailoring Cu nanoparticles into cubic shape, the cubic corner LSPR mode shows up 

with a sharp and narrow spectral line shape thanks to the spectral separation between the LSPR 

band and the interband transition.9-11 The observed LSPR mode on Cu nanocubes display quite a 

few superior properties over Au nanospheres, such as a larger extinction coefficient and a stronger 

local electromagnetic (EM) field. Nevertheless, the application of Cu nanocubes is severely 

restraint by the limited spectral tunability of the cubic corner LSPR mode, which is largely 

determined by the shape-dependent depolarization factor.12 

 

The spectral tunability of a metallic nanoparticle can be greatly extended by plasmonic 

coupling,13-14 notably the film-coupled plasmonic nanocubes,15-18 which is an important genre of 

nanostructured metamaterials. Different from the coupling of plasmonic dimers through electric 

dipoles, the film-coupled plasmonic nanocube system is featured by strong magnetic dipoles due 

to the excitation of the plasmonic cavity mode at the gap region. Not only can the plasmonic cavity 

mode be effective excited by coupling the incident light with the magnetic dipole, the mode also 

displays strong EM field confined at the gap region. By manipulating the gap, the film-coupled 

nanocube system has found a lot of applications, such as engineering electromagnetic metasurfaces 

with controlled reflectance,18 enhancing the near field,17 controlling radiative decay processing,15 

probing sub-picometer variation,19 and even accessing the quantum regime of plasmonics.20-22 

 

By fabricating film-coupled Cu nanocube system, the merits of Cu nanocube such as a low 

cost and the excitation of the plasmonic cavity mode can be exploited to build near-infrared (NIR) 

fluorescent sensor devices. NIR fluorescent sensing is highly favored for its large signal-to-noise 

ratio (SNR) in the biological window.23 However, NIR quantum emitters often have a poor 

quantum efficiency less than 5%. The film-coupled Cu nanocube system offers a potential solution, 

as the excited plasmonic cavity mode can give rise to a strong near field as well as an increased 

local optical density of states, which could potentially drastically enhance both the excitation rate 

and the quantum efficiency of a NIR quantum emitter.  
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Therefore, in this research, a systematic study of the optical properties of the film-coupled Cu 

nancube system and its capability of enhancing NIR fluorescence emission is conducted based on 

numerical simulations using finite-difference time-domain (FDTD) method. Since Cu is subject to 

oxidation in air, an insulator layer, such as silica, is designed to coat on the Cu nanocube and the 

Cu film. It also serves as a spacer layer to control the separation distance between the Cu nanocube 

and the Cu film.   

5.2.2 Methods 

Finite-difference time-domain method is implemented throughout the paper to study the Cu 

film-coupled Cu nanocube system using commercially available software Lumerical FDTD 

Solutions. A mesh override region with a mesh size of 1 nm was imposed around the nanostructure. 

The dielectric function of Cu used was from Johnson & Christy.24 A refractive index of 1.52 was 

given to the silica layer. The nanostructure system was excited using a plane wave, which allows 

back reflection spectra, radiation pattern, electromagnetic field data, and surface polarization 

charges to be calculated. The system was also excited by an electric dipole source placed inside 

the gap, which enables the calculation of quantum efficiency and radiative & nonradiative decay 

rate. Boundary conditions of Perfectly Matched Layer (PML) were imposed on all six boundaries 

of the simulation region.  
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5.2.3 Results and Discussion 

Plasmonic Cavity Mode 

A Cu nanocube coated with a silica layer of ~2 nm was place on a Cu film but separated by a 

silica layer with varying thickness, as shown in Figure 5.12(a). The film-coupled Cu nanocube 

with a gap of 8 nm exhibited a reflection dip at around 780 nm and radiated largely in the surface-

normal direction at the resonance frequency, as shown in Figure 5.12(b) and (c). The reflection dip 

was identified as the plasmonic cavity mode, which could be spectrally tuned over a wide 

wavelength range from 620 nm to 1200 nm by either changing the refractive index of the separation 

material or varying the gap and edge length of the Cu nanocube, as shown in Figure 5.12(d) and 

(e).  

 

The plasmonic cavity mode originates from Fabry–Pérot-like resonance. The gap region 

between the two facing surfaces of the Cu nanostructure supports transmission line type of 

resonances but modified by the plasmonic dispersion of Cu.25 After incidence, the EM waves can 

be guided into the transmission line (i.e. the gap) and self-adjusted to satisfy boundary conditions. 

Due to the large effective impedance mismatch at the edge of the gap region, most of the EM 

Figure 5.13 (a) Scheme of the film-coupled Cu nanocube system; (b) the radiation pattern, (c) the 

reflection spectrum, and (d) the separation materials refractive index-dependent reflection spectra for a 

Cu nanocube separated 8 nm away from the underlying Cu film; (e) the LSPR peak evolution for Cu 

nanocubes with varying silica gap and edge length of Cu nanocubes. 
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waves get reflected back into the gap and further adjust themselves to the transverse boundary 

conditions, with other leaky EM waves contributing to the far-field scattering. The interference of 

the waves before and after reflection at the gap edge results in Fabry–Pérot-like resonance, 

generating the plasmonic cavity mode.  

 

An obvious advantage of the film-coupled nanocube system as compared to the conventional 

transmission line is that the Cu nanocube is not only involved in forming the transmission line type 

of resonance, but also acts as an antenna, which can effectively absorb the incidence EM radiation 

owing to its large absorption coefficient and transfers it to the plasmonic cavity mode. The surface 

polarization charge density shown in Figure 5.13(a) and (b) further underscores the merits of the 

film-coupled nanocube system, where the induced surface polarization charges on a free-standing 

Cu nanocube redistribute from cubic corners (Figure 5.13(a)) to the cubic bottom surface (Figure 

5.13(b)) after the coupling between a Cu nanocube and the Cu film. The resulting plasmonic cavity 

mode not only displays an intense electric field at the edge of the gap region due to the induced 

surface polarization charges, as shown in Figure 5.13(c) and (d), but also generates a strong 

magnetic field at the center of the gap thanks to the fictitious magnetic current density induced 

along the periphery of the gap region. Therefore, the plasmonic cavity mode is basically a 

localization of the EM field whose electric and magnetic components oscillate spatially at the gap 

region.26 

 

 
 

Figure 5.14 Surface polarization charge distribution for (a) a single Cu nanocube and (b) a film-coupled 

Cu nanocube; (c) scheme of induced surface polarization charge density (d) the corresponding electric 

field; (e) scheme of fictitious magnetic current density and (f) the corresponding magnetic field. Cu 

nanocube used is ~80 nm in each dimension; the silica gap is ~8 nm; (a), (b), (d), and (f) were calculated 

at the plasmon resonance wavelength.  
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    The localization of the EM field and the spatial oscillation between the electric and magnetic 

field at the gap have two consequences. First, the film-coupled nanocube system is equivalent to a 

magnetic conductor, which can effectively couple with incident light through the magnetic dipole 

thanks to the excitation of fictitious magnetic current density.15, 18 Second, the local optical density 

of states is significantly increased because of the plasmonic cavity mode, giving rise to a large 

Purcell factor to modify the spontaneous decay rate of quantum emitters,16 as will be shown in 

Figure 5.14(c). As the localized EM energy is being converted alternatively between electric and 

magnetic energy, which is a typical behavior of the Fabry–Pérot resonator, the energy loss only 

occurs either because of skin effect and finite conductivity of the metal, or through the leaky mode, 

which implies a large quality factor.26 Therefore, the local optical density of states at the gap region 

can be strongly modified by the Fabry–Pérot-like behavior of the film-coupled nanocube system. 

 

Fluorescence Enhancement of Near-Infrared Quantum Emitter 

Given the observed intense electric field and the Fabry–Pérot-like behavior at the gap region, 

the film-coupled Cu nanocube system was applied to enhance the fluorescence emission of a near-

infrared (NIR) quantum emitter, which can be modelled as a point electric dipole. Typically, the 

fluorescence emission enhancement (𝛾𝑒𝑚/𝛾𝑒𝑚
0 ) consists of excitation rate enhancement (𝛾𝑒𝑥𝑡/𝛾𝑒𝑥𝑡

0 ) 

and quantum efficiency enhancement (𝜂/𝜂0):27 

 

 𝛾𝑒𝑚

𝛾𝑒𝑚
0 =

𝛾𝑒𝑥𝑡

𝛾𝑒𝑥𝑡
0

𝜂

𝜂0
 (5.19) 

     

The excitation enhancement depends on the local excitation electric field and the dipole 

orientation (�⃗⃗�) with respect to the electric field (�⃗⃗�): 

 

 𝛾𝑒𝑥𝑡

𝛾𝑒𝑥𝑡
0 =

|�⃗⃗� ∙ �⃗⃗�|

|�⃗⃗� ∙ 𝐸0
⃗⃗⃗⃗⃗|

2

 

(5.20) 

     

The maximum excitation rate enhancement can be achieved by allowing the dipole to orient 

in the direction of the electric field. And in this study, we consider the maximum achievable 

fluorescence emission enhancement by aligning the dipole in the electric field’s direction.  

 

Since a NIR quantum emitter usually has an intrinsic quantum efficiency 𝜂0 less than 5%, we 

modelled an electric dipole with an intrinsic quantum efficiency 𝜂0 = 0.01 as a starting point in 

this study. The final quantum efficiency 𝜂 is defined as the radiative decay rate 𝛾𝑟𝑎𝑑 normalized 

by the total decay rate 𝛾 which also includes the energy loss 𝛾𝑎𝑏𝑠 due to absorption of the metal: 

 

 𝜂 =
𝛾𝑟𝑎𝑑 

𝛾
=

𝛾𝑟𝑎𝑑 

𝛾𝑟𝑎𝑑 + 𝛾𝑎𝑏𝑠 + 𝛾𝑛𝑟
 (5.21) 

where the intrinsic nonradiative decay rate 𝛾𝑛𝑟 is assumed to be unaffected. 
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        Considering the intrinsic quantum efficiency 𝜂0, which is given by 

 
𝜂0 =

𝛾𝑟𝑎𝑑
0  

𝛾𝑟𝑎𝑑
0 + 𝛾𝑛𝑟

0  
(5.22) 

        By combining Equation (5.21) and Equation (5.22), the quantum efficiency enhancement can 

be calculated as 

 
𝜂

𝜂0
=

𝛾𝑟𝑎𝑑

𝛾𝑟𝑎𝑑
0  

𝛾𝑟𝑎𝑑

𝛾𝑟𝑎𝑑
0 𝜂0 +

𝛾𝑎𝑏𝑠

𝛾𝑟𝑎𝑑
0 + (1 − 𝜂0)

 

(5.23) 

where 𝛾𝑟𝑎𝑑/𝛾𝑟𝑎𝑑
0   is the normalized radiative decay rate and can be obtained from the power 

monitor groups around the dipole in FDTD simulation software, 𝛾𝑎𝑏𝑠/𝛾𝑟𝑎𝑑
0  is the normalized non-

radiative decay rate due to Ohmic losses and can be obtained from the power monitor groups 

around the dipole-Au nanopyramid system. 

 

FDTD simulations were then implemented to calculate the quantum efficiency enhancement 

following Equation (5.23) of a NIR quantum emitter, which was placed at the center plane parallel 

to the underlying Cu film but with varying lateral position at the gap region, as shown in Figure 

5.14(a). Since the film-coupled nanocube system in Figure 5.14(a) displays a plasmonic cavity 

mode at ~780 nm as shown in Figure 5.12(c), both the excitation and emission wavelength of the 

quantum emitter was set at 780 nm for simplicity.  

 

Due to the intense electric field and the increased local optical density of states, the quantum 

emitter experienced large enhancement in its quantum efficiency and spontaneous decay rate. The 

two-dimensional (2D) distribution on the plane at the center of the gap (represented by a dashed 

red line in Figure 5.14(a)) of the quantum efficiency, Purcell factor, and fluorescence enhancement 

are shown in Figure 5.14(b), (c), and (d). Despite the overall large enhancement, spatial variations 

existed, which is probably caused by the spatial oscillation of the localized EM energy.26 The 

spatial profile of the fluorescence emission enhancement indicates that maximum fluorescence 

enhancement is achieved near the edges of the gap region, as shown in Figure 5.14(d). 

Identification of the optimal position for fluorescence enhancement will guide design of 

fluorescent biosensor devices. Therefore, in the following study of the gap-size effects, the 

quantum emitter is placed near the edge of the gap to harvest the largest possible enhancement, as 

shown in Figure 5.14(a). 
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Figure 5.15 (a) Scheme of a point electric dipole at the gap center of the film-coupled Cu nanocube 

system; (b) quantum efficiency, (c) Purcell factor, and (d) fluorescence enhancement of the plane at the 

center of the gap (marked as a red dashed line in (a)), calculated at the plasmon resonance wavelength 

at ~780 nm as determined in Figure 1 (c), with an intrinsic quantum efficiency 𝜂0 = 0.01 for the point 

dipole. 
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By varying the gap size, the excitation rate enhancement (𝛾𝑒𝑥𝑡/𝛾𝑒𝑥𝑡
0 ), the quantum efficiency 

enhancement ( 𝜂/𝜂0 ), and the resulting fluorescence emission enhancement ( 𝛾𝑒𝑚/𝛾𝑒𝑚
0  ) all 

experienced significant changes, as shown in Figure 5.15. While both the excitation rate and the 

fluorescence emission enhancement increased exponentially as the gap became smaller, their 

magnitudes started dropping when the gap shrank less than 6 nm. Given the large gap in quantum 

scale, it is unlikely that quantum tunneling or nonlocal effects play any role in capping the largest 

achievable enhancements.28 Rather, it is more likely that a less efficient coupling at a smaller gap 

between the Cu nanostructure and the incident light leads to the decrease of the excitation rate 

enhancement; in the meanwhile, a smaller gap facilitates the quantum emitter to couple with 

higher-order plasmonic cavity modes with the energy dissipating nonradiatively, which 

compromises the quantum efficiency and finally results in the decrease of the fluorescence 

emission enhancement. Despite the slight decrease, the film-coupled Cu nanocube system 

maintains a high level of enhancement at a smaller gap, as shown in Figure 5.15(b), which has a 

strong implication that the stringent condition of a delicately-balanced gap in conventional 

plasmon-enhanced fluorescence can be relaxed. 

 

In addition, the intrinsic quantum efficiency was also varied from 0.01 to 0.1 and 1 to study 

how it affects the fluorescence enhancement. It turns out that the fluorescence emission of a weaker 

quantum emitter can be more strongly enhanced as compared to a stronger one, which is consistent 

with previous reports.29-30 This implies that the nature of a low intrinsic quantum efficiency makes 

it easier for NIR quantum emitters to experience a larger fluorescence emission enhancement 

 

Figure 5.16 Gap-dependent (a) excitation rate enhancement and the quantum efficiency enhancement 

and (b) the fluorescence enhancement for quantum emitters with intrinsic quantum efficiency of 0.01, 0.1, 

and 1. The film-coupled Cu nanocube system used is the same as in Figure 5.14 
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5.2.4 Conclusion 

        In summary, the film-coupled Cu nanocube system displays a wide spectral tunability by 

simply varying the gap thickness. The excited plasmonic cavity mode is accompanied by a strong 

electric and magnetic field. The localized EM energy oscillates alternatively between the electric 

and magnetic component and leads a strong modification of the local optical density of states. The 

NIR quantum emitter placed at the gap region thus experiences a strong enhancement of the 

excitation rate as well as the quantum efficiency, which results in a large fluorescence emission 

enhancement. Compared to conventional plasmon-enhanced fluorescence, the film-coupled Cu 

nanocube allows the NIR quantum emitter to maintain a high level of enhancement even at small 

gaps thanks to the plasmonic cavity mode. 
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Chapter 6: Outlook and Conclusions 

6.1 Outlook: Atom-Light Interaction at the Strong-Coupling Limit 

 

Figure 6.1 (a) Rabi oscillations at the strong-field limit; (b) Atom-cavity interaction at the strong 

coupling limit. 

 

        In the strong-field limit, the resonant atom-light interaction results in coherent superposition 

states |𝜓⟩= 𝑐1|1⟩ + 𝑐2|2⟩ , where 𝑐1  and 𝑐2  are the normalized coefficients representing the 

probability of finding the atom in the corresponding state. The coherent superposition states are 

characterized by the Rabi frequency Ω𝑅, which exceeds the spontaneous decay rate and quantifies 

the number of cycles the atom oscillates between the excited and ground state per unit time under 

the stimulation of the incident field. As more electrons build up at the excited state |2⟩ under strong 

incident field, population inversion would finally occur as the excited population 𝑁2 would exceed 

the ground state population 𝑁1 at some point, which gives rise to stimulated emission. Stimulated 

emission is the basis for LASER (light amplification by stimulated emission of radiation) and 

SPASER (surface plasmon amplification by stimulated emission of radiation).  

 

        SPASER is the plasmon counterpart of LASER where the incident light is replaced by surface 

plasmon and the resonant optical cavity is replaced by a plasmonic nanoparticle. It often adopts 

the nanoparticle-gain material core-shell nanostructure where the nanoparticle supports a surface 

plasmon mode and the gain material provides the energy source. For a typical SPASER to operate, 

the gain material is first excited externally regardless of the excitation source. The relaxation of 

the excited excitonic energy would be transferred to the nanoparticle and excites the surface 

plasmon. In return, the excited surface plasmon would further stimulate excitation of excitons in 

the gain material, which ends up exciting more identical surface plasmons. This process repeats 

itself until the threshold for stimulated emission is reached. 
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        The reason why surface plasmon could prevail in SPASER is because of its electric neutrality 

and boson nature with spin 1, which is the same as photons. Its highly coherent nature also makes 

it possible to accumulate a large number of surface plasmons in a single mode. Therefore, when 

the population inversion is achieved, stimulated emission could occur, generating a highly coherent, 

intense, and ultrafast emission, which is called spasing. Given the nanoscale nature of all the 

elements involved, SPASER could operate as a nanoscale optoelectronic device and holds great 

promise for ultramicroscopy and other nanodevices.  

 

        Compared to fluorescence, SPASER and PEF share some similarities but also differ from 

each other significantly. 

 

        First, both the SPASER probe and PEF probe could be constructed as a core-shell nanoparticle 

to support an enhanced optical emission. Both need a plasmonic nanoparticle the provide the 

driving force and an exciton-like material to provide the light source.  

 

        Second, they differ drastically in the emission profile. While PEF displays a Stokes-shifted 

emission spectrum with a broadened linewidth due to the long fluorescence lifetime, SPASER 

supports an emission spectrum free of Stokes shift and with a very sharp linewidth due to the 

ultrafast emission nature.  

 

        However, in order to achieve the threshold for spasing, the incident light source is usually 

pulsed laser, which could be a potential issue for biological samples, although efforts are under 

way to mitigate the laser-induced damage to biological samples. In contrast, near-infrared light 

source could be used in PEF and is well coupled with biological matrix.  

 

        Since the stimulated emission is highly coherent and inherits all the features from the incident 

field, it would be interesting to see how stimulated emission could be coupled with fluorescence 

emission under the influence of surface plasmon resonance.  

   

        In the meanwhile, when the atom-cavity coupling strength, which is defined as 𝑔0 =
1

2
Ω𝑅, 

outcompetes any other energy loss rates in the system, the strong-coupling regime would be 

reached. In the strong-coupling limit, the incident energy would be trapped and oscillates between 

the optical cavity and the atom. The consequence is that the optical cavity mode and the excited 

atomic state would be hybridized, ending up producing two new plexcitonic states, which are half-

light and half-matter. The plexcitonic states are essentially of quantum nature and have strong 

implications in ultra-efficient light emission, nonclassical or squeezed state generation, emission 

of correlated photons, etc. By placing the atom-cavity system to interact in the strong-coupling 

regime, it would be very interesting to see how surface-enhanced spectroscopy could be benefited 

from the plexcitonic states.  
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6.2 Conclusions 

        In this dissertation, surface-enhanced spectroscopy has been studied for optical sensing and 

the prospect of acting as preventative measures in dealing with environment, food, and healthcare 

related issues has been assessed. 

 

        SERS and PEF as two parallel routes have been applied to build proof-of-concept sensors. 

SERS sensors are featured by the simplicity in SERS signal optimization thanks to the fourth 

power rule, which states that the SERS enhancement scales with the fourth power of the local EM 

field enhancement. In comparison, PEF sensors need a delicate balance between the excitation 

enhancement and emission enhancement as they have different distance dependence. While it 

appears that SERS method is promising for POC sensor devices, it is noted that the laser beam in 

Raman spectroscopy needs to be delicately focused to achieve high SERS spectral resolution. This 

is probably a major drawback for SERS-based POC sensor devices. While it is true that a lot of 

efforts need to be devoted to balance the excitation and emission enhancement in fluorescence, the 

emission nature of fluorescence makes it easily coupled with POC fluorescence readers, as 

demonstrated by the PEF biosensors for TBI biomarker detection. This gives fluorescence a huge 

leverage.  

 

        In addition to exploiting noble metals such as gold and silver to study surface-enhanced 

spectroscopy, alternative cost-effective plasmonic materials have also been explored. In this 

dissertation, Cu nanocubes have been found to support strong LSPR, which has an origin of the 

plasmonic corner modes. Compared to the dipole mode of Au nanospheres of the same effective 

radius, Cu nanocubes have a comparable extinction coefficient but much larger local EM field. 

The results strongly indicate copper is a highly promising alternative inexpensive plasmonic 

materials. 

 

        In conclusion, the knowledge obtained in studying SERS and PEF lays out a technical 

foundation for future transformation of proof-of-concept sensors into POC sensor devices. The 

discovery of copper as a cheap plasmonic metal further makes POC optical sensing a foreseeable 

goal.  
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