

University of Southern Maine USM Digital Commons

Publications

Casco Bay Estuary Partnership (CBEP)

1992

Assessment of Sediment Contamination in Casco Bay and Appendix A, 1992

The Geochemical and Environmental Research Group

Texas A & M University

Follow this and additional works at: https://digitalcommons.usm.maine.edu/cbep-publications

Recommended Citation

The Geochemical and Environmental Research Group and Texas A & M University, "Assessment of Sediment Contamination in Casco Bay and Appendix A, 1992" (1992). *Publications*. 296. https://digitalcommons.usm.maine.edu/cbep-publications/296

This Report is brought to you for free and open access by the Casco Bay Estuary Partnership (CBEP) at USM Digital Commons. It has been accepted for inclusion in Publications by an authorized administrator of USM Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.

The Geochemical and Environmental Research Group

Texas A&M University

ASSESSMENT OF SEDIMENT CONTAMINATION IN CASCO BAY

Interpretive Report

and

Appendix A

· Quality Assurance Data Summaries

prepared by

GEOCHEMICAL AND ENVIRONMENTAL RESEARCH GROUP AND THE DEPARTMENT OF OCEANOGRAPHY TEXAS A&M UNIVERSITY 833 GRAHAM ROAD COLLEGE STATION, TEXAS 77845

prepared for the

CASCO BAY ESTUARY PROJECT

FINAL REPORT

August 1992

TECHNICAL REPORT #92-157

7

. 4

ASSESSMENT OF SEDIMENT CONTAMINATION IN CASCO BAY

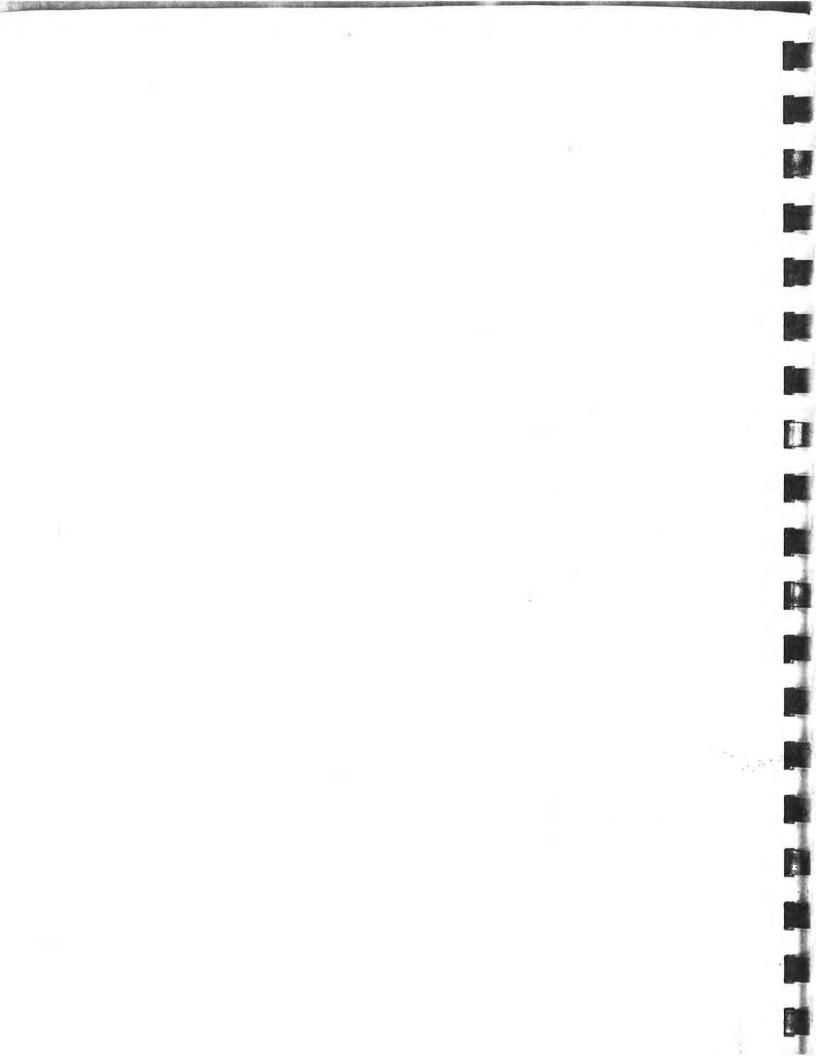
1

1

1

prepared by the

GEOCHEMICAL AND ENVIRONMENTAL RESEARCH GROUP AND THE DEPARTMENT OF OCEANOGRAPHY TEXAS A&M UNIVERSITY 833 GRAHAM ROAD COLLEGE STATION, TEXAS 77845


prepared for the

CASCO BAY ESTUARY PROJECT

Printed on Recycled 🛟 Paper

1. PROJECT NAME: Assessment of Sediment Contamination in Casco Bay

- 2. PROJECT REQUESTED BY: Casco Bay Estuary Project
- 3. DATE OF REQUEST: July 2, 1991
- 4. DATE OF PROJECT INITIATION: July 30, 1991
- 5. PROJECT OFFICER: EPA Project Officer Mark Smith CBEP Program Manager - Lee Doggett
- 6. QUALITY ASSURANCE OFFICER: USEPA Region 1- Carol Wood
- Prepared by: Mahlon C. Kennicutt II, Terry L. Wade, and B.J. Presley Assisted by: Guy J. Denoux, Stephen T. Sweet, Thomas J. McDonald, David Martin, Debbie Paul

TABLE OF CONTENTS

<u>Page</u>

1.0	Executive Summary	1
1.0		6
2.0	Introduction and Background	6
		6
	0.1.1 Environmental Setting	10
	2.1.2 Contaminants of Interest	11
	2.1.2 Containmants of Intercommunication in Coastal Areas	12
	0.0 Ilistoriaal Data	$12 \\ 16$
	2.2.1 Hydrocarbons	18
	0.0.0 Pesticides and PCBs	$\frac{10}{24}$
	2.2.3 Trace Metals	24
0.0	Methods	28
3.0	0.1 Comple Collection	32
	0.0 Variances from SOPS	36
	3.3 Method Detection Limits	36
	0.4. Quelity Accuronce Summary	42
	3.4 Guality Assurance Summary 3.5 Confirmation of Pesticide and PCB Analyses	44
	Contaminant Concentrations	44
4.0	4.1 Hydrocarbons	44
	4.1 Hydrocarbons	56
	4.1.1 Geographic and Historical Comparison in 4.1.2 Comparison with Other U.S. Coastal Waters	60
	4.1.2 Comparison with Other 0.3. Coastai Water o	65
	 4.1.2 Comparison that 5 4.2 PCBs and Pesticides	65
	- HI OIL - II C Cooctal Waters	76
	4.2.2 Comparison with Other U.S. Coastar waters	76
	4.3 Trace Metals	76
	 4.3 Trace Metals 4.3.1 Geographic and Historical Comparisons 4.3.2 Comparison with Other U.S. Coastal Waters 	95
5.0	Summary and Conclusions	95
		103
6.0	Literature Cited	103
7.0	Glossary of Terms	107
	Appendix A Quality Assurance Data Summaries	A-1
		B-1
		C-1
	Appendix C Trace Metal Analytical Results Appendix D Standard Operating Procedures	D-1
	SOP-ST02 Extraction of Sediments for Trace Organic Analys	is

- SOP-ST03 Quantitative Determination of Polynuclear Aromatic Hydrocarbons by Gas Chromatography/Mass Spectrometry (GC/MS) - Selected Ion Monitoring (SIM) Mode
- SOP-ST04 Quantitative Determination of Chlorinated Hydrocarbons
- SOP-8904 Quantitative Determination of Aliphatic Hydrocarbons and UCM (Unresolved Complex Mixture)
- SOP-9131 Total Ammonia-Kjeldahl Method
- SOP-ST08 Digestion of Sediment for Trace Metal Analysis
- SOP-ST09 Analysis of Trace Metals by Flame Atomic Absorption
- SOP-ST10 Analysis of Trace Metals by Graphite Furnace Atomic Absorption
- SOP-ST11 Analysis of Mercury by Cold-Vapor Atomic Absorption
- SOP-ST16 Quantitative Determination of Selected Trace Elements by Instrumental Neutron Activation Analysis (INAA)
- SOP-ST14 Total Organic and Carbonate Carbon Content of Sediments
- SOP-ST15 Sediment Grain Size Analyses Gravel, Sand, Silt and Clay Only

ii

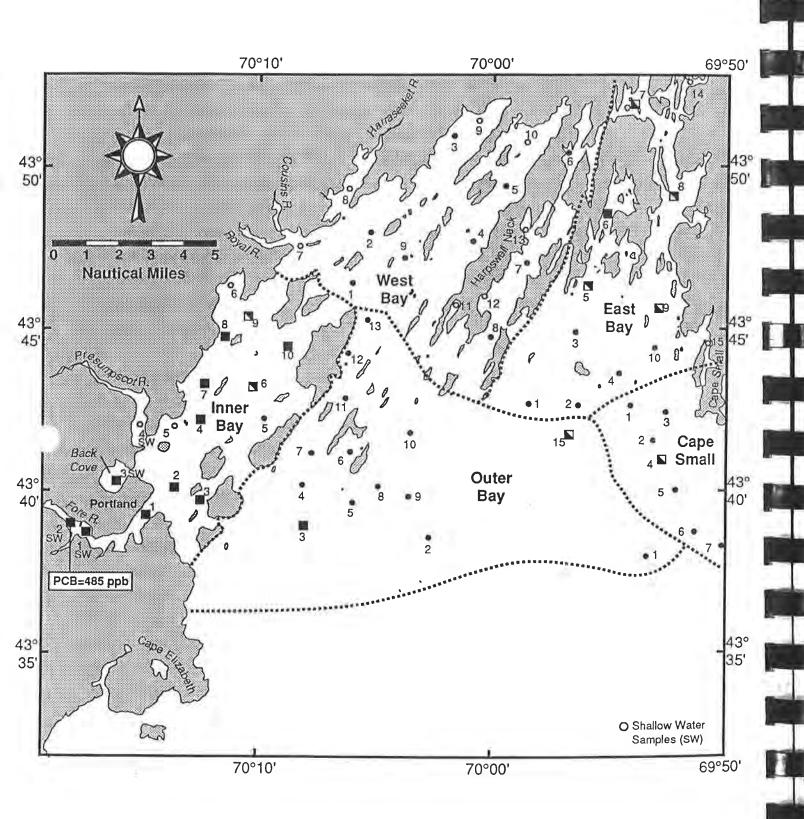
1.0 EXECUTIVE SUMMARY

In April 1990 Casco Bay was designated an estuary of national significance and included in EPA's National Estuary Program. Casco Bay's beauty and protected waters have made it a sought after location for residences, businesses, industry and recreation. The informed management of Casco Bay offers an opportunity to protect this important natural resource. As a first step, a study was designed to assess current contaminant levels in sediments throughout the bay. Sediments, as a repository of contaminants derived from human activities, provide a mechanism to assess the present status of contamination. While concentrations of contaminants do not indicate ecosystem health they do provide information on the importance of various contaminating processes, assess the areal extent of contamination, and provide for comparisons with other documented pollutant occurrences. Indicators of contamination from petroleum utilization (aliphatic and polycyclic aromatic hydrocarbons), agricultural activities (pesticides), urbanization (hydrocarbons, pesticides, trace metals), and industrialization (PCB's, hydrocarbons, trace metals) were measured at 65 locations within five regions of the bay.

The study consisted of several elements. Sediments were analyzed by state-of-the-art, highly sensitive methods compatible with NOAA Status & Trends techniques and other national environmental programs. A strict quality assurance project plan was instituted and adhered to throughout the Quality assurance is provided by an integrated management program. system that ensures that the data quality is commensurate with project objectives. Quality is assured by monitoring data from duplicate analyses, matrix spikes, surrogates, blanks, calibration checks, and standard reference materials. Pesticides, PCB's, polycyclic aromatic hydrocarbons (PAH), and selected trace metals (Cd, Cu, Pb, Cr, Ni, Ag, Zn, Fe, Hg, As, and Se) were measured. Historical reports of sediment contaminant analyses in Casco Bay were summarized and compared to the data produced by this study. Data comparisons were used to discern temporal changes and to evaluate Casco Bay in relation to other U.S. estuaries (primarily by comparison with NOAA National Status and Trends data). The concentrations of chemicals in Casco Bay sediments were compared with

data on biological effects from Long and Morgan (1990) and the Washington State Sediment Quality Criteria. However, biological effects were not directly evaluated as part of this study.

1


One or more anthropogenic contaminants; trace metals, PCB's, DDT, chlordane, or polycyclic aromatic hydrocarbons (PAH); were detected at all locations sampled. The geographic distribution of contaminants is initially controlled by the frequency of occurrence of sources and secondarily by oceanographic conditions. The most widespread contaminants are associated with the utilization of petroleum and petroleum products. Polycyclic aromatic hydrocarbons (PAH) are the primary agent causing the toxic effects attributed to petroleum. Hydrocarbon contamination decreases in intensity with increasing distance from areas of highest population density. Localized sites of contamination are associated with cities, effluent outfalls, and spills. The predominant PAH in sediments adjacent to urban and industrialized locations are combustion-derived (i.e., car exhaust, urban run-off, etc.). Sediments from the Inner Bay region of Casco Bay; closest to Portland, ME; contain the highest levels of trace metals, PCBs, DDTs, and chlordane. For contaminants other than PAH (and these only at a few locations) and PCBs at one location, the levels of contamination in Casco Bay would not be considered high on a national basis. Variations in contaminant concentrations with time are difficult to assess based on historical information because of different methods of analysis, variations in the contaminants measured, and a lack of common station locations. However, in general the contaminant concentrations measured in this study are within the ranges reported in previous studies.

The high PAH concentrations in Inner Bay sediments are similar to other contaminated estuaries. PAH concentrations in Inner Bay sediments are nearly an order of magnitude lower than PAH concentrations thought to produce toxic responses in marine benthic organisms, i.e., total PAH \geq 35,000 ppb. While historical data on biological effects are useful for qualitative comparisons it should be noted that toxicity is effected by factors other than concentration (i.e., biological availability). The mode of occurrence of PAH has been shown to vary widely depending on original source. Coal or soot associated combustion PAH are often tightly bound or occur in the interiors of particles. This mode of occurrence renders these

PAH largely inert to organisms. In contrast, equivalent concentrations of liquid hydrocarbons such as oil or creosote may induce toxicological effects. Biological availability is important in determining whether a contaminant evokes a biological response. A majority of PAH detected in Casco Bay are combustion related and most likely sequestered in fine particulates that tend to reduce apparent toxicity. The remainder of the PAH are weathered residues of petroleum contributed by spills and runoff. No direct measure of biological effect was measured in this study and literature data is provided as a qualitative comparison.

PCB concentrations above 400 ppb (dry wt.) have been shown to elicit a toxic response in some benthic organisms. Only one site from Casco Bay is above this threshold (Figure 1). DDT concentrations in Casco Bay sediments are also low compared to concentrations known to cause a toxic response in most benthic organisms. Chlordane concentrations are low on a national basis and should pose little or no threat of toxic biological effects. Again, biological effects are only inferred from previous literature studies and were not directly measured as part of this study. Other organochlorine pesticides including aldrin, BHC, dieldrin, endosulfan (I, II, and sulfate), endrin, endrin aldehyde, heptachlor, heptachlor epoxide, toxaphene, and hexachlorobenzene were found at low concentrations (<~0.25 ppb dry wt.).

While Casco Bay sediments would not be considered "high" in trace metal content it is important to assess whether these concentrations would be harmful to organisms. The concentrations of metals known to elicit toxic biological responses are much higher than those found in Casco Bay sediments. Metal concentrations in Casco Bay sediments are comparable to uncontaminated sediments. Ag, Cd, Pb, Zn, and Hg concentrations suggest that additions of metals from anthropogenic activities have occurred at a few locations. However, even the few elevated trace metal concentrations in Casco Bay are much lower than those of highly contaminated sediments from Hudson-Raritan, Long Island Sound, Boston Harbor and elsewhere. It is unlikely that the trace metals in Casco Bay sediments are causing toxic effects in marine organisms. As with PAH, biological availability must be

Figure 1. Location of the 25% highest organic (**■**) and inorganic (**■**) contaminants in sediments from Casco Bay.

considered when estimating the potential toxicity of trace metal contamination.

The highest 25% of organic contaminants were located at 10 Inner Bay, 2 Outer Bay, 3 East Bay, and 1 Cape Small sites (Figure 1). Eight of the ten most highly contaminated stations are located in the Inner Bay region including the six stations with the highest concentrations. The lowest levels of organic contaminants were in the Cape Small and West Bay regions. High levels of organic contaminants tend to co-occur at a single location. Locations with the 25% highest levels of inorganic contamination were at 12 Inner Bay, 3 East Bay, and 1 Outer Bay locations. Nine of the ten locations with the highest concentrations were in the Inner Bay region including the eight highest stations. Lowest metal concentrations occurred in the Cape Small region. Eleven stations were ranked in the highest 25% for both inorganic and organic contaminants (Figure 1). Nine of the eleven were Inner Bay locations.

Contaminants related to human activities are detectable throughout Casco Bay but in most cases occur at exceedingly low concentrations. A variety of processes release contaminants to Casco Bay and these chemicals have accumulated in bay sediments. The focus of contamination in the Inner Bay region is directly associated with population centers and industrialization. Localized contamination by various chemicals is generally far below levels suspected of evoking a toxic biological response.

2.0 INTRODUCTION AND BACKGROUND

2.1 Overview

, Casco Bay has a wealth of natural resources and marine habitats that support a rich and diverse ecological web of life. Casco Bay is situated along the Atlantic Coast of Maine and encompasses the body of water enclosed by Cape Small to the northeast and Cape Elizabeth to the southwest (Figures 2 and 3). The bay proper is a 400 km^2 embayment of the Gulf of Maine which includes Portland Harbor, a major docking facility, and the principal fishing port of Maine (Larsen et al., 1983a). More than 300 miles of coastline and nearly four hundred islands are encompassed by the bay (Larsen et al., 1983a). Casco Bay's beauty, clean water, fish and waterfowl, and its deep and protected waters have made it a sought-after location for residences, businesses, industry and recreation. In April, 1990, Casco Bay was designated an estuary of national significance and was included in EPA's National Estuary Program (NEP). The NEP goal is to protect and improve water quality while enhancing living resources through the development of comprehensive conservation and management plans (CCMPs). CCMPs are designed to ensure the ecological integrity of designated estuaries. Anthropogenic activities may threaten the environmental integrity of Casco Bay. However, the informed management of Casco Bay's users offers an opportunity to restore as well as protect this important natural resource. This study provides an assessment of sediment contamination in Casco Bay. Spatial trends in contaminant concentrations among the five regions of the Bay are compared and temporal trends in contaminant concentrations are described based on historical data. Data generated by this study are intended as an aid to the resource agencies which formulate management decisions as well as a guide to future studies within Casco Bay.

2.1.1 Environmental Setting

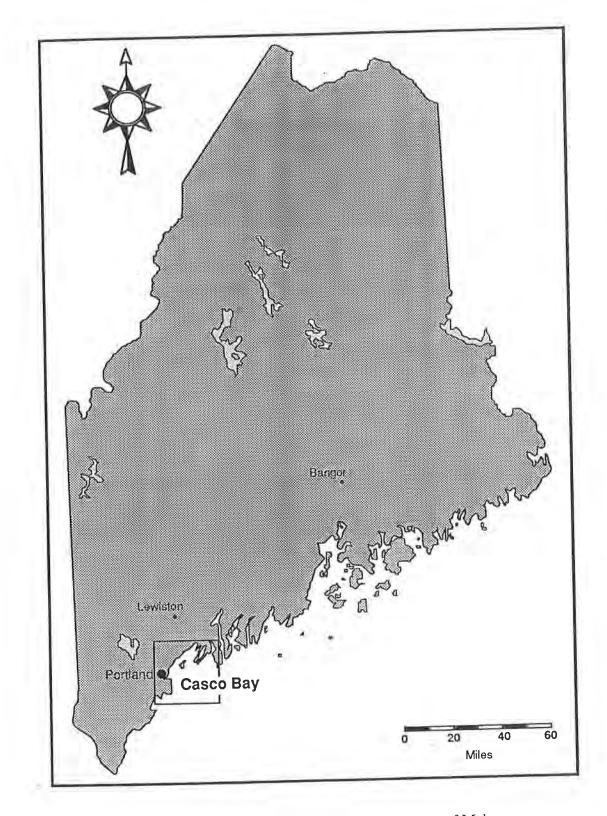

Casco Bay consists of a complex system of narrow bays, islands and peninsulas oriented along a northeast axis (Figure 3). The geology of this region is controlled by the Paleozoic bedrock structure which was sculpted

Figure 2. Location of Casco Bay within the state of Maine.

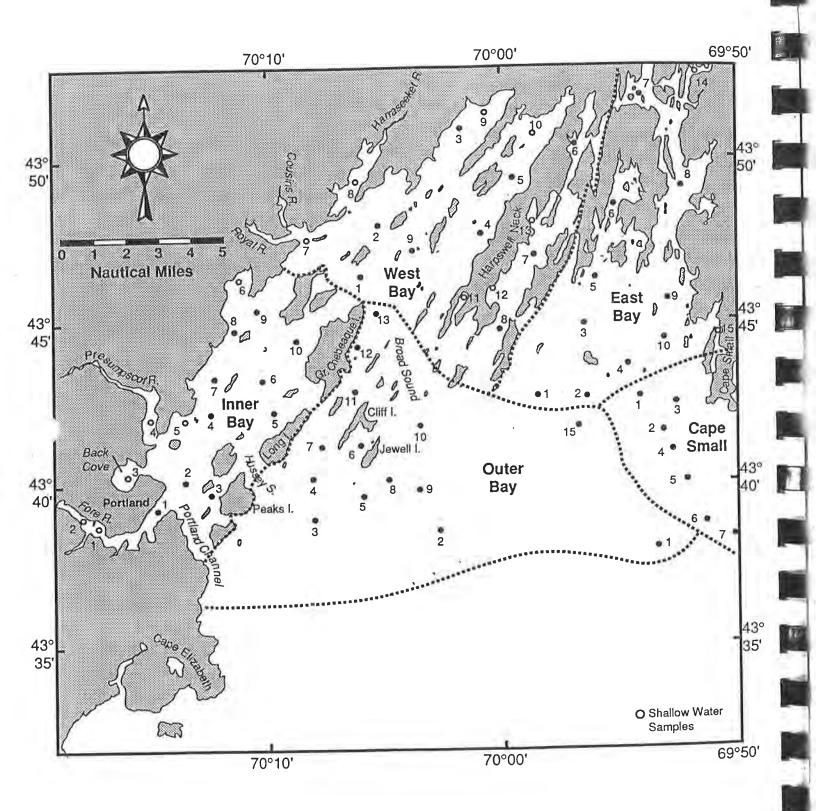


Figure 3. Sampling Sites for the 1991 Casco Bay sediment quality study.

П

by glacial ice movements at 70 to 90 degrees to the structural grain. The bedrock in this region is composed of high grade metasedimentary rocks (Kelley, 1987). Casco Bay can be subdivided into three zones on the basis of sedimentary accumulation; an inner, a middle and an outer zone (Belknap *et al.* 1987). The outer zone is characterized by virtually no sediment cover on bathymetric highs and no major sediment accumulation in bathymetric lows. This zone is strongly influenced by wave action which results in low sediment accumulation rates. Wave action is the dominant factor affecting the coastlines of the outer islands. The middle zone has a thicker till, evidence of glacial marine sediment (the Presumpscot formation) and Holocene mud. The inner zone is a sedimentary accumulation zone with thick Holocene muds, drowned stratified sands and only a slightly reworked Pleistocene section (Belknap *et al.*, 1987).

The climate in the Casco Bay region may be characterized as a humid northern temperate climate. Prevailing winds in the region are southsouthwest in the summer, shifting to the north-northwest in the fall and winter. The prevailing southwest winds can produce localized upwelling in the deeper channel areas in the summer (Fefer and Schettig, 1980). This region can experience strong winter storm events with winds exceeding 100 km/hr from the northeast, persisting for several days (Kelley, 1987). The storm events often result in sediment resuspension and transport. The average coastal temperatures vary between 5 to 10°C; however, the winters can be quite severe and are cold enough for shallow estuaries, beaches, marshes and flats to freeze (Fefer and Schettig, 1980). The precipitation patterns are bimodal in nature with peaks in the spring and the fall.

Casco Bay receives a low freshwater discharge of about 40 m³/sec (Belknap *et al.* 1987) from the Fore, Presumpscot, and Royal Rivers. It also appears that the Androscoggin and Kennebec Rivers, which discharge just north of Cape Small, influence Casco Bay. According to Fefer and Schettig (1980) sufficient fluvial discharge can develop a weak current which is generally in a southerly direction along the Maine coast. For this reason, the eastern boundary of the study area extends beyond Cape Small, to include a portion of the plume of the Kennebec and Androscoggin Rivers. The most densely populated portion of the Casco Bay watershed; the Portland

metropolitan area, the Fore and Presumpscot Rivers, and Back Cove; has historically received the highest contaminant exposure.

2.1.2 Contaminants of Interest

Polycyclic aromatic hydrocarbon, aliphatic hydrocarbon, pesticide, PCB and selected trace metal contaminants can have multiple sources including petroleum usage, refineries, agricultural activities. industrialization, urbanization, spills, run-off, municipal sewage disposal, and Aliphatic and aromatic hydrocarbons are major shipping activities. constituents of both unprocessed and refined petroleum. Aromatic hydrocarbons account for most of the biological toxicity exhibited by petroleum. Natural populations of hydrocarbon oxidizing bacteria are widespread in the marine environment and are often highly efficient at remineralizing a portion of petroleum related compounds. However macromolecular constituents of petroleum, while relatively inert and nontoxic, may persist for years.

Synthetic chlorinated compounds have found wide usage as pesticides and specialty dielectric fluids in electrical equipment. The pesticides and PCBs measured as part of this study are all in a class of chemicals called organochlorines. These are chemicals produced by people by chlorinating As an example, PCB is an abbreviation for organic compounds. polychlorinated biphenyl. It is a generic name for the product of chlorination of biphenyl and aromatic hydrocarbon. PCBs are mixtures of PCBs are some of the 209 possible chlorinated biphenyl congeners. industrial compounds found in such products as dielectric and heat transfer fluids, fire retardants, paint additives, immersion oils, adhesives and others. The use and production of PCBs is banned in the U.S., but due to their persistence are still found in the environment. DDT is a chlorinated aromatic hydrocarbon that was extensively used as a pesticide during World In the War II and until 1970 when its use was banned in the U.S. environment DDT breaks down to form DDD and DDE which are also toxic. DDT is still produced in many countries including Mexico. Chlordane is a pesticide that was used for termite control. The mixture sold as chlordane (technical chlordane) contains many compounds, but the most abundant

constituents are alpha-chlordane, gamma-chlordane, heptachlor, transnonachlor and cis-nonachlor, which were measured as part of this program. These compound concentrations are summed and reported as total chlordane. The production of chlordane in the U.S. was suspended in 1988. These are the major chlorinated hydrocarbons detected in sediments from Casco Bay. While both natural chemicals such as hydrocarbons and synthetic chlorinated compounds can degrade in the environment, PCBs are believed to be most persistent. These hydrophobic organics are also known to bioaccumulate and often biomagnify in organisms.

Trace metals in sediments have multiple anthropogenic sources as well as natural sources. All sediments have a natural background concentration of all metals, including metals known to be toxic such as Cd, Hg and Pb. Furthermore, this natural background concentration can vary by up to a factor of 100 from place to place depending on sediment mineralogy and grain size. The question, then, is not is a given metal present, but rather what concentration is present and is this an enrichment over the expected background amount? The ratio of the concentration of potentially toxic metals to that of Al or Fe is helpful in assessing anthropogenic influences because the ratios vary much less than absolute amounts under natural conditions. If metals are added by mining, metallurgy, plating, cleaning, or other human activities they will increase the metal to Al or Fe ratios because these latter elements are present in high concentrations in sediments and are unlikely to be perturbed by human activities.

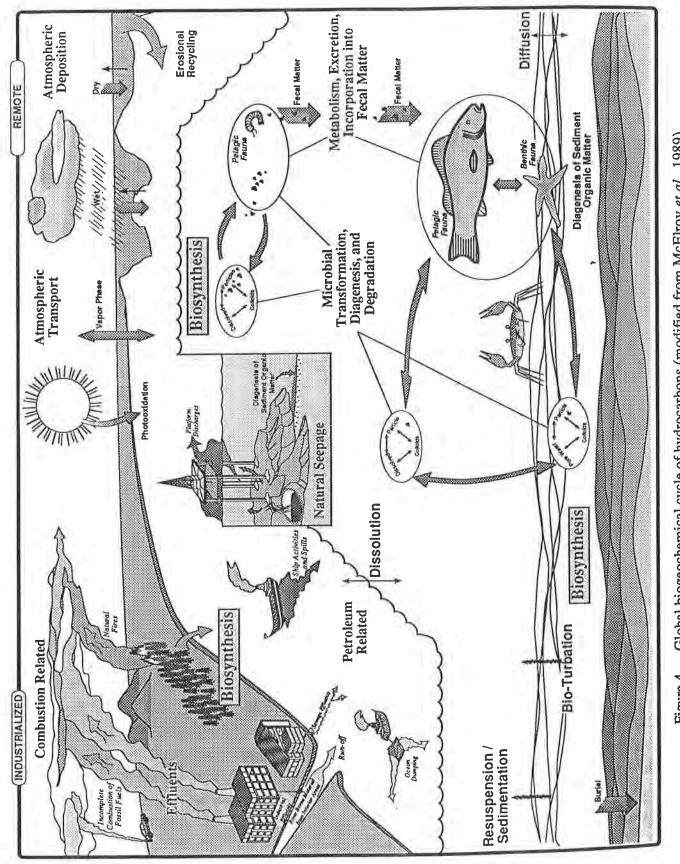
2.1.3 Sources of Hydrocarbon in Coastal Areas

Aliphatic hydrocarbon (AH) compositions have been extensively used to estimate the relative importance of hydrocarbon sources. The use of aliphatic hydrocarbons as indicator compounds is based on the premise that recognizable assemblages of normal and branched alkanes are associated with specific sources. In nature however, few unique aliphatic endmembers occur. Plankton produce simple mixtures of hydrocarbons dominated by $n-C_{15,17,19}$ and pristane (Clark and Blumer, 1967; Blumer *et al.*, 1970; Goutx and Saliot, 1980). Petroleum also contains these compounds but also contains nearly equal amounts of $n-C_{16,18,20}$ and phytane

(Farrington and Tripp, 1977; Farrington *et al.*, 1973). Straight chain biowaxes with 25,27,29 and 31 carbons have been used extensively as indicators of recent terrestrial or land-derived organic matter. Waxes derived from normal alkanes are also found in petroleum but are accompanied by near equal amounts of $n-C_{24,26,28,30}$. The presence of an unresolved complex mixtures (UCM) in the gas chromatographic analysis also indicates petroleum contamination. The UCM is primarily due to petroleum though in non-purified extracts a portion of the UCM may be biological in origin.

PAH are ubiquitous in sedimentary environments and can have multiple sources including petroleum, biosynthesis, early diagenesis, coal, combustion and immature/mature sediments. Molecular compositions have been extensively documented so that these various sources can be recognized based on the relative abundance of parent and alkylated homologues and ring number distributions (Hites *et al.*, 1980; LaFlamme and Hites, 1978; Wakeham *et al.*, 1980a,b). A clear association between petroleum and PAH has been demonstrated. Few aromatic hydrocarbons are synthesized by organisms and the complex mixture of alkylated homologues present in petroleum are only formed at elevated temperatures.

The incomplete combustion of fossil fuels has long been recognized as an important source of PAH to the environment (Youngblood and Blumer, 1975; LaFlamme and Hites, 1978). These combustion PAH can be derived from anthropogenic activities as well as natural events such as forest and In recent sediments, anthropogenic sources have been range fires. determined to be the primary source of combustion or pyrogenic PAH. In remote areas distant from urbanization, combustion PAH represent the majority of aromatic hydrocarbons present in sediments. An increase in sediment PAH around the turn of the century in sediment cores in the northern hemisphere has been attributed to the increased use of coal (Charles and Hites, 1987). In urban atmospheres, these combustion products are in the form of particulates that contain both aliphatic and aromatic hydrocarbons (Lee et al., 1977). Combustion PAH can be deposited on the sea surface by dry deposition or rain-out of atmospheric particles, or transported to the ocean via runoff after deposition on land. Combustion PAH have been detected in marine sediments throughout the world


(LaFlamme and Hites, 1978; Youngblood and Blumer, 1975; Windsor and Hites, 1979; Wade *et al.*, 1988).

Combustion PAH can be recognized by their molecular compositions. Due to their high temperature formation the most stable highly condensed PAH are dominant. Compounds with three or more benzene rings, no alkylations, and a linear arrangement of ring structures are typical of combustion PAH (i.e., anthracene, fluoranthene, pyrene, benzanthracenes, benzofluoranthenes, chrysene, indenopyrenes, and dibenzanthracenes). Another feature in the dominance of non-alkylated compounds over alkylated compounds within a homologous series such as naphthalenes and phenanthrenes. In contrast alkylated PAH are usually the most abundant PAH in petroleum.

In summary hydrocarbons are a ubiquitous component of marine sediments derived from both natural and anthropogenic sources (Figure 4). The molecular composition of hydrocarbons is extremely useful in deconvoluting complex contaminant scenarios in marine systems.

2.2 <u>Historical Data</u>

Several sets of historical data are particularly germane to the present study (Figure 5). Larsen *et al.* (1983a,b,c) measured trace metals, PAH and PCBs in sediments from Casco Bay collected in 1980. A further study of sediment contaminants in Casco Bay was conducted as part of two multi-year studies by NOAA, the Benthic Surveillance Program and the Status and Trends Program. Sediments were collected between 1984 and 1988 at a few sites with selected sites occupied more than once. A more extensive suite of individual analytes were measured than in the 1980 study. However, the same general suite of contaminants were determined. A large database collected for the entire U.S. coast as part of NOAA's programs will be used to compare Casco Bay to other coastal bays and estuaries. In these studies finegrained (<20% sand) sediment was collected at 232 sites along the U.S. Atlantic, Pacific and Gulf Coasts. At each site sediment was taken from three stations, one to 500 meters apart, for a total of 696 samples that were analyzed between 1986 and 1989 (O'Connor, 1990). Finally two sediment

Global biogeochemical cycle of hydrocarbons (modified from McElroy et al., 1989). Figure 4. 1

Ę

Ø

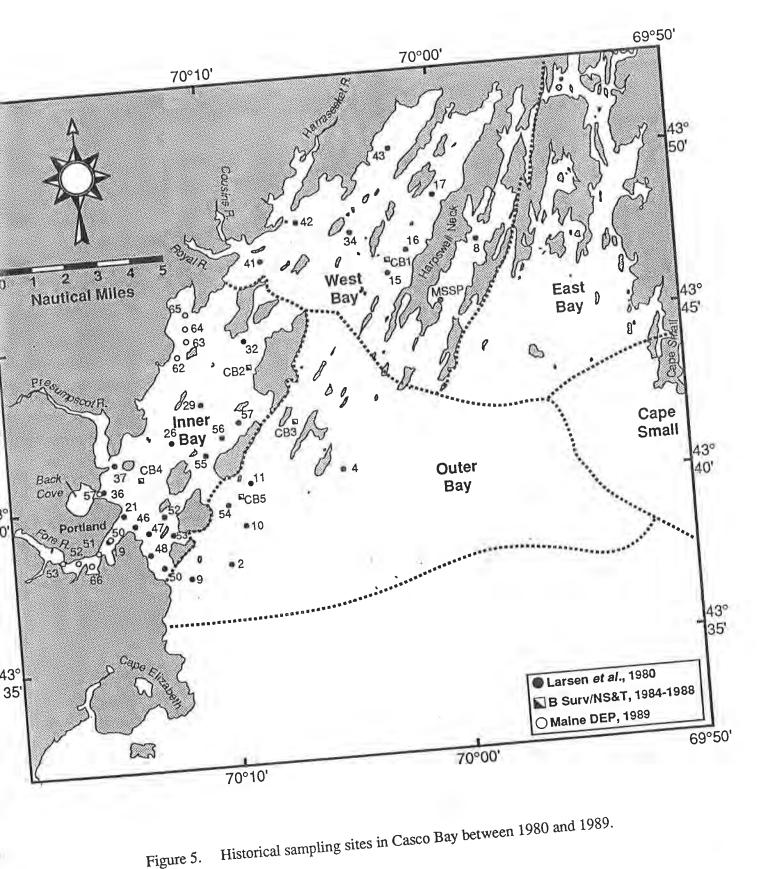


Figure 5.

transects were sampled by the Maine Department of Environmental Protection in 1989 and analyzed for trace metals, PCBs, and PAH (Doggett, pers. comm.).

Comparisons of data produced over long periods of time by multiple laboratories should be viewed with caution. For many contaminant measurements with high quality assurance, sensitive methods have only recently become available. Often quite variable methods are used with each having its own potential for analytical bias. The level and details of quality assurance protocols vary widely and the method detection limits, accuracy, and precision of the data are a direct outcome of the QA protocols adopted. Methods of detector calibration, calculations (including units) and corrections for surrogates tend to obscure comparisons as well. Another factor that confounds historical comparisons is collection of samples by widely differing techniques. For example, the depth of sediment sampled can produce significant variability in the concentrations measured. Contamination is a relatively recent event on a geological time scale and concentrations could be diluted if more deeply buried, uncontaminated sediment is added to the sample.

2.2.1 Hydrocarbons

Larsen et al. (1983a) analyzed sediments at 30 stations throughout Casco Bay (Table 1). Polynuclear aromatic hydrocarbons were detected at all Pyrene; benzo(a)anthracene; chrysene; benzo(b)fluoranthene; stations. benzo(a)pyrene; dibenzo(a,h)anthracene; benzo-g,h,i-perylene; and indeno-1,2,3-c,d-pyrene were detected at 73% of the stations. Individual PAHs exceeded 1000 ppb wet wt. at several stations with benzo(b)fluoranthene concentrations as high as 4550 ppb. Total PAH concentrations ranged from 215 to 14,425 ppb wet wt. with a mean of 2,164 ppb wet wt. Multiple sources were indicated as contributors of petroleum contaminants to bay sediments. Stations in the mid and upper bay had PAH levels \leq 900 ppb wet wt. whereas PAH levels > 2000 ppb wet wt. were detected in the vicinity of Portland, the principal shipping channel, and the mouth of the Presumpscot River. Localized anthropogenic sources of PAH are concentrated in these Preferential preservation of high molecular weight PAH was areas.

K + 11-1

į.

 $apAH = \sum 1-16$ $bpAH^* = \sum (1-10) + 13+16$

Table 1. Polycyclic aromatic hydrocarbon concentrations (ppb wet wt.) from a 1980 sampling of Casco Bay sediments (Larsen et al., 1983a)

suggested to contribute to the relative abundance of these compounds compared with the more volatile, lower molecular weight compounds. Combustion processes are most likely the major source of sedimentary PAH as evidenced by the dominance of non-alkylated and highly condensed ring compounds. This early survey did not measure the alkylated PAH indicative of unprocessed petroleum.

Results of the NOAA Status and Trends Program and the Benthic Surveillance Programs are summarized in Table 2. These programs monitored sediment PAH at a few locations from 1984-1988. Selected alkyl PAH isomers were monitored as well as unsubstituted PAH. As in previous studies the PAH detected are abundant in high molecular weight, highly condensed combustion related PAH. The total of all PAH measured varied from 475 to 7,315 ppb dry wt. The sum of the most commonly measured PAH(*) varied from 330 to 3,496 ppb dry wt. surrogate corrected. It should be noted that NOAA Status and Trends locations are intentionally chosen distant from known point sources of contamination.

The Maine Department of Environmental Protection, in conjunction with EPA, sampled two transects in Casco Bay in 1989 (Doggett, pers. comm.). The sediments were analyzed for a range of PAH (Table 3). The molecular composition of the PAH was similar to previous studies with high molecular weight PAH being most abundant. Sites near Portland had a mean PAH concentration of 36,950 ppb dry wt. These values are high compared to the 1980 study. However, these samples were taken in areas near the South Portland outfall and a coal tar contaminated site. Coal tar is made by the high temperature carbonization (pyrolysis) of bituminous coal and therefore most of the PAH it contains are non-alkylated parent compounds (Merrill and Wade, 1985). Sediment PAH concentrations along a transect in the western region of the bay had a mean concentration of 2,570 ppb dry wt. PAH compositions were similar at both locations.

2.2.2 <u>Pesticides and PCBs</u>

Contamination of the marine environment by chlorinated pesticides and polychlorinated biphenyls (PCBs) has received considerable attention over the past several years. Much of this attention has focused on the coastal

Table 2. PAH data from the National Status & Trends and the Benthic Surveilience Programs for Casco Bay (* = data missing: 0.0 = data below LOQ; ppb dry weight).

Sample ID 84	84CSCCBSSED 84	85CSCCB2SED 85	NU BOCOCERISED	250 8203	85C5CCH33ED	85CSCCB4SED 85		85CSCCB5SED 85
Analyte (ppb dry weight)								
lashthalana	00	31.8	0.01		00	5		38.7
2-Methylnaphthalene	0.0	14.3	0.0		0.0	30.9		18.3
l-Methýlnaphthalene	0.0	0.0	0.0		0.0	0.0		16.7
Biphenyl	0.0	0.0	0.0		0.0	0.0		0.0
2,6-Uimctnyinaphthalene Accuanhthulene	n.u	1.221	0. •		0.0	n.u.		0.0
Accuaphthene	37.7	0.0	0.0		0.0	0.0		0.0
,6,7-Trimethylnaphthane	•	•	•		•	•		•
Fluorene	0.0	0.0	0.0		0.0	19.3		12.7
Phenanthrene	262.0	129.9	60.4		100.9	238.5 F0 F		133.6
Auuraceue 1 - Methylahenanthrene	3280.3	19.6			12.3	35.7		16.0
Fluoranthene	504.0	215.6	101.1		171.4	421.4		222.2
Pvrene	676.9	177.0	60.2		127.8	411.2		224.1
Benzo(a)anthracene	595.8	76.9	39.8		61.0	163.5		111.3
Chrysene	388.9	117.2	59.6		104.2	220.9		146.2
Benzo(b)fluoranthene	•	•	•		•	•		đ
Benzo(k)fluoranthene	•	•	•		•	a ·		•
Benzo(b&k)Iluoranthene			• •		• 6			
Benzo(c)pyrene	1/0/1	0.0			0.0			
Derizola)pyrenc	2.102		0.0		0.0	0.0		
retytette Dibenzo(ablanthrarene	0.000							
Benzofshilhnerviene	? *	•	*		2.4			<u>-</u>
denopyrene	•	•	•		•	•		•
TOTAL PAH	7315	921	336		598	1647		979
TOTAL PAH •	3496	765	334		578	1578		927
Sample ID	BECSCO	2SED	86CSCCB1SED	AA1077	AA	AA1078	AA1079	11
Sample Year		86	86	88	~	88	88	
Analyte (ppb dry weight)	(ght)					-		
M	ò		00		J	U	0.4	
Naphunalene			0.0	4.7	U I	0.0	4. V	
2-Methylnaphthalene		1.0	0.0	0.0 V A	- 0	0,0	4, c Ú 0	
I-memyinapnunaiene Diahaari		v C	0.01	† ⊂	., .	40		
bipricuyi S S S Multinet de la		0.0	0.01		, .	2 1		
2,6-Dimenyinaphualene		0.0	0.0	1.1		0.7	7.6	
Accuaphunylenc	<u> </u>	0.0	n <	0.01	-	0.0	# C	
Acchaphunche		0.0	0.0	0.0				
1,6,7-Trimethylnaphthane		0.0	0.0	2.9		0.0	0.0	
Fluorenc	2	0.	0.0	6.3	1	1.	3.5	
Phenanthrene	10	0.7	44.0	64.0		2.0	38.0	
Anthracene		7.1	101.6	15.0		6.0	9.8	
1-Methylphenanthrene		5.0	369.0	15.0	1	3.0	7.0	
Fluoranthene	17	8.8	74.7	130.0	1	0.0	80.0	
Pyrene	17	78.0	112.1	130.0	14	0.0	74.0	
Benzo(a)anthracene	Ø	8.7	46.2	55.0	9	2.0	34.0	
Chrysene	ð	6.9	37.7	52.0	2	6.0	39.0	
Benzo(b)fluoranthene		6.4	42.6	26.0	e	5.0	23.0	
Benzo(k)fluoranthene		0.0	0.0	33.0	e	5.0	18.0	
Benzolb&klfluoranthene			•	•		•	•	
Benzo(e) byrene		3.3	32.0	54.0	9	62.0	32.0	
Benzo(a)pyrene	80	89.0	34.8	67.0	2	76.0	39.0	
Pervlene	õ	6.5	14.9	32.0	4	2.0	20.0	
Dibenzolahlanthracene		0.0	0.0	3.8	,	5.4	0.0	
Benzo(ghilbervlene		9.2	31.7	59.0	9	66.0	33.0	
Indennivrene		19	33.2	0.0		0.0	0.0	
TOTAL PAH		416	004	789		104	475	
TOTAL PAH *	, 0,	927	494	542		624	330	
			•					

上と大川」

Sample ID Analyte (ppb)	SOA	50B	50C	51A	51B	51C	52A	52C	52D	53A	53B	53C	66A	66B
Naphthalene S-Methylnaphthalene Biphenyl Biphenyl 2.6-dimethylnaphthalene Acenaphthene Phenanthrene Phenanthrene Phenanthrene Privene Pyrene Benzo(a) anthracene Benzo(a) anthracene Benzo(a) filuoranthene Benzo(a) filuoranthene Benzo(a) filuoranthene Benzo(a) prene Perylene Dibenzo(a) hanthracene benzo(ghl) perylene Dibenzo(ghl) perylene TOTAL PAH • TOTAL PAH •	94 41 41 41 41 41 49 49 620 510 11000 11000 1200 510 1200 510 1200 510 1200 577 577 577	70 41 41 41 41 41 41 41 1500 1500 1500 15	70 41 41 41 41 41 41 41 73 41 73 41 73 41 73 73 73 73 73 73 73 73 73 73 73 73 73	350 240 110 240 5000 5000 12000 100000 1000000	330 130 130 82 82 82 82 82 82 80 850 850 1760 1760 8500 8500 1760 1760 17000 1760 1760 8500 8500 17000 17500 17000 17500 17500 17500 17500 17500 175000 175000 175000 175000 175000 175000 175000 175000 175000 1750000 1750000000000	6700 1900 1400 630 630 170000 170000 170000 170000 170000 170000 170000 170000 170000 1700000000	33 335 336 336 336 336 336 336 336 336 3	88 35 35 35 35 35 35 35 35 35 35 2200 2200	120 570 36 43 43 43 43 43 43 143 00 11200 1200 1200 1200 1200 1200 1200	45 32 32 32 32 32 32 32 32 32 32 32 32 32	60 33 33 33 33 33 33 33 33 55 55 55 55 55	120 32 32 32 32 32 32 32 32 32 32 32 32 32	100 64 50 50 50 50 50 50 50 50 50 50 50 50 50	180 270 220 220 220 570 570 570 570 570 570 570 570 570 57
Sample ID Analyte (ppb)	980	57A	57B	57C	62A	62B	62C	63A	64A	64B	64C	65A	658	65C
Naphthalene S-Methylnaphthalene J-Methylnaphthalene Biphenyl 2.6-dimethylnaphthalene Acenaphthylene Arcnaphthylene Fluorene Phreanthrene Phreanthrene Phreanthrene Benzolejoyrene Benzolejoyrene Benzolehjanthracene Dibenzolahjanthracene Dibenzolahjanthracene Perylene Dibenzolahjanthracene Dibenzolahjanthracene Indenopyrene TOTAL PAH •	2300 2300 2300 2300 2300 2300 2300 2300	88 89 31 31 31 31 31 31 31 31 32 32 32 32 32 32 32 32 32 32 32 32 32	200 200 200 200 200 200 200 200 200 200	733 733 733 733 733 733 733 732 1200 700 860 712 700 860 712 700 860 712 700 712 700 712 700 712 700 712 700 712 700 712 700 712 700 712 712 712 712 712 712 712 712 712 712	410 230 230 230 230 230 230 230 230 230 23	2446 2446 1332 1332	450 450 1374 1374 1374 1374	47 47 47 47 47 47 47 47 47 75 280 280 280 280 280 75 75 75 75 75 75 75 75 75 75 75 75 75	43 43 43 15 55 15 1	8	43 44 44 44 44 44 44 44 44 44 44 44 44 4	12355 12355 1215 1215	1485 1485 1485 1485 1485 1485 1485 1485	2804 2804 2804 2805 2806 2806 2806 2806 2806 2806 2806 2806

F

14

D

zone and estuaries, especially near large population centers (e.g., Farrington et al., 1982, 1983; Risebrough et al., 1983). These environments receive the largest inputs of chemical contaminants and are also ecologically sensitive areas. Toxic organic compounds of synthetic origin, such as pesticides and PCBs, have been reported at high concentrations (ppm) in the coastal environment. Pesticides and PCBs can affect the productivity of marine organisms and in some cases accumulations in fish and shellfish have resulted in fisheries advisories to protect human health. Most pesticides and PCBs that enter the marine environment are only sparingly soluble in water and tend to be preferentially associated with particles and collect in Therefore sediments reflect long-term (years) contaminant sediments. Sediment concentrations of accumulation in coastal environments. pesticides and PCBs provide information on the geographic distribution of these contaminants as well as identify areas where concentrations are high enough to be of possible ecological concern.

The historical data for pesticide and PCB concentrations for Casco Bay are limited. The comparison of data is confounded by the use of different extraction and analytical methods. Therefore, only a limited amount of data Most of the data are for PCB is summarized (Tables 4 and 5). concentrations. The earliest survey data failed to detect PCBs (Larsen et al., 1983b). However the method used had a detection limit in the range of 100 ppb dry wt. As is evident by examination of the available data (Table 4) a majority of the reported data is below this detection limit. Detectable PCB concentrations were reported in all subsequent studies. In one report concentrations for PCBs range from 2.1 to 850 ppb wet wt. (Ray et al., 1983). The highest value detected (850 ppb wet wt.) was for Back Cove sediment however the other three stations in Back Cove had concentrations of only 3.3, 6.1 and 7.5 ppb wet wt. The reason for the high concentration of PCB at the one site was not explained by the authors, but other contaminants (Σ DDT and Σ chlordane) were also high at that location. If this high value is not included the range is from 2.1 to 360 ppb wet wt. This is within the range of values reported by the NOAA National Status and Trends (NS&T) Program for the east coast of the U.S. (Table 5).

Based on the historical data in Table 4 total PCB concentrations are generally higher in the Inner Bay and lower in other regions of the bay. This Concentration of total PCBs, total DDTs, and total chlordane for Casco Bay sediments (ppb dry weight with the exception of Ray *et at.*, 1983 which is wet weight). Table 4.

General Location	Stations	ΣPCB (ppb)	ΣDDT (ppb)	ΣChlordane (ppb)	Reference	Sampling Year
Survey of Entire Bay	32	< 100	QN	QN	A	1980
Fore River	4	2.1 - 32	<0.03-11	<0.03-0.52	Д	1980
Back Cove	4	3.3-850*	1.8-42*	0.18-9.8*	Д	1980
Fore River	9	80-320	DN	ND	U	1981-1983
West Bay	1	40-100	QN	ND	U	1981-1983
Fore River	Q	32-360	QN	ND	D	1989
Back Cove	1	35-65	DN	ND	D	1989
Inner Bay	4	38-43	DN	ND	Q	1989
West Bay	2	8.5-123	0.9-11.4	0.3-8.4**	ы	1984-1989
Outer Bay	2	47-95	0-0-0	0-4.1**	ല	1984-1989
Inner Bay	2	93-127	6.2 - 21	0.5-3.9**	പ്ര	1984-1989

C = Larsen *et al.*, 1984 D = Doggett, pers. comm. E = NOAA NS&T ND = Not Determined

*One station had high values for PCBs, DDTs, and chlordane. Others were no more than three times the lowest value.

**These concentrations do not include all of the components of technical chlordane and are most likely low by a factor of two. E

CBs (ppb dry wt) CBs (ppb dry wt) DI-PCB's	PCB8 (ppb dry wt.) PCB8 PCB18 PCB44 PCB44 PCB44 PCB46 PCB16 PCB101 PCB101 PCB101 PCB116 PCB138 PCB38 P										
1 1	PCB8 PCB18 PCB18 PCB28 PCB28 PCB28 PCB44 PCB128 PCB101 PCB101 PCB110 PCB110 PCB128 PCB138 PCB32										
1 2	PCB18 PCB28 PCB428 PCB44 PCB44 PCB165 PCB101 PCB101 PCB110 PCB118 PCB118 PCB138 PCB138 PCB138 PCB138 PCB138 PCB138 PCB138 PCB138		•	•	•	•	0.0	0.0		0.0	
1 1 2	PCB245 PCB44 PCB44 PCB46 PCB466 PCB101 PCB101 PCB104 PCB103 PCB126 PCB128 PCB128 PCB128 PCB128 PCB128 PCB128 PCB128 PCB128			• •	. 4		0.0	7.3		0.0	
1 1	PCB52 PCB66 PCB101 PCB101 PCB110477 PCB110477 PCB1104 PCB1136 PCB126 PCB128 PCB123 PCB123 PCB123 PCB123 PCB123 PCB123 PCB120 PCB120		•	¢	a	•	0.0	0.0		0.0	
1 1 2	PCB66 PCB101 PCB10477 PCB110477 PCB118 PCB128 PCB128 PCB128 PCB128 PCB128 PCB128 PCB128 PCB128	•••	•	•	٠	•	17.2	21.4		0.0	
1 1	PCB101 PCB110+77 PCB110+77 PCB118 PCB128 PCB128 PCB128 PCB138 PCB138 PCB138 PCB130 PCB180 PCB180	•••	•	•	•	• •	4.6	4.8		۲.۲ ۲.۲	
77 11<	PCB105 PCB110+77 PCB118 PCB118 PCB128 PCB128 PCB138 PCB133 PCB173 PCB173 PCB180 PCB180		• •	• •	• •		0.0	0.0		4.0	
1 200	PCB110+77 PCB118 PCB126 PCB128 PCB138 PCB138 PCB153 PCB153 PCB153 PCB180				,		00	0.0		} •	
Classical Classical <thclassical< th=""> <thclassical< th=""> <thc< td=""><td>FCB126 FCB126 FCB138 FCB138 FCB133 FCB153 FCB153 FCB180 FCB180</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>22</td><td>2.0</td><td></td><td>0.0</td><td></td></thc<></thclassical<></thclassical<>	FCB126 FCB126 FCB138 FCB138 FCB133 FCB153 FCB153 FCB180 FCB180	•	•	•	•	•	22	2.0		0.0	
H-PCBs H-PCBs	PCB128 PCB138 PCB153 PCB153 PCB170 PCB180 PCB180	•	•	•	•	•	0.0	0.0		•	
It PCBs 200	PCB138 PCB153 PCB170 PCB180 PCB180	•	•	•	a (•	1.4	0.0		0.0	
Little Characteries and constrained and constr	PCB153 PCB170 PCB180		•		a 4		0.9	0.0		- 4 0	
H-PCBs 24,0 30 0,0 30 0,0 30 0,0 30 0,0 30 0,0 30 0,0 30 0,0 30 0,0 30 0,0 30 0,0 30 0,0 30 0,0	PCB1/0 PCB180	• •			•	•	700	0.0		0.0	
I-PCBs 00 30 00 30 00 32 RP-PCBs 154 70 00 30 00 30 00 30 00 30 00 30 00 30 00 30 00 310 110 310 110 310 110 310 110 00 1120 310 110 310 110 00 00 00 00 00 00 00 00 00 00 00 00 00 1120 310 110 110		•	•	•	•	•	0.8	0.9		0.8	
Item Close Constraint	[CUIU]	•	•	•	•	•	2.2	1.6		0.7	
H-PCPs 0. <th< td=""><td>PCB195</td><td></td><td>• •</td><td>• •</td><td>• •</td><td>• •</td><td>0.6</td><td>0.0</td><td></td><td>0.0</td><td></td></th<>	PCB195		• •	• •	• •	• •	0.6	0.0		0.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PCB206	•	•		4	•]	0.8	0.0		0.9	1.1 0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DI-PCB's	3.0	0.0	0.0	0.0	0.0	0.0	0.0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8.0	6.0	12.0	13.0	6.0	61.0	75.7			•••
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		31.0	11.0	0.0	18.0	0.0 0.0	22.2	3.5			•
OCT-PCBs 9.7 7.0 2.0 0.0 1.0 CCT-PCBs 0.0 <td< td=""><td></td><td>24.0</td><td>20</td><td>22.0</td><td>24.0</td><td>10.0</td><td>7.8</td><td>8.2</td><td></td><td></td><td>•••</td></td<>		24.0	20	22.0	24.0	10.0	7.8	8.2			•••
CIDES (ppb dry wt.) $\begin{array}{cccccccccccccccccccccccccccccccccccc$		7.0	0.0	3.0 4.0	4.0	3.0	0.6	1.9			•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PESTICIDES (ppb drv wt.)										
							•	0		0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0 2.0	0.0	0.0	0.0	0.0	2 C -	2.7		1.1	1.1 1.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5.0 0.0	0.0	0.5	2.0	0.0	11.6	6.2		0.0	
HI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0	0.0	0.0	0.0	0.0	4.1	7.7		0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.0	0.3	1.0	0.5	0.0	1.5	1.1		8 O.O	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0	0.0	0.0	0.0	0.0	2.1	2.0		0.8	
1.5 3.0 0.4 1.0 1.0 0.4 1.0 0.0 <td></td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td></td> <td>1.0</td> <td></td>		0.0	0.0	0.0	0.0	0.0	0.0	0.0		1.0	
		0.0 0.0	0.4	1.0	1.0	0.4	0.0	0.0		0.0	
		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.	

* = data missing: 0.0 = data below LOQ; data is on dry wright basis

1

1

Table 5. PCB and pesticide concentrations (ppb dry weight) from the National Status & Trends and the Benthic Surveilience Programs for Casco Bay sediments.

is consistent with PAH and trace metal data and also with proximity to highly urbanized and industrialized areas, in this case, the city of Portland. The historical data for total DDT (sum of o,p-DDE; p,p-DDE; o,p-DDD; p,p-DDD; o,p-DDT; and p,p-DDT) are even more limited (Table 4). Total DDT ranges from below the detection limit (~0.5 ppb) to 21 ppb if the high value reported by Ray *et al.* (1983) is not included. As discussed earlier, the one high value is anomalous. The total DDTs, based on this limited data set, appear to be highest in Inner Bay and lowest in Outer Bay sediments. Concentrations are generally higher close to river mouths and near to shore. The historical data for total chlordane are also limited. Concentrations for total chlordane range from < 0.03 to 9.8 ppb. The NS&T data (O'Connor, 1990) do not include data for all the components in technical chlordane thus underestimating chlordane by a factor of two. Therefore the actual range of concentrations is more likely < 0.03 to 19 ppb dry wt. The highest concentrations of chlordane were reported for West Bay sediments.

In summary, although the use of PCBs, DDTs, and chlordane have been limited and/or banned in the U.S., these contaminants and their metabolites are still detected at levels of a few hundred ppb or less in sediments from Casco Bay. These concentrations are similar to those reported for many coastal areas (i.e., Sericano *et al.*, 1990). The geographic distribution of these contaminants in Casco Bay cannot be adequately described based solely on the historical data available.

2.2.3 Trace Metals

Larsen, *et al.* (1983c) took 32 grab samples of sediment from Casco Bay, covering most of the area sampled by the Casco Bay Estuary Program. Grain size and organic carbon content were determined for these sediments as well as concentrations of Cd, Cr, Cu, Ni, Pb and Zn (Table 6). The metal concentrations determined by Larsen, *et al.* (1983c) cannot be considered total metal as the sample preparation method was an aqua regia leach. As has been shown by Trefry and Presley (1976) and others, this leach normally removes 70-90% of metals such as Cd, Cu, Pb and Zn, but might remove only 30-50% of Cr and Ni, depending on sediment mineralogy and other factors. Larsen *et al.* (1983c) report essentially 100% extraction of all metals from Concentration of metals (ppm dry weight) in sediments from Casco Bay, Maine in 1980 with corresponding percent of sediment < 63 μ m, organic carbon content (ppm dry weight; Larsen *et al.*, 1983c) and water depth (m). Table 6.

Station	Water Depth [m]	Cd (ppm)	Cr (ppm)	Cu (ppm)	Ni (ppm)	dq (mdd)	Zn (ppm)	< 63 µm	Organic Carbon (%)
					011	12 5	30.0	46.3	8.6
2	30.5	<0.25	27.0	9.40	0.11	0.01	101	36.0	15.7
4	33.6	0.40	26.0	8.38	10.0	0.01		26.7	13.3
• 0	15.3	0.30	23.0	8.70	13.0	12.0	40.0		2.01
0 0	0.01		8 50	2.40	4.53	10.5	20.8	0.9	4./
ה	10.0		0000	14.0	22 B	29.7	70.8	79.2	21.1
10	38.1	0.00	00.1		101	076	595	65.4	19.1
11	24.4	0.25	21.0	11.4		, ц 1 1 1 1 1 1 1	2020	65.0	21.6
13	14.6	0.50	36.5	11.8	0.91	2.12		202	220
2 1	171	0.55	38.0	20.0	20.0	33.5	73.5	19.0	
2.6	12.21	0 55	54.0	16.4	27.5	25.0	30.5	95.1	200
10	0.01		47 F	16.6	32.0	19.5	84.5	98.6	35.6
17	C.11				136	614	81.9	78.2	26.2
19	13.7	0.87	49.4		20.07 10.10	510	100.0	83.4	26.6
20	10.4	0.80	40.0					89.5	33.2
21	7.6	0.59	36.6	0.02	0.12		0.08	96.8	37.2
26	9.2	0.60	55.0	19.7	0.22		24.00	77 1	24.1
00	13.7	0.50	50.0	16.3	20.0	C.92	0.4.0		113
200	76	0.65	40.0	15.8	22.0	c.12	0.00		
300	2.01	050	49.4	15.8	23.7	20.2	71.6	97.0	0.40
40 40 0			10.8	13.8	6.60	59.0	80.0	84.8	233.0
00	5.7	0.0 0 1 0	57.5	19.2	14.0	35.5	83.5	54.3	44. b
37	2.1	0,10		1.9.1	016	16.5	61.0	79.3	2.31
41	7.3	0.40	0.10		0.80	20.5	68.0	92.8	25.4
42	6.1	0.5 <u>5</u>	43.0	14.0	2.22	0.01	73.8	97.6	30.7
43	7.6	0.55	50.4	10.1		90 E	70.5	42.9	15.2
46	7.6	0.45	26.0	0.01	14.0		0.00	34.5	5.5
47	16.8	<0.25	21.5	06.6	12.0	0.00		26.90	112
10	9.0	0.30	18.0	10.2	9.35	C.22	C.#	207 207	
0 1		0.45	5,85	4.45	5.75	16.5	21.0	7.7	1.0 1.00
2 S	4.12 1 C D L		34.5	20.2	20.5	35.5	80.5	80.3	20.1
22	0.01			22.6	9.05	1	87.0	30.4	37.8
23 23	5. C 1	0.00			105	18.0	41.0	33.6	10.8
54	32.0	<27.0>	20.02	00.0		5 21	40.5	26.5	10.9
55	25.6	0.30	G.02	8.70	0.11	0.00	018	79.1	28.5
56	13.7	0.55	43.0	17.0	23.0	0.40	0.10	2.00	23.4
)									

25

the National Institute of Standards and Testing (NIST) Standard Reference Material 1654 River Sediment by their leach but it should be noted that SRM 1654 is a highly contaminated sediment and therefore contains a higher percentage of non-lattice (leachable) metals than pristine sediments. Therefore, the high recoveries obtained in SRM 1654 give no information as to the reliability of data at the background levels detected in Casco Bay.

The concentrations found by Larsen *et al.* (1983c) show considerable variation from site to site within Casco Bay for all metals. And while there is a tendency for higher values of Cd, Cr, Cu, Pb and Zn to occur in Portland Harbor sediments, these values are still much lower than those found in sediments of highly polluted areas along the northeastern U.S. seaboard such as the Hudson-Raritan Estuary (O'Connor, 1990; Long and Morgan, 1990). Furthermore, except for a few samples, Larsen *et al.* (1983c) found a good correlation between metals and grain size. The observed metal enrichment in the fine fraction is that expected for a uncontaminated sediment. Only values well off a best fit line would be considered contamination (Trefry and Presley, 1976).

Trace metal concentrations in sediment collected at five sites in Casco Bay between 1984 and 1986 as part of NOAA's Benthic Surveillance Program, along with data from one site collected in 1988 as part of the NOAA Status and Trends Program are summarized in Table 7. These are similar to those reported by Larsen et al. (1983c). They also show considerable areal as well as temporal variability. For example, Pb concentration more than doubled at one Benthic Surveillance site between 1985 and 1986. Finer grained material is normally more enriched in trace metals, but silt and clay content at this site only varied from 88% to 98%. A variation in Pb concentrations from 26 to 55 ppm dry wt. cannot be explained by sediment texture variations alone. At the same site, Cu concentrations varied from 22 to 28 ppm dry wt. and Zn concentrations from 117 to 128 ppm dry wt., consistent with observed variations in grain size. Other anomalies in these data sets could be pointed out, but none of them are large enough to have ecological consequences (Long and Morgan, 1990). The somewhat noisy character of area-wide data is primarily due to the variable nature of Casco Bay sediment texture as reflected in grain size and organic carbon content.

Table 7. Trace metal data (ppm dry weight) from the Benthic Surveillence and NOAA Status and Trend Program for Casco Bay sediments.

	nacon norm	86CSCCB4SED	BRCSCCBISED	VIOINA	AA1078	AA1079
Sample Year	88	86	86	88	88	88
Bulk Parameters						
TIC	32300	32400	28000	13000 700	22000 600	7300 700
Silt+Clay (g/g)	0.983	0.924	0.943	0.374	0.524	0.226
Metals (ppm)						
Ag	0.23	0.49	0.13	0.09	0.25	0.05
AI	-0.001	-0.001	-0.001	4700	6500	5800
As	15.30	13.20	12.70	8.20	14.00	4 40
ਤ	0.49	0.67	0.34	0.12	0.26	0.08
ප් ම	97.1	. 85.3	92.0	74.0	83.0	35.0
Ĵ,	27.8	32.7	19.1	14.0	20.0	8.1
н Н	41900	36700	41100	2600	3300	1900
E H	0.23	0.37	0.18	0.06	0.07	0.03
Mn	518	528	573	•		
Ĩ	37.4	37.1	32.6	24.0	31.0	17.0
PD	54.6	56.1	34.0	30.0	32.0	28.0
Sb	0.81	0.61	0.49	•	-	•
ያ እ	0.00	0.00	0.00	0.63	0.80	0.00
SI	262000	270000	276000	•	*	+
Sn	5.26	6.60	4.00	2.70	3 10	08.0
Zn	128.0	128.0	108.0	67.0	0.06	49.0

A set of ten sites were sampled (nine of them in triplicate) by the Maine Department of Environmental Protection in association with the USEPA (MDEP/EPA) in 1989 (Doggett, pers. comm.). Sediments were analyzed for grain size, Pb, Ni, Cr, Zn, Cu, Fe and Hg. Only the data were available for this report and no description of sample preparation or analysis techniques was available. The values for all metals (Table 8) are higher than those reported by Larsen et al. (1983c). A methodological difference might explain the higher values especially due to the difficulty in producing accurate trace metal concentrations at near background levels. It is more likely however that the variation is a function of sample location. Most of the MDEP/EPA samples were collected within Portland Harbor and the Fore River area where relatively high metal concentrations are expected. Like the Larsen et al. (1983c) samples, the MDEP/EPA samples have metal concentrations lower than those in sediments from highly contaminated areas such as the Hudson-Raritan Estuary (O'Connor, 1990; Long and Morgan, 1990).

3.0 METHODS

Sediment samples were analyzed for the contaminants listed in Table 9. The trace contaminants monitored include trace metals, aliphatic and polycyclic aromatic hydrocarbons, pesticides and PCBs. The QA/QC Procedures are described in detail in the Project Work and Quality Assurance Plan. Matrix spikes, laboratory sample duplicates and laboratory blanks were processed with each batch of samples (10-20 samples/batch) as detailed in the Standard Operating Procedures (SOPs, Appendix D). Duplicates were produced by splitting the sample in the laboratory (i.e., aliquots from a single sample). Standard reference materials provided by NIST were analyzed to audit the performance of the SOPs. The methods and quality assurance procedures used are those of NOAA's National Status and Trend Program, EPA's Environmental Monitoring and Assessment Program - Near Coastal (EMAP-NC) and those approved by the U.S. Fish and Wildlife Service (FWS) for trace organic contaminant analyses. These methods have undergone extensive intercalibration with EPA, NOAA, NIST

Table 8. Trace metal data (ppm dry weight) from a 1989 sampling of Casco Bay sediments by the Maine Department of Environmental Protection and the EPA (Doggett, personal communication).	
Table 8	~

66B	59.0 33.5 34.0 44.0 41.5 29000 0.3	65C 36.0 91.0 322.0 32000 0.1
· 66A	68.0 31.0 140.0 41.0 38.0 38.0 0.3	65B 35.0 35.0 88.0 88.0 20.0 0.3 0.3
53C	57.0 29.0 37.0 36.0 27000 0.3	65A 35.0 35.0 89.0 89.0 20.0 30000 0.1
53B	58.0 30.6 31.0 31.0 40.2 0.2 0.2	64C 23.0 37.5 96.5 48.0 22.0 32000 0.1
53A	53.0 32.0 41.0 39.0 29000 0.4	64B 27.0 33.5 83.0 46.0 18.5 29500 0.1
52D	67.0 37.5 1155.0 50.0 45.0 33000 0.3	64A 21.0 34.0 90.3 47.0 19.7 30300 0.1
52C	61.0 36.0 145.0 48.0 43.0 27500 0.3	63A 21.0 34.5 90.5 47.0 21.0 30500 0.2
52A	59.0 33.0 100.0 45.0 29000 0.2	62C 20.0 29.0 15.0 15.0 0.1
51C	46.0 28.0 39.5 33.0 31.5 1.8500 0.2	62B 26.0 28.0 79.0 19.0 19.0 0.1
51B	38.0 15.0 96.0 23.0 14000 14000	62A 23.0 32.0 41.0 18.0 27000 0.2
51A	39.0 17.0 94.0 27.0 15000 15000	57C 67.0 23.0 105.0 39.0 39.0 39.0 27.5 19500 0.4
50C	57.0 35.0 140.0 52.0 46.0 33000 0.4	57B 52.0 98.0 38.0 28.0 28.0 2000 0.4
50B	51.0 33.0 125.0 46.0 29500 0.4	57A 46.0 21.5 85.0 35.0 35.0 28.5 17000 0.3
50A	49.0 33.0 130.0 47.0 43.0 29000 0.4	66C 70.0 36.0 160.0 48.0 47.0 0.3 0.3
Sample ID	Pb NI Cr Cr Fe	Sample ID Pb NI NI Sn Ccr Ccr Hg

Table 9. Analytes measured in the Casco Bay Estuary Program. (Standard Operating Procedures are provided in Appendix D)

Total Metals

cadmium copper lead nickel chromium

silver zinc iron mercury arsenic

selenium

Hydrocarbons

naphthalene 2-methylnaphthalene 1-methylnaphthalene biphenyl 2,6-dimethylnaphthalene acenaphthylene acenaphthene fluorene phenanthrene anthracene 2-methylphenanthrene fluoranthene

pyrene benzo(a)anthracene chrysene benzo(b)fluoranthene benzo(k)fluoranthene benzo(a)pyrene benzo(e)pyrene perylene indeno (1,2,3-cd) pyrene

dibenzo (a,h) anthracene benzo (g,h,i) perylene

D

In addition

- Extended PAHs (alkylated homologues useful in differentiating oil from combustion sources).
- Aliphatic fraction quantitation including C_{12} - C_{34} n-alkanes, pristane, phytane and the unresolved complex mixture.

PCBs

Congener specific analysis of 20 individual PCB's including quantitative estimates of the amount of arochlor mixtures

Pesticides

aldrin alpha-BHC beta-BHC BHC-delta gamma-BHC alpha chlordane gamma chlordane dieldrin endosulfan I endosulfan II endosulfan sulfate endrin endrin aldehyde heptachlor heptachlor epoxide toxaphene hexachlorobenzene DDE 2,4' DDD 2,4' DDT 2,4' DDD 4',4 DDE 4',4 DDT 4', 4

Ancillary Parameters

- (1) TOC was determined by combustion in a Leco Carbon Analyzer to CO_2 and subsequent quantitation by IR.
- (2) Grain size (sand, silt and clay) was determined by the Folk settling method.
- (3) Organic nitrogen was determined by a Kjeldahl digestion.
- (4) Percent Solids (dry weight) are determined and reported for all samples.

*note organic analyte concentrations are reported on the basis of dry weight of sediment and is corrected for surrogate recoveries. and FWS. Detailed Standard Operating Procedures are provided in Appendix D.

3.1 <u>Sample Collection</u>

Sediment samples were collected by researchers from EPA Region I, the University of Maine (UME), the Maine Geological Survey, and the Geochemical and Environmental Research Group of Texas A&M University in early August 1991. The Technical Advisory Committee divided the bay into 5 regions. These regions were chosen on the basis of geologic and other features. Based on historical information station locations were chosen to provide good areal coverage, sample surface sediments of different ages (including erosional features), and include representative coverage of benthic communities. Bathymetry and sediment texture also guided site selection. The sampling sites are designated as CS, EB, IB, OB, SW and WB, and a number, identifying their location in the bay (Cape Small, East Bay, Inner Bay, Outer Bay, Shallow Water and West Bay; see Figure 3 and Table 10).

Samples taken from the University of Maine Vessel

Samples were taken with a Smith-McIntyre grab sampler. The grab was lowered with a small hydraulic winch. Care was taken to lower the sampler onto the bottom without disturbing the surface layer. The sampler was carefully raised to the deck so the contents were not disturbed. Each grab was examined and discarded if disturbed. Lack of disturbance was inferred if the surface layer was intact and the sediment surface was not touching the cover plates of the grab. If this occurred, the grab was emptied, flushed with seawater and redeployed. The surface water contained in the grab sampler was allowed to drain and then the top 2 cm of sediment was sampled. A metal spoon cleaned with MeCl was used to take the trace organic sample and to place the sediment in a clean, combusted (400°C) 1/2 pint mason jar (in duplicate) sealed with combusted aluminum foil. Care was taken to sample sediment that was not in direct contact with the sides of the grab sampler. The other half of the grab was sampled with a

Sta #	L Deg	Atidud Min	e Sec	Lo Deg	Min Min	e Sec	Date Sampled	Time Sampled	Water Depth (ft)	Sample Device
Inner Bay	y Stati	ons	1	S						
100	70	14	41	43	39	44	10-Aug-1991	1115	44	Smith-McInty
(IB-1	70	13	37	43	40	5	10-Aug-1991	1050	42	Smith-McInty
) $^{IB-2}$	70	12	17	43	39	40	08-Aug-1991	0930	<25	Smith-McInty
SIB-3		12	21	43	41	59	10-Aug-1991	1030	36	Smith-McInty:
(IB-4	70			43	42	1	10-Aug-1991	0900	58	Smith-McInty
1B-5 +	70	9	41	43 43	43	ò	10-Aug-1991	0915	57	Smith-McInty
10-0	70	10	15		43	18	10-Aug-1991	1010	41	Smith-McInty
VIB-7	70	11	59	43		38	10-Aug-1991	0955	40	Smith-McInty
∠IB-8	70	11	14	43	44	19		0945	34	Smith-McInty
/ IB-9	70	10	29	43	45 44	19	10-Aug-1991 10-Aug-1991	0930	36	Smith-McInty
(IB-10	70	8	42	43	44	19	10-Aug-1551	0000	00	0
West Bay	Statio	ns								
WB-1	70	5	58	43	46	26	09-Aug-1991	2015	40	Smith-McInty
WB-2	70	5	10	43	47	47	09-Aug-1991	1955	37	Smith-McInty
WB-3	70	1	40	43	50	43	09-Aug-1991	1850	10	Smith-McInty
WB-4	70	Ô	37	43	47	36	09-Aug-1991	1815	29	Smith-McInty
WB-5	69	69	15	43	49	9	09-Aug-1991	1825	21	Smith-McInty
WB-6	69	56	49	43	50	23	10-Aug-1991	1915	0	By Hand
WB-7	69	58	31	43	47	3	09-Aug-1991	1710	53	Smith-McInty
WB-8	69	59	55	43	44	42	09-Aug-1991	1650	104	Smith-McInty
WB-9	70	3	23	43	46	59	09-Aug-1991	1940	48	Smith-McInty
East Bay	Statio	ons								
EB-1	69	58	24	43	42	37	09-Aug-1991	1615	117	Smith-McInty
EB-2	69	56	15	43	42	19	09-Aug-1991	1605	117	Smith-McInty
EB-3	69	56	31	43	44	47	09-Aug-1991	1540	66	Smith-McInty
EB-4	69	54	25	43	43	39	09-Aug-1991	1235	94	Smith-McInty
EB-5	69	55	54	43	46	20	09-Aug-1991	1445	47	Smith-McInty
EB-6	69	55	3	43	48	30	09-Aug-1991	1515	23	Smith-McInty
EB-7	69	54	2	43	52	3	10-Aug-1991	1445	0	By Hand
EB-8	69	52	12	43	48	47	09-Aug-1991	1400	48	Smith-McInty
EB-9	69	52	49	43	45	32	09-Aug-1991	1330	60	Smith-McInty
EB-10	69	53	0	43	44	9	09-Aug-1991	1245	78	Smith-McInty
Cape Sm	all Sta	ations								
CS-1	69	54	7	43	42	40	09-Aug-1991	1225	78	Smith-McInty
CS-2	69	54	12	43	41	37	09-Aug-1991	1210	108	Smith-McInty
CS-3	69	52	48	43	42	7	09-Aug-1991	1215	80	Smith-McInty
CS-4	69	53	51	43	40	59	09-Aug-1991	1150	124	Smith-McInty
CS-5	69	53	3	43	40	12	09-Aug-1991	1147	125	Smith-McInty
CS-6	69	51	36	43	38	30	09-Aug-1991	1125	180	Smith-McInty Smith-McInty
CS-7	69	49	49	43	38	1	09-Aug-1991	1115	127	Sillen-Menity
Outer Ba	y Stati	lons								
OB-1	69	53	35	43	37	36	08-Aug-1991		318	Smith-McInty
OB-2	70	2	11	43	38	9	08-Aug-1991	1300	180	Smith-McInty
OB-3	70	8	23	43	38	36	08-Aug-1991	1045	180	Smith-McInty
OB-4	70	8	11	43	39	6	08-Aug-1991	1800	97	Smith-McInty
OB-5	70	5	27	43	39	3	08-Aug-1991	1115	135	Smith-McInty
OB-6	70	5	59	43	40	0	08-Aug-1991	1740	52	Smith-McInty
OB-7	70	7	54	43	40	59	08-Aug-1991	1715	105	Smith-McInty
	70	4	36	43	39	46	08-Aug-1991	1140	132	Smith-McInty
OR-8	70	3	27	43	39	42	08-Aug-1991	1150	170	Smith-McInty
OB-8 OB-9	70	2	28	43	41	13	08-Aug-1991	1520	148	Smith-McInty
OB-9		$\tilde{6}$	3	43	43	57	08-Aug-1991	1700	110	Smith-McInty
OB-9 OB-10		- T 1							05	
OB-9 OB-10 OB-11	70				44	18	08-Aug-1991	1630	35	
OB-9 OB-10		6 5	0 7	43 43	44 45	18 18	08-Aug-1991 08-Aug-1991	1630	35 58 175	Smith-McInty Smith-McInty Smith-McInty

Table 10. Station Information for the Casco Bay Estuary Program's 1991 sampling effort.

加州

子山

10.00

l

Sta #	Latidude				ongitud	e	Date	Time	Water	Sample Device	
	Deg	Min	Sec	Deg Min Sec		Sampled	Sampled	Depth (ft)			
Shallow	Water	Station	s								
SW-1	70	17	10	43	38	42	07-Aug-1991	0945	<25	Ponar	
SW-2	70	17	48	43	39	2	07-Aug-1991	1045	<25	Ponar	
SW-3	70	15	50	43	40	12	07-Aug-1991	1145	<25	Ponar	
SW-4	70	14	47	43	42	4	07-Aug-1991	1200	<25	Ponar	
SW-5	70	13	26	43	41	54	07-Aug-1991	1400	<25	Ponar	
SW-6	70	11	11	43	46	17	07-Aug-1991	1600	<25	Ponar	
SW-7	70	8	20	43	47	28	07-Aug-1991	1650	<25	Ponar	
SW-8	70	6	8	43	49	18	07-Aug-1991	1730	<25	Ponar	
SW-9	70	ŏ	22	43	51	17	07-Aug-1991	1815	<25	Ponar	
SW-10	69	58	17	43	50	40	07-Aug-1991	1900	<25	Ponar	
CONT 11	70	1	30	43	45	42	10-Aug-1991	1720	0	By Hand	
2SW-12	70	ō	16	43	45	53	10-Aug-1991	1745	0	By Hand	
SW-13	69	58	36	43	47	59	10-Aug-1991	1830	0	By Hand	
SW-14	69	51	41	43	52	34	10-Aug-1991	1525	0	By Hand	
SW-15	69	50	42	43	44	- 25	09-Aug-1991	1315	5	Smith-McInty	

Table 10. (Continued)

a see a

E

10

65

•

clean plastic spoon. The spoon was washed with Microcleaning Solution and rinsed with dionized water. Again sediment was taken from the top 2 cm that was not in direct contact with the sides of the grab sampler and placed in a ziplock bag (in duplicate). A final sample was taken for grain size from the remaining top 2 cm of sediment and placed in a whirlpak bag. All samples were placed on ice immediately after collection.

Samples taken from the EPA Whaler

1

1

「二日の

These samples were taken with a small ponar grab sampler. Since the sampler was not large enough for the amount of sample needed, a series of grabs were taken. The sampler was lowered by hand with care as described above to avoid disturbing the sediment. After retrieval of the sampler, the sediment was checked for any disturbances, if none occurred it was accepted and sampled. Sampling was as described above with the exception that multiple grabs were needed to obtain sufficient sample. This required taking an aliquot from each grab attempt for each sample; 2 jars for organics, 2 ziplock bags for metals, and 1 whirlpak for grain size. To avoid sampling the same spot on multiple attempts, the boats position was adjusted by shortening or lengthening the anchor line. Water depths were not available at these stations but are estimated to be < 10 m. Samples were stored immediately on ice as before. Sampling equipment was cleaned as described above.

Samples taken by Hand

These stations were sampled at low tide by walking out from the shore. Samples were taken *in situ* with spoons, sampling only the upper 2 cm. At all stations sampled by hand, duplicates for trace metals and trace organics were taken except for WB-6. Spoons were cleaned and samples stored as described above.

3.2 Variances from SOP's

Few variances from SOP's occurred during the execution of this program. As detailed above sediment samples were chilled on ice directly after field collection and not frozen as stated in the SOP. This variance should cause no deterioration in sample or data quality. At the request of the project management the percent contribution of aroclors to PCBs and confirmation of selected pesticides on a second GC column were performed. These are not part of GERG SOP's. Trace metal analyses did not vary from the SOPs.

3.3 <u>Method Detection Limits</u>

Method detection limits (MDL) were determined from seven replicate samples with analyte or spiked analyte concentrations less than 10 times the estimated MDL (EPA Method,1988). MDL are summarized in Tables 11-15. The MDL is calculated as the students t value appropriate for the 99% confidence level multiplied by the standard deviation of the 7 replicate analyses.

Data for analytes not detected are left blank and the qualifier was "ND" is entered denoting not detected. Data that are below the method detection limit (MDL) for an analyte are qualified with a "J". If an MDL was not calculated for a specific analyte the MDL of a similar analyte is used to qualify data. For the analysis of aliphatic hydrocarbons, the MDL for pristane was used for phytane. For individual n-alkanes with no MDL calculated, the MDL for the nearest alkane was used; i.e., the MDL for $n-C_{32}$ was used for $n-C_{31}$. For the alkylations of the various parent aromatic compounds, if no individual alkylations were available, the MDL of the parent compound was used; i.e., for the C1-, C2-, C3- and C4-chrysenes, the MDL for chrysene was used. If individual alkylations were measured, that MDL was applied to the entire group, i.e., for C2-naphthalenes, the MDL for 2.6 dimethylnaphthalene was used. In the case of the C2-, C3- and C4phenanthrenes, the MDL for C1-phenanthrene was used.

Table 11. Casco Bay Estuary Program MDL Determinations 1991 (date determined 7/18/91)

Table 12. Casco Bay Estuary Program MDL determinations 1991 (date determined 7/17/91)

	L LCL UCL	b) (ppb) (ppb) wt. drv wr drv wr	· my wr.	0.98	0.49	0.33	0.30	0.38	0.43	0.03	0.59	0.45	0.38	0.47	0.25	0.47	0.46	0.41	0.43	0.40		10.0			
(date determined 7/17/91)	Q1361 MDL SED MDL 10.01	(ppb) (ppb) dry wt. drv wt		4.14 1.53 3.46 0.61																				45.26 58.63	66.79 56.49
	X	t. dry wt.																			0.76			50.54 62.43	73.30
	D	(ppb) (ppb) dry wt. dry wt		99 2.87 2.87												_									0 61.94
	01357 01 MDL SED MDI 10.34 10			3.07 2.99																					58.20 61.10 4 16 6 20
01057	10.09 MDL SED	dry wt.	3.85	3.07	2.57	2.35	3.21	2.68	2.76	2.56	2.69	1.94 2 34	2.39	1.30	2.46	1 84	1.85	1.03	3.70	1.13	1.20		53 62	66.68 72,12	62.86
01366	MDL SEL 10.10	dry wt.	4.57	3.43			2.78	3.05	3.39	2.72	3.00	2.44	2.62	1.37	2.72	1.05	2.12	1.37	1.67	1.26	1.28		55.51	60.80 67.97	57.76 11.38
LABSAMNO	D: SAMPLEWT: UNIT:	PNA Analyte	Naphthalene	2-Methylnaphthalene	2,6-Dimethnaphthalene	2,3,3-1 nmethnaphthalene Binhenvl	Acenaphthylene	Acenaphthene	Phenanthrene	Anthracene	1-Methylphen Dihenzothionhand	Fluoranthene	Pyrene	Benanthracene	Benhluoran	Benkfluoran	Benepyrene .	Benjana	I123cdpyrene	Dibenzo(a,h)anthracene	Denzo(g,h,1)perylene)	Surrogate Recoveries	NAPHD8:	ACEND10: PHEND10:	CHRYD12: PERYD12:

K

6

Sugar Law

mined 6/12/91)
(date deten
1991
determinations
MDL
Program
Estuary
Casco Bay
Table 13.

Hinter

ě.

1	ncr			0.12 0.13 0.17 0.17 0.16 0.16 0.16 0.16 0.15 0.16 0.16 0.15 0.16 0.15
	TCT C			0.00 0.05
	MDL	6 6 6 0 9		$\begin{array}{c} 0.09\\ 1.08\\ 0.06\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.09\\ 0.07\\ 0.09\\ 0.09\\ 0.09\\ 0.09\\ 0.09\\ 0.09\\ 0.09\\ 0.09\\ 0.09\\ 0.09\\ 0.09\\ 0.01\\ 0.09\\ 0.00\\$
	Q1361 MDL SED 1 10.01 dry wt			$\begin{array}{c} 0.38\\ 1.48\\ 0.37\\ 0.37\\ 0.37\\ 0.37\\ 0.37\\ 0.36\\ 0.40\\ 0.36\\ 0.35\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.51\\$
	Q1360 MDL SED 10.02 (ppb) dry wt			$\begin{array}{c} 0.34\\ 1.63\\ 0.40\\ 0.41\\ 0.40\\ 0.40\\ 0.41\\ 0.43\\ 0.42\\$
	Q1359 MDL SED 10.12 (ppb) dry wt			$\begin{array}{c} 0.43\\ 1.10\\ 0.44\\ 0.38\\ 0.41\\ 0.40\\ 0.40\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.45\\ 0.41\\ 0.45\\ 0.37\\ 0.52\\$
	Q1358 MDL SED 10.15 (ppb) dry wt			$\begin{array}{c} 0.36\\ 1.82\\ 0.39\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.37\\ 0.37\\ 0.36\\ 0.37\\ 0.36\\ 0.37\\ 0.36\\ 0.37\\ 0.36\\ 0.37\\ 0.36\\$
The man a superior	Q1357 MDL SED 10.34 (ppb) dry wt			$\begin{array}{c} 0.36\\ 0.41\\ 0.42\\ 0.33\\ 0.32\\ 0.33\\$
Labu Day	01356 MDL SED 10.09 (ppb) drv wt			$\begin{array}{c} 0.40\\ 0.75\\ 0.39\\ 0.37\\ 0.34\\ 0.34\\ 0.34\\ 0.33\\$
TADIC 13.	Q1355 MDL SED 10.10 (ppb)		f Peaks	0.33 0.33 0.34 0.34 0.33 0.33 0.33 0.33
	LABSAMNO: D: SAMPLEWT: UNIT:	Endosulfan I Endosulfan I Endosulfan Sulfate Endrin Aldehyde	Toxaphene - Summary of Peaks	Alpha-BHC HCB Beta-BHC Gamma-BHC Gamma-BHC Delta-BHC Heptachlor Heptachlor Hepta-Epoxide Oxychlordane Gamma-Chlordane Alpha-Chlordane Trans-Nonachlor ClS-nonachlor Aldrin Dieldrin Endrin Dieldrin Endrin Dieldrin Endrin Dieldrin Endrin Dieldrin Endrin 2,4'DDE (p,p'DDE) 4,4'DDE (p,p'DDE) 2,4'DDE (p,p'DE) 2,4'DDE (p,p'DE) 2,4'DDE (p,p'DE) 2,4'DDE (p,p'DE)
		1-		

39

ł

Table 14. Casco Bay Estuary Program MDL determination 1991 (date determined 6/12/91)

Ť.	1	
UCL	$\begin{array}{c} 0.28\\ 0.15\\ 0.15\\ 0.22\\ 0.12\\$	
LCL	$\begin{array}{c} 0.08\\ 0.05\\ 0.06\\ 0.03\\ 0.05\\$	
MDI	$\begin{array}{c} 0.13\\ 0.07\\ 0.06\\ 0.06\\ 0.07\\ 0.06\\ 0.07\\ 0.08\\ 0.07\\ 0.09\\ 0.00\\ 0.09\\ 0.00\\$	
Q1359 Q1360 Q1361 Q101 Q11 Q11 </td <td>0.3 0.4 0.4 0.5 0.6</td> <td>84.2% 90.6% 93.8%</td>	0.3 0.4 0.4 0.5 0.6	84.2% 90.6% 93.8%
991 (date deter Q1360 MDL SED 10.02 (ppb) dry wr	0.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	81.8% 88.3% 89.4%
Q1359 MDL SED 10.12 (ppb) dry wt	000 00 00 00 00 00 00 00 00 00 00 00 00	87.2% 94.6% 98.8%
Q1358 MDL SED 10.15 (ppb) dry wt	0.3 0.0	87.9% 98.3% 107.0%
Q1357 MDL SED 10.34 (ppb) dry wt	0.2 0.4 0.0 0.0 0.4 0.0 0.0 0.4 0.0 0.0 0.4 0.0 0.0 0.4 0.0 0.0 0.4 0.0	88.9% 97.5% 103.6%
Q1356 MDL SED 10.09 (ppb) dry wt	0.3 0.4 0.4 0.4 0.4 0.7 0.5 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.6 0.7	89.7% 98.0% 111.1%
Q1355 MDL SED 10.10 (ppb) dry wt	0.3 0.3 0.4 0.6	87.9% 96.3% 104.7%
LABSAMNO: D: SAMPLEWT: UNIT: Analyte	8 (CL2) 18 (CL3) 28 (CL3) 28 (CL3) 28 (CL4) 52 (CL4) 101 (CL5) 105 (CL5) 105 (CL5) 118/108/149(CL5/5/6) 118/108/149(CL5/5/6) 128 (CL6) 128 (CL6) 138 (CL7) 187/182/159(CL7/7/6) 187/182/159(CL7/7) 187/182/159(CL7/7/6) 187/182/159(CL7/7) 187/182/159(CL7/7/6) 187/182/159(CL7/7/6) 187/182/159(CL7/7/6) 187/182/159(CL7/7/6) 187/182/159(CL7/7/6) 187/182/159(CL7/7/6) 187/182/159(CL7/6) 187/182/159(CL7/7/6) 187/182/159(CL7/7/6) 187/182/159(CL7/6) 187/182/159(CL7/7/6) 187/182/159(CL7/6) 187/182/159(CL7/7/6) 187/172/159(CL7/7/6) 187/182/159(CL7/6) 187/182/159(CL7/7/6) 187/182/159(CL7/6) 187/182/159(CL7/6) 197/176 197/176 197/177/176 197/177/176 197/177 197/17	DB0FB%: PCB#103%: PCB#198%:

40

Q

(ppm dry weight).
1661
Bay Estuary Program MDL determinations for trace metals 19
asco
5. C
Table 1.
L .

1													1
UCL	CONC	mqq	0.076	1.35	0.000	0.045	0.32	22.07	8.34		0.11	0.32	2.69
LCL	CONC	mqq	0.022	0.39	0.003	0.013	0.09	6.42	2.43	0.33	0.03	0.09	0.78
MDL	CONC	mqq	0.035	0.61	0.004	0.021	0.15	10.03	3.79	0.51	0.05	0.15	1.22
REP-7 MDI SED	CONC	uıdd	0.072	1.66	0.029	0.047	0.54	54.61	15.03	1.27	0.30	0.45	3.25
REP-6 MDI SED	CONC	mqq	0.059	1.57	0.029	0.044	0.53	54.22	14.95	0.88	0.39	0.45	2.61
REP-5 MDL SFD	CONC	mqq	0.050	1.43	0.029	0.036	0.50	52.16	14.88	1.23	0.28	0.37	2.5
REP-4 MDL.SED	CONC	mqq	0.049	1.40	0.029	0.033	0.49	49.79	14.76	0.81	0.27	0.43	2.29
REP-3 MDL SED	CONC	mqq	0.049	1.31	0.028	0.033	0.47	48.62	13.23	1.14	0.26	0.43	2.13
REP-2 MDL SED	CONC	mqq	0.040	1.15	0.027	0.029	0.42	48.39	12.69	0.91	0.26	0.4	2.1
REP-1 MDL SED	CONC	bpm	0.034	1.04	0.026	0.027	0.40	44.45	11.62	0.93	0.25	0.54	1.94
LABSAMNO	ANALYTE	STINU	Ag	AS	Cd	ප්	CII	Fe	Hg	Ni	Pb	Se	Zn

For the other PCB congeners reported, the MDLs were assigned based on the level of chlorination. All MDLs that were calculated for a specific level of chlorination were averaged and assigned to that specific level.

MDL (ppb)
0.14
0.10
0.05
0.06
0.09
0.09
0.06
0.07
0.10

Other pesticides for which no MDL was calculated, an MDL was estimated based on blanks and the lowest standard's response.

3.4 <u>Quality Assurance Summary</u>

In general the majority of the quality assurance objectives were met. The recoveries of perylene d_{12} were below 20% in a few cases. This surrogate is only used to quantitate perylene. The low recoveries of d₁₂-perylene mimic the recoveries of perylene. The losses seem to be related to samples with low amounts of organic matter (i.e., blanks). It is our opinion that the low recovery of d_{12} -perylene does not effect the overall quality of the data. The recoveries of the pesticide/PCB internal standard PCB #198 was erratic. It was not used for quantitation purposes, therefore it does not effect data quality. Two spiked matrix samples (Q2089, Q2093) had low recoveries of $n-C_{32}$ and $n-C_{34}$. Several of the samples used for matrix spikes had high concentrations of aliphatic and aromatic hydrocarbons when compared to the amount "spiked" into the sample. In these cases the large native concentration must be subtracted from the "total" concentration to arrive at spike recoveries. The differences detected are sometimes less that the analytical uncertainty and these samples are

labeled with an M to indicate a matrix interference. This is also the case for the 4,4'-DDD in Matrix Spike sample Q2133.

The method utilized consistently produces low and variable recoveries of HCB and Beta-BHC. The recoveries are generally about 30-40%. These pesticides were not detected above 1 ppb except for HCB in the sample from OB-2 (8.24 ppb dry wt.). Because of the low recoveries of HCB using our procedure, HCB concentrations could be higher than calculated. Mirex recovery was only 65% in spike sample Q2123 and endrin recoveries were 52 and 76%, respectively for spike samples Q2133 and Q2137. The recoveries for 2,4'-DDT and 4,4'-DDT were also low for spike sample Q2133. Mirex and endrin recoveries were acceptable for all other spike matrix samples and no mirex or endrin was detected above 1 ppb. The quality of the data is therefore judged to be sufficient for the purpose of this study.

All organic contaminant data utilized in this report are corrected for surrogate recoveries. A surrogate is a compound of similar structure and chemistry added to a sample at the initiation of the analysis. It is hoped that the surrogate will mimic the behavior of the analyte of interest and thus can be used to correct for analytical losses during sample analysis. A known amount is added at the beginning of the analysis and at the end of the analysis the amount of the compound is determined. Any difference in the starting and ending amount must be lost due to sample handling. Data are reported both as corrected and uncorrected in the data appendix however all data within this report are corrected to 100% surrogate recovery.

Laboratory duplicates show some variability. This variability is due to small scale heterogeneity of the sediment samples. When sediments are extensively homogenized by sieving and grinding reproducibilities on the order of 10-30% can be achieved (i.e., NIST SRMs). The inhomogeneity of sediments in this study is generally within this range but some of the higher molecular weight PAH show more variability. This may be due, for example, to small soot particles in one subsample and not in another. Most PAH in the study area are combustion-derived which is generally due to very fine carbonized particles. One of the samples, IB-1, analyzed as a triplicate, illustrate a good agreement between two replicates (C3195 and Q2139), while the third replicate has higher concentrations of most of the higher molecular weight aromatic hydrocarbons. This increase is accompanied by subtle changes in PAH composition suggesting heterogeneity in the sample and not analytical bias. The heterogeneous nature of marine sediments is well documented in the literature.

For trace metals four samples were analyzed in duplicate and four were spiked with all elements determined. In addition, two standard reference materials were analyzed. All QA data met the required QA criteria specified in the QA plan and are summarized in Appendix A.

3.5 <u>Confirmation of Pesticides and PCB Analyses</u>

Samples (~10%) from each geographic location that had the highest pesticide or PCB concentrations were selected for confirmation on a second GC column (HP-17) with a different polarity and therefore elution order compared with the column used for the primary analyses (DB-5). The results of these confirmations are summarized in Table 16. The presence of PCBs and pp'-DDE was confirmed in all the samples analyzed using a second column. With the exception of cis-nonachlor, the presence of all analytes with concentrations above 1 ppb were confirmed by the second column It appears that an unknown compound co-elutes with cisanalysis. nonachlor on a DB-5 column. Some pesticides could not be confirmed at concentrations less than 1 ppb due to the presence of PCBs at relatively high (16-450 ppb dry wt.) concentrations. The detection of pesticides could not be confirmed with a second column analysis if the concentrations were below 1 ppb dry wt. Therefore data below 1 ppb should be interpreted in light of these confirmation limitations.

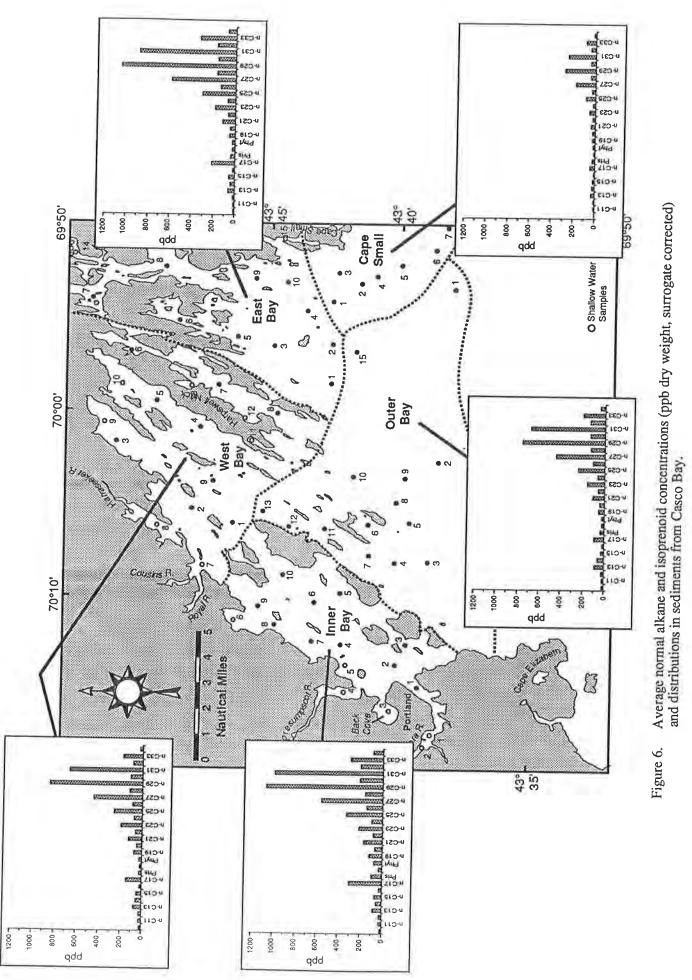
4.0 CONTAMINANT CONCENTRATIONS

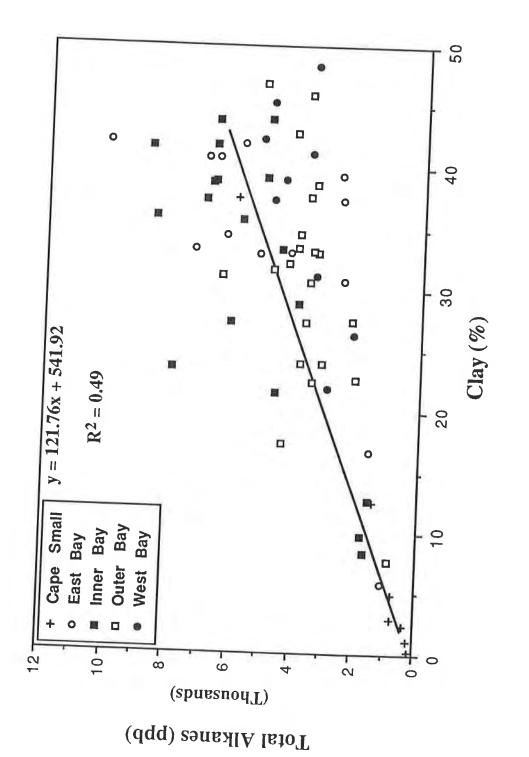
4.1 Hydrocarbons

Aliphatic hydrocarbons were detected at all stations sampled. Normal and branched alkanes were a mixture of terrestrial, planktonic, petroleum and pyrogenic hydrocarbons. Normal and isoprenoid alkanes were detected as well as an occasional unresolved complex mixture (UCM) an indication of petroleum contamination. The majority of resolved alkanes had odd carbon

Table 16.

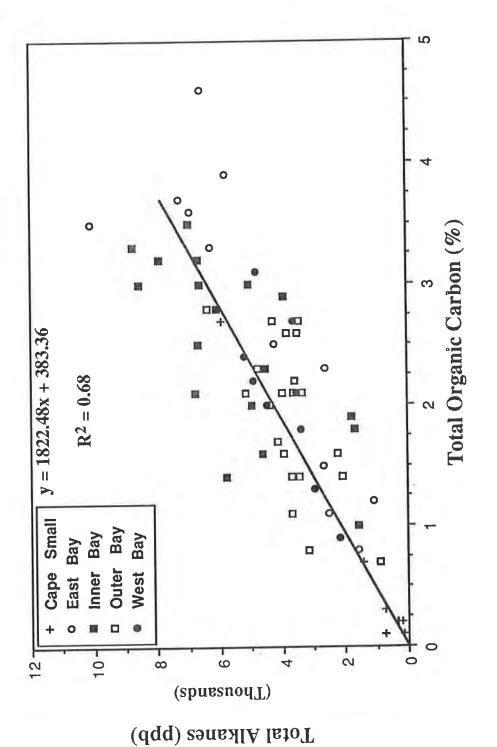
Summary of Casco Bay Pesticide & PCB Analysis Confirmation Analyses (ppb dry wt. surrogate corrected)

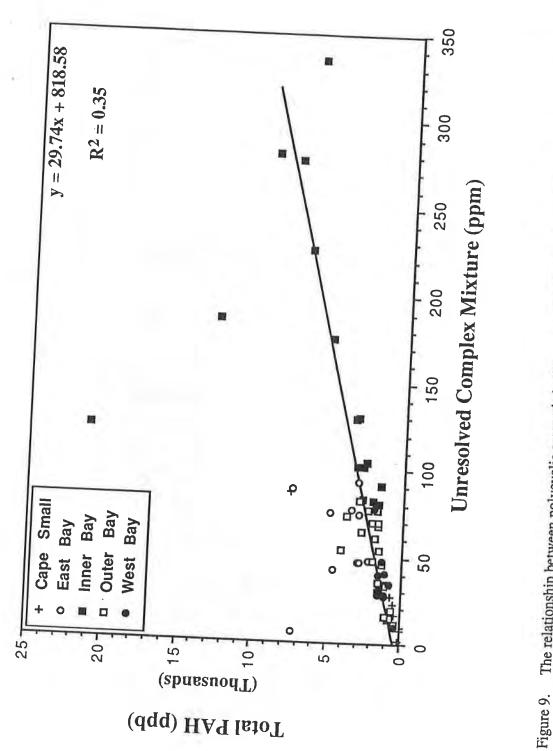

1

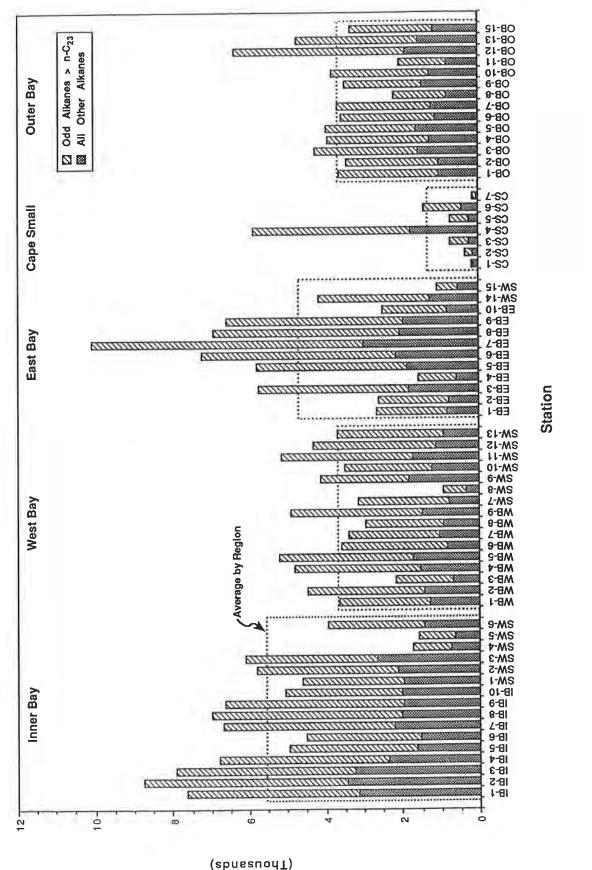

Station	CS-4 (ppb)	(qad)	IB-1 (nnh)	(3107P IB-7	C3119P OB-3	C3145P SW-2	C3147P SW-3	C3175P WB-1
Alpha-BHC	0.0		Inddy	(add)	(qdd)	(qdd)	(qdd)	(qdd)
HCB Beta_BHC	0.042	0.11 0.06	0.23 0.08	0.14 < MDI **	0.14	0.10		0.23
Gamma-BHC	<pre>#IDI#</pre>	< MDL**	< MDL**	0.14	<pre>MDL**</pre>	0.01 < MDL**		< MDL ³
Delta-BHC Hentachlor	0.01	< MDL**	MDL**	0.30	0.09	0.10		0.15
Hepta-Epoxide	0.02	* MDL*	0.08	< MDL**	MDL**	0.03		0.04 V MDI
Oxychlordane Gamma-Chlordane	0.03	< MDL**	0.13	< MUL** 0.23	<pre>> MDL** 0.05 ></pre>	< MDL**		MDL*
Alpha Chlordane	0.08	*1.55 0.19	*2.79	*0.80	0.10	*1.06		0.04 €0.04
I Fans-nonachlor CIS-nonachlor	0.10	0.10	0.26	0.04 0.04	0.12 0.06	0.53	0.74	0.22
Aldrin	< MDL#	0.07	0.16	0.13	0.09	1.74		0.06
Dieldrin	0.46	0.43	*0.87	0.02	0.02	0.03		0.01
Mirex	< MDL**	< MDL**	< MDL**	< MDL#	0.55	*0.94 0.94		0.14
2,4'DDE (0,P'DDE)	0.00	0.49	0.31	0.29	< MDL**	0.22		<pre>wDL**</pre>
4,4'DDE (P,P'DDE)	*0.85		01.U	0.10	0.03	< MDL**		* 1010 ×
(ddd'q,0) ddd'4,	0.17	0.35	*1.53 *1.53	-1.82	*1.49	*2.90		*0.92
(1000'4',4) UUU +,	0.45	*1.62	*6.49	14.0 *1 00	0.26	*I.46		0.12
(TOU'4,0) 10U +.	0.15	< MDL**	0.11	0.06	*1.78	*8.61		0.53
(וחתאא) וחחצי	0.25	0.48	*1.32	0.48	0.09	*1.51 *^ ??		0.01
TOTAL PCB's	*38 63				17.00	00.2		0.52
	00.00	- 30.39	110.26	*50.99	*25.81 *	446.99	16 76*	*15.00 *

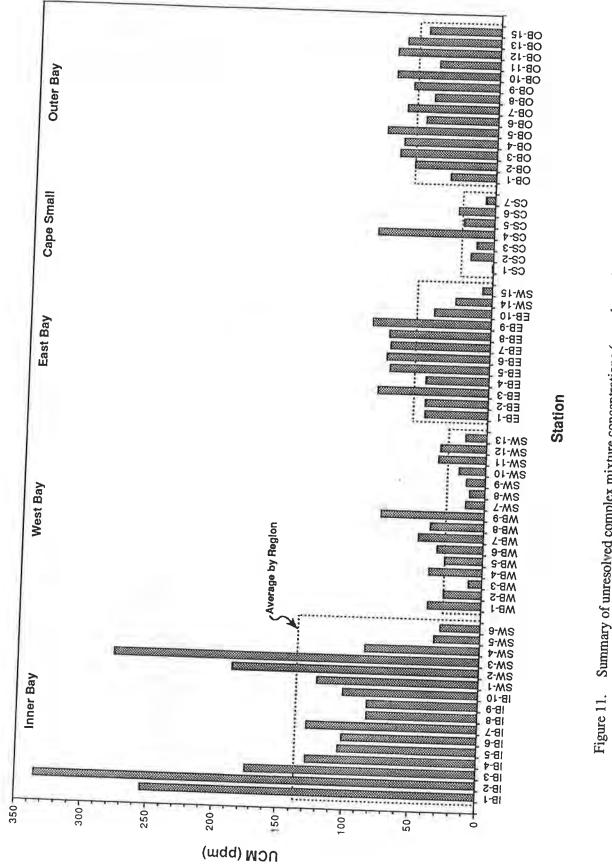
* Presence confirmed by detection on a second more polar GC capillary column (HP-17). **< MDL = less than the method detection limit.

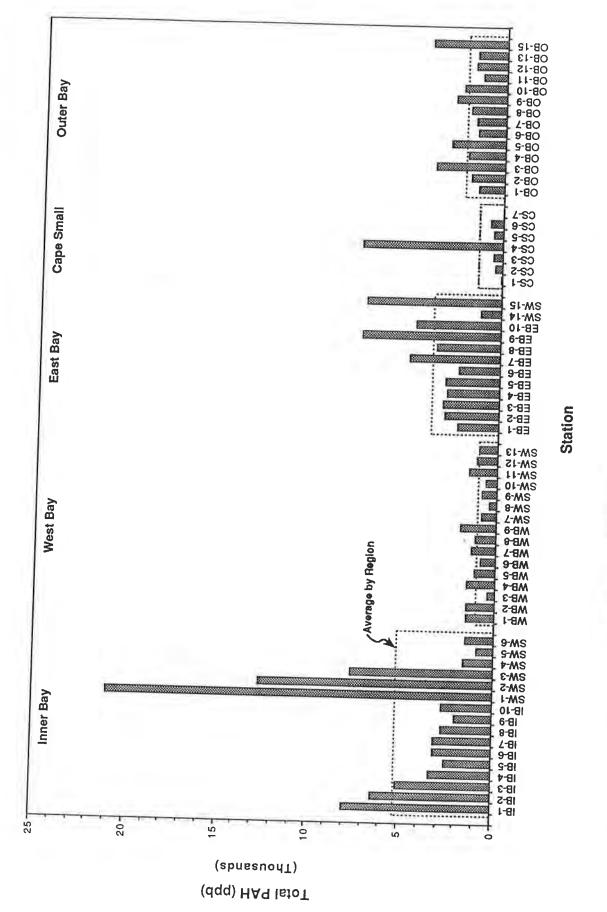
chain lengths with twenty-three to thirty three carbons indicative of plant biowaxes (Figure 6). N-C₁₅, n-C₁₇, n-C₁₉, n-C₂₁, and pristane were often more abundant than the co-occurring even carbon-numbered normal alkanes and phytane suggesting a phytoplankton input. Total alkane and UCM concentrations varied as a function of clay and organic carbon content (Figures 7 and 8). The UCM generally co-varied with PAH concentrations suggesting a common origin most likely run-off from adjacent municipal and industrial sites (Figures 9). Little, if any, fresh petroleum spillage was evident. Total alkanes and UCM concentrations varied from 151 to 10,078 ppb dry wt surrogate corrected and 2 to 335 ppm dry wt., respectively (Figures 10 and 11). Previous studies did not report aliphatic hydrocarbon compositions or concentrations.


Polycyclic aromatic hydrocarbons (PAH) were also detected at all locations sampled (Figure 12). The predominant PAH are highly condensed ring structures with few alkylations indicating a pyrogenic or combustion source (Figure 13). Four ring and larger PAH account for more than 60% of sedimentary PAH throughout the study area. Soot from car exhaust, high temperature burning of fossil fuels at municipal and industrial sites, and coal tar probably contribute contaminants of this type to bay sediments. Α comparison of aromatics with two or more carbon substitutions to unsubstituted PAH suggests that the majority of the alkylated PAH are cosourced in combustion derived materials (Figure 14). While combustion derived PAH are enhanced in unsubstituted compounds alkylated PAH do cooccur as residues although in decreased abundance as compared to petroleum. The co-variance of PAH and UCM (Figure 9) as well as PAH distributions indicate that sediment hydrocarbons are most likely derived from a combination of combustion residues and weathered petroleum. Both of these inputs exhibit highest concentrations in sediments in the vicinity of the greater Portland metropolitan area. Hydrocarbon composition is nearly uniform throughout the bay (Figure 10). Two locations exhibit enhanced alkylated PAH concentrations suggestive of weathered petroleum. The shallow water site (SW-1) in Fore River and the one high value in East Bay (EB-9) exhibit characteristics typical of biodegraded oil (i.e., lack of nalkanes, the presence of an UCM, and abundant alkylated PAH).

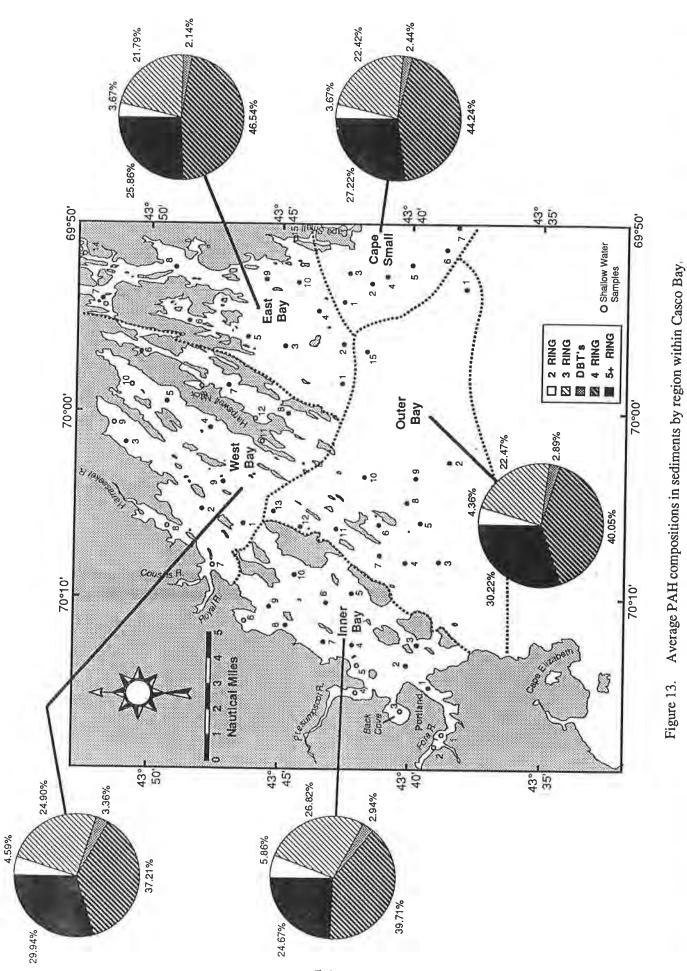



Ľ

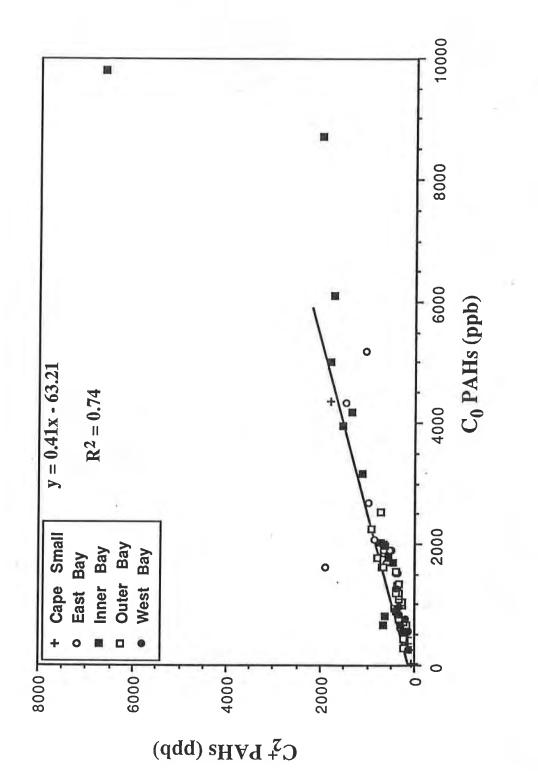




Alkane Concentration (ppb)



Summary of unresolved complex mixture concentrations (ppm dry weight) in sediments by region within Casco Bay.



Ę

Π

٥

4.1.1 <u>Geographic and Historical Comparisons</u>

Hydrocarbon concentrations vary widely across the study area. The southern part of Casco Bay is most highly contaminated with PAH as documented in previous studies (Figure 15). However elevated PAH concentrations are also present at a few sites in East Bay and Cape Small (note that total PAH only include analytes measured in all previous studies to facilitate comparisons, i.e., PAH*; see Table 1). Sediments from the Fore River area and locations close to Portland contain high concentrations of PAH. Contaminants in general decrease with distance from these populated areas. Average UCM concentrations in sediments decrease in order with Inner Bay > Outer Bay > East Bay > West Bay > Cape Small (Figures 11 and 16). One Station in the Cape Small (CS-4) region was unusual compared to other sites in the region. Most Cape Small stations contained < 1.0% organic carbon and more than 65% sand whereas sediment from Station CS-4 contained 2.7% organic carbon and only 29.9% sand. Total alkanes, UCM, and total PAH concentrations were elevated at this location as well. Station EB-9 was also high in total PAH. An organic carbon content of 4.6% at EB-9 is the highest for all of the sediments sampled.

Land derived materials (i.e., $n-C_{23}$ to $n-C_{33}$ plant biowaxes), as indicated by total alkanes decrease with distance from shore suggesting that contaminants would be deposited close to their point of origin (Figure 7). However, while rapid sedimentation may be important it should also be noted that land-derived organic debris is widespread in the study area suggesting that associated contaminants can be transported throughout the bay (Figure 17). In general hydrocarbon contaminant composition is relatively uniform throughout the bay indicative of a common or similar source. As previously discussed a few anomalous sites in East Bay and Cape Small exhibit PAH contamination that is most likely derived from anthropogenic activities in the immediate area. Pyrogenic PAH account for the majority of the PAH detected suggesting that the most likely source is run-off from municipal and industrial sites. The importance of air transport of particulates (stack effluents) is unknown.

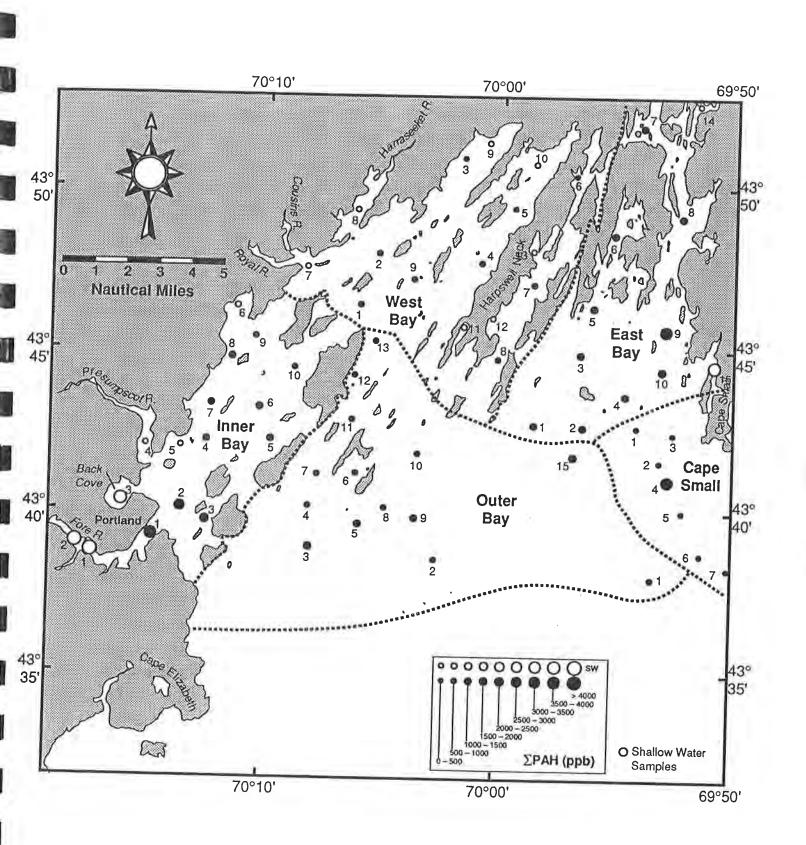
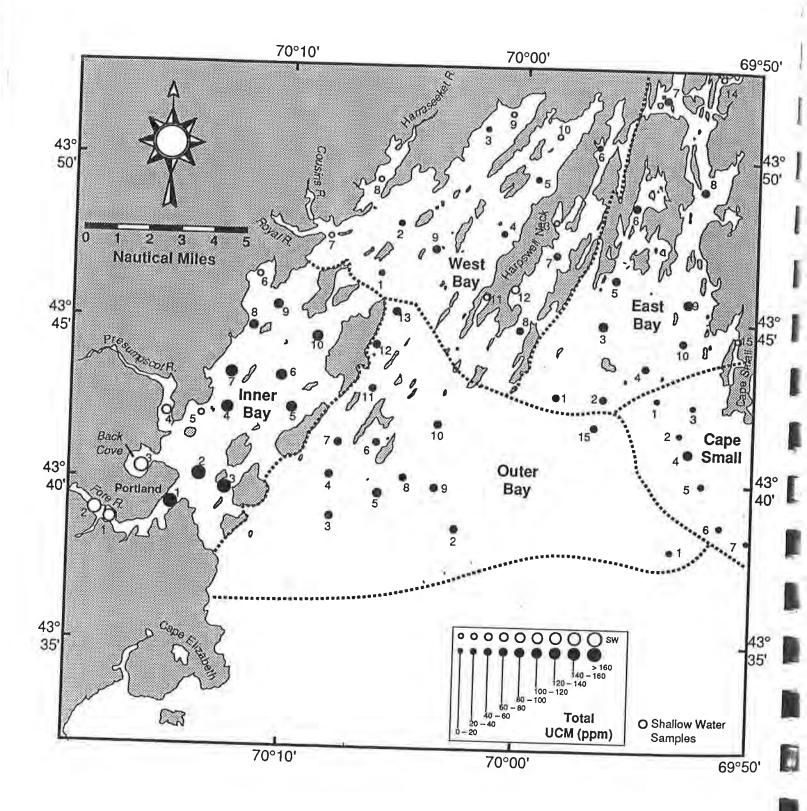
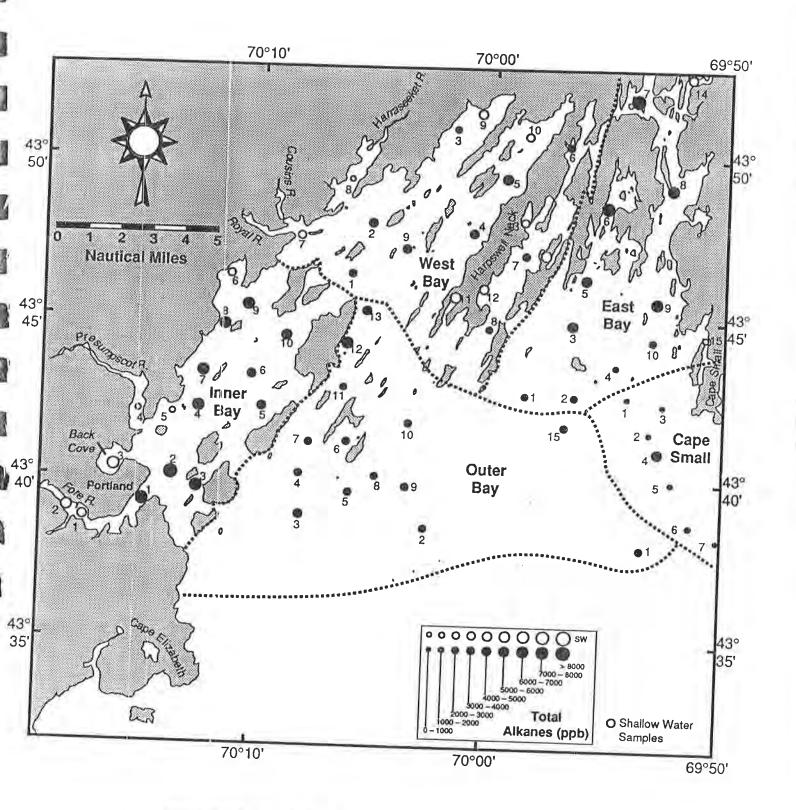
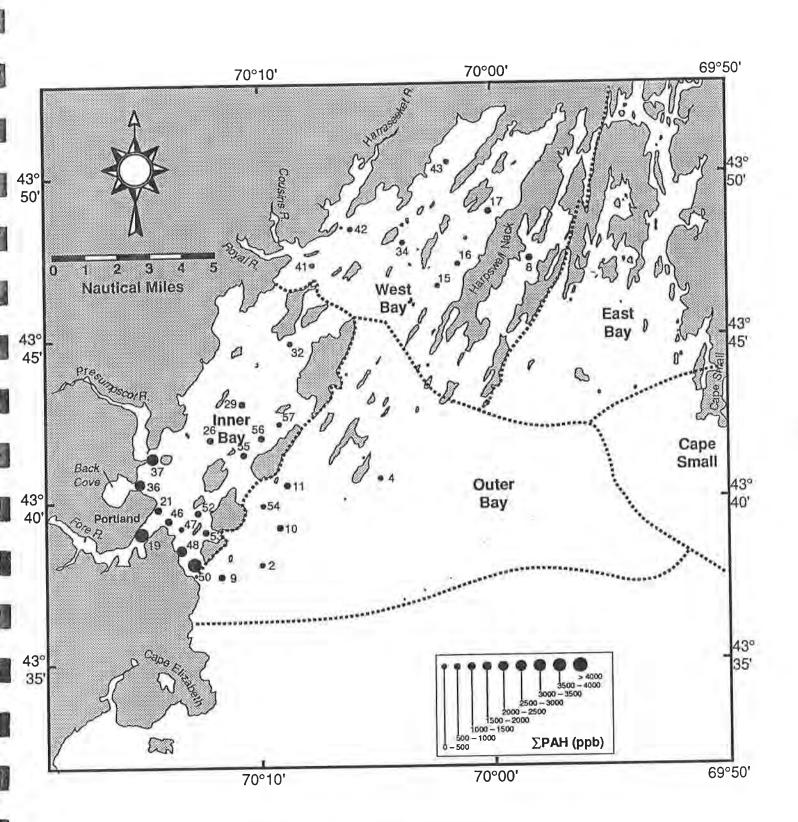
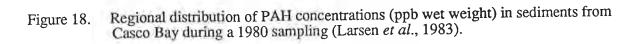
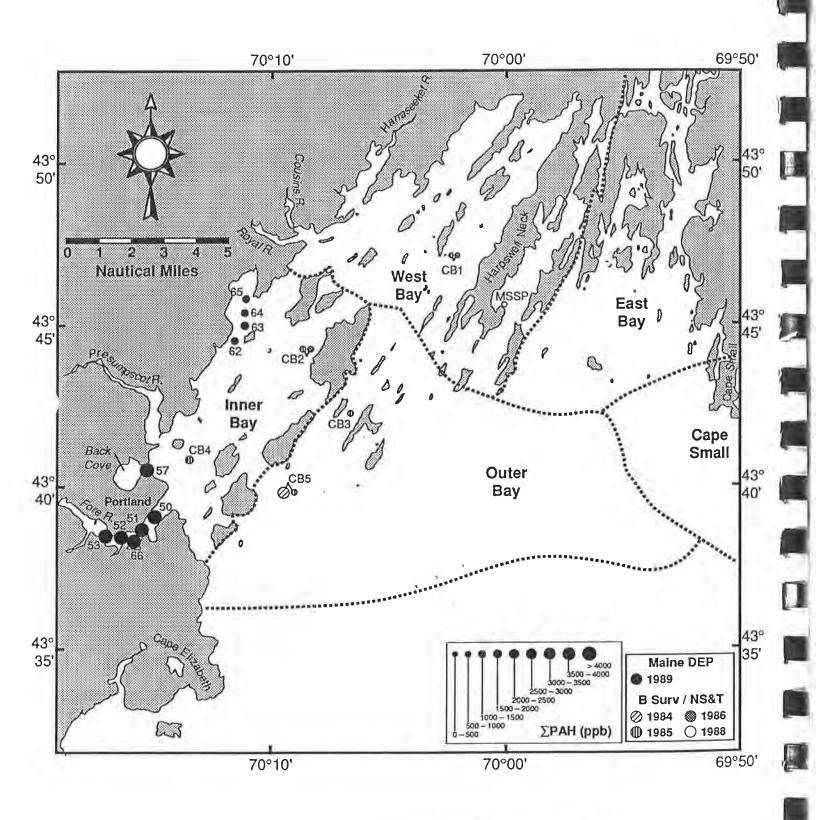



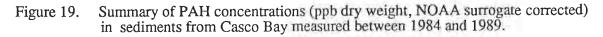
Figure 15. Regional distribution of PAH concentrations (ppb dry weight, surrogate corrected) in sediments from Casco Bay.




Figure 17. Regional distribution of alkane concentrations (ppb dry weight, surrogate corrected) in sediments from Casco Bay.


Although a comparison of historical hydrocarbon data is obscured by variations in analytical protocols, variations in the contaminants measured, and variable station locations, previous studies do provide a historical perspective for the present study. Comparisons between studies are facilitated by summing only those analytes measured in all studies (i.e., PAH*; see Table 1). The general pattern of high and low contamination has persisted since the first survey in 1980 (Figures 18 and 19). Temporal changes are also difficult to discern because of variations in station locations, methodologies and contaminants measured between studies. However, variations between studies are no larger than variations within studies. Areal heterogeneity in inputs and sediment texture appear to control the variations observed in contaminant concentrations. The composition of hydrocarbon contaminants has remained similar over time, however the more source diagnostic alkylated PAH homologues were not always measured.


4.1.2 Comparison With Other U.S. Coastal Waters


Casco Bay sites are compared to the NOAA NS&T east coast data set for 1986 to 1989 in Figures 20 and 21. All concentrations utilized in this report, including literature comparisons, are not corrected for the sand content of the sediments. The present levels of PAH in Casco Bay sediments are similar in magnitude to NOAA National Status and Trends (NOAA NS&T) sites along the eastern seaboard. PAH in Casco Bay's sediments are on average slightly lower than the average for the NOAA NS&T sites. It should be noted that in general NOAA NS&T sites are chosen distant from known point sources of contamination. The 1989 Maine DEP sampling was limited in the number of samples and emphasized at two relatively highly contaminated area (Figure 21). A IN

A convenient definition of high concentrations of contaminants on a national basis was proposed by O'Connor (1990) using the extensive NOAA NS&T database for the entire U.S. coastal environment. High concentrations were considered to be those whose logarithmic value is more than the mean plus one standard deviation of the logarithm of all concentrations. In a normal distribution this would be the highest 17% of the values. Casco Bay sediments contain high values as defined by the NOAA NS&T program (i.e., total PAH > 2400 ppb dry wt. surrogate corrected).

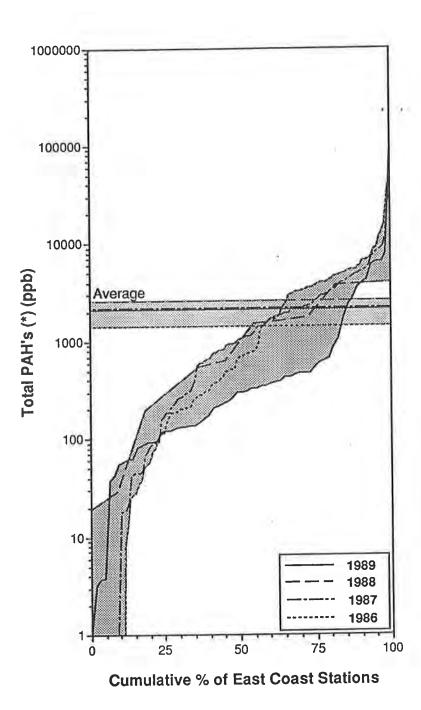
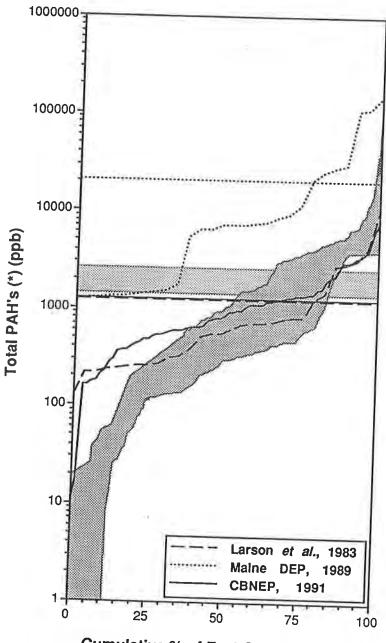



Figure 20. Summary of PAH concentrations (ppb dry weight, surrogate corrected) in sediments from the East Coast of the U.S. sampled during the NOAA Status and Trends Program between 1986 and 1989. (Total PAH*, see Table 1).

Cumulative % of East Coast Stations

Figure 21. Comparison of PAH concentrations in sediments from Casco Bay and NOAA Status and Trends stations along the East Coast.

The highest concentrations are at locations in Inner Bay, East Bay and Cape Small.

4.2 PCBs and Pesticides

The concentrations of PCBs and a suite of chlorinated pesticides (Table 9) are reported in detail in Appendix B. The data summarized here are for compounds or the summation of compounds that are consistently found at concentrations 2 to 5 times above the detection limit (~0.25 ppb dry wt. surrogate corrected for individual compounds). The presence of these compounds was confirmed by analysis of selected samples using a second GC column of different polarity (see Methods Section). Due to the generally low concentrations of most pesticides the discussion will only consider total PCBs, total DDTs and total chlordane.

4.2.1 Geographic and Historical Comparisons

The total PCB concentration for this study ranges from 0.4 to 485 ppb dry wt. surrogated corrected with a median concentration of 15 ppb (Figure 22). Due to proximity to the urban and industrial complex of Portland sediment total PCBs shows that the concentrations are highest in the Inner Bay (Figure 23). Concentrations are lowest in Cape Small and West Bay with The range and areal a few anomalous concentrations in East Bay. distribution of PCB concentration are consistent with historical data (see Tables 4 and 5). The one high concentration at site SW-2 is not as high as the PCB concentration of 850 ppb wet wt. reported by Ray et al. (1983). Total PCB concentration is displayed as a function of sediment organic carbon matter in Figure 24 ($R^2 = 0.23$). PCB concentrations for Inner Bay sediments, a suspected major source region, are higher than the general trend (i.e., fall above the line). If these sites are excluded the correlation improves ($R^2 = 0.49$) indicating a general trend of increasing PCB concentration with increasing TOC. It should also be noted that the site from Cape Small with total PCB concentration of 40 ppb dry wt. surrogate corrected has a higher TOC content (2.8%) than other samples from Cape Small. The correlation between total PCB concentrations and clay content is

Û

1

B

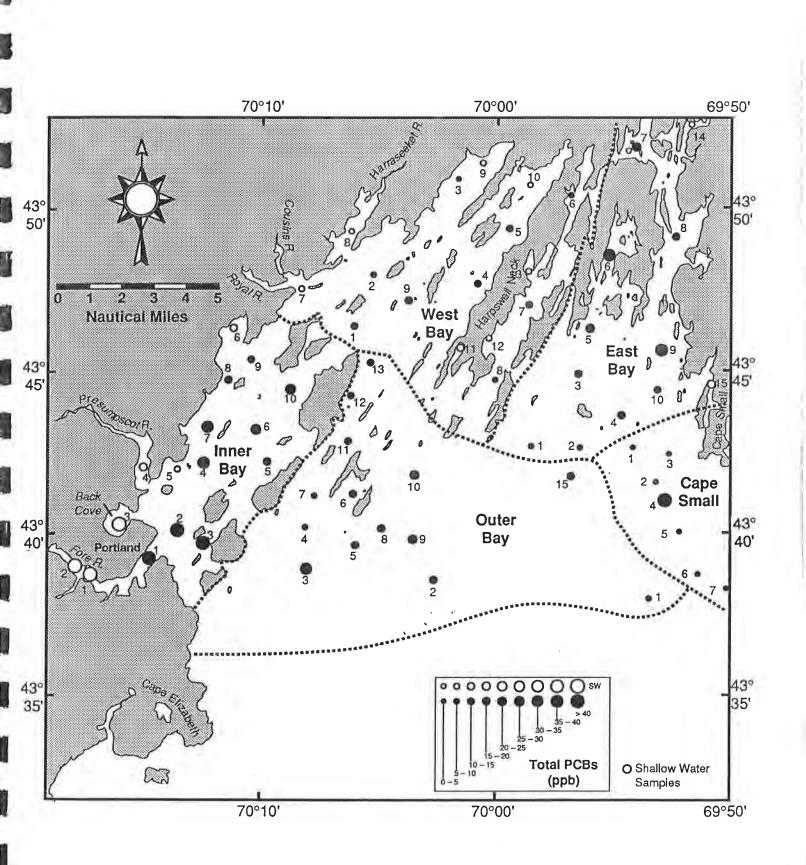
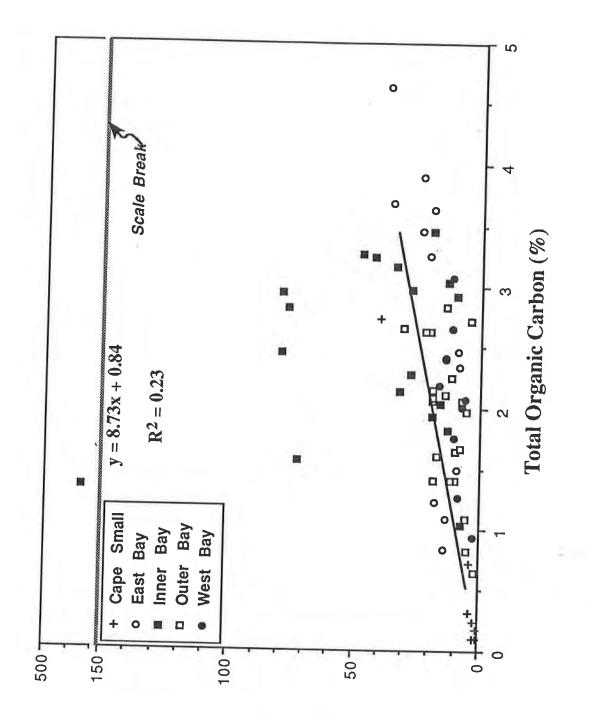
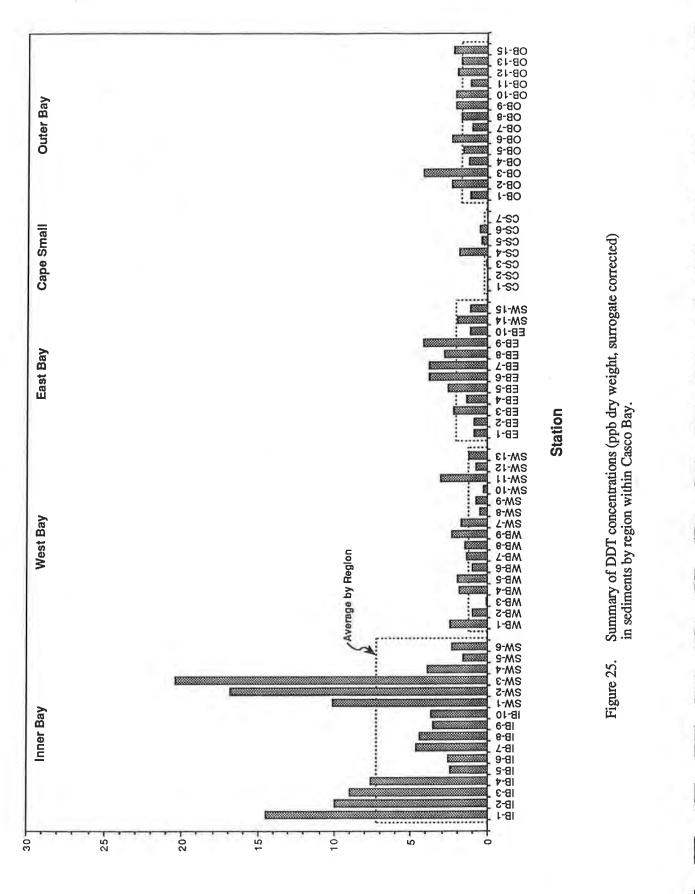



Figure 23. Regional distribution of total PCB concentrations (ppb dry weight, surrogate corrected) in sediments from Casco Bay.

Total PCB's (ppb)

68

The relationship between total PCB concentration (ppb dry weight, surrogate corrected) and total organic carbon content (%) of sediments from Casco Bay. Figure 24.


E

Π

similar to that for TOC. Previous studies also concluded there was no statistically significant correlation between grain size or TOC and PCB concentration in the Inner Bay region (Larsen *et al.*, 1984).

Total DDT concentrations for this study range from below the detection limit (0.25 ppb) to 21 ppb dry weight surrogate corrected (Figure 25). The DDTs were dominated by the p,p' isomers as compared to the o,p' isomers. This is not unexpected since technical grade DDT is primarily p,p' isomers (75 to 85%). In the environment DDT is metabolized to DDD and DDE. In some samples DDD is the major metabolite while in other samples There is often a relatively high percentage of DDE predominates. undegraded DDT in Casco Bay sediments. It has been suggested (Rapaport et al., 1985) that atmospheric inputs of fresh DDT coming from Central American countries that still use DDT may be atmospherically deposited in the northeastern U.S. This might explain the high percentage of DDT observed in this study. The geographic distribution of total DDT concentrations is similar to that found for PCBs. The Inner Bay has the highest concentration in Casco Bay (Figure 26). East Bay and Outer Bay have intermediate concentrations, West Bay lower concentrations and lowest concentrations are in the Cape Small region. This distribution reflects the proximity of sources of DDT to Inner Bay and East Bay sites. There is little correlation between total DDT concentrations and clay content or TOC content (Figure 27). The relationship improves if the Inner Bay sites are deleted. In general there is an increase in total DDT concentration with an increase in TOC.

The geographic distribution of total chlordane concentrations show that the highest values are at Inner Bay sites (Figures 28 and 29). East Bay and Outer Bay sites are intermediate, while West Bay and Cape Small sites exhibit the lowest concentrations. There is no apparent relationship between total chlordane concentrations and TOC content (Figure 30). This is in part due to the lack of detectable chlordane at many sites. Total chlordane concentrations ranged from below the detection limit (0.25 ppb) to 4.9 ppb dry wt. surrogate corrected (Figure 29).

(dqq) eTOO letoT

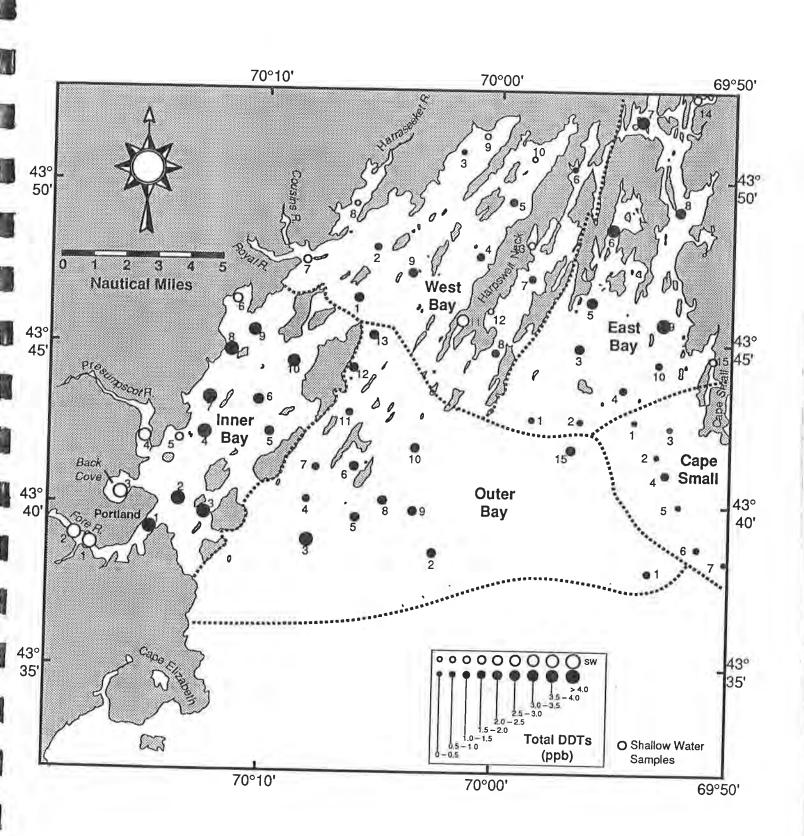
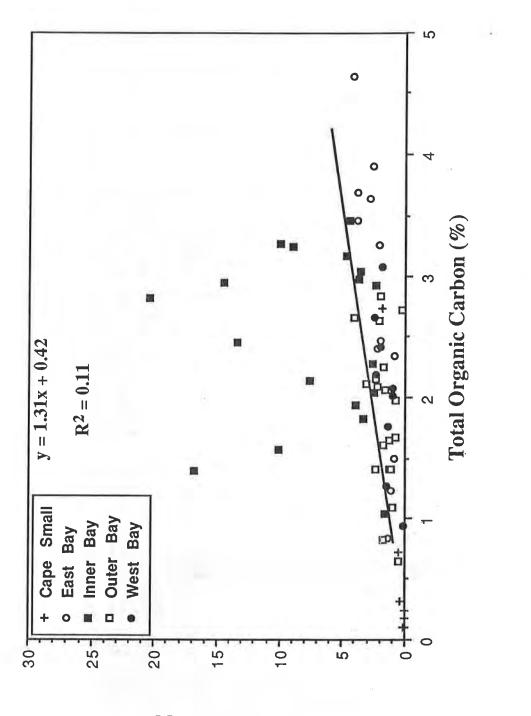



Figure 26. Regional distribution of total DDT concentrations (ppb dry weight, surrogate corrected) in sediments from Casco Bay.

The relationship between total DDT concentration (ppb dry weight, surrogate corrected) and total organic carbon content (%) of sediments from Casco Bay. Figure 27.

T

\$

Ē

(dqq) s'TUU lstoT

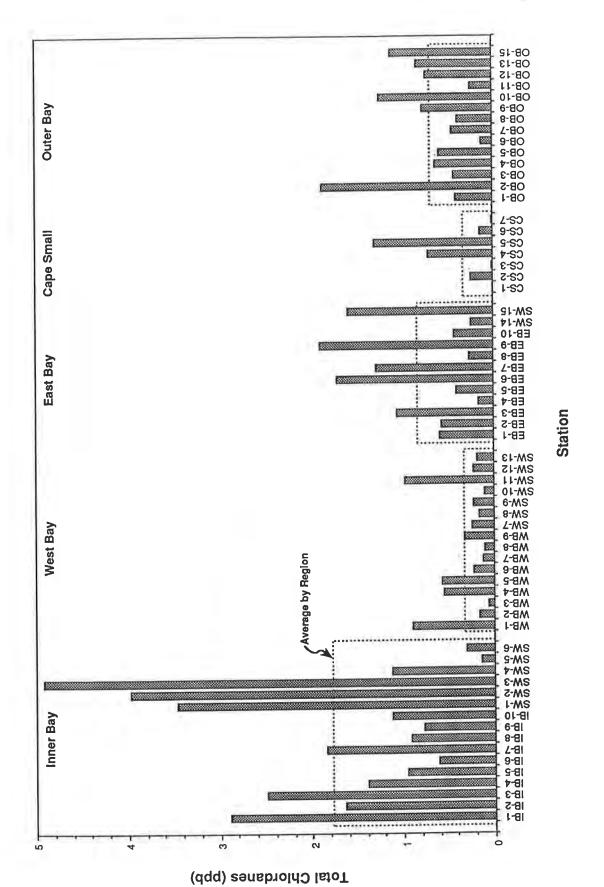


Figure 28. Summary of chlordane concentrations (ppb dry weight, surrogate corrected) in sediments by region within Casco Bay.

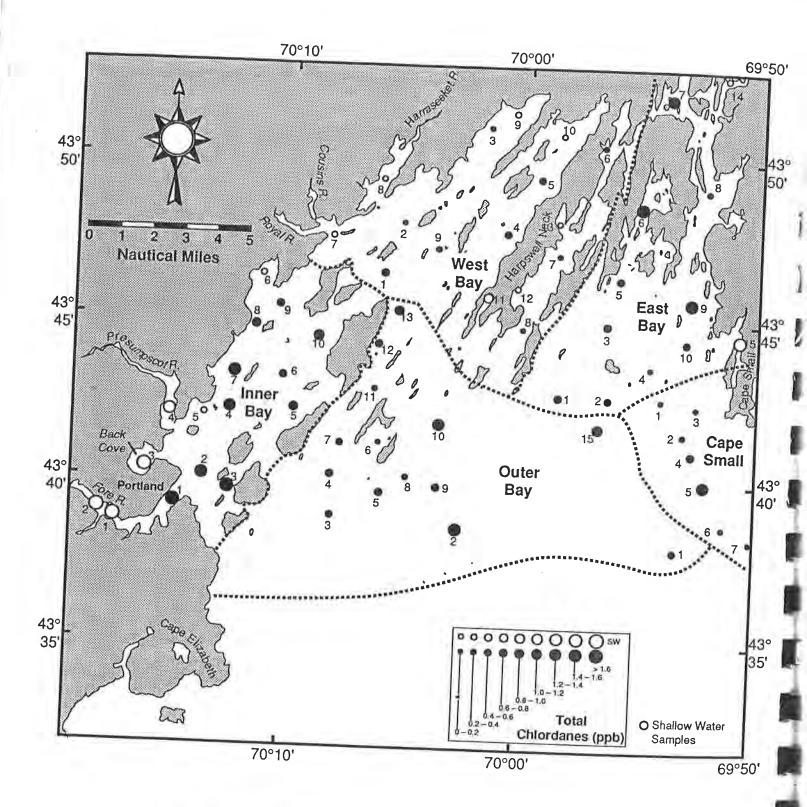
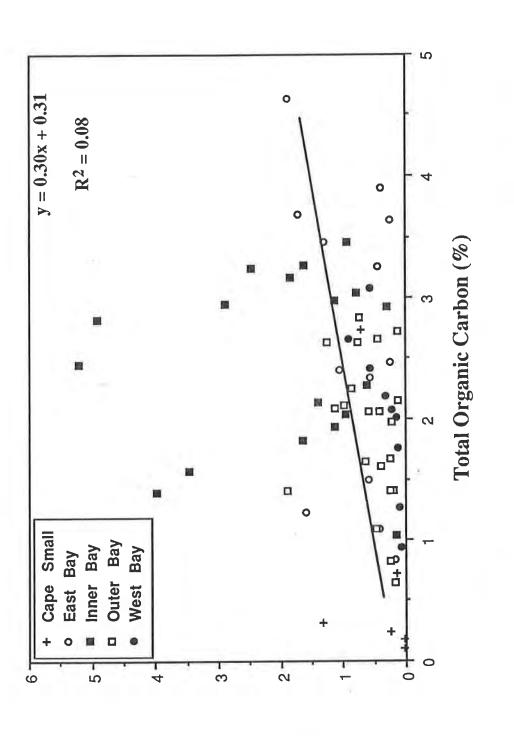



Figure 29. Regional distribution of total chlordane concentrations (ppb dry weight, surrogate corrected) in sediments from Casco Bay.

The relationship between total chlordane concentration and total organic carbon content (%) of sediments from Casco Bay.

Figure 30.

Total Chlordanes (ppb)

4.2.2 Comparisons With Other U.S. Coastal Waters

Total PCB concentrations in sediments measured as part of the NOAA NS&T program for the U.S. east coast have a median concentration between 30 and 60 ppb dry wt. (Figure 31). Based on NOAA NS&T sediments for all U.S. coastal areas, O'Connor (1990) defines concentrations of total PCB of 120 ppb dry wt. or more as high. Thus less than 25% of east coast sites are defined as high by O'Connor (1990). On comparison, it is clear that Casco Bay sediments are generally lower in PCB contamination than most east coast NOAA NS&T sites (Figure 32). Only one (SW-2) of sixty-five sites sampled in Casco Bay has a concentration that would be defined as high. The next highest PCB concentrations for NOAA NS&T sites have a median concentration between 4 and 6 ppb dry wt. (Figure 33). The Casco Bay median total DDT concentration is ~2 ppb dry wt. surrogate corrected. Frequency distributions illustrate that Casco Bay sediments have lower total DDT contamination than most east solutions than most east coast NOAA NS&T sites (Figure 34).

E

The NOAA NS&T program does not measure all of the components of technical chlordane. Only alpha chlordane, trans nonachlor and heptachlor epoxide are quantified. The NOAA NS&T total chlordane measured for the east coast has a median concentration between 1 and 2 ppb dry wt. (Figure 35). The median concentration for the sum of alpha chlordane, trans nonachlor and heptachlor epoxide for Casco Bay sediments is below the detection limit. Therefore less than 50% of the sediments from Casco Bay are lower than most other east coast locations in the NOAA NS&T program (Figure 36).

4.3 Trace Metals

4.3.1 Geographic and Historical Comparisons

Sediment trace metal data measured during the Casco Bay Estuary Program are summarized in Appendix C. These data, like data from previous studies of Casco Bay sediments, show considerable variation from place to

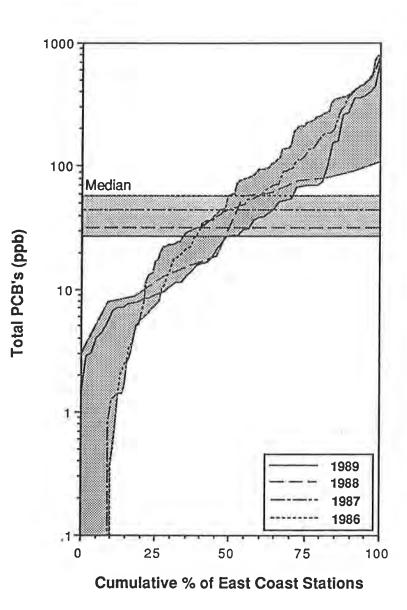


Figure 31. Summary of PCB concentrations in sediments from the East Coast of the U.S. sampled during the NOAA Status and Trends Program between 1986 and 1989.

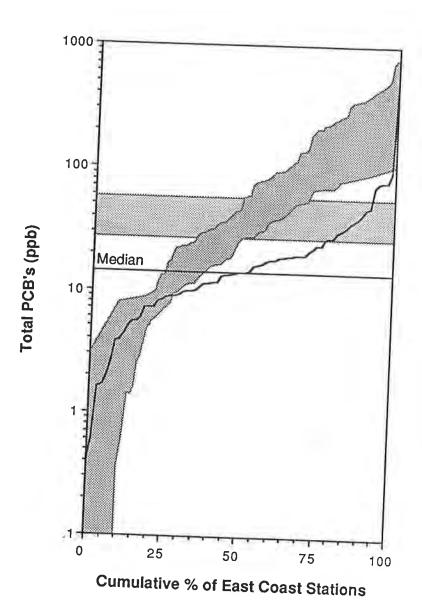


Figure 32. Comparison of total PCBs (ppb dry weight, surrogate corrected) in sediments from Casco Bay and NOAA Status and Trends stations along the East Coast.

.

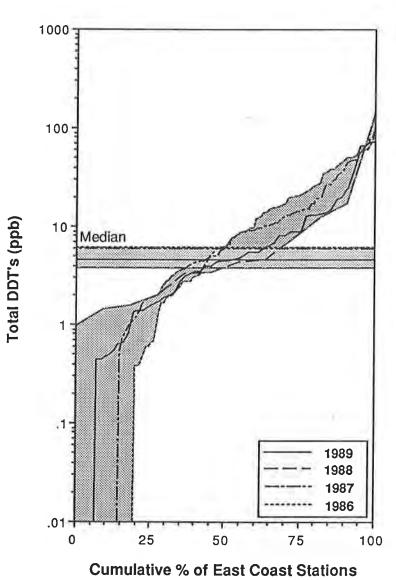


Figure 33. Summary of total DDT concentrations (ppb dry weight, surrogate corrected) in sediments from the East Coast of the U.S. sampled during the NOAA Status and Trends Program between 1986 and 1989.

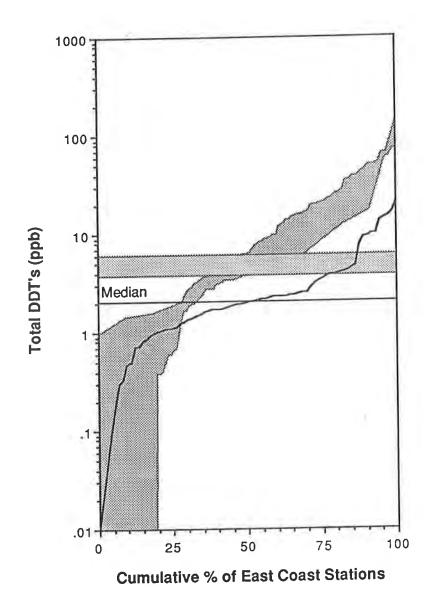
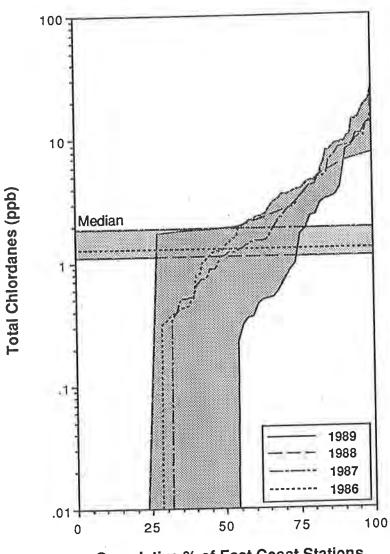



Figure 34. Comparison of total DDT concentrations (ppb dry weight, surrogate corrected) in sediments from Casco Bay and NOAA Status and Trends stations along the East Coast.

Cumulative % of East Coast Stations

Figure 35. Summary of total chlordane concentrations (ppb dry weight, surrogate corrected) in sediments from the East Coast of the U.S. sampled during the NOAA Status and Trends Program between 1986 and 1989.

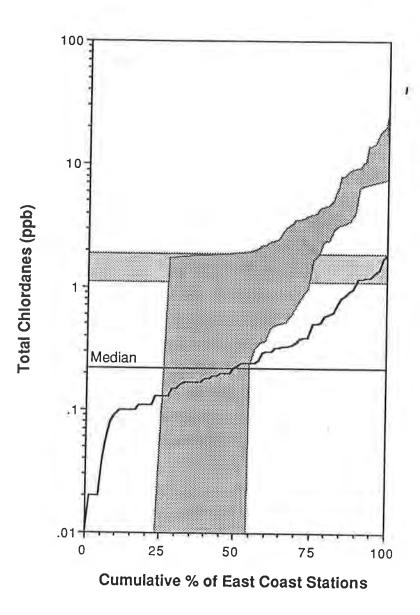
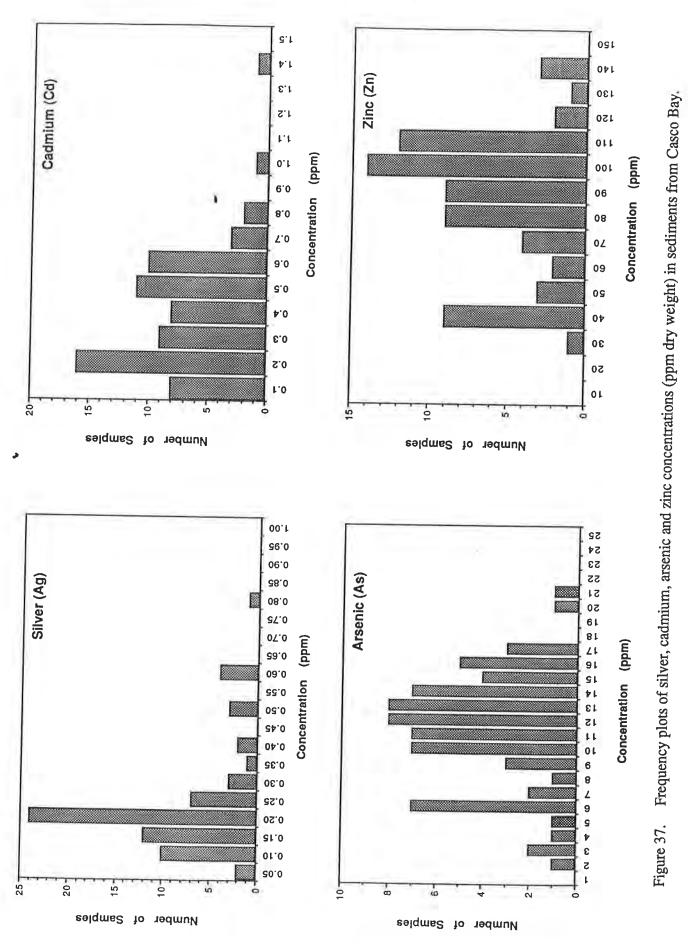
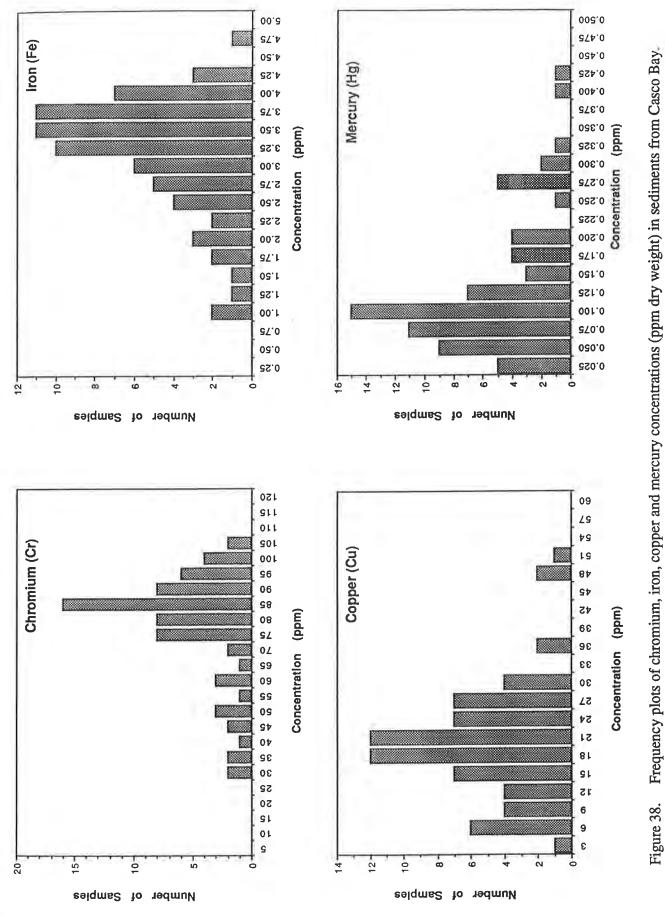


Figure 36. Comparison of total chlordane concentrations (ppb dry weight, surrogate corrected) in sediments from Casco Bay and NOAA Status and Trends stations along the East Coast.

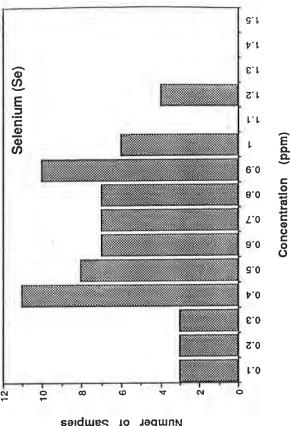

E

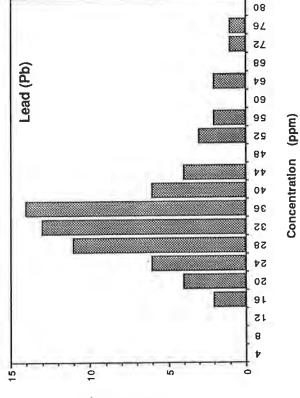
place with generally higher values in the inner bay. The data for Ag, Cd, Pb and Hg show positive skewness on frequency plots (Figures 37, 38, and 39), whereas the other metals are more normally distributed or, as in the case of Cr and Ni, exhibit negative skewness (Figures 38 and 39). Positive skewness suggests additions of metals by humans to normally distributed backgrounds. Negative skewness is most likely caused by the uneven distribution of naturally occurring trace metal-rich heavy minerals from volcanic or metamorphic rocks.


All sediment will vary in its content of all trace elements, largely due to natural variations in mineralogy and grain size but sometimes due to human activity. Frequency plots can help to distinguish natural from human influences but scatter plots are perhaps more useful. Scatter plots of Fe or Al versus trace metals, for example, often highlight anomalous data because they do not lie on a best fit line through the background data (Figures 40-42). When the Casco Bay Cr and Ni data are plotted vs Fe in the same samples (Figure 41) most of the data falls along a best fit line with an approximately 0 intercept suggesting a natural distribution. On the other hand, the Zn vs Fe and especially the Pb vs Fe plots show more scatter and more of an indication of samples enriched above what would be expected at a given Fe concentration (Figures 40 and 42). As would be expected if the enriched samples are due to human activity, they all come from the Inner Bay.

Scatter plots similar to the Fe vs trace metal plots result if percent finer (silt + clay) or total organic carbon are used instead of Fe, because finegrained sediment is Fe rich, organic carbon rich and trace metal rich. The percent finer and percent carbon plots show somewhat more natural scatter than do the Fe plots, however, probably because the data come from a different aliquot of the sample.

The geographic distribution of metals that appear to be enriched at a few locations are presented in Figures 43-47. The anomalous samples highlighted in scatter plots of metal versus iron primarily occur in Inner Bay locations close to Portland. These metals are Ag, Cd, Hg, Pb, and Zn.

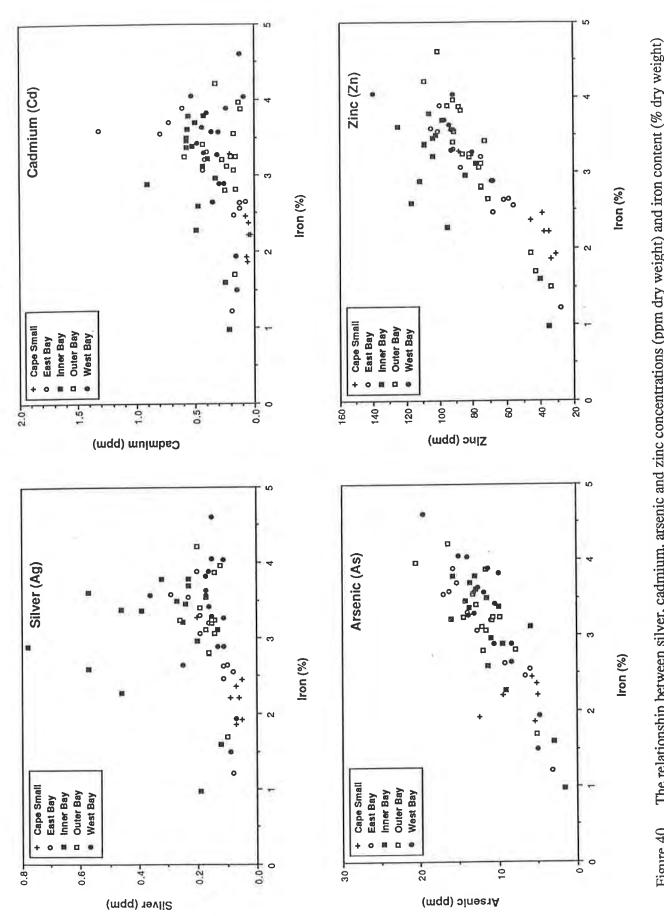

D



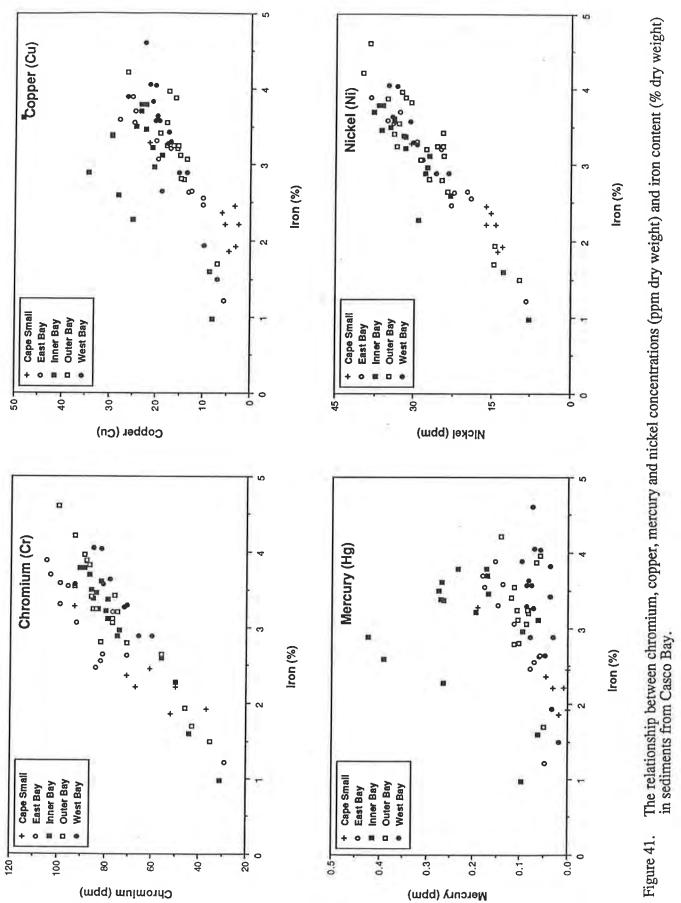
. 1

£.0 Lead (Pb) **S.**0 ٢.0 10-127 ώ à ŝ ò Number of Samples 45 07 38 96 94 32 30 Concentration (ppm) 82 10-13 56 Number of Samples 54 22 50 81 ٩٢ 41 15 Nickel (Ni) 10 8 9 Þ 2 10-6 2 12-÷ 4 ò

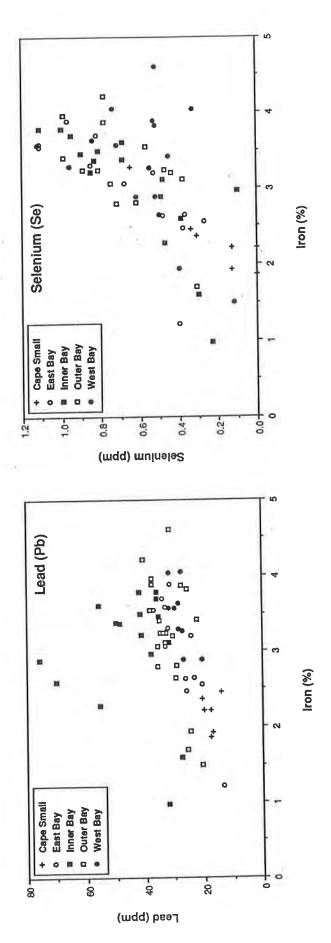
Number of Samples

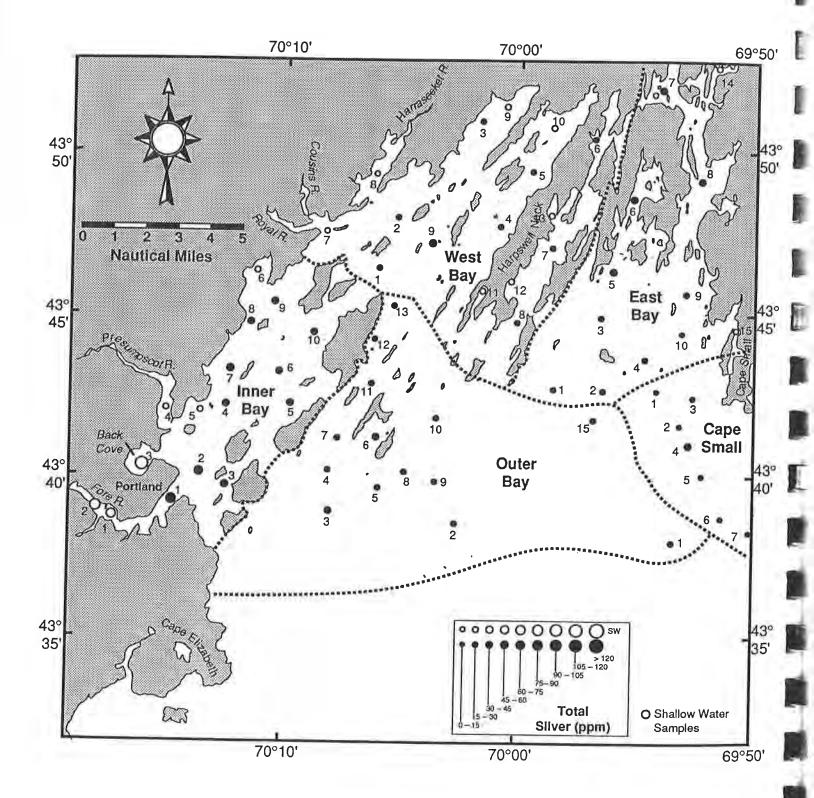


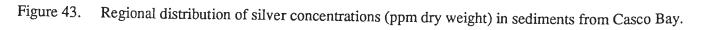
Frequency plots of nickel, selenium and lead concentrations (ppm dry weight) in sediments from Casco Bay.

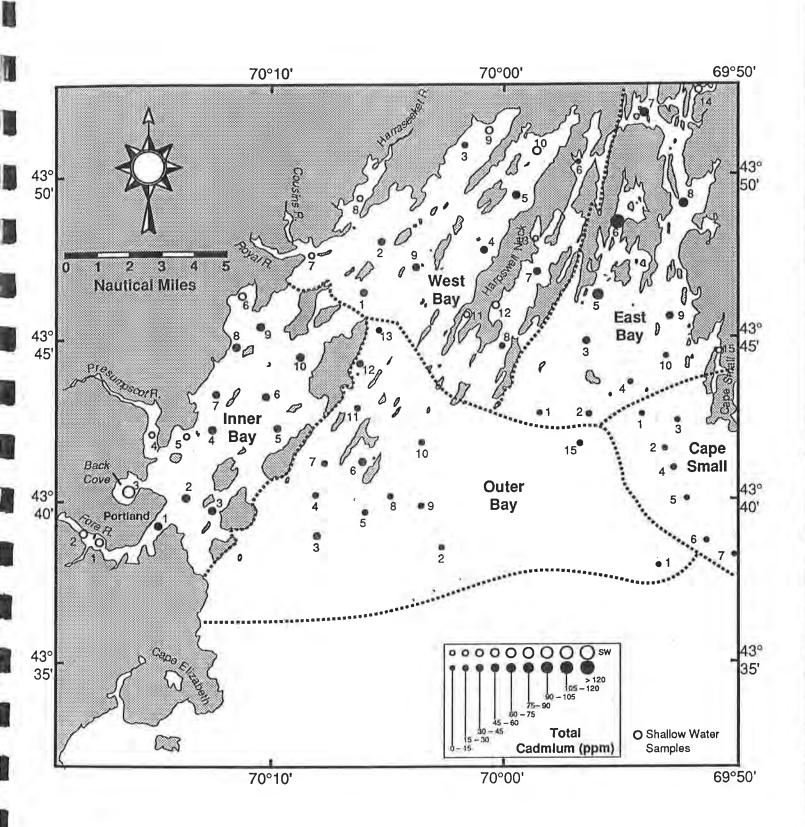

E

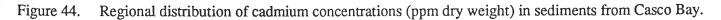
Ē


Figure 39.


The relationship between silver, cadmium, arsenic and zinc concentrations (ppm dry weight) and iron content (% dry weight) in sediments from Casco Bay. Figure 40.




L



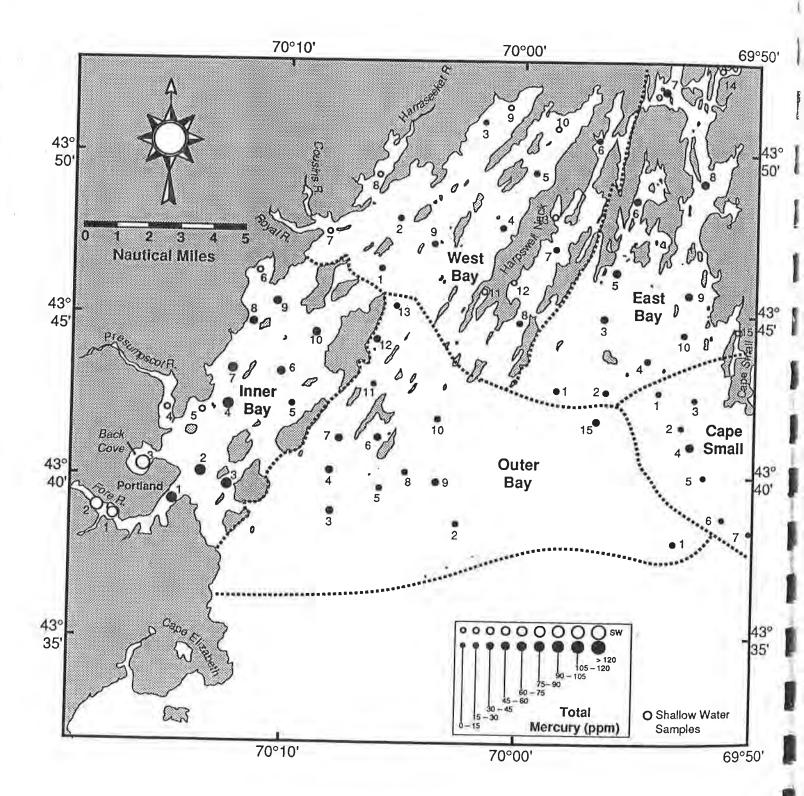
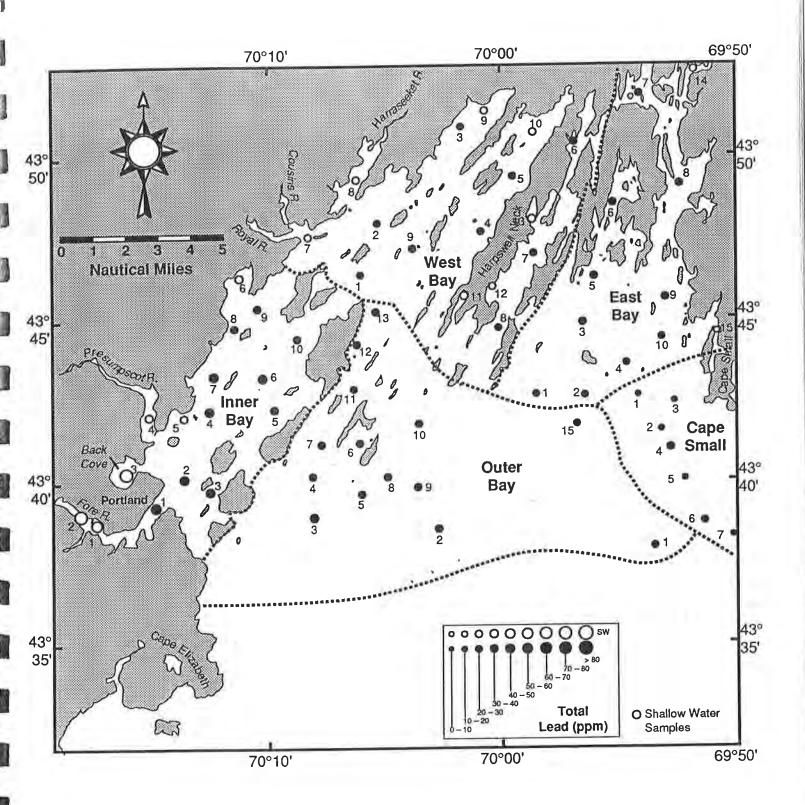
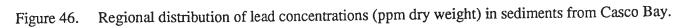




Figure 45. Regional distribution of mercury concentrations (ppm dry weight) in sediments from Casco Bay.

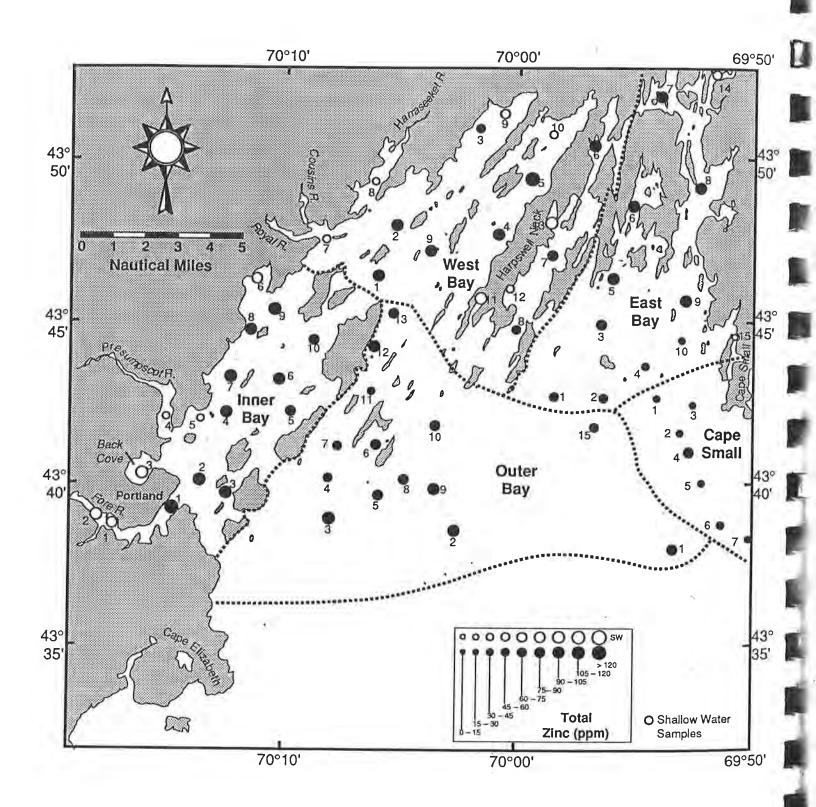


Figure 47. Regional distribution of zinc concentrations (ppm dry weight) in sediments from Casco Bay.

Q

4.3.2 Comparison With Other U.S. Coastal Waters

O'Connor (1990) examined data produced by NOAA's Status and Trends and Benthic Surveillance Programs for 1986-89. In this data set, there was a tendency for metals such as Cd, Hg and Pb to be strongly positively skewed on a frequency plot. On the other hand, the data tended to be normally distributed when plotted as logarithms. Based on this lognormal distribution, O'Connor (1990) defined "high" concentrations of several trace metals as those greater than the average plus one standard deviation of the logarithm of the average. O'Connor's "high" values include Cd (0.7 ppm), Cr (135 ppm), Cu (55 ppm), Pb (52 ppm), Hg (0.30 ppm), Ag (0.74 ppm) and Zn (172 ppm) unadjusted for sand content of the sediment. For a sediment consisting partly of quartz sand, these values would be reduced proportionally (e.g. multiplied by 0.75 for a sediment with 25% sand). Almost none of the metal concentrations detected during this study would be classified as "high" by O'Connor's (1990) definition, i.e., few would rank in the top 17% of values for coastal sediments from major U.S. bays and estuaries. The sites O'Connor (1990) considered (the NOAA Status and Trends sites) within these bays and estuaries were chosen away from obvious sources of anthropogenic metal inputs. Whereas some of the Cd, Pb, Ag, Zn, and Hg values found in Casco Bay sediments suggest an influence by humans, they are not "high" on a national scale, even when compared to samples collected away from obvious point sources of pollutant inputs.

5.0 SUMMARY CONCLUSIONS

One or more anthropogenic contaminants; trace metals, PCBs, DDTs, chlordane or PAH; are detectable at all locations sampled in Casco Bay. The geographic distributions of contaminants is primarily controlled by the location of sources and secondarily by sediment texture and oceanographic conditions. The most elevated contaminants are derived from the utilization of fossil fuels. The predominant sources of PAH are combustion processes associated with urban and industrial locations. The Inner Bay region directly offshore of Portland contains the highest levels of trace metals, PCBs, DDTs, chlordane and hydrocarbons. In general, for contaminants other than PAH, the levels of contamination are not considered high on a national basis. PAH are high in concentration in the Inner Bay and are comparable to other contaminated estuaries (O'Connor, 1990; Long and Morgan, 1990). Historical changes in contaminant concentrations are difficult to assess due to variations in methodologies, analytes measured, and variable station locations.

To compare the distribution of all of the contaminants measured, each site was ranked from 1 to 65 based on the abundance of each suite of contaminants. If a contaminant was below the MDL it was given a ranking of 1. If multiple stations had the same concentrations they were given the same relative ranking. Organic and inorganic contaminants were assessed separately, the cumulative rankings for each site were summed, and the sites were sorted from low to high values (Tables 17 and 18). Based on this summation the highest 25% of organic contaminants are located at 10 Inner Bay, 2 Outer Bay, 3 East Bay, and 1 Cape Small sites. Eight of the ten most highly contaminated stations are located in the Inner Bay region including the six highest stations. The lowest levels of organic contaminants are in the Cape Small and West Bay regions. High levels of a variety of organic contaminants tend to occur at the same location.

For inorganic contamination only those metals believed to be influenced by anthropogenic inputs were used to rank the sample locations, i.e., Ag, Cd, Pb, Zn, and Hg. Based on the summation of inorganic contaminant rankings the locations with the 25% highest levels were at 12 Inner Bay, 3 East Bay, and 1 Outer Bay location. Nine of the ten highest locations are in the Inner Bay region including the eight highest stations. Lowest metal concentrations occur in the Cape Small region. Eleven stations are ranked in the highest 25% on both the inorganic and organic contaminant rankings. They are almost exclusively Inner Bay locations, i.e., nine of eleven.

Biological effects or sediment quality were not directly measured in this study. However, the concentrations of most organic contaminants detected are below the concentration levels that are believed to evoke toxic responses in marine benthic organisms (Tables 18, 19 and 20). Long and Morgan (1990) conducted an extensive literature review of articles giving

Table 17. Casco Bay Estuary Program Site Rankings Based on Organic Contaminant Data - 1991 (ppb dry wt. surrogate corrected).

ble 17. Sta#	Total PAH's (ppb)	stuary Program Total PAH's Ranking	Total Chlordane	Total Chlordane Ranking	Total DDT'S (ppb)	Total DDT'S Ranking	Total PCB'S (ppb)	Total PCB'S Ranking	Total Organ Ranking
			(ppb)			1	0.6	2	6
	00.40	2	0.01	1	0.01	1	0.4	1 5	7
CS-1	93.40	2 1 6	0.02	3 2 4	0.02	2 4	2.0	5	17
CS-7	16.35	1	0.02	2	0.10	4	2.6	6	19
CS-3	514.89	0	0.02	4	0.18	5	2.0	3	28
WB-3	420.57	4 5 8 3	0.07	12	0.47	8 6	1.6	õ	29
SW-8	445.27	5	0.16	6	0.30	6	4.5	9 4	29
5 W -0	595.33	8	0.11	10	0.04	3	1.7	4	35
SW-10	362.06	3	0.24	19	0.50	9	3.8	7	53
CS-2		9	0.15	10	0.50	10	5.5	11	55
CS-6	672.02	16	0.23	16	0.72	14	6.0	13	53
SW-12	1093.80	11	0.23	15	0.94		8.1	17	55
WB-6	774.36	10	0.23	17	0.73	11	7.2	14	62
SW-9	734.37	10	0.16	11	1.01	15	7.3	16	64
WB-2	1467.16	22	0.10	9	1.63	26	1.5	18	66
SW-5	910.62	13	0.15	9 5	1.52	25	8.4	10	71
	1111.55	18	0.11	20	1.70	29	5.2	10	72
WB-8	807.08	12	0.25	20	1.23	21	9.8	23	75
SW-7		14	0.19	14	1.23	7	3.9	8	13
SW-13	961.48	7	1.32	53	0.33	23	3.9 10.2	25	75
CS-5	546.22	20	0.12	7	1.36	19	7.2	15	81
WB-7	1328.63	20	0.41	27	1.09	18	11.6	28	84
OB-1	1432.62	21	0.24	18	1.11	19	11.0	12	88
OB-11	1312.17	19	0.24	30	1.03	16	5.5	21	91
OB-7	1650.23	30	0.45	21	1.94	34	9.1	21	105
SW-14		15	0.25	35	0.86	13	9.0	20	109
51-14	2230.05	37	0.60	55	0.82	12	8.9	19	
EB-1	2874.51	45	0.57	33	1 02	31	11.5	27	113
EB-2		24	0.56	31	1.83	41	10.0	24	114
WB-4	1494.59	26	0.30	23	2.29	33	14.1	34	116
SW-6	1526.07	17	0.57	32	1.91	33	14.3		116
WB-5	1101.75	17	0.16	13	1.37	24	9.6	22	117
EB-4	2791.39	44	0.64	37	1.26	22	9.0		121
OB-4	1964.06	36		8	2.33	43	18.8		125
OB-6	1531.22	28	0.13	42	1.69	28	11.5		127
OB-13		29	0.85	42	1.72	30	17.4	. 39	134
OD-13	1865.48	33	0.39	25	1.12		13.5	31	
OB-8		55	0.43	28	1.12		16.3	38	130
EB-10	4545.30	34	0.33	. 24	2.28		11.8		140
WB-9	1900.64	34	0.91	· 43	2.42		14.4		14
WB-1	1490.07	23	0.74	39	2.00	35		`	15
OB-12	2 1696.01	31		46	3.10	49	13.9		15
SW-1	1 1501.35	25	0.98	34	1.65	; 27	18.9		15
OB-5	2964.25	48	0.60	41	3.56	50	13.4		16
IB-9	1944.80	35	0.78	41	2.26	39	14.	0 33	16
1D-7	2938.97		1.06	47	2.40		15.	8 37	10
EB-3	2545.34		0.96	45	2.40		22.	2 49	16
IB-5			0.77	40	2.08		. 19.	6 46	16
OB-9			0.26	22	2.81	-	23.		17
EB-8		17	0.40	26	2.55	5 47	17.		17
EB-5	2943.78	47	1.60	55	1.0	7 17		-	17
SW-	15 7179.50		1.00	48	3.93	3 54	19		1'
SW-	4 1530.28	3 27	1.12	59	2.3	1 42	18.		1
OB-2		L 32	1.89	51	2.0	9 37	20		1
OB-2		3 39	1.25		2.5		27		
			0.62	36	2.3		19	.4 45	1
IB-6			1.13	49	2.1		19	.9 47	1
OB-		-	0.93	44	4.4		40		1
IB-8	2723.0		0.71		1.8	9 32	40		1
CS-4	4 7453.6		0.43		4.1	.2 55	30		1
OB-	3 3726.5	1 53	0.45		3.6	<u>59</u> 51	27		2
IB-1		3 43	1.13		3.8	36 52	35		2
			1.72		3.8		23	9 51	2
EB-			1.30	52			31	.8 55	2
EB-			1.39) 54				3.7 56	2
IB- 4			1.84	Ļ 58	4.7		2.	7.3 58	2
IB-7	7 3109.1		1.91		4.1		5		-
EB-	.9 7340.3		1.91	L		91 61			
IB-2		10 58	1.63				42	2.2 60	
IB-2		3 57	2.49			.10 62	7	2.3 62	·
	·		3.4	7 63		.50 63	7	9.2 64	
SW			2.89	9 62				7.1 63	
B-	1 9174.		4.9	1 65					
SW			30	8 64	1 16	.81 64	40		
SW SW	-3 7516.	62	4.9 3.9	•		.81 64		35.0	62

Sta#	Ag (ug/g)	Ag Ranking	Cd (ug/g)	Cd Ranking	Hg (ug/g)	Hg Ranking	Pb (ug/g)	Pb Ranking	Zn (ug/g)	Zn Ranking	Total Ranking
CS-7	0.05	1	0.069	5	<0.006	1 1 2 1	17.1	3 4	31	2 4	12
CS-3	0.06	1	0.053	3 4 6	0.008	1	17.6 17.8	4	35 34	4	13 15
CS-2 CS-1	0.07 0.05	1 I	0.060 0.071	4	0.019 <0.006	2	14.1	5 2 6	39	3 6	16
CS-5	0.09	3	0.036	1	0.031	3	20.0	6	38	5	18
CS-6	0.07	3 1	0.051	1 2	0.046	3 6 2 7 4	20.8	9 7	46	5 9 3	27
SW-8	0.09	3 2 1 4 2 4 5 5 5 6 8 5 7 10	0.150	14	0.019	2	20.5	7	34	3	29
SW-15	0.08	2	0.192	21	0.048	7	13.6	1	28	1	32
SW-7	0.07	1	0.155	15	0.032		24.7	13	46 59	9 11	42 43
EB-4	0.10	4	0.076 0.121	7 10	0.058 0.069	10 15	23.3 20.6	11 8	56	10	43
EB-10 OB-11	0.08 0.10	2	0.121	10	0.009	8	25.5	14	43	8	51
EB-1	0.10	5	0.103	12	0.059	11	26.2	16	62	12	56
WB-3	0.11	5	0.258	28	0.031	3	20.5	7	69	14	57
EB-2	0.11	5	0.175	19	0.077	20	25.8	15	68	13	72
SW-5	0.12	6	0.245	27	0.062	13	27.5	20	40	7	73
OB-1	0.14	8	0.118	9 8	0.065	14	27.7	21	88	27	79
WB-6	0.11	5	0.088	8	0.057	9 20	31.7	30	92	29	81
WB-8	0.13	7	0.293	30	0.077 0.037	20 5	26.8 22.2	17 10	68 73	13 16	87 89
SW-10 WB-7	0.16 0.11	10	0.486 0.312	48 32	0.037	17	22.2	18	80	20	92
SW-9	0.11	5 11	0.312	38	0.037	5	25.5	14	87	25	93
OB-15	0.16	10	0.155	15	0.102	28	29.3	24	75	17	94
SW-12	0.25	16	0.355	35	0.048	7 27	29.4	25	71	15	98
SW-4	0.19	12	0.213	24	0.097	27	32.0	32	35	4	99
SW-14	0.16	10	0.414	40	0.082	22	24.3	12	75	17	101
SW-13	0.15	9	0.125	11	0.073	18	31.5	28	101	36 22	102
OB-10	0.14	8	0.156	16	0.081 0.058	21 10	33.8 37.7	38 49	82 92	29	105 107
OB-2 OB-13	0.12 0.15	0	0.133 0.268	13 29	0.038	22	30.6	27	82	22	107
OB-8	0.14	9 8 6 9 8 7	0.176	20	0.087	24	35.7	43	76	18	113
SW-6	0.13	ž	0.435	45	0.061	12	31.7	30	78	19	113
OB-5	0.15	9 11	0.200	22	0.085	23	34.7	40	81	21	115
OB-4	0.17	11	0.226	25	0.104	29	33.1	36	75	17	118
WB-2	0.17	11	0.358	36	0.076	19	29.7	26	92 93	29 30	121 127
WB-1 OB-7	0.15 0.16	9 10	0.430 0.245	42 27	0.087 0.113	24	28.4 35.8	22 44	93 75	30 17	127
WB-4	0.10	10	0.245	46	0.082	32 22	28.6	23	94	31	133
WB-9	0.36	21	0.302	31	0.087	24	31.9	31	93	30	137
OB-9	0.17	11	0.174	18	0.113	32	38.3	51	91	28	140
CS-4	0.20	13	0.208	23	0.190	43	32.4	34	88	27	140
WB-5	0.15	9	0.529	52	0.069	16	27.4	19	140	45	141
SW-11	0.16	10	0.239	26	0.096	26	37.6	48	95	32 23	142 144
B-5	0.20	13 12	0.325 0.431	33 43	0.094 0.112	25 31	38.1 33.2	50 37	84 87	25	144
EB-3	0.19	12	0.451	40	0.112	36	321	33	92	29	149
DB-12	0.19	12	0.434	44	0.118	33	35.1	41	92	29	159
OB-6	0.26	17	0.592	58	0.106	30	32.8	35	86	24	164
EB-7	0.20	13	0.608	59	0.153	37	31.6	29	100	35	173
DB-3	0.20	13	0.327	34	0.141	35	40.7	52	109	41	175
B-10	0.23	14	0.501	50	0.170	39	36.0	45	98	34	182
EB-8	0.23	14	0.720	60	0.181	42	34.1	39 52	97 104	33 38	188 188
B-6 B-8	0.25 0.24	16 15	0.392 0.573	37 56	0.195 0.168	44 38	41.2 35.3	53 42	104	38	189
Б-0 ЕВ-6	0.24	19	1.320	63	0.137	34	33.2	37	104	39	192
B-9	0.23	19	0.557	53	0.173	40	36.2	46	106	40	193
EB-5	0.23	14	0.794	61	0.176	41	37.0	47	101	36	199
B-7	0.32	20	0.424	41	0.234	45	42.1	55	106	40	201
SW-1	0.46	23	0.488	49	0.264	46	55.5	58	95	32	208
B-4	0.27	18	0.571	55	0.274	49	41.5	54	102	37	213 220
B-2	0.46	23	0.524	51	0.271	48	49.9 48.5	57 56	109 109	41 41	220
B-3 SW-2	0.39 0.57	22 24	0.574 0.478	57 47	0.264 0.392	46 50	48.5 70.3	50 60	109	41	224
B-1	0.57	24	0.478	54	0.392	47	55.6	59	125	44	228
SW-3	0.78	25	0.908	62	0.424	51	75.6	61	112	42	241

Table 18. Casco Bay Estuary Program Site Rankings based on Selected Metal Data - 1991 (ppm dry wt.).

Ĩ

1

D

E

LJ ER.M. AET'3 Degree of Confidence/i WSSQC5 Inner Bay War Max Min Min Max											Casco Bay Regions ⁶	Regions ⁶					
Take Elements (prin dry wi) Take Elements (prin dry wi) Sign 5 % LM Sign 5 % MM Sign 5 % MM Sign 5 % Sign 6 % S	Chemical Analyte		ER-M ²	AET ³	Degree of Confidence ⁴	wssqc5	Inner Min	Bay Max	West	Bay Max	East Min	Bay Max	Cape Small Min Max	Small Max	Outer	Outer Bay Vin Max	
Areatic 33 85 50 LM 57 1.62 16.00 37.00	Trace Elements (ppm	dry wt.)															
Areatic 3 9 7 1 </td <td></td> <td>ç</td> <td>20</td> <td>02</td> <td>TAF</td> <td>5 7</td> <td>1.62</td> <td>16.00</td> <td>4 76</td> <td>19.60</td> <td>3.20</td> <td>19.60</td> <td>5.03</td> <td></td> <td>5.03</td> <td>20.50</td> <td></td>		ç	20	02	TAF	5 7	1.62	16.00	4 76	19.60	3.20	19.60	5.03		5.03	20.50	
Community 80 145 No MM 260 31.00 53.00 100.00 29.00 20.00	Arsenic	3.2	90	ς v	HVH	5.1	0.213	0.908	0.088	0.529	0.076	1.320	0.036		0.036	0.592	
Coper 73 930 300 HH 430 77.56 55.62 55.92 57.540 55.93 57.500 57.50	Chromium	80	145	No	MM	26.0	31.00	91.00	35.00	100.00	29.00	105.00	37.00		43.00	93.00	
Merup Indext 0.13 1.3 1.4 Min 0.11 0.03 0.095 0.048 0.135 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.015 0.13 0.015 0.13 0.015	Copper	70 35	390	86	H/H M/H	390	7.92	48.40 75.60	0.98 20.50	37.60	ود.د 13.60	37.00	14.10	32.40	25.50	40.70	
Nicker 30 50 NSD MM 7.81 37.80 9.67 38.40 33.30 33.40 12.2 5.0 33.40 12.2 5.0 33.40 12.2 5.0 33.40 12.2 5.0 33.40 12.0 2.2 5.0 33.40 13.00 </td <td>Mercury</td> <td>0.15</td> <td>1.3</td> <td></td> <td>H/H</td> <td>0.41</td> <td>0.061</td> <td>0.424</td> <td>0.019</td> <td>0.096</td> <td>0.048</td> <td>0.181</td> <td>< 0.010</td> <td></td> <td>0.049</td> <td>0.141</td> <td></td>	Mercury	0.15	1.3		H/H	0.41	0.061	0.424	0.019	0.096	0.048	0.181	< 0.010		0.049	0.141	
Silver 1 2.2 1.7 MM 6.1 0.112 0.23 0.03 0.030	Nickel	30	50	NSD ⁷	MM	I	7.81	37.80	9.67	38.60	8.36	38.40	12.90		14.50	39.80	
(see footnote on Table 20) (see footnote on Table 20) Table 20. Comparison of ER-L, ER-M, apparent effects thresholds, and Washington State Dept. of Ecology Sediment Management Standards, Chapter 173- measured in Caseo Bay (after Long and Morgan, 1999; Washington State Dept. of Ecology Sediment Management Standards, Chapter 173- measured in Caseo Bay (after Long and Morgan, 1999; Washington State Dept. of Ecology Sediment Management Standards, Chapter 173- measured Biphenyls (ppb) Chemical Analyte ER-LI ER-M ² AET ³ Degree of WSSQC ⁵ Inner Bay Work Bay Caseo Bay Regions ⁶ Polychlorinated Biphenyls (ppb) ER-LI ER-M ² AET ³ Degree of WSSQC ⁵ Min Max Win Max Min Max	Silver Zinc	120	2.2	1.7	MM	6.1 410	0.12 35.00	0.78 125.00	34.00	0.36	0.08 28.00	0.29	31.00	0.70 88.00	43.00	109.00	1
Transaureri in Casco Bay (after Loring and Morgan, 1990; Washington State Dept. of Ecology Sediment Management Standards, Chepter 1/3- Chemical Analyte ER.L ¹ ER.M ² AET ³ Degree of WSSQC ⁵ Inner Bay Min Max Casco Bay Regions ⁶ Polychlorinated Biphenyls (ppb) Confidence ⁴ WSSQC ⁵ Min Max West Bay Min East Bay Min Max Casco Bay Regions ⁶ Total PCBs 50 400 370 MM 240 7.31 484.97 1.58 16.32 8.89 3730 DDT and Metabolites (ppb) 2 1 7 6 UL - 0.49 4.38 6.020 0.96 0.40 370 DDT and Metabolites (ppb) 2 1 7 6 UL - 0.49 4.38 6.020 0.39 0.40 370 DDT and Metabolites (ppb) 2 1 7 6 UL - 0.49 4.38 6.02 0.40 373 DDT and Metabolites (ppb) 2 1 7 6 UL - 0.47 2.04 0.31 0.49 DT and Metabolites (ppb) 2 1 3.44 6.02 0.30 0.39 0.41 2.01 Dtriand 2 1 - 0.67 1.63 2.02 0.06 0.31 2.01 Dtr	(see footnote on Tabl Table 20. Comparison of E	e 20) IR-L. ER-	-M. appa	tent effec	ts thresholds,	and Washir	gton Stat	e Sedimer	nt Quality	Criteria	concentrati	ons for sel	ected che	micals in	sediment	ts and the	value
R.L1 ER.M ² AET ³ Degree of Confidence ⁴ WSSQC5 Inner Bay Min West Bay Min East Bay Min East Bay Min 50 400 370 MM 240 7.31 484.97 1.58 16.32 8.89 1 7 6 L/L 0.49 4.28 <0.20 0.96 0.40 2 2 0 NSD MM 240 7.31 484.97 1.58 16.32 8.89 3 350 No MM 240 7.31 484.97 1.58 16.32 8.89 3 350 No MM 240 7.31 484.97 1.58 16.32 8.89 3 350 No MM 0.49 4.28 <0.020 0.40 0.31 2 1.5 3.84 <0.06 1.16 0.07 0.22 <0.07 0.32 0.15 N N N N N 0.05	measured in Case	co Bay (at	ter Long	and Mor	an, 1990; wa	shington Stat	e Dept. oi	Ecology	COLINE	Mailagour		Bay Danio	ne6				
R.L1 R.L3 Degree of Confidence4 WSSQC5 Inner Bay Min West Bay Min West Bay Min East Bay Min East Bay Min 50 400 370 MM 240 7.31 484.97 1.58 16.32 8.89 1 7 6 I.M. 240 7.31 484.97 1.58 16.32 8.89 2 20 NSD MM 240 7.31 484.97 1.58 16.32 8.89 3 350 No MM 240 7.31 484.97 1.58 16.32 8.99 2 16 0.67 15.09 0.08 1.49 0.07 0.07 3 350 No MM 20.42 <0.20											CASCO	Day Negu	- 211				
50 400 370 MM 240 7.31 484.97 1.58 16.32 8.89 1 7 6 L/L 0.49 4.28 <0.20 0.96 0.40 2 2 0 NSD MM 0.49 4.28 <0.06 1.14 0.07 3 350 No MM 1.63 20.42 <0.06 1.14 0.07 3 350 No MM 1.63 20.42 <0.05 0.31 0.03 3 350 No MM 1.63 20.42 <0.05 0.31 0.07 3 350 No MM 1.63 20.42 <0.07 0.32 <0.07 0.15 NA NA NA NA <0.06 0.13 <0.07 0.05 0.016 0.02 0.48 0.07 0.28 0.04 0.05 <0.06 0.016 0.02 0.48 0.07 0.028 0.06 0.05 <th>Chemical Analyte</th> <th>ER-L¹</th> <th></th> <th>AET³</th> <th>Degree of</th> <th></th> <th>Inner Min</th> <th>- Bay Max</th> <th>West Min</th> <th>Bay Max</th> <th></th> <th>East Bay M</th> <th></th> <th>Cape Small Min Ma</th> <th>mall Max</th> <th>Outer Bay Min Max</th> <th>Bay Mao</th>	Chemical Analyte	ER-L ¹		AET ³	Degree of		Inner Min	- Bay Max	West Min	Bay Max		East Bay M		Cape Small Min Ma	mall Max	Outer Bay Min Max	Bay Mao
50 400 370 MM 240 7.31 484.97 1.58 16.32 8.89 etabolites (pb) 1 7 6 L/L 0.49 4.28 <0.20 0.96 0.40 2 15 NSD ML 0.49 4.28 <0.06 1.14 0.01 2 15 NSD ML 0.67 15.09 0.08 0.31 2 15 NSD MM 1.63 20.42 <0.05 0.31 2 15 NSD MM 0.18 3.34 <0.07 0.32 3 56 2 L/L 0.18 3.34 <0.07 0.32 0.55 6 2 L/L 0.18 4.91 0.07 0.38 0.16 0.02 4 5 0.05 0.14 0.05 0.01 0.05 0.07 0.05 0	Polychlorinated Biphenyls (I	(qdi															
and Metabolites (pp) 1 7 6 1/L - 0.49 4.28 <0.20 0.96 0.40 2 2 20 NSD ML - 0.67 15.09 0.08 1.49 0.03 15 NSD ML - 1.63 20.42 <0.06 1.14 0.07 r Pesticides (pp) r Pesticides (pp) ne NA NA NSD NA - 1.63 20.42 <0.00 3.10 0.82 me NA NA NSD NA - 0.15 4.91 0.07 0.98 0.16 1.1, - 0.15 4.91 0.07 0.98 0.16 0.02 8 No NA NA NSD NA - 0.06 0.13 4.91 0.07 0.98 0.16 1.1, - 0.018 0.018 0.018 <0.06 0.016 <0.04 0.006 0.016 0.016 <0.04 0.006 0.016 0.016 <0.04 0.006 0.016 0.016 <0.016 0.016 0.016 0.016 <0.016 <0.016 0.016 0.016 0.016 <0.016 <0.016 0.016 0.016 0.016 <0.016 0.016 0.016 0.016 <0.016 <0.016 0.016 0.016 0.016 <0.016 0.016 0.016 0.016 <0.016 0.016 0.016 0.016 <0.016 0.016 0.016 0.016 <0.016 0.016 0.016 <0.016 <0.016 0.016 0.016 0.016 <0.016 0.016 0.016 <0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 <0.016 0.016 0.016 0.016 0.016 <0.016 0.0	Total PCBs	50	400	370	MM	240	7.31	484.97	1.58	16.32	8.89	37	7.30	0.44	40.02	5.50	30.67
1 7 6 L/L 0.49 4.28 < 0.20 0.96 0.40 DDT 2 15 NSD M/L 0.67 15.09 0.08 1.49 0.31 TP sticides (pb) 3 350 No M/M 1.63 20.42 <0.05	DDT and Metabolites (ppb)																
ticides (ppb) NA NA NSD NA ⁸ <0.07 0.48 <0.07 0.22 <0.07 NA NA NSD NA ⁸ <0.15 4.91 0.07 0.98 0.16 0.5 6 2 LL 0.18 4.91 0.07 0.98 0.16 NA NA NSD NA 0.08 0.13 <0.04 0.05 <0.04 NA NA NSD NA <0.08 0.13 <0.04 0.05 <0.04 0.02 45 NSD LL <0.06 0.84 <0.06 0.21 <0.06 NA NA NSD NA <0.04 0.29 <0.04 0.08 <0.06 ffects Range-Low ffects Range-Median parent Effects Threshold	DDT DDD DDE Total DDT	-996	7 20 350	on NsD No No	WW		0.49 0.67 0.18 1.63	4.28 15.09 3.84 20.42	 < 0.20 0.08 < 0.06 < 0.20 	$\begin{array}{c} 0.96\\ 1.49\\ 1.14\\ 3.10\end{array}$	0.40 0.31 0.07 0.82	0-04		< 0.20 < 0.07 < 0.06 < 0.20	0.86 0.62 0.40 1.89	0.47 0.34 0.06 1.03	1.52 2.04 0.63 4.12
ne NA NA NSD NA ⁸ <0.07 0.48 <0.07 0.22 <0.07 lor 0.5 6 2 LL 0.15 4.91 0.07 0.98 0.16 lor NA NSD NA 0.08 0.13 <0.04	Other Pesticides (ppb)																
r NA NA NSD NA 0.08 0.13 < 0.04 0.05 < 0.04 NA NA NSD NA 0.08 0.13 < 0.04 0.05 < 0.06 NA NA NSD NA < 0.16 0.94 < 0.16 < 0.16 < 0.16 0.02 45 NSD LA < 0.28 < 0.28 < 0.28 < 0.28 NA NA NSD NA < 0.06 0.84 < 0.06 0.21 < 0.06 ffects Range-Low iffects Range-Median	Lindane	NA		dsn	NA ⁸	1.1	< 0.07		< 0.07	0.22				< 0.07	0.11	< 0.07	0.34
In 0.02 8 No 0.02 8 0.03 0.02 8 0.03 0.028 0.038 0.028	Chlordane Heptachlor	AN		NSD	NA.	T	0.08		< 0.04	0.05				< 0.04	< 0.04	< 0.04 < 0.16	1.4
0.02 45 NSD L/L < 0.06 0.24 < 0.09 0.21 < 0.09 NA NA NSD NA < 0.04	Dieldrin Aldrin	0.02 NA		NSD	NA	E1	< 0.28		< 0.28	< 0.28				< 0.28	< 0.28	< 0.28	< 0×
¹ ER-L - Effects Range-Low ² ER-M - Effects Range-Median ³ AET - Apparent Effects Threshold	Endrin Mirex	0.02 NA		NSD	NA	F I	< 0.06	- 1	< 0.04	0.08				< 0.04	0.66	< 0.04	0.1
³ AET - Apparent Effects Threshold	¹ ER-L - Effects Range-Lov ² ER-M - Effects Range-Me	v dian															
dr T M. Madian U Bich	³ AET - Apparent Effects Tl	hreshold															
*L - Low, M-Medium, H-Hign 5WSSOC - Washington State Sediment Quality Criteria calculated ppb dry wt. based on 2% TOC	⁴ L - Low, M-memum, n-t 5WSSOC - Washington Sta	tign te Sedime	ant Qualit	y Criteria	calculated ppl	o dry wt. bası	ed on 2%	TOC									

both concentrations of contaminants in sediments and observed biological effects. Six different approaches used in these studies were briefly described and reviewed. It is concluded that each approach has strengths and weaknesses, i.e., there is no perfect method for determining sediment toxicity. They therefore tried to arrive at consensus values by considering data from all the studies. Sediment concentrations shown by the studies to cover biological effects, and judged to be valid, were ranked from low to high. A 10th and 50th percentile were then determined. Those were designated "Effects Range Low" and "Effects Range Median" (ER-L and ER-M). The Washington State Sediment Quality Criteria, the summary of data from Long and Morgan (1990) and the Casco Bay results are compared in Tables 19 and 20.

The "high" total PAH values present in Inner Bay sediments are nearly an order of magnitude lower than PAH concentrations thought to produce toxic responses in marine benthic organisms, i.e., total PAH \geq 35,000 ppb produces toxic responses (Table 21; Long and Morgan, 1990). Bioavailability is also a factor in determining whether a sediment contaminant evokes a biological response. For example the mode of occurrence of PAH has been shown to vary widely depending on the original source (McElroy et al., Coal or soot associated pyrogenic or combustion PAH are often 1989). tightly bound or occur in the interiors of particles. This mode of occurrence renders these PAH largely inert as far as biological exposure. In contrast liquid hydrocarbons such as oil or creosote contain PAH that are readily available to organisms and would be expected to induce toxicological effects in organisms if present at high concentrations. A majority of PAH in this study are most likely combustion related and thus sequestered in particulates reducing their apparent toxicity.

Long and Morgan (1990) estimated that median concentrations of total PCB above 400 ppb dry wt. would elicit a toxic response in most benthic organisms. For this study only the SW-2 site is above this threshold. The DDT concentrations are low compared to concentrations known to cause a toxic response in most benthic organisms (Long and Morgan, 1990). Chlordane concentrations are "low" based on the definition of O'Connor (1990) and should pose little or no threat of toxic biological effects (Long and Morgan, 1990). Table 21. Comparison of ER-L, ER-M, apparent effects thresholds, and Washington State Sediment Quality Criteria concentrations for selected chemicals in sediments and the values measured in Casco Bay (after Long and Morgan, 1990; Washington State Dept. of Ecology Sediment Management Standards, Chapter 173-204 WAC). Outer Bay Cape Small Casco Bay Regions⁶ Fast Rav West Bay Inner Bay Degree of WSSQC⁵ ER-L¹ ER-M² AET³ Chemical Analyte

1

				Confidence ⁴	22200	Min	Min Max	Min May	Max	East Ba	Bay Max	Cape Small Min May	omau Max	Min	Outer Bay Min Max
Polynuclear Aromatic Hydrocarbons (ppb dry wr. surrogated corrected)	carbons	, yrb dqg	wt. surrog	ated corrected)					j.						
A	1 5.0	150	(L												
Acenaphinene		000	001	II	320	1.69	80.95	< 0.68	2.63	1.50	19.36	< 0.68	13.41	2.47	6.31
Anthracene	85	960	300	LM	4400	5.56	254.89	2.79	14.59	7.67	106.89	< 0.03	08 04	11 11	50.41
Benzo(a)anthracene	230	1600	550	ILM	2200	29.51	655.45	11.93	56.13	34 13	481.07	0.06	10.075	11.11	14.00
Benzo(a)pyrene	400	2500	700	MM	1980	47.60	740.58	17.05	10012		10.104	02.0	75.005	41.01	1/3.28
Benzo(e)nvrene	NIA8	NA	NeD7	NA	0017	11 12	20012		C1.001	00.74		1.12	434.32	01.9/	208.85
			ACN.		١.	11.10	10.010	13.60	/4.13	31.14	5C.C12	0.98	270.75	48.14	140.28
Biphenyl	NA	AN	NSD	NA	1	3.13	29.20	< 1.74	6.91	3.51	12.46	< 1.74	10.11	3.73	12 46
Chrysene	400	2800	900	MM	2200	43.81	766.30	18.56	73.88	47.03	530.29	1.23	398.01	52 88	107 33
Dibenz(a,h)anthracene	8	260	100	MM	240	3.18	105.28	2.85	41.31	7.40	58.35	< 0.44	63.58	11 13	77 50
2,6-dimethylnaphthylene	NA	NA	NSD	NA	1	3.99	129.70	1.41	8.81	3.31	27.76	< 0.50	1730	5 26	10 10
Fluoranthene	009	3600	1000	H/H	3200	90.06	1444.32	33.52	144.12	82.14	639.22	1.65	522 15	118 37	20112
Fluorene	35	640	350	Ч	460	4.12	201.16	1.43	7.41	414	05 56	0.00	76.69	7017	
1-methylnaphthalene	NA	NA	NSD	NA	1	2.91	81.24	1.38	7.73	3.16	3115	10.76	10.03		11 10
2-methylnaphthalene	65	670	300	LM	760	5.01	94.88	1.76	10.66	5 24	36.58	1907	22.51		17 10
1-methylphenanthrene	NA	NA	NSD	NA	1	9.79	310.58	5 18	13 51	0000	20.00			20.0	11.17
Naphthalene	340	2100	500	M/H	7400	7.94	134 83	236	13.75	7 17	06.24	1.5.1	00.14	0.00	10.00
Pervlene	NA	NA	NSD	NA	1	17.30	21571	000	55 81	20.55	100 00			10.11	1.07
Phenanthrene	225	1380	260	MM	2.000	41.61	1035.82	16.84	10.05	20.00 A1 A2	540.74	20.02	74.47	12.02	25.11
Pyrene	350	2200	1000	MM	20.000	81.61	1551.51	31 30	136.55	26.27	560.20	1 64	200.90	1/ 00	104.00
2,3,5-trimethylnaphthalene	NA	NA	NSD	NA		2.94	186.82	0.75	3.62	1 85	34 73	10.56	-0.1.0c	16.111	10.700
Total PAH	4000	35000	22000	ΓΓ	!	910.62	20747.58	420.57	1900.64	1059.12	7340.36	16.35	7453 68	121217	CF FUUF
^I ER-L - Effects Range-Low											00000	10.01	DOVICE	11.71.01	14:5005
² ER-M - Effects Range-Median	an														
³ AET - Apparent Effects Threshold	shold														
⁴ L - Low. M-Medium. H-High	ch.														
SWSSOP Wathington State State State Colimon Duality Print and Prin	Codino-			لي حاجي المحمة المحمد ال		5 L 10 C	2								
ALL CONTRACTION ALL CONTRACT	SQUIIICI			actuated opp o		Dased on 2% 100									

bediment Quality Unteria calculated ppb dry wt. based on 2% TOC WSSQC - Washington State St 6ppm dry weight 7NSD - Not Sufficient Data 8NA - Not Available

•

While Casco Bay sediments are not considered "high" in trace metal content on a national scale it is important to determine if harmful effects would occur in organisms living in contact with these sediments. A number of different approaches to determining the trace metal concentrations in sediments which lead to a biological response have been used, resulting in a large and confusing literature. Thomas (1989) briefly describes eight different approaches to setting sediment criteria which have been considered in EPA programs but gives no actual data. Pavlov (1987) compared results from one of these approaches, the equilibrium partitioning approach, to results from other commonly used methods. He shows that the concentration of a given metal needed to elicit a biological response, as determined by equilibrium partitioning and other methods, does not vary widely (except for Hg). The needed concentrations are, furthermore, much higher than those found in Casco Bay sediment.

None of the metal concentrations in the Casco Bay sediments are as high as Long and Morgan's (1990) ER-M and only a few are as high as the ER-L's. For example, Casco Bay chromium concentrations are as high as 105 ppm whereas the ER-L is 80 ppm. Many uncontaminated sediments from other parts of the world, however, contain chromium concentrations higher than 105 ppm and it is unlikely that chromium in Casco Bay sediment would cause a biological effect. The same can be said for nickel and zinc, where Casco Bay concentrations are as high as 40 and 140 ppm compared to ER-L's of 30 and 120 ppm. A few mercury concentrations in Casco Bay are also higher than the ER-L but are much lower than those of highly contaminated sediments from Hudson-Raritan, Long Island Sound, Boston Harbor and elsewhere (Long and Morgan, 1990). It is unlikely that mercury in Casco Bay sediment is causing an effect on marine organisms. As with PAH, bioavailability may also be a significant issue in determining trace metal contamination toxicity.

In conclusion, anthropogenic contaminants are widespread throughout Casco Bay but in most cases occur at exceedingly low levels. The focus of contamination is in the Inner Bay region directly associated with the densest population centers and industrialization. Multiple processes release contaminants to Casco Bay and these chemicals have accumulated in bay sediments. Localized "hot spots" for various chemicals do occur but even

these areas are mostly below levels suspected of evoking toxic biological responses. In order to more directly assign the sources of specific contaminants intensified localized sampling and analysis of effluents and run-off patterns would be needed. To determine sediment quality direct assays of sediments from localized hot spots should be conducted to determine the potential for biological effects.

6.0 LITERATURE CITED

- Belknap, D.F., J.T. Kelley, and R.C. Shipp. 1987. Quaternary Stratigraphy of Representative Maine Estuaries: Initial Examination by High-Resolution Seismic Reflection Profiling. In <u>Glaciated Coasts</u> edited by Fitzgerald, D.M. and P.S. Rosen. Academic Press, New York, p. 177-207.
- Blumer, M., G. Souza, and J. Sass. 1970. Hydrocarbon pollution of edible shellfish by an oil spill. *Mar. Biol.*, 5: 195-202.
- Charles, J.M. and R.A. Hites. 1987. Sediments as archives of environmental pollution trends. In: <u>Sources and Fates of Aquatic Pollutants</u> (eds., R.A. Hites and S.J. Eisenreich), American Chemical Society, pp. 365-389.
- Clark, R.C., Jr. and M. Blumer. 1967. Distribution of n-pariffins in marine organisms and sediments. Limnol. and Oceanogr., 12: 79-87.
- EPA 40 CFR Ch. 1. 1988. Appendix B to Part 136 Definition and Procedure for the determination of the method detection limit -Revision 1. pp. 510-512.
- Farrington, J.W., J.M. Teal, J.G. Quinn, T.L. Wade, and K. Burns. 1973. Intercalibration of analyses of recently biosynthesized hydrocarbons and petroleum hydrocarbons in marine lipids. Bull. Environ. Contamin. Toxicol. 10: 129-146.
- Farrington, J.W. and B.W. Tripp. 1977. Hydrocarbons in western North Atlantic surface sediments. Geochim. Cosmochim. Acta 41: 1627-1641.
- Farrington, J.W., R.W. Risebrough, P.L. Parker, A.C. Davis, B.W. DeLappe, J.K. Winters, D. Boatwright, and N.M. Freq. 1982. Hydrocarbons, Polychlorinated Biphenyls and DDE in Mussels and Oysters from the US Coast, 1976-1978. Tech. Report, WHOI-82-42. Woods Hole Oceanographic Institute, MA, 106 pp.

- Farrington, J.W., E.D. Goldberg, R.W. Risebrough, J.H. Martin, and V.T. Bowen. 1983. US "Mussel Watch" 1976-1978: An overview of the trace metal, DDE, PCB, hydrocarbon and artificial radionuclide data. *Environ. Sci. Technol.*, 17: 490-496.
- Fefer, S.I. and P.A. Schettig. 1980 An Ecological Characterization of Coastal Maine. U.S. Fish Wildl. Serv. Rep. FWS/OBS-80/29, 6 vols.
- Goutx, M. and A. Saliot. 1980. Relationships between dissolved and particulate fatty acids and hydrocarbons, chlorophyll *a* and zooplankton biomass in Villefranche Bay, Mediterranean Sea. Mar. Chem., 8: 299-318.
- Hites, R.A., R.E. LaFlamme, J.G. Windsor, Jr., J.W. Farrington, and W.G. Deuser. 1980. Polycyclic aromatic hydrocarbons in an anoxic sediment core from the Pettaquamscutt River (Rhode Island, USA). *Geochim. Cosmochim. Acta* 44: 873-878.
- Kelley, J.T. 1987. An Inventory of Coastal Environments and Classification of Maines Glaciated Shoreline. In <u>Glaciated Coasts</u> edited by Fitzgerald, D.M. and P.S. Rosen. Academic Press, New York, p. 151-176.
- LaFlamme, R.E. and R.A. Hites. 1978. The global distribution of polycyclic aromatic hydrocarbons in recent sediments. *Geochim. Cosmochim. Acta*, <u>42</u>: 289-303.
- Larsen, P.F., D.F. Gadbois, A.C. Johnson, and L.F. Doggett. 1983a. Distribution of polycyclic aromatic hydrocarbons in the surficial sediments of Casco Bay, Maine. Bull. Environ. Contamin. Toxicol. 30: 530-535.
- Larsen, P.F., D.F. Gadbois, A.C. Johnson, and L.F. Doggett. 1983b. PCB monitoring in the Casco Bay region of the Gulf of Maine. *Mar. Poll. Bull.* 14: 32.
- Larsen, P.F., V. Zadnowciz, A.C. Johnson, and L.F. Doggett. 1983c. Trace metals in New England marine sediments: Casco Bay, Maine in relation to other sites. *Chemistry in Ecology*, Vol. 1, pp. 191-200.
- Larsen, P.F., D.F. Gadbois, D.F. A.C. Johnson, and R.F. Maney. 1984. On the appearance of PCBs in the surficial sediments of Casco Bay, Maine. *Mar. Poll. Bull.*, 15: 452-453.

Lee, M.L., G.P. Prado, J.B. Howard, and R.A. Hites. 1977. Source identification of urban airborne polycyclic aromatic hydrocarbons by gas chromatographic mass spectrometry and high resolution mass spectrometry. *Biomed. Mass. Spec.*, <u>4</u>: 182-186.

- Long, E.R. and L.G. Morgan. 1990. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52. NOAA Office of Oceanography and Marine Assessment, Ocean Assessments Division, Seattle, WA, 173 pp. and appendices.
- McElroy, A.E., J.W. Farrington, and J.M. Teal. 1989. Bioavailability of polycyclic aromatic hydrocarbons in the aquatic environment. In: <u>Metabolism of Polycyclic Aromatic Hydrocarbons</u> (U. Varanasi, ed.), CRC Press, Boca Raton, Florida, pp. 1-39.
- Merrill, E.G. and T.L. Wade. 1985. Carbonized coal products as a source of aromatic hydrocarbons to sediments from a highly industrialized estuary. Environ. Sci. Technol., 19: 597-603.
- O'Connor, T.P. 1990. Coastal Environmental Quality in the United States, 1990. Chemical Contamination in Sediment and Tissues. A Special NOAA 20th Anniversary Report, Coastal and Estuarine Assessment Branch, Ocean Assessments Division, Office of Oceanography and Marine Assessment, National Ocean Service, National Oceanic and Atmospheric Administration, Rockville, Maryland, 34 pp.
- Pavlov, S.P. 1987. The use of the quilibrium partitioning approach in determining safe levels of contaminants in marine sediments. In: <u>Fate</u> <u>and Effects of Sediment-Bound Chemicals in Aquatic Systems</u>, K.L. Dickson, A.W. Mak, and W.A. Brungs, eds, Pergamon Press, New York, p. 388-342.
- Rapaport, R.A., N.R. Urban, P.D. Capel, J.E. Baker, B.B. Looney, S.J. Eisenreich, and E. Gorham. 1985. Atmospheric deposition of DDT. Chemosphere, 14: 1167-1173.
- Ray, L.E., H.E. Murray, and C.S. Giam. 1983. Organic pollutants in marine samples from Portland, Maine. *Chemosphere* 12: 1031-1038.
- Risebrough, R.W., B.W. DeLappe, W. Walker II, B.T. Simoneit, J. Grimalt, J. Albaiges, and J.A.G. Regueiro. 1983. Application of the Mussel Watch concept in studies of the distribution of hydrocarbons in the coastal zone of the Ebro Delta. *Mar. Pollut. Bull.*, 14: 181-187.
- Sericano, J.L., E.L. Atlas, T.L. Wade, and J.M. Brooks. 1990. NOAA's Status and Trends Mussel Watch Program: Chlorinated Pesticides and PCB's in Oysters (Crassostrea virginica) and Sediments from the Gulf of Mexico, 1986-1987. Mar. Environ. Res., 29: 161-203.
- Thomas, N. 1989. Developments in sediment criteria. In: <u>Water Quality</u> <u>Standards for the 21st Century. Proceedings of a National Conference</u>, Dallas, Texas, March 1-3, 1989, USEPA Office of Water, Washington, DC.

- Trefry, J.H. and B.J. Presley. 1976. Heavy metals in sediments from San Antonio Bay and the Northwest Gulf of Mexico. *Environ. Geol.*, 1: 283-294.
- Wade, T.L., E.L. Atlas, J.M. Brooks, M.C. Kennicutt II, R.G. Fox, J. Sericano, B. Garcia-Romero, and D. DeFreitas. 1988. NOAA Gulf of Mexico Status and Trends Program: trace organic contaminant distribution in sediments and oysters. *Estuaries*, <u>11</u>: 171-179.
- Wakeham, S.G., C. Schaffner, and W. Giger. 1980a. Polycyclic aromatic hydrocarbons in recent lake sediments - I. Compounds derived from biogenic precursors during early diagenesis. *Geochim. Cosmochim.* Acta, 44: 403-413.
- Wakeham, S.G., C. Schaffner, and W. Giger. 1980b. Polycyclic aromatic hydrocarbons in recent lake sediments - II. Compounds derived from biogenic precursors during early diagenesis. *Geochim. Cosmochim.* Acta, 42: 289-303.
- Windsor, J.G., Jr. and R.A. Hites. 1979. Polycyclic aromatic hydrocarbons in Gulf of Maine sediments and Nova Scotia soils. Geochim. Cosmochim. Acta, <u>43</u>: 27-33.
- Youngblood, W.W. and M. Blumer. 1975. Alkanes and alkenes in marine benthic algae. *Mar. Biol.*, <u>21</u>: 163-172.

7.0 GLOSSARY OF TERMS

Aliphatic Hydrocarbons

Saturated straight-chain or branched chain hydrocarbons. Used in this report as all non-aromatic hydrocarbons.

Aliphatic Hydrocarbons	CAS Number
n-decane	124-18-5 629-97-0
n-docosane	112-40-3
n-dodecane	544-85-4
n-dotriacontane	112-95-8
n-eicosane	629-94-7
n-heneicosane	630-04-6
n-hentriacontane	593-49-7
n-heptacosane	629-78-7
n-heptadecane	630-01-3
n-hexacosane	544-75-3
n-hexadecane	630-03-5
n-nonacosane	629-92-5
n-nonadecane	630-02-4
n-octacosane	593-45-3
n-octadecane	629-99-2
n-pentacosane	629-62-9
n-pentadecane	643-31-1
n-tetracosane	629-59-4
n-tetradecane	14167-59-0
n-tetratriacontane	638-68-6
n-triacontane	638-67-5
n-tricosane	629-50-5
n-tridecane	630-05-7
n-tritriacontane	1120-21-4
n-undecane	2883-02-5
nonylcyclohexane	1795-15-9
octylcyclohexane	638-36-8
phytane	1921-70-6
pristane	1521 10 0

Alkanes (paraffins)

Hydrocarbons found in oil and produced by the biota that contain only carbon (C) and hydrogen (H) atoms with no unsaturated bonds. Alkanes can be straight-chain (normal) or branched (isoprenoid).

Akyl Homologs

A series of structurally similar compounds that differ from the succeeding member by one carbon atom and two hydrogen atoms. All Metals

The sum of silver, arsenic, cadmium, chromium, copper, iron, mercury, nickel, lead, selenium, and zinc

Anthropogenic

Pertaining to the introduction of matter into the environment by human activities.

Aroclors	Cas Number
PCB-1242	53469-21-9
PCB-1248	12672-29-6
PCB-1254	11097-69-1
PCB-1260	11096-82-5

Aromatic Hydrocarbons Hydrocarbons that contain one or more benzene rings in their molecular structure.

Aromatic Hydrocarbons	CAS Number
1-methylnaphthalene	90-12-0
l-methylphenanthrene	832-69-9
2,3,5-trimethylnaphthalene	2245-38-7
2,6-dimethylnaphthalene	581-42-0
2-methylnaphthalene	91-57-6
acenaphthalene	208-96-8
acenaphthene	83-32-9
anthracene	120-12-7
benz(a)anthracene	56-55-3
benzo(a)pyrene	50-32-8
benzo(b)fluoranthene	205-99-2
benzo(e)pyrene	192-97-2
benzo(k)fluoranthene	207-08-9
biphenyl	92-52-4
C1-chrysenes	N/A
C1-dibenzothiophenes	N/A
C1-fluorenes	N/A
(C1-fluoranthenes+C1- pyrenes)	N/A
C1-naphthalenes	N/A
C1-phenanthrenes	N/A
C2-chrysenes	N/A
C2-dibenzothiophenes	N/A
C2-fluorenes	N/A
C2-naphthalenes	N/A
C2-phenanthrenes	N/A
C3-chrysenes	N/A

C3-dibenzothiophenes C3-fluorenes	N/A N/A N/A
C3-naphthalenes C3-phenanthrenes	N/A
C4-chrysenes	N/A N/A
C4-naphthalenes C4-phenanthrenes	N/A N/A
chrysene	218-01-9
dibenz(a,h)anthracene	53-70-3 132-65-0
dibenzothiophene fluoranthene	206-44-0
fluorene	86-73-2 193-39-5
indeno(1,2,3-cd)pyrene naphthalene	91-20-3
perylene	198-55-0

Atomic Absorption Spectrometry (AAS) Analytical instrument that uses absorption of light of a characteristic wavelength to quantitate amount of an element in a solution.

Background

Biodegradation

Biogeochemical Cycle

Bioturbation

Biowaxes

Branched Alkanes

Capillary Gas Chromatography Natural concentrations existing before any influence by humans.

Generally refers to the breaking down of substances by bacteria.

The sum total of the biological, geological, and chemical reactions and processes that control the distribution of an element or compound.

The mixing of sediments by living (burrowing) organisms. Generally occurs only in the upper tens of centimeters of subtidal sediments.

Long-chained, natural hydrocarbons that act to form a protective outer layer on terrestrial plants to retard the evaporative loss of water.

Aliphatic hydrocarbons when one carbon or more hase more than one carbon bonded to it (i.e., iso-octane).

An analytical technique for the separation of compounds in a mixture based on boilingpoint.

Congener	Member of the same group (i.e., PCB, biphenyls, containing differing amounts of chlorine).
Diagenetic	The processes of biological, physical and chemical alteration of organic materials in sediments.
Diffusion	A process whereby liquids and gases move from one place to another.
EOM (Extractable Organic Matter)	The organic matter which can be separated from a sediment by dissolution in an organic solvent such as methylene chloride or acetone.
Flame Ionization Detector	A detector used with a gas chromatograph to detect hydrocarbon components.
Grain Size	Distribution of partical size in a sediment sample (i.e., sand, silt, clay).
Heterocompounds	Organic compounds containing atoms other than carbon and hydrogen such as oxygen, nitrogen, and sulfur. Common non- hydrocarbon and other chemical constituents of oil.
Isomer	Different compounds with the same molecular formula.
Lattice	An element that is part of the essential framework of a compound as opposed to being loosely bound to the surface or interior.
Leach	Removal of part of a polid sample by working it with a solvent.
Lipid Content	Operationally the amount of organic matter that can be extracted by organic solvents. Lipids are a generic term for fats, waxes and related products of living tissues.
Mass Spectrometric Detection	The use of a mass spectrometer to detect the chemical components of a sample. The technique provides detailed structural identification and quantification of organic compounds.

-

Ľ

n-Alkanes

Nepheloid Layer

Organochlorines

Normal alkanes; straight-chained aliphatic hydrocarbons.

A layer of enhanced particulate matter in the water column directly above the sea floor.

Synthetic organic compounds that contain one or more chlorine groups. Generally manufactured from petroleum products for a wide range of uses.

CAS Number Chemical 5103-71-9 alpha chlordane 319-85-7 beta BHC 608-73-1 BHC (Total) 319-86-8 delta BHC 60-57-1 dieldrin endosulfan I 959-98-9 33213-65-9 endosulfan II endosulfan sulfate 1031-07-8 72-20-8 endrin gamma BHC 58-89-9 5103-74-2 gamma chlordane 118-74-1 HCB heptachlor epoxide 1024-57-3 o,p'-DDD 53-19-0 3424-82-6 o,p'-DDE 789-02-6 o,p'-DDT 72-54-8 p,p'-DDD 72-55-9 p,p'-DDE 50-29-3 p,p'DDT PCB-TOTAL N/A 8001-35-2 toxaphene

Organic Nitrogen

PAH (Polycyclic Aromatic Hydrocarbons)

Percent Solids

Petrogenic

Phytane

Aromatic hydrocarbons containing two or more benzene rings.

Total sample weight minus weight of water divided by the total sample weight times 100.

Of a petroleum origin.

A branched-chain saturated hydrocarbon (isoprenoid) containing 20 carbon atoms.

Planktonic	Minute free-floating plants and animals.
Pristane	A branched-chain saturated hydrocarbon (isoprenoid) containing 19 carbon atoms.
Pyrolytic Hydrocarbon	A hydrocarbon produced at high temperature such as in an internal combustion engine or forest fire.
Riverine Transport	The movement of materials by the action of rivers.
Rotoevaporation	The evaporative removal of solvents under reduced pressure and, often, increased temperature. The method is used in hydrocarbon analyses to concentrate the hydrocarbons in a smaller volume of solvent.
Sediment	The sea floor material consisting of accumulations of inorganic and organic materials.
Solvent Extraction	The selective removal of components from a matrix based on preferential solubility, or partitioning into an extraction fluid.
Subtidal	The ocean environment below low tide which is always covered by water.
Surficial Sediments	Sediments from the top few centimeters of the sea floor.
Terrestrial	From, or derived from, the land.
Terrigenous	Derived from the land, synonymous with terrestrial.
Total Organic Carbon (TOC)	The amount of carbon in a matrix ultimately derived from biologically synthesized compounds (includes detritus and living material). Separate from total carbon in a matrix that includes inorganic (e.g., calcium carbonate) carbon.

Trace Metals

<u>Metal</u>	<u>Symbol</u>	CAS Number
Silver	Ag	7440-22-4
Arsenic	As	7440-38-2
Cadmium	Cd	7440-43-9
Chromium	Cr	7440-47-3
Copper	Cı	7440-50-8
Iron	Fe	7439-97-6
Mercury	Hg	7439-97-6
Nickel	Ni	7439-97-6
Lead	Pb	7439-92-1
Selenium	Se	7782-49-2
Zinc	Zn	7440-66-6

UCM (Unresolved Complex Mixture)

The mixture of many individual compounds that cannot be gas chromatographically resolved or separated into its component parts under given analytical conditions.

Volatile Components

Those components that readily partition (evaporate) into the atmosphere at room temperature.

QUALITY ASSURANCE DATA SUMMARIES FOR TRACE ORGANICS

GENERAL INFORMATION AND BULK PARAMETERS

FIELD DUPLICATES

	Field Duplicates			
INVEST#:	EB-3	EB-3	IB-1	IB-1
ID:	ORIGINAL SAMPLE	FIELD DUPLICATE	ORIGINAL SAMPLE	FIELD DUPLICATE
LABSAMNO:	C3079	C3193	C3095	C3195
QCBATCH:	M436	M433	M435	M436
LAB:	GERG	GERG	GERG	GERG
MATRIX:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
EXTRACTION DATE:	10/18/91	10/15/91	10/17/91	10/18/91
METHOD:	PAH's/GCMS/SIM	PAH's/GCMS/SIM	PAH's/GCMS/SIM	PAH's/GCMS/SIM
ANALYSIS DATE:	11/16/91	11/06/91	11/04/91	11/16/91
METHOD:	PES & PCB'S/GCECD	PES & PCB'S/GCECD	PES & PCB'S/GCECD	PES & PCB'S/GCEC
ANALYSIS DATE:	11/02/91	10/30/91	11/13/91	11/02/91
METHOD:	ALIPHAT/GCFID	ALIPHAT/GCFID	ALIPHAT/GCFID	ALIPHAT/GCFID
ANALYSIS DATE:	11/12/91	11/11/91	11/04/91	11/12/91
%MOISTURE	65.4	65.4	67.1	67.1
DRYWT:	10.3	10.4	10.1	10.2
WTUNITS:	GRAMS	GRAMS	GRAMS	GRAMS
VOL:				
VOLUNITS:	LITERS	LITERS	LITERS	LITERS
Surrogate Recoveries	6			
ACEND10:	78.0	60.0	94.0	81.3
BENAD12:				
CHRYD12:	71.4	51.1	70.1	63.1
FLUOD10:				
NAPHD8:	73.0	43.3	81.8	65.7
PERYD12:	98.1	60.9	102.0	118.3
PHEND10:	76.2	54.3	79.0	70.7
C12ALKD:	92.2	93.2	96.4	93.1
C20ALKD:	100.0	92.9	75.9	107.5
C24ALKD:	92.7	96.1	100.0	110.2
C30ALKD:	80.5	83.8	72.3	76.5
DBOFB:	99.4	81.9	94.1	95.8
e-HCH:	NA	NA	NA	NA
PCB#103:	91.1	64.4	99.9	66.5
PCB#198:	78.4	37.7	148.3	75.2
Bulk Parameters				
TOC (%):	2.4	3.3	3.0	2.5
ORG NITROGEN (ppm):	2392	2504	2383	2485
% SAND:	25.1	25.0	6.3	7.2
% SILT:	42.1	40.6	57.7	54.1
%CLAY:	32.9	34.4	36.0	38.8

Data reported on a dry weight basis

No. of

Contraction of the

「日本の

気に

14

and and

and the second

AL AND A

and the second s

and and

1

1

ALL ALL

121-1-1

	Field Dupli	cates
INVEST#:	S₩-4	SW-4D
ID:	ORIGINAL SA	MPLE FIELD DUPLICATE
LABSAMNO:	C3149	C3151
QCBATCH:	M434	M434
LAB:	GERG	GERG
MATRIX:	SEDIMENT	SEDIMENT
EXTRACTION DATE:	10/16/91	10/16/91
METHOD:	PAH's/GCMS/	SIM PAH's/GCMS/SIM
ANALYSIS DATE:	11/03/91	11/03/91
METHOD:	PES & PCB'S	/GCECD PES & PCB'S/GCECD
ANALYSIS DATE:	10/28/91	10/28/91
METHOD:	ALIPHAT/GCF	ID ALIPHAT/GCFID
ANALYSIS DATE:	11/03/91	11/03/91
%MOISTURE	29.2	29.2
DRYWT:	10.7	10.2
WTUNITS:	GRAMS	GRAMS
VOL:		
VOLUNITS:	LITERS	LITERS
Surrogate Recoveries	;	
ACEND10:	88.2	74.6
BENAD12:		
CHRYD12:	85.3	74.7
FLUOD10:		
NAPHD8:	69.2	67.3
PERYD12:	74.9	59.6
PHEND10:	87.1	76.0
C12ALKD:	87.3	84.2
C20ALKD:	78.1	83.5
C24ALKD:	85.2	93.9
C30ALKD:	75.2	79.5
DBOFB:	81.3	71.7
e-HCH:	NA	NA
PCB#103:	82.0	73.7
PCB#198:	119.5	100.3
Bulk Parameters		
TOC (%):	1.9	1.8
ORG NITROGEN (ppm):	766	546
% SAND:	68.6	65.3
% SILT:	21.7	26.4
	9.7	

Data reported on a dry weight basis

LABNAME: GERG/TAMU DATE: 05-May-92 LAB APPROVAL: Tenge. Worke

LAB QA DUPLICATES

	Lab QA Duplicates	5			
INVEST#:	EB-4	EB-4	S₩~5	s₩-5	EB-3
ID:	ORIGINAL SAMPLE	LAB QA DUPLICATE	ORIGINAL SAMPLE	LAB QA DUPLICATE	
LABSAMNO:	C3081	Q2087	C3153	Q2090	C3079
QCBATCH:	M429	M429	M430	M430	M436
LAB:	GERG	GERG	GERG	GERG	GERG
MATRIX:	SEDIMENT	QCSED IMENT	SEDIMENT	QCSED I MENT	SEDIMENT
EXTRACTION DATE:	10/10/91	10/10/91	10/11/91	10/11/91	10/18/91
METHOD:	PAH's/GCMS/SIM	PAH's/GCMS/SIM	PAH's/GCMS/SIM	PAH's/GCMS/SIM	PAH's/GCMS/SIM
ANALYSIS DATE:	10/30/91	10/30/91	10/31/91	10/31/91	11/16/91
METHOD:	PES & PCB'S/GCEC	PES & PCB'S/GCECD	PES & PCB'S/GCECD	PES & PCB'S/GCECD	PES & PCB'S/GCECD
ANALYSIS DATE:	11/02/91	11/02/91	11/07/91	11/07/91	11/02/91
METHOD:	ALIPHAT/GCFID	ALIPHAT/GCF1D	ALIPHAT/GCFID	ALIPHAT/GCFID	ALIPHAT/GCFID
ANALYSIS DATE:	11/01/91	11/01/91	11/02/91	11/02/91	11/12/91
XMOISTURE	46.3	46.3	42.2	42.2	65.4
DRYWT:	10.1	10.1	11.2	10.1	10.3
WTUNITS:	GRAMS	GRAMS	GRAMS	GRAMS	GRAMS
VOL:					
VOLUNITS:	LITERS	LITERS	LITERS	LITERS	LITERS
Surrogate Recoverie	es				
ACEND10:	92.3	85.5	70.1	69.2	78.0
BENAD12:					
CHRYD12:	91.0	90.5	88.6	79.2	71.4
FLUOD10:					
NAPHD8:	72.6	65.7	76.4	69.1	73.0
PERYD12:	79.5	92.8	64.4	55.0	98.1
PHEND10:	84.3	79.7	81.4	71.5	76.2
C12ALKD:	79.4	84.0	77.2	92.3	92.2
C20ALKD:	86.2	89.1	76.4	89.0	100.0
C24ALKD:	81.0	85.7	81.9	91.6	92.7
C30ALKD:	50.4	75.7	74.7	82.7	80.5
DBOFB:	89.2	87.8	79.0	85.2	99.4
e-HCH:	NA	NA	NA	NA	NA
PCB#103:	95.6	95.4	78.9	87.1	91.1
PCB#198:	151.3	158.9	73.9	121.4	78.4
Bulk Parameters					
TOC (%):	0.8		1.0		2.4
ORG NITROGEN (ppm):	1087		435		2392
% SAND:	62.3		48.8	- Gen	25.1
% SILT:	21.0		38.5		42.1
%CLAY:	16.7		12.7		32.9

Data reported on a dry weight basis

]

LAB APPROVAL: Teny 2. Work

	Lab QA Duplicates				
INVEST#:	EB-3	WB-1	WB-1	18-3	18-3
ID:	LAB QA DUPLICATE	ORIGINAL SAMPLE	LAB QA DUPLICATE	ORIGINAL SAMPLE	LAB QA DUPLICATE
LABSAMNO:	Q2121	C3175	Q2129	C3099	Q2135
QCBATCH:	M433	M434	M434	M435	M435
LAB:	GERG	GERG	GERG	GERG	GERG
MATRIX:	QCSEDIMENT	SEDIMENT	QCSEDIMENT	SEDIMENT	QCSED I MENT
EXTRACTION DATE:	10/15/91	10/16/91	10/16/91	10/17/91	10/17/91
METHOD:	PAH's/GCMS/SIM	PAH's/GCMS/SIM	PAH's/GCMS/SIM	PAH's/GCMS/SIM	PAH's/GCMS/SIM
ANALYSIS DATE:	11/06/91	11/03/91	11/03/91	11/04/91	11/04/91
METHOD:	PES & PCB'S/GCECD	PES & PCB'S/GCECD	PES & PCB'S/GCECD	PES & PCB'S/GCECD	PES & PCB'S/GCEC
ANALYSIS DATE:	10/30/91	10/28/91	10/28/91	11/13/91	11/13/91
METHOD:	ALIPHAT/GCFID	ALIPHAT/GCFID	ALIPHAT/GCFID	ALIPHAT/GCFID	ALIPHAT/GCFID
ANALYSIS DATE:	11/11/91	11/03/91	11/03/91	11/04/91	11/04/91
%MOISTURE	65.4	70.1	70.1	70.9	70.9
DRYWT:	10.5	10.1	10.1	10.2	10.2
WTUNITS:	GRAMS	GRAMS	GRAMS	GRAMS	GRAMS
VOL:					
VOLUNITS:	LITERS	LITERS	LITERS	LITERS	LITERS
Surrogate Recoverie	es				
ACEND10:	62.8	82.5	81.1	87.1	84.5
BENAD12:					
CHRYD12:	59.2	79.9	79.1	82.4	85.4
FLUOD10:					
NAPHD8:	55.2	75.1	70.3	67.1	71.6
PERYD12:	64.7	76.4	72.7	105.8	106.7
PHEND10:	65.1	82.1	82.8	86.5	87.9
C12ALKD:	89.8	94.7	93.2	83.9	86.6
C20ALKD:	91.2	96.0	83.6	87.6	89.7
C24ALKD:	87.9	93.7	90.8	92.6	95.2
C30ALKD:	81.2	87.6	83.9	72.1	70.1
DBOFB:	89.2	79.1	82.7	93.3	95.0
e-HCH:	NA	NA	NA	NA	NA
PCB#103:	75.9	79.3	82.5	98.0	102.5
PCB#198:	63.5	125.9	121.9	139.5	149.6
Bulk Parameters					
TOC (%):		2.7		3.2	
ORG NITROGEN (ppm)	:	3096		2270	
% SAND:		9.9		6.8	
% SILT:		48.9		69.7	
%CLAY:		41.1		23.5	

Data reported on a dry weight basis

君子

10 × 10

-

LAB APPROVAL: Terry 2. Worde

	Lab QA Duplicates	
INVEST#:	IB-1	IB-1
ID:	ORIGINAL SAMPLE	LAB QA DUPLICATE
LABSAMNO:	C3095	Q2139
QCBATCH:	M435	M436
LAB:	GERG	GERG
MATRIX:	SEDIMENT	QCSEDIMENT
EXTRACTION DATE:	10/17/91	10/18/91
METHOD:	PAH's/GCMS/SIM	PAH's/GCMS/SIM
ANALYSIS DATE:	11/04/91	11/16/91
METHOD:	PES & PCB'S/GCECD	PES & PCB'S/GCEC
ANALYSIS DATE:	11/13/91	11/02/91
METHOD:	ALIPHAT/GCFID	ALIPHAT/GCFID
ANALYSIS DATE:	11/04/91	11/12/91
%MOISTURE	67.1	67.1
DRYWT:	10.1	10.2
WTUNITS:	GRAMS	GRAMS
VOL:		
VOLUNITS:	LITERS	LITERS
Surrogate Recoverie	s	
ACEND10:	94.0	79.5
BENAD12:		
CHRYD12:	70.1	63.9
FLUOD10:		
NAPHD8:	81.8	70.7
PERYD12:	102.0	111.8
PHEND10:	79.0	72.6
C12ALKD:	96.4	90.9
C20ALKD:	75.9	82.3
C24ALKD:	100.0	92.2
C30ALKD:	72.3	73.7
DBOFB:	94.1	94.5
e-HCH:	NA	NA
PCB#103:	99.9	66.7
PCB#198:	148.3	76.2
Bulk Parameters		
TOC (%):	3.0	
ORG NITROGEN (ppm):	2383	
% SAND:	6.3	
% SILT:	57.7	
%CLAY:	36.0	

Data reported on a dry weight basis

1

「

No.

LABNAME: GERG/TAMU DATE: 05-May-92 LAB APPROVAL: Teny 2. worde

LAB PROCEDURAL BLANKS

	Lab Procedural Bl	anks			
INVEST#:	BLANK	BLANK	BLANK	BLANK	BLANK
ID:					
LABSAMNO:	Q2088	Q2092	Q2122	Q2126	Q2132
QCBATCH:	M429	M430	M433	M434	M435
LAB:	GERG	GERG	GERG	GERG	GERG
MATRIX:	QCBLANK	QCBLANK	QCBLANK	QCBLANK	QCBLANK
EXTRACTION DATE:	10/10/91	10/11/91	10/15/91	10/16/91	10/17/91
METHOD:	PAH's/GCMS/SIM	PAH's/GCMS/SIM	PAH's/GCMS/SIM	PAH's/GCMS/SIM	PAH's/GCMS/SIM
ANALYSIS DATE:	10/30/91	10/31/91	11/06/91	11/03/91	11/04/91
METHOD:	PES & PCB'S/GCECD	PES & PCB'S/GCECD	PES & PCB'S/GCECD	PES & PCB'S/GCECD	PES & PCB'S/GCEC
ANALYSIS DATE:	11/02/91	11/07/91	10/30/91	10/28/91	11/13/91
METHOD:	ALIPHAT/GCFID	ALIPHAT/GCFID	ALIPHAT/GCFID	ALIPHAT/GCFID	ALIPHAT/GCFID
ANALYSIS DATE:	11/01/91	11/02/91	11/11/91	11/03/91	11/04/91
2MOISTURE					
DRYWT:	10.0	10.0	10.0	10.0	10.0
TUNITS:	GRAMS	GRAMS	GRAMS	GRAMS	GRAMS
/OL:					
VOLUNITS:	LITERS	LITERS	LITERS	LITERS	LITERS
Surrogate Recoveri	es				
ACEND10:	82.2	72.6	62.0	88.5	89.6
BENAD12:					
CHRYD12:	71.1	55.2	51.8	67.4	75.7
FLUOD10:					
APHD8:	73.4	68.8	60.5	78.2	84.0
PERYD12:	2.8	4.8	2.8	2.2	28.5
HEND10:	72.9	77.3	63.8	75.7	92.5
C12ALKD:	84.2	80.3	83.2	90.7	91.0
20ALKD:	77.6	72.9	77.8	84.7	83.2
24ALKD:	81.0	76.7	85.3	86.9	85.8
30ALKD:	26.1	44.3	84.7	84.7	81.3
BOFB:	88.9	89.9	82.5	73.5	86.6
e-HCH:	NA	NA	NA	NA	NA
CB#103:	109.4	100.7	82.4	77.1	105.5
PCB#198:	160.6	130.5	66.4	86.1	137.2
Bulk Parameters					
FOC (%):					
RG NITROGEN (ppm)	e a companya				

ORG NITROGEN (ppm): % SAND: % SILT: %CLAY:

3

and the second se

Data reported on a dry weight basis

.

	Lab Procedural Blanks
INVEST#:	BLANK
ID:	
LABSAMNO:	Q2136
QCBATCH:	M436
LAB:	GERG
MATRIX:	QCBLANK
EXTRACTION DATE:	10/18/91
METHOD:	PAH's/GCMS/SIM
ANALYSIS DATE:	11/16/91
METHOD:	PES & PCB'S/GCECD
ANALYSIS DATE:	11/02/91
METHOD:	ALIPHAT/GCFID
ANALYSIS DATE:	11/12/91
%MOISTURE	
DRYWT:	10.0
WTUNITS:	GRAMS
VOL:	
VOLUNITS:	LITERS
Surrogate Recoveri	es
ACEND10:	71.9
BENAD12:	
CHRYD12:	64.5
FLUOD10:	
NAPHD8:	74.2
PERYD12:	7.9
PHEND10:	70.7
C12ALKD:	88.1
C20ALKD:	81.2
C24ALKD:	85.7
C30ALKD:	79.4
DBOFB:	92.0
e-HCH:	NA
PCB#103:	93.0
PCB#198:	98.5
Bulk Parameters	
TOC (%):	
ORG NITROGEN (ppm)	1
% SAND:	
% SILT:	

ġ

and the second s

Data reported on a dry weight basis

%CLAY:

12. wade

en

-

MATRIX SPIKES

Contraction of the local division of the loc

Name of Street, or other

1

La val

H Real

加え

A NOTE

1

and the second sec

- Include

The second

	Matrix Spikes
INVEST#:	IB-1
ID:	SPIKE SAMPLE
LABSAMNO:	Q2137
QCBATCH:	M436
LAB:	GERG
MATRIX:	QCSEDIMENT
EXTRACTION DATE:	10/18/91
METHOD:	PAH's/GCMS/SIM
ANALYSIS DATE:	11/16/91
METHOD:	PES & PCB'S/GCECD
ANALYSIS DATE:	11/02/91
METHOD:	ALIPHAT/GCFID
ANALYSIS DATE:	11/12/91
%MOISTURE	67.1
DRYWT:	10.2
WTUNITS:	GRAMS
VOL:	
VOLUNITS:	LITERS
Surrogate Recoverie	s
ACEND10:	75.7
BENAD12:	
CHRYD12:	65.7
FLUOD10:	
NAPHD8:	64.5
PERYD12:	105.7
PHEND10:	80.3
C12ALKD:	93.3
C20ALKD:	86.3
C24ALKD:	112.3
C30ALKD:	79.8
DBOFB:	95.8
e-HCH:	NA
PC8#103:	70.4
PCB#198:	73.8
Bulk Parameters	
TOC (%):	
ORG NITROGEN (ppm):	:
% SAND:	
% SILT:	

100

Data reported on a dry weight basis

%CLAY:

LAB APPROVAL: Terry 2. und

	Matrix Spikes				
INVEST#:	EB-4	sw-5	EB-3	WB-1	IB-3
ID:	SPIKE SAMPLE				
LABSAMNO:	Q2089	Q2093	Q2123	Q2127	Q2133
QCBATCH:	M429	M430	M433	M434	M435
LAB:	GERG	GERG	GERG	GERG	GERG
MATRIX:	QCSEDIMENT	QCSED IMENT	QCSEDIMENT	QCSEDIMENT	QCSED IMENT
EXTRACTION DATE:	10/10/91	10/11/91	10/15/91	10/16/91	10/17/91
METHOD:	PAH's/GCMS/SIM	PAH's/GCMS/SIM	PAH's/GCMS/SIM	PAH's/GCMS/SIM	PAH's/GCMS/SIM
ANALYSIS DATE:	10/30/91	10/31/91	11/06/91	11/03/91	11/04/91
METHOD:	PES & PCB'S/GCECD	PES & PCB'S/GCECD	PES & PCB'S/GCECD	PES & PCB'S/GCECD	PES & PCB'S/GCEC
ANALYSIS DATE:	11/02/91	11/07/91	10/30/91	10/28/91	11/13/91
METHOD:	ALIPHAT/GCFID	ALIPHAT/GCFID	ALIPHAT/GCFID	ALIPHAT/GCFID	ALIPHAT/GCFID
ANALYSIS DATE:	11/01/91	11/02/91	11/11/91	11/03/91	11/04/91
%MOISTURE	46.3	42.2	65.4	70.1	70.9
DRYWT:	10.3	10.2	9.9	10.2	10.0
WTUNITS:	GRAMS	GRAMS	GRAMS	GRAMS	GRAMS
VOL:					
VOLUNITS:	LITERS	LITERS	LITERS	LITERS	LITERS
Surrogate Recoveri	es				
ACEND10:	70.6	70.3	61.0	81.2	91.3
BENAD12:					
CHRYD12:	84.3	82.1	61.9	89.9	99.0
FLUOD10:					
APHD8:	62.7	56.9	50.2	64.5	75.1
PERYD12:	87.1	66.1	61.5	87.5	106.9
PHEND10:	71.5	81.6	67.5	96.4	99.8
C12ALKD:	80.7	89.3	85.3	92.5	88.1
C20ALKD:	85.3	84.0	82.4	83.2	93.5
C24ALKD:	83.2	88.8	87.0	91.9	91.4
C30ALKD:	69.8	81.8	78.0	87.1	71.0
DBOFB:	85.2	89.5	81.7	85.9	100.2
e-HCH:	NA	NA	NA	NA	NA
PCB#103:	87.1	100.1	67.4	84.9	104.7
PCB#198:	121.4	122.8	43.3	125.5	133.5

TOC (%): ORG NITROGEN (ppm): % SAND: % SILT: %CLAY:

1

「「「

Data reported on a dry weight basis

LABNAME: GERG/TAMU

DATE: 05-May-92

4

LAB APPROVAL: Teny 2. Wode

ALIPHATIC HYDROCARBON DATA

FIELD DUPLICATES

NATIONAL ESTUARY PROGRAM - ALIPHATIC HYDROCARBON DATA - CASCO BAY - 1991

	Field Duplicates			
INVEST#:	EB-3	EB-3	IB-1	IB-1
LABSAMNO:	C3079	C3193	C3095	C3195
Alkanes and				
Isoprenoids	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
UNIT:	ррь	ppb	ррь	ppb
C10	L 8	7 J	34	14
011	10	8	43	21
:12	19	9	35	21
013	34	110	158	27
:14	26	63	98	23
:15	20	59	124	98
:16	11	14	46	29
:17	166	212	384	405
RISTANE	47	64	228	244
:18	16	21	62	40
HYTANE	13	28	148	142
:19	40	55	162	147
:20	34	62	165	86
21	110	149	286	212
:22	66	83	137	90
:23	198	228	306	214
:24	93	86	180	129
:25	326	373	454	437
26	160	168	227	151
27	631	742	793	624
:28	209	217	236	169
29	1040	1260	1396	1107
30	233	228	291	239
31	989	1205	1437	1143
32	232	254	321	287
33	392	478	568	434
34	108	116	218	166
OT ALKANES	5228	6299	8535	6696
NIT:	ppm	ррт	ppm	ppm
ICM	74.7	92.6	281.1	225.8
urrogate Recove				
12ALKD:	92.2	93.2	96.4	93.1
20ALKD:	100.0	92.9	75.9	107.5
24ALKD:	92.7	96.1	100.0	110.2
30ALKD:	80.5	83.8	72.3	76.5

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

ſ.

DATE: 05-May-92

LAB APPROVAL: Terry 2. worde

		Field Duplicates	
INVEST	#:	S₩-4	S₩-4D
LABSAMNO:		C3149	C3151
Alkane	es and		
lsopre	enoids	Conc DB QUAL	Conc DB QUAL
JNIT:		ppb	ррь
c10		14	19
C11		26	15
C12		14	20
C13		48	28
C14		33	24
C15		34	27
C16		9	9
C17		124	118
PRIST	ANE	39	43
c18		8	7
PHYTA	NE	44	47
C19		35	30
c20		29	34
C21		51	50
C22		27	26
C23		60	54
C24		22	24
C25		63	77
C26		37	34
C27		138	136
C28		27	37
C29		317	282
C30		62	54
C31		328	295
C32		66	56
C33		109	103
C34		21	17
τοτ Α	LKANES	1783	1664
UNIT:		ррт	ppm
UCM		91.5	80.6
Surro	ogate Recoveri		
C12AI	.KD:	87.3	84.2
C20A1	_KD:	78.1	83.5
C24AI		85.2	93.9
C30A1	LKD:	75.2	79.5

NATIONAL ESTUARY PROGRAM - ALIPHATIC HYDROCARBON DATA - CASCO BAY - 1991

Data reported on a dry weight basis and corrected for surrogate recovery

2

101-101

A STATE

and a

LAB QA DUPLICATES

	Lab QA Duplicates				
INVEST#:	EB-4	EB-4	S₩-5	s₩-5	EB-3
LABSAMNO:	C3081	Q2087	C3153	Q2090	C3079
Alkanes and					
Isoprenoids	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAI
UNIT:	ррb	ррь	ррь	ppb	ppb
C10	7 J	7 J	17	18	8 J
C11	5	6	18	20	10
C12	8	8	18	17	19
C13	22	24	28	28	34
C14	15	17	24	24	26
C15	11	12	28	30	20
C16	8	10	9	9	11
C17	86	87	122	121	166
PRISTANE	25	21	10	12	47
C18	11	12	8	7	16
PHYTANE	10	10	15	15	13
c19	17	24	37	26	40
220	19	20	20	18	34
221	53	69	55	46	110
222	32	32	23	20	66
C23	89	92	72	66	198
C24	38	40	23	21	93
C25	142	139	96	85	326
	59	57	33	32	160
C26		274	164	150	631
C27	265		45	39	209
28	71	80		296	1040
C29	360	451	322 47	39	233
030	50	74			
C31	120	334	268	214	989
C32	33	62	44	32	232
C33	1 J	27	36	19	392
234	4 J	ND	ND	1 J	108
TOT ALKANES	1560	1989	1579	1403	5228
JNIT:	ppm	ppm	ppm	ppm	ppm
JCM	47.1	42.2	34.5	38.7	74.7
Surrogate Recover					
C12ALKD:	79.4	84.0	77.2	92.3	92.2
20ALKD:	86.2	89.1	76.4	89.0	100.0
C24ALKD:	81.0	85.7	81.9	91.6	92.7
30ALKD:	50.4	75.7	74.7	82.7	80.5

NATIONAL ESTUARY PROGRAM - ALIPHATIC HYDROCARBON DATA - CASCO BAY - 1991

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

1

10

Con sel

Contraction of the second

C. R. L.

200

LAB APPROVAL: Terry 2. worde

	Lab QA Duplicates				
INVEST#:	EB-3	WB-1	WB-1	IB-3	18-3
LABSAMNO:	Q2121	C3175	Q2129	C3099	Q2135
Alkanes and					
Isoprenoids	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
UNIT:	ррь	ppb	ppb	ррь	ррь
C10	8 J	31	37	ND	19
211	7	34	38	22	23
C12	9	34	39	36	35
013	103	87	98	53	55
014	60	72	82	43	41
:15	45	75	85	118	113
216	14	16	19	35	33
C17	197	102	129	746	675
RISTANE	53	29	14	179	145
c18	19	17	20	49	43
HYTANE	26	19	22	132	120
:19	51	69	80	142	131
20	60	47	54	92	103
21	143	130	149	189	218
22	75	54	61	105	97
23	213	181	204	271	245
:24	82	49	55	111	105
25	338	220	262	420	430
26	157	67	87	192	204
27	669	404	451	750	707
28	201	99	110	223	184
29	1196	697	785	1377	1251
30	217	90	103	313	285
31	1138	626	707	1337	1211
32	241	101	114	312	274
33	454	229	249	500	421
34	107	37	44	173	421 144
OT ALKANES	5885	3615	4095	7919	7310
NIT:	ppm	ppm	ppm	ppm	ppm
СМ	73.4	39.7	39.2	174.7	211.7
urrogate Recover	ries				
12ALKD:	89.8	94.7	93.2	83.9	86.6
20ALKD:	91.2	96.0	83.6	87.6	89.7
24ALKD:	87.9	93.7	90.8	92.6	95.2
30ALKD:	81.2	87.6	83.9	72.1	70.1

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

n. M

0

DATE: 05-May-92

LAB APPROVAL: Terry 2. Wade

	Lab QA Duplicates		
INVEST#:	IB-1	IB-1	
LABSAMNO:	C3095	Q2139	
Alkanes and			
Isoprenoids	Conc DB QUAL	Conc	DB QUAL
JNIT:	ррb	ppb	
c10	34		NÐ
C11	43	27	
C12	35	28	
C13	158	36	
c14	98	30	
c15	124	127	
016	46	37	
017	384	503	
PRISTANE	228	296	
:18	62	51	
PHYTANE	148	185	
c19	162	165	
20	165	114	
21	286	257	
22	137	115	
23	306	272	
24	180	155	
25	454	524	
26	227	217	
27	793	792	
28	236	232	
29	1396	1459	
30	291	373	
31	1437	1456	
:32	321	356	
33	568	519	
234	218	129	
TOT ALKANES	8535	8455	
JNIT:	ppm	ppm	
JCM	281.1	290.9	
Surrogate Recover	ies		
C12ALKD:	96.4	90.9	
C20ALKD:	75.9	82.3	
24ALKD:	100.0	92.2	
C3OALKD:	72.3	73.7	

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU DATE: 05-May-92

-

and the second se

and and

and the

- - -

LAB APPROVAL: Terry 2. worde

LAB PROCEDURAL BLANKS

No. of the local division of the local divis

水石

	Lab Procedural Bla	nks			
INVEST#:	BLANK	BLANK	BLANK	BLANK	BLANK
LABSAMNO:	Q2088	Q2092	Q2122	Q2126	Q2132
Alkanes and					4LIJE
Isoprenoids	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA
UNIT:	ррь	ppb	ррь	ррь	ррь
C10	ND	ND	ND	2 J	ND
C11	ND	3 J	ND	ND	6
C12	ND	2 J	ND	ND	ND
C13	ND	ND	ND	ND	ND
C14	ND	2 J	1 J	ND	1 J
C15	ND	1 J	ND	ND	
C16	2 J	3 J	ND	2 J	11
C17	1 J	1 J	1 J -	2 J	7
PRISTANE	ND	ND	1 J		2 J
C18	1 J	ND	1 J	1 J	ND
PHYTANE	ND	ND		1 J	1 J
C19	ND		ND	2 J	ND
C20	1 J	3	4	1 J	1 J
c21		3	1 J	2 J	1 J
C22	2 3	4	1 J	3	2 J
C23		4	1 J	6	2
C24	2	4	1 J	4	2
	3	2	1 J	3	2 J
25	ND	1 J	ND	1 J	1 J
26	1 J	1 J	1 J	1 J	1 J
27	ND	ND	ND	ND	ND
28	ND	ND	ND	ND	1
29	ND	ND	ND	ND	1
:30	ND	ND	ND	7	ND
:31	ND	ND	ND	ND	ND
32	ND	ND	ND	ND	ND
33	ND	ND	ND	ND	
34	ND	ND	ND	ND	ND ND
OT ALKANES	16	33	13	37	42
NIT:	ppm	ppm	ppm	ppm	ppm
СМ	ND	1.8	3.5	0.7	0.0
urrogate Recover	ies				
12ALKD:	84.2	80.3	83.2	90.7	91.0
20ALKD:	77.6	72.9	77.8	84.7	
24ALKD:	81.0	76.7	85.3	86.9	83.2
OALKD:	26.1	44.3	84.7	84.7	85.8

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

j

1

į

DATE: 05-May-92

LAB APPROVAL: Teny 2. which

	Lab Procedural B
NVEST#:	BLANK
ABSAMNO:	Q2136
lkanes and	
soprenoids	Conc DB QUAL
NIT:	ррь
10	ND
:11	ND
:12	ND
:13	ND
:14	1 J
:15	22
:16	16
C17	1 J
RISTANE	1 J
:18	ND
HYTANE	ND
:19	3
20	1 J
:21	1 J
:22	1 J
23	1 J
:24	1 J
:25	1 J
26	ND
27	1 J
28	ND
29	ND
:30	5
:31	5
32	ND
33	ND
:34	ND
TOT ALKANES	60
UNIT:	ppm
UCM	ND
Surrogate Recover	ies
C12ALKD:	88.1
C20ALKD:	81.2
C24ALKD:	85.7
C30ALKD:	79.4

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU DATE: 05-May-92 LAB APPROVAL:

Teny 2. woode

MATRIX SPIKES

and a

	Matrix Spikes				
INVEST#:	EB-4	s₩-5	EB-3	WB-1	18-3
LABSAMNO:	92089	Q2093	Q2123	Q2127	Q2133
Alkanes and					
Isoprenoids	% Recov DB QUAL	% Recov DB QUAL	% Recov DB QU	AL % Recov DB QUA	Kecov DB QUA
UNIT:	%	%	%	%	%
C10	NA	NA	NA	NA	NA
C11	NA	NA	NA	NA	NA
C12	86.3	93.1	89.8	97.2	85.4
C13	NA	NA	NA	NA	NA
C14	NA 00	NA	NA	NA	NA
C15	81.9	85.2	90.7	93.7	81.3
C16	NA	NA	NA	NA	NA
C17	91.0	94.5	98.2	106.0	86.6
PRISTANE	93.4	96.5	99.0	107.7	90.7
C18	88.6	91.6	94.1	99.8	86.9
PHYTANE	NA	NA	NA	NA	NA
C19	NA	NA	NA	NA	NA
C20	93.1	97.1	99.0	104.9	90.1
C21	91.5	96.9	98.7	104.2	89.3
C22	NA	NA	NA	NA	NA
C23	NA	NA	NA	NA	NA
C24	90.5	96.6	96.1	101.1	93.8
C25	NA	NA	NA	NA	NA
C26	NA	NA	NA	NA	NA
C27	NA	NA	NA	NA	NA
C28	86.7	93.9	95.3	101.1	88.6
C29	NA	NA	NA	NA	NA
C30	80.0	93.2	99.8	104.2	84.1
031	NA	NA	NA	NA	NA
C32	38.4	65.6	112.6	117.8	100.1
C33	NA	NA	NA	NA	NA
C34	3.5	7.8	95.8	99.7	83.8
TOT ALKANES	NA	NA	NA	NA	NA
JNIT:	ррп	ppm	ррт	ppm	ppm
UCM	NA	NA	NA	NA	NA
Surrogate Recove	eries				
C12ALKD:	80.7	89.3	85.3	92.5	88.1
C20ALKD:	85.3	84.0	82.4	83.2	93.5
C24ALKD:	83.2	88.8	87.0	91.9	91.4
C30ALKD:	69.8	81.8	78.0	87.1	71.0

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

DATE: 05-May-92

LAB APPROVAL:

Terry 2. woode

-		Matrix Spikes
INVES	T#:	IB-1
LABSA	NO:	Q2137
Alkan	es and	
Isoprenoids		% Recov DB QUAL
UNIT:		*
C10		NA
C11		NA
C12		94.4
C13		NA
C14		NA
C15		91.5
C16		NA
C17		104.0
PRISTA	NE	103.2
C18		98.1
PHYTAN	E	NA
C19		NA
C20		101.3
C21		102.6
C22		NA
C23		NA
C24		101.9
C25		NA
C26		NA
C27		NA
C28		99.5
C29		NA
C30		102.5
C31		NA
C32		118.5
C33		NA
C 3 4		106.3
TOT AL	KANES	NA
JNIT:		ppm
ICM		NA
Surrog	ate Recover	ries
12ALK):	93.3
20ALK):	86.3
24ALKI):	112.3
):	79.8

State of

1

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

LAB APPROVAL: Terry Z. Wode

POLYNUCLEAR AROMATIC HYDROCARBON DATA

T-IN

	Field Duplicates			
INVEST#:	EB-3	EB-3	IB-1	IB-1
LABSAMNO:	C3079	C3193	C3095	C3195
UNIT:	ppb	ррь	ppb	ppb
PNA Analyte	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAI
NAPHTHALENE	23.6	23.6	82.7	92.9
C1-NAPHTHALENES	26.7	30.2	77.5	88.2
C2-NAPHTHALENES	22.8	28.4	75.0	85.1
C3-NAPHTHALENES	21.4	25.2	80.5	107.0
C4-NAPHTHALENES	14.7	17.1	83.4	84.3
BIPHENYL	5.4	7.5	15.9	13.6
ACENAPHTHYLENE	29.8	26.1	43.3	54.8
ACENAPHTHENE	5.8	4.6	33.6	35.5
FLUORENE	14.8	14.0	49.3	53.5
C1-FLUORENES	14.0	16.7	40.5	39.4
C2-FLUORENES	20.3	31.8	77.8	62.8
C3-FLUORENES	20.1	54.2	107.9	64.3
PHENANTHRENE	139.4	146.4	508.9	448.1
ANTHRACENE	39.9	39.9	145.0	158.9
C1-PHEN_ANTHR	115.7	131.6	339.6	292.2
C2-PHEN_ANTHR	106.3	137.4	348.2	252.3
C3-PHEN_ANTHR	68.9	93.2	264.4	173.4
C4-PHEN_ANTHR	33.6	42.4	168.3	129.6
DIBENZOTHIO	7.8	7.4	26.3	29.7
C1-DIBEN	13.3	16.2	35.7	35.1
C2-DIBEN	24.7	33.1	74.8	68.3
C3-DIBEN	21.8	28.2	73.3	69.8
FLUORANTHENE	263.9	269.1	802.8	542.7
YRENE	262.9	245.2	771.2	529.2
C1-FLUORAN_PYR	236.3	199.9	562.8	569.8
BENaANTHRACENE	141.3	133.1	423.9	358.4
CHRYSENE	177.8	159.3	519.8	435.1
C1-CHRYSENES	147.9	128.4	363.6	265.7
2-CHRYSENES	98.8	90.1	228.3	138.2
3-CHRYSENES	49.8	28.4	71.2	67.5
C4-CHRYSENES	36.8	33.3	98.9	47.7
ENDFLUORAN	200.4	131.8	543.0	380.7
ENKFLUORAN	91.9	143.3	398.1	228.0
ENePYRENE	114.4	110.2	363.3	221.7
ENaPYRENE	153.3	147.7	466.5	288.2
ERYLENE	58.5	65.3	96.3	89.5
123cdPYRENE	78.4	104.3	374.1	98.7
BahANTHRA	19.6	23.9	105.3	25.7
ghiPERYLENE	74.9	93.3	329.9	85.6

Data reported on a dry weight basis and corrected for surrogate recovery

Saul S

The second

1

DATE: 05-May-92 LAB APPROVAL: [eng 2. Cutode

	Field Duplicates			
INVEST#:	EB-3	EB-3	IB-1	IB-1
LABSAMNO:	C3079	C3193	C3095	C3195
UNIT:	ppb	ppb	ppb	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
2-METHYLNAPH	16.7	18.7	47.6	53.5
2-METHTLNAPH 1-METHYLNAPH	10.0	11.4	29.9	34.8
1-MEINTLNAPH	10.0	11.4	2717	
2,6-DIMETHNAPH	9.6	11.1	34.1	32.0
2,3,5-TRIMETHNAPH	5.5	4.9	21.6	24.5
1-METHYLPHEN	16.1	27.8	65.1	67.3
Surrogate Recoveri	es			
NAPHD8:	73.0	43.3	81.8	65.7
ACEND10:	78.0	60.0	94.0	81.3
PHEND10:	76.2	54.3	79.0	70.7
CHRYD12:	71.4	51.1	70.1	63.1
PERYD12:	98.1	60.9	102.0	118.3

Data reported on a dry weight basis and corrected for surrogate recovery

and the second

0

LAB APPROVAL: Temp2. Wade

	Field Duplicates	
INVEST#:	SW-4	SW-4D
LABSAMNO:	C3149	C3151
UNIT:	ppb	ppb
PNA Analyte	Conc DB QUAL	Conc DB QUAL
NAPHTHALENE	21.9	20.4
C1-NAPHTHALENES	26.8	24.1
C2-NAPHTHALENES	31.3	26.2
C3-NAPHTHALENES	45.8	38.8
C4-NAPHTHALENES	54.7	45.9
BIPHENYL	4.7	4.1
ACENAPHTHYLENE	6.1	6.8
ACENAPHTHENE	2.6	3.3
FLUORENE	6.1	6.5
C1-FLUORENES	12.0	12.6
C2-FLUORENES	40.2	41.6
C3-FLUORENES	65.2	64.2
PHENANTHRENE	64.3	68.8
ANTHRACENE	10.1	11.4
C1-PHEN_ANTHR	59.4	58.5
C2-PHEN_ANTHR	124.9	118.8
C3-PHEN_ANTHR	104.8	100.2
C4-PHEN_ANTHR	55.9	54.5
DIBENZOTHIO	4.5	4.6
C1-DIBEN	15.8	15.4
C2-DIBEN	41.9	40.5
C3-DIBEN	39.7	37.7
FLUORANTHENE	100.9	110.9
PYRENE	91.4	98.4
C1-FLUORAN_PYR	71.3	75.0
BENaANTHRACENE	39.6	42.4
CHRYSENE	54.9	65.4
C1-CHRYSENES	44.8	42.7
C2-CHRYSENES	35.6	32.3
C3-CHRYSENES	11.0	10.3
C4-CHRYSENES	10.1	8.3
BENDFLUORAN	53.2	78.0
BENKFLUORAN	32.8	116.6
BENePYRENE	37.1	38.1
BENaPYRENE	42.7	45.5
PERYLENE	20.5	22.4
I 123cdPYRENE	29.4	31.8
DBahANTHRA	7.0	6.3
BghiPERYLENE	30.0	31.6

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

DATE: 05-May-92 LAB APPROVAL: Terry 2. Wode

	Field Duplicates	
INVEST#:	S₩-4	S₩-4D
LABSAMNO:	C3149	c3151
UNIT:	ppb	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL
2-METHYLNAPH	17.6	15.9
1-METHYLNAPH	9.1	8.2
2,6-DIMETHNAPH	15.5	14.8
2,3,5-TRIMETHNAPH	10.6	10.4
1-METHYLPHEN	17.6	17.0
		4.
Surrogate Recoverie	s 69,2	67.3
NAPHD8:		74.6
ACEND10:	88.2	76.0
PHEND10:	87.1	
CHRYD12:	85.3	74.7
PERYD12:	74.9	59.6

Data reported on a dry weight basis and corrected for surrogate recovery

-

LAB APPROVAL:

Teny2. utde

FIELD DUPLICATES

No.

E.

1

Name of Street, or other

and the

Tal

No.

言語

LAB QA DUPLICATES

	Lab QA Duplicates			au 5	CD 7
INVEST#:	EB-4	EB-4	SW-5	S₩-5	EB-3 C3079
LABSAMNO:	C3081	Q2087	C3153	Q2090	
UNIT:	ppb	ррб	ppb	ppb	ppb
PNA Analyte	Conc DB QUAL	Conc DB QUAL	Conc DB QU	AL Conc DB QUAL	Conc DB QUAL
NAPHTHALENE	19.0	19.7	7.9	8.9	23.6
C1-NAPHTHALENES	25.2	24.3	7.9	9.1	26.7
C2-NAPHTHALENES	21.1	21.2	9.5	10.7	22.8
C3-NAPHTHALENES	22.2	26.9	11.7	12.4	21.4
C4-NAPHTHALENES	17.2	20.3	12.2	10.9	14.7
BIPHENYL	4.1	3.8	3.1	2.9	5.4
ACENAPHTHYLENE	25.4	31.2	4.9	6.4	29.8
ACENAPHTHENE	5.9	10.8	1.7	1.7	5.8
FLUORENE	12.7	20.2	4.1	4.3	14.8
C1-FLUORENES	11.7	25.8	6.7	- 6.4	14.0
C2-FLUORENES	18.8	24.9	12.6	13.4	20.3
C3-FLUORENES	22.1	28.4	21.0	25.1	20.1
PHENANTHRENE	108.6	165.2	41.6	40.3	139.4
ANTHRACENE	37.1	69.8	5.6	6.4	39.9
C1-PHEN_ANTHR	103.5	173.1	43.7	42.7	115.7
C2-PHEN_ANTHR	117.4	180.5	52.4	50.1	106.3
C3-PHEN_ANTHR	83.1	106.4	40.8	31.8	68.9
C4-PHEN_ANTHR	71.6	42.7	20.9	15.6	33.6
DIBENZOTHIO	5.5	8.3	2.4	2.5	7.8
C1-DIBEN	11.0	17.1	6.3	6.3	13.3
C2-DIBEN	22.7	31.9	13.6	12.9	24.7
C3-DIBEN	24.4	27.0	12.7	11.4	21.8
FLUORANTHENE	222.1	348.1	90.1	81.5	263.9
PYRENE	222.5	365.6	81.6	74.8	262.9
C1-FLUORAN_PYR	238.5	386.9	55.8	34.7	236.3
BENaANTHRACENE	130.0	202.7	29.5	26.0	141.3
CHRYSENE	142.0	214.5	43.8	40.6	177.8
C1-CHRYSENES	152.5	195.5	30.8	28.6	147.9
C2-CHRYSENES	116.5	129.5	22.4	22.5	98.8
C3-CHRYSENES	23.9	32.3	6.0	7.2	49.8
C4-CHRYSENES	31.9	52.9	6.0	7.5	36.8
BENDFLUORAN	155.7	181.3	18.1	56.2	200.4
BENKFLUORAN	54.5	123.3	18.8	30.1	91.9
BENePYRENE	111.4	154.3	40.7	37.6	114.4
BENaPYRENE	167.1	244.9	52.2	49.0	153.3
PERYLENE	41.2	47.5	17.3	15.7	58.5
I 123cdPYRENE	108.2	152.3	2.9	79.0	78.4
DBahANTHRA	27.1	36.8	3.2	19.8	19.6
BghiPERYLENE	97.6	136.3	65.5	68.2	74.9

Data reported on a dry weight basis and corrected for surrogate recovery

1

1 1

T

BL. OF

No.

LAB APPROVAL: Temp 2. Woode

INVEST#: LABSAMNO: UNIT: Analyte (Cont)	Lab QA Duplicates EB-4 C3081 ppb Conc DB QUAL	EB-4 92087 ppb Conc DB QUAL	SW-5 C3153 ppb Conc DB QUAL	SW-5 Q2090 ppb Conc DB QUAL	EB-3 C3079 ppb Conc DB QUAL
2-METHYLNAPH	15.8	15.2	5.0	E /	
1-METHYLNAPH	9.4	9.2	2.9	5.6 3.5	16.7 10.0
2,6-DIMETHNAPH	7.8	8.2	4.0	3.8	9.6
2,3,5-TRIMETHNAPH	5.4	6.2	2.9	2.8	5.5
1-METHYLPHEN	ND	38.9	9.8	6.2	16.1
Surrogate Recoveries					
APHD8:	72.6	65.7	76.4	10.4	
CEND10:	92.3	85.5	70.1	69.1	73.0
HEND10:	84.3	79.7	81.4	69.2	78.0
HRYD12:	91.0	90.5	88.6	71.5	76.2
ERYD12:	79.5	92.8	64.4	79.2 55.0	71.4 98.1

Data reported on a dry weight basis and corrected for surrogate recovery

No. of Contraction

LAB APPROVAL:

Teny 2. woode

	Lab QA Duplicates				
INVEST#:	EB-3	₩B-1	WB-1	18-3	IB-3
LABSAMNO:	Q2121	C3175	Q2129	C3099	Q2135
UNIT:	ppb	ppb	ppb	ppb	ppb
PNA Analyte	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
NAPHTHALENE	19.8	13.2	12.8	48.3	52.1
C1-NAPHTHALENES	26.2	12.8	13.4	53.9	55.6
C2-NAPHTHALENES	2.2	14.3	14.6	49.0	49.6
C3-NAPHTHALENES	19.5	13.1	9.8	60.2	61.7
C4-NAPHTHALENES	17.0	13.4	12.5	58.6	58.3
BIPHENYL	7.9	6.3	5.9	8.4	9.3
ACENAPHTHYLENE	28.2	10.7	9.9	35.0	42.0
ACENAPHTHENE	5.0	2.2	2.3	15.1	17.8
FLUORENE	13.7	7.1	6.6	29.3	33.5
C1-FLUORENES	15.1	12.1	11.7	25.7	28.1
C2-FLUORENES	33.6	27.6	27.6	58.2	63.2
C3-FLUORENES	53.7	46.6	44.9	76.8	94.4
PHENANTHRENE	116.3	65.7	59.8	257.5	266.1
ANTHRACENE	31.0	12.7	11.7	80.0	84.8
C1-PHEN_ANTHR	118.7	68.3	45.9	220.1	229.4
C2-PHEN_ANTHR	122.3	79.4	69.1	212.3	221.7
C3-PHEN ANTHR	89.1	47.5	50.7	174.8	180.1
C4-PHEN_ANTHR	45.8	20.9	24.6	110.9	112.2
DIBENZOTHIO	6.4	4.0	3.8	14.7	15.7
C1-DIBEN	15.3	10.4	8.9	24.7	24.7
C2-DIBEN	31.5	20.9	21.4	51.3	51.7
C3-DIBEN	27.1	16.8	16.2	47.3	58.7
FLUORANTHENE	232.5	128.3	119.2	362.1	393.4
PYRENE	219.0	115.5	108.6	397.4	414.0
C1-FLUORAN_PYR	183.3	84.0	81.7	330.1	358.7
BENaANTHRACENE	120.6	50.0	48.7	218.1	234.1
CHRYSENE	142.9	68.1	67.1	263.0	274.2
C1-CHRYSENES	110.6	52.2	42.0	193.7	192.5
C2-CHRYSENES	85.2	43.9	39.8	124.2	135.7
C3-CHRYSENES	21.8	12.3	11.7	38.9	17.1
C4-CHRYSENES	31.6	28.5	26.5	43.1	44.8
BENGFLUORAN	177.5	61.5	56.7	275.0	289.3
BENKFLUORAN	80.0	73.3	77.9	414.5	141.5
BENePYRENE	104.7	51.8	51.0	166.0	177.0
BENaPYRENE	144.1	62.9	62.7	214.5	230.5
PERYLENE	65.6	42.5	43.2	65.0	68.1
I 123cdPYRENE	103.4	63.0	56.8	146.8	148.4
DBahANTHRA	19.7	12.4	11.5	33.6	56.1
BghiPERYLENE	93.0	56.7	51.3	125.9	129.5

Data reported on a dry weight basis and corrected for surrogate recovery

Contraction of the local distribution of the

Summer of the

1000

- Aler

三日間

5.1

LAB APPROVAL: Teny 2. Woode

	Lab QA Duplicates				
INVEST#:	EB-3	WB-1	WB-1	IB-3	IB-3
LABSAMNO:	Q2121	c3175	Q2129	C3099	Q2135
UNIT:	ррю	ppb	ppb	ррb	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA
2-METHYLNAPH	16.3	8.1	8.4	34.0	34.8
1-METHYLNAPH	10.0	4.7	5.0	19.8	20.8
2,6-DIMETHNAPH	11.7	6.4	6.3	20.5	22.3
2,3,5-TRIMETHNAPH	4.9	3.1	2.8	14.7	15.7
1-METHYLPHEN	15.6	10.8	14.4	45.1	45.6
			÷		
Surrogate Recoverie	es				
NAPHD8:	55.2	75.1	70.3	67.1	71.6
ACEND10:	62.8	82.5	81.1	87.1	84.5
PHEND10:	65.1	82.1	82.8	86.5	87.9
CHRYD12:	59.2	79.9	79.1	82.4	85.4
PERYD12:	64.7	76.4	72.7	105.8	106.7

Data reported on a dry weight basis and corrected for surrogate recovery

.

LAB APPROVAL: Terry 2. Wade

	Lab QA Duplicates	
INVEST#:	IB-1	IB-1
LABSAMNO:	C3095	92139
UNIT:	ppb	ppb
PNA Analyte	Conc DB QUAL	Conc DB QUA
NAPHTHALENE	82.7	96.4
C1-NAPHTHALENES	77.5	92.5
C2-NAPHTHALENES	75.0	85.9
C3-NAPHTHALENES	80.5	107.4
C4-NAPHTHALENES	83.4	85.5
BIPHENYL	15.9	14.8
ACENAPHTHYLENE	43.3	58.3
ACENAPHTHENE	33.6	36.2
FLUORENE	49.3	56.9
C1-FLUORENES	40.5	42.2
C2-FLUORENES	77.8	62.7
C3-FLUORENES	107.9	104.6
PHENANTHRENE	508.9	453.7
ANTHRACENE	145.0	164.9
C1-PHEN_ANTHR	339.6	295.8
C2-PHEN_ANTHR	348.2	263.4
C3-PHEN_ANTHR	264.4	177.4
C4-PHEN_ANTHR	168.3	103.7
DIBENZOTHIO	26.3	29.3
C1-DIBEN	35.7	33.5
C2-DIBEN	74.8	63.6
C3-DIBEN	73.3	67.4
LUORANTHENE	802.8	610.4
YRENE	771.2	602.0
1-FLUORAN_PYR	562.8	583.8
BENaANTHRACENE	423.9	384.9
CHRYSENE	519.8	473.7
C1-CHRYSENES	363.6	287.7
2-CHRYSENES	228.3	162.1
3-CHRYSENES	71.2	64.8
4-CHRYSENES	98.9	43.6
ENDFLUORAN	543.0	461.1
ENKFLUORAN	398.1	199.9
ENePYRENE	363.3	240.4
ENaPYRENE	466.5	291.3
ERYLENE	96.3	92.1
123cdPYRENE	374.1	109.1
BahANTHRA	105.3	30.0
ghiPERYLENE	329.9	98.8

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

1

and the second

F

3

DATE: 05-May-92

LAB APPROVAL: Terry 2. Woode

.

	Lab QA Duplicates	
INVEST#:	IB-1	IB-1
LABSAMNO:	C3095	Q2139
UNIT:	ррb	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL
2-METHYLNAPH	47.6	55.7
1-METHYLNAPH	29.9	36.7
2,6-DIMETHNAPH	34.1	35.9
2,3,5-TRIMETHNAPH	21.6	26.8
1-METHYLPHEN	65.1	35.8
Surrogate Recoverie	s	
NAPHD8:	81.8	70.7
ACEND10:	94.0	79.5
PHEND10:	79.0	72.6
CHRYD12:	70.1	63.9
PERYD12:	102.0	111.8

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

DATE: 05-May-92

LAB APPROVAL: Terry 2. Wade

LAB PROCEDURAL BLANKS

	Lab Procedural	Blanks			
INVEST#:	BLANK	BLANK	BLANK	BLANK	BLANK
LABSAMNO:	92088	Q2092	Q2122	Q2126	Q2132
UNIT:	ppb	ppb	ppb	ppb	ppb
PNA Analyte	Conc DB QUA	L Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA
NAPHTHALENE	1.2 J	1.2 J	0.6 J	0.7 J	0.4 J
C1-NAPHTHALENES	1.2 J	1.0 J	0.8	1.4	1.0
C2-NAPHTHALENES	ND	ND	ND	ND	ND
C3-NAPHTHALENES	ND	ND	ND	ND	ND
C4-NAPHTHALENES	ND	ND	ND	ND	ND
BIPHENYL	0.3 J	0.2 J	0.3 J	0.2 J	0.4 J
ACENAPHTHYLENE	0.1 J	0.1 J	0.1 J	0.3 J	0.1 J
ACENAPHTHENE	0.1 J	0.2 J	0.2 J	0.6 J	0.2 J
FLUORENE	0.4 J	0.2 J	0.1 J	0.4 J	0.1 J
C1-FLUORENES	ND	ND	ND ·	ND	ND
C2-FLUORENES	ND	ND	ND	ND	ND
C3-FLUORENES	ND	ND	ND	ND	ND
PHENANTHRENE	0.9	0.2 J	0.1 J	0.4 J	0.1 J
ANTHRACENE	0.1 J	0.1 J	ND	0.3 J	0.1 J
1-PHEN_ANTHR	ND	ND	ND	ND	ND
2-PHEN_ANTHR	ND	ND	ND	ND	ND
3-PHEN_ANTHR	ND	ND	ND	ND	ND
C4-PHEN_ANTHR	ND	ND	ND	ND	ND
IBENZOTHIO	ND	ND	ND	0.2 J	ND
C1-DIBEN	ND	ND	ND	ND	ND
2-DIBEN	ND	ND	ND	ND	ND
3-DIBEN	ND	ND	ND	ND	ND
LUORANTHENE	0.1 J	0.1 J	0.1 J	0.4 J	0.1 J
YRENE	0.1 J	0.1 J	ND	0.3 J	0.1 J
1-FLUORAN_PYR	ND	ND	ND	ND	ND
ENaANTHRACENE	0.1 J	0.1 J	ND	0.1 J	ND
HRYSENE	0.1 J	ND	0.1 J	0.1 J	0.1 J
1-CHRYSENES	ND	ND	ND	ND	ND
2-CHRYSENES	ND	ND	ND	ND	ND
3-CHRYSENES	ND	ND	ND	ND	ND
4-CHRYSENES	ND	ND	ND	ND	ND
ENDFLUORAN	ND	ND	ND	0.2 J	ND
ENKFLUORAN	ND	ND	ND	0.2 J	ND
ENePYRENE	ND	0.1 J	ND	0.4 J	ND
ENaPYRENE	0.1 J	0.1 J	ND	0.2 J	ND
ERYLENE	0.7 J	0.5 J	0.5 J	5.3	0.2 J
123cdPYRENE	ND	0.1 J	ND	0.2 J	ND
BahANTHRA	ND	0.1 J	ND	0.1 J	ND
ghiPERYLENE	ND	ND	ND	0.1 J	ND

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

LAB APPROVAL: Teny 2. while

	Lab Procedural Bla	nks			
INVEST#:	BLANK	BLANK	BLANK	BLANK	BLANK
LABSAMNO:	Q2088	Q2092	92122	Q2126	92132
UNIT:	ppb	ррб	ppb	ppb	ррь
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA
2-METHYLNAPH	0.9	0.6 J	0.6 J	0.9	0.4 J
1-METHYLNAPH	0.4 J	0.4 J	0.2 J	0.5 J	0.6 J
2,6-DIMETHNAPH	0.3 J	0.2 J	0.2 J	0.9	0.2 J
2,3,5-TRIMETHNAPH	0.1 J	0.3 J	0.1 J	0.8	0.1 J
1-METHYLPHEN	0.1 J	0.1 J	ND	0.6 J	0.1 J
Surrogate Recoveries					
NAPHD8:	73.4	68.8	60.5	78.2	84.0
ACEND10:	82.2	72.6	62.0	88.5	89.6
PHEND10:	72.9	77.3	63.8	75.7	92.5
CHRYD12:	71.1	55.2	51.8	67.4	75.7
PERYD12:	2.8	4.8	2.8	2.2	28.5

Data reported on a dry weight basis and corrected for surrogate recovery

Concession of the local division of the loca

	Lab Procedural
NVEST#:	BLANK
ABSAMNO:	Q2136
INIT:	ppb
NA Analyte	Conc DB QUA
PHTHALENE	0.6 J
1-NAPHTHALENES	0.8
2-NAPHTHALENES	ND
3-NAPHTHALENES	ND
4-NAPHTHALENES	ND
IPHENYL	0.4 J
CENAPHTHYLENE	0.1 J
CENAPHTHENE	0.1 J
LUORENE	0.1 J
1-FLUORENES	ND
2-FLUORENES	ND
3-FLUORENES	ND
HENANTHRENE	0.2 J
NTHRACENE	0.1 J
1-PHEN_ANTHR	ND
2-PHEN_ANTHR	ND
3-PHEN_ANTHR	ND
-PHEN_ANTHR	ND
BENZOTHIO	0.1 J
I-DIBEN	ND
2-DIBEN	ND
5-DIBEN	ND
UORANTHENE	0.1 J
RENE	0.1 J
-FLUORAN_PYR	ND
NaANTHRACENE	0.1 J
IRYSENE	0.1 J
-CHRYSENES	ND
CHRYSENES	ND
CHRYSENES	ND
CHRYSENES	ND
NELUORAN	ND
NKFLUORAN	ND
NePYRENE	0.1 J
NaPYRENE RYLENE	0.1 J
23cdPYRENE	0.3 J
ahANTHRA	ND
hiperylene	0.1 J

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

DATE: 05-May-92

LAB APPROVAL:

Terry 2. wade

	Lab Procedural Blanks
INVEST#:	BLANK
LABSAMNO:	Q2136
UNIT:	ppb
Analyte (Cont)	Conc DB QUAL
2-METHYLNAPH	0.4 J
1-METHYLNAPH	0.5 J
2,6-DIMETHNAPH	0.3 J
2,3,5-TRIMETHNAPH	0.2 J
1-METHYLPHEN	0.1 J
Surrogate Recoverie	
NAPHD8:	74.2
ACEND10:	71.9
PHEND10:	70.7
CHRYD12:	64.5
PERYD12:	7.9
I EN IDIE.	

「日本」

Con Con

2.66

1

8

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

LAB APPROVAL: Terry 2. worde

MATRIX SPIKES

-

4

1

	Matrix S	pikes									
INVEST#:	EB-4	•	S₩-5	;	EB-3			WB-1		IB-3	
LABSAMNO:	Q2089)	Q2093	5	Q2123	;		Q2127		Q2133	
UNIT:	*	S	*		*	,		%		~ 2	
PNA Analyte	% Recov	DB QUAL	% Recov	DB QUAL	% Recov	DB	QUAL	% Recov	DB QUAL	% Recov	DB QUAL
NAPHTHALENE	86.8	M	108.3	M	98.1	M		120.7	M		м
C1-NAPHTHALENES		NA		NA		NA			NA		NA .
C2-NAPHTHALENES		NA		NA		NA			NA		NA
C3-NAPHTHALENES		NA		NA		NA			NA		NA
C4-NAPHTHALENES		NA		NA		NA			NA		NA
BIPHENYL	111.6	М	101.1	м	96.9	H		94.9		90.1	
ACENAPHTHYLENE	156.0	M	113.5	M	74.3	N		86.1			M
ACENAPHTHENE	65.0	M	87.3	M	88.4	н		94.8			M
FLUORENE	94.2	М	97.7	м	105.4	м		97.3			M
C1-FLUORENES		NA		NA		NA			NA		NA
C2-FLUORENES		NA		NA		NA			NA		NA
C3-FLUORENES		NA		NA		NA			NA		NA
PHENANTHRENE		м		м		M			M		M
									••		

86.3 M

72.6 M

NA

NA

NA

NA

NA

NA

NA

M

M

NA

М

M

NA

NA

NA

NA

М

M

М

113.5 M

118.3 M

78.5 M

94.5 M

66.8 M

59.1 M

63.1 M

NA

NA

NA

NA

NA

NA

NA

М

M

NA

NA

NA

NA

NA

103.6 M

118.1 M

193.7 M

83.2 M

111.3 M

96.2 M

130.6 M

89.7 M

112.5 M

М

29.5 M

49.5 M

NA

NA

NA

NA

NA

NA

NA

M

M

NA

М

M

NA

NA

NA

NA

М

M

M

M

M

M

M

H

NATIONAL ESTUARY PROGRAM - AROMATIC HYDROCARBON DATA - CASCO BAY - 1991

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

ANTHRACENE

C1-PHEN_ANTHR

C2-PHEN_ANTHR

C3-PHEN_ANTHR

C4-PHEN_ANTHR

DIBENZOTHIO

C1-DIBEN

C2-DIBEN

C3-DIBEN

PYRENE

CHRYSENE

FLUORANTHENE

C1-FLUORAN_PYR

BENaANTHRACENE

C1-CHRYSENES

C2-CHRYSENES

C3-CHRYSENES

C4-CHRYSENES

BENDFLUORAN

BENKFLUORAN

BENePYRENE

BENaPYRENE

DBahANTHRA

I123cdPYRENE

BghiPERYLENE

PERYLENE

М

NA

NA

NA

NA

NA

NA

NA

М

M

NA

M

M

NA

NA

NA

NA

М

М

М

М

М

Μ

M

112.9 M

52.7 M

90.0 M

81.2 M

NA

NA

NA

NA

NA

NA

NA

М

М

NA

M

M

NA

. NA

NA

NA

М

м

М

М

Μ

M

M

85.5 M

DATE: 05-May-92

LAB APPROVAL: Teny 2. woode

	Matrix Spikes				
INVEST#:	EB-4	S₩-5	EB-3	WB-1	IB-3
LABSAMNO:	Q2089	Q2093	Q2123	Q2127	Q2133
UNIT:	%	%	%	%	%
Analyte (Cont)	% Recov DB QUAL	% Recov DB QUA			
2-METHYLNAPH	92.1 M	109.8 M	104.9 M	115.9 M	66.0 M
1-METHYLNAPH	102.6 M	121.0 M	110.5 M	124.3 M	80.8 M
2,6-DIMETHNAPH	110.1 M	84.0 M	91.1 M	91.1 M	71.9 M
2,3,5-TRIMETHNAPH	126.1 M	106.6 M	99.2 M	102.5 M	82.1 M
1-METHYLPHEN	м	М	м	м	м
			•		
Surrogate Recoverie	s				
NAPHD8:	62.7	56.9	50.2	64.5	75.1
ACEND10:	70.6	70.3	61.0	81.2	91.3
HEND10:	71.5	81.6	67.5	96.4	99.8
CHRYD12:	84.3	82.1	61.9	89.9	99.0
PERYD12:	87.1	66.1	61.5	87.5	106.9

Data reported on a dry weight basis and corrected for surrogate recovery

Teny 2. Wade

	Matrix Spikes	
INVEST#:	IB-1	
LABSAMNO:	Q2137	
UNIT:	%	
Analyte (Cont)	% Recov DB QL	JAL
· · · · · · · · · · · · · · · · · · ·		
2-METHYLNAPH	65.0 M	
1-METHYLNAPH	84.3 M	
2,6-DIMETHNAPH	63.2 M	
2,3,5-TRIMETHNAPH	92.0 M	
1-METHYLPHEN	м	
Surrogate Recoverie		
NAPHD8:	64.5	
ACEND10:	75.7	
PHEND10:	80.3	
CHRYD12:	65.7	
PERYD12:	105.7	

the state

-

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

LAB APPROVAL: Terry 2. Wode

	Matrix Spikes
INVEST#:	IB-1
LABSAMNO:	Q2137
UNIT:	%
PNA Analyte	% Recov DB QUA
NAPHTHALENE	88.9 M
C1-NAPHTHALENES	NA
C2-NAPHTHALENES	NA
C3-NAPHTHALENES	NA
C4-NAPHTHALENES	NA
BIPHENYL	86.3 M
ACENAPHTHYLENE	М
ACENAPHTHENE	M
FLUORENE	м
C1-FLUORENES	NA
C2-FLUORENES	NA
C3-FLUORENES	NA
PHENANTHRENE	М
ANTHRACENE	м
C1-PHEN_ANTHR	NA
C2-PHEN_ANTHR	NA
C3-PHEN_ANTHR	NA
C4-PHEN_ANTHR	NA
DIBENZOTHIO	37.7 M
C1-DIBEN	NA
C2-DIBEN	NA
C3-DIBEN	NA
FLUORANTHENE	м
PYRENE	м
C1-FLUORAN_PYR	NA
BENaANTHRACENE	м
CHRYSENE	м
C1-CHRYSENES	NA
C2-CHRYSENES	NA
C3-CHRYSENES	NA
C4-CHRYSENES	NA
BENEFLUORAN	м
BENKFLUORAN	м
BENePYRENE	м
BENaPYRENE	м
PERYLENE	125.9 M
I 123cdPYRENE	м
DBahANTHRA	102.2 M
BghiPERYLENE	M

4

1

1

-

٩

Data reported on a dry weight basis and corrected for surrogate recovery

LAB APPROVAL: Terry 2. wade

PESTICIDE DATA

and and

FIELD DUPLICATES

1

- 21

Ī

d T

NATIONAL ESTUARY PROGRAM - PESTICIDE DATA - CASCO BAY - 1991

	Field Duplicates					
INVEST#:	EB-3	EB-3	IB-1	IB-1		
LABSAMNO:	C3079	C3193	C3095	C3195		
UNIT:	ppb	ррб	ррь	ppb		
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA		
TOTAL BHC'S	0.17	0.57				
	0.17	0.53	ND	0.33		
TOTAL CHLORDANES	1.06	0.43	ND	5.21		
TOTAL DDT'S	2.26	2.07	ND	13.46		
ENDOSULFAN I	ND	ND	ND	ND		
ENDOSULFAN II	0.12 M	0.08 M	1.48 M	1.49 M		
ENDOSULFAN SULFATE	ND	ND	ND	ND		
ENDRIN ALDEHYDE	ND	ND	0.06	0.26		
TOXAPHENE	ND	ND	ND	ND		
ALPHA-BHC	0.17	0.40	0.23	0.32		
1CB	0.04 J	0.04 J	0.03 J	L 80.0		
BETA-BHC	ND	0.07	0.03 J	ND		
GAMMA-BHC	ND	0.03 J	0.13	0.01 J		
DELTA-BHC	ND	0.03 J	ND	ND		
IEPTACHLOR	0.07	0.03 J	ND	0.09		
EPTA-EPOXIDE	0.04 J	0.07	ND	0.29		
DXYCHLORDANE	ND	0.01 J	ND	0.13		
AMMA-CHLORDANE	0.83	0.07	1.82	3.88		
LPHA-CHLORDANE	0.08	0.14	0.38	0.40		
RANS-NONACHLOR	0.04	0.09	0.34	0.26		
IS-NONACHLOR	0.01 J	0.03 J	0.35	0.16		
LDRIN	ND	ND	ND	ND		
IELDRIN	0.24 J	0.20 J	0.72	0.87		
NDRIN	0.04 J	0.04 J	ND	ND		
IREX	0.10	0.09	ND	0.31		
,4'DDE (O,P'DDE)	0.01 J	0.03 J	ND	0.10 J		
,4'DDE (P,P'DDE)	1.22	1.17	3.16	3.91		
,4'DDD (0,P'DDD)	0.25 J	0.18	1.58	1.53		
,4'DDD (P,P'DDD)	0.56	0.54	9.05	6.49		
,4'DDT (O,P'DDT)	0.04 J	0.05 J	0.08	0.12		
,4'DDT (P,P'DDT)	0.18 J	0.11 J	0.63	1.32		

Data reported on a dry weight basis and corrected for surrogate recovery

de la

States of

LAB APPROVAL: Terry 2. wade

NATIONAL ESTUARY PROGRAM - PESTICIDE DATA - CASCO BAY - 1991

	Field Du	olicates		
INVEST#:	S₩-4		S₩-4D	
LABSAMNO:	C3149		C3151	
UNIT:	ppb		ppb	
Analyte (Cont)	Conc	DB QUAL	Conc	DB QUAL
TOTAL BHC'S	0.54		0.32	
TOTAL CHLORDANES	1.12		1.64	
TOTAL DDT'S	3.93		3.27	
ENDOSULFAN I		ND		ND
ENDOSULFAN II	0.09		0.23	
ENDOSULFAN SULFATE		ND		ND
ENDRIN ALDEHYDE	0.05			ND
TOXAPHENE		ND		ND
ALPHA-BHC		ND	0.09	
НСВ	0.03		0.04	
BETA-BHC	0.33			ND
GAMMA-BHC	0.05	J	0.07	J
DELTA-BHC	0.17		0.16	
HEPTACHLOR		ND	0.12	
HEPTA-EPOXIDE	0.70	ND	0.00	ND
	0.30		0.28	
	0.23		0.57	
ALPHA-CHLORDANE TRANS-NONACHLOR	0.21		0.28	
CIS-NONACHLOR	0.31		0.15	
ALDRIN	0.01	ND	J.LU	ND
	0.10		0.07	
ENDRIN		ND		ND
MIREX		ND		ND
2,4'DDE (O,P'DDE)	0.03			ND
4,4'DDE (P,P'DDE)	0.83		0.72	
2,4'DDD (0,P'DDD)	0.31		0.29	
4,4'DDD (P,P'DDD)	2.17		1.88	
2,4'DDT (0,P'DDT)	0.12		0.12	
4,4'DDT (P,P'DDT)	0.47		0.25	J

Data reported on a dry weight basis and corrected for surrogate recovery

町

LABNAME: GERG/TAMU DATE: 05-May-92 LAB APPROVAL: Terry 2. Wade

LAB QA DUPLICATES

SUL S

1

「たち」と

No. Co

NATIONAL ESTUARY PROGRAM	-	PESTICIDE	DATA	-	CASCO	BAY	-	1991	
--------------------------	---	-----------	------	---	-------	-----	---	------	--

	Lab QA Duplic	ates			
INVEST#:	EB-4	EB-4	SW-5	S₩-5	EB-3
LABSAMNO:	C3081	92087	C3153	Q2090	C3079
UNIT:	ppb	ррь	ppb	ppb	ppb
Analyte (Cont)	Conc DB Q	JAL Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA
	0.77				
TOTAL BHC'S	0.33	0.30	0.15	0.16	0.17
TOTAL CHLORDANES TOTAL DDT'S	0.16	0.15	0.15	0.46	1.06
TOTAL DDT'S	1.37	1.48	1.63	1.77	2.26
ENDOSULFAN I	ND	ND	ND	ND	ND
ENDOSULFAN II	0.11 M	0.16 M	ND	ND	0.12 M
ENDOSULFAN SULFATE	ND	ND	ND	ND	ND
ENDRIN ALDEHYDE	0.08	0.09	ND	ND	ND
TOXAPHENE	ND	ND	ND	ND	ND
ALPHA-BHC	0.12	0.11	0.11	L 80.0	0.17
(CB	0.01 J	0.01 J	ND	ND	0.04 J
BETA-BHC	ND	ND	0.02 J	ND	ND
AMMA-BHC	0.17	0.14	0.02 J	0.05 J	ND
ELTA-BHC	0.03 J	0.05 J	0.01 J	0.03 J	ND
IEPTACHLOR	ND	ND	ND	ND	0.07
IEPTA-EPOXIDE	ND	ND	ND	ND	0.04 J
XYCHLORDANE	ND	ND	ND	ND	ND
AMMA-CHLORDANE	ND	ND	0.01 J	0.32	0.83
LPHA-CHLORDANE	0.10	0.10	0.07	0.07	0.08
RANS-NONACHLOR	0.03 J	0.02 J	0.03 J	0.04 J	0.04 J
IS-NONACHLOR	0.04 J	0.02 J	0.03 J	0.03 J	0.01 J
LDRIN	0.04 J	0.05 J	ND	ND	ND
IELDRIN	0.11 J	0.17 J	0.04 J	0.09 J	0.24 J
NDRIN	0.06 J	0.06 J	0.02 J	0.04 J	0.04 J
IREX	0.07	0.09	ND	ND	0.10
,4'DDE (O,P'DDE)	ND	0.02 J	ND	ND	0.01 J
4'DDE (P,P'DDE)	0.64	0.65	0.49	0.51	1.22
,4'DDD (O,P'DDD)	ND	ND	0.06 J	L 80.0	0.25
,4'DDD (P,P'DDD)	0.40	0.45	0.61	0.67	0.56
,4'DDT (0,P'DDT)	0.08	0.07 J	0.03	0.02 J	0.04 J
,4'DDT (P,P'DDT)	0.25 J	0.30 J	0.43	0.49	0.18 J

Data reported on a dry weight basis and corrected for surrogate recovery

LAB APPROVAL: Teny 2. Wade

	Lab QA Duplicate	25			
INVEST#:	EB-3	WB-1	₩B-1	IB-3	IB-3
LABSAMNO:	92121	C3175	Q2129	C3099	Q2135
UNIT:	ppb	ppb	ppb	ppb	ppb
Analyte (Cont)	Conc DB QUAL	. Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA
TOTAL BHC'S	0.43	0.55	0.66	0.36	0.36
TOTAL CHLORDANES	0.38	0.91	0.67	2.49	2.93
TOTAL DDT'S	2.35	2.42	2.16	9.02	9.28
ENDOSULFAN I	ND	ND	ND	ND	ND
ENDOSULFAN II	0.12 M	0.31 M	0.19 M	1.11 M	1.44 M
ENDOSULFAN SULFATE	ND	ND	0.00	ND	ND
ENDRIN ALDEHYDE	ND	ND	0.09	0.14	0.21
TOXAPHENE	ND	ND	ND	ND	ND
LPHA-BHC	0.36	0.23	0.33	0.07 J	0.07 J
ICB	0.03 J	ND	ND	0.05 J	0.04 J
BETA-BHC	0.06 J	0.13	0.16	ND	ND
SAMMA-BHC	0.01 J	0.15	0.12	0.19	0.21
ELTA-BHC	ND	0.04 J	0.04 J	0.09	0.08
IEPTACHLOR	0.01 J	ND	ND	0.03 J	0.01 J
EPTA-EPOXIDE	0.06 J	ND	ND	ND	ND
XYCHLORDANE	ND	0.04 J	0.02 J	ND	ND
AMMA-CHLORDANE	0.06 J	0.53	0.38	1.92	2.35
LPHA-CHLORDANE	0.12	0.22	0.19	0.25	0.26
RANS-NONACHLOR	0.10	0.06	0.04 J	0.12	0.12
IS-NONACHLOR	0.03 J	0.05 J	0.04 J	0.17	0.19
LDRIN	ND	0.01 J	0.02 J	ND	ND
	0.26 J	0.14 J	0.09 J	0.32 J	0.29 J
NDRIN	0.03 J	ND	0.07	ND	ND
IREX	0.08	ND	ND	ND	ND
,4'DDE (0,P'DDE)	0.02 J	ND	ND	0.10 J	0.11 J
,4'DDE (P,P'DDE)	1.25	0.92	0.90	2.13	2.05
4'DDD (0,P'DDD)	0.19 J	0.18 J	0.13 J	0.85	0.96
,4'DDD (P,P'DDD)	0.67	0.79	0.64	5.06	5.24
2,4'DDT (0,P'DDT) 4,4'DDT (P,P'DDT)	0.06 J 0.14 J	0.01 J 0.52	0.03 J 0.46	0.01 J 0.87	0.03 J 0.88

Data reported on a dry weight basis and corrected for surrogate recovery

Contraction of the local division of the loc

1

1

1000

LABNAME: GERG/TAMU DATE: 05-May-92 LAB APPROVAL: Teny 2. worde

	Lab QA Duplicates	
INVEST#:	IB-1	IB-1
LABSAMNO:	C3095	Q2139
UNIT:	ppb	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL
TOTAL BHC'S	0.70	
TOTAL CHLORDANES	0.39 2.89	0.38
TOTAL DDT'S		1.86
IOTAL DOT'S	14.50	15.16
ENDOSULFAN I	ND	ND
ENDOSULFAN II	1.48 M	1.14 M
ENDOSULFAN SULFATE	ND	ND
ENDRIN ALDEHYDE	0.06	0.17
TOXAPHENE	ND	ND
ALPHA-BHC	0.23	0.34
ЧСВ	0.03 J	0.09 J
BETA-BHC	0.03 J	0.03 J
GAMMA-BHC	0.13	0.01 J
ELTA-BHC	ND	ND
IEPTACHLOR	ND	0.08
EPTA-EPOXIDE	ND	0.35
XYCHLORDANE	ND	0.15
AMMA-CHLORDANE	1.82	0.22
LPHA-CHLORDANE	0.38	0.47
RANS-NONACHLOR	0.34	0.33
IS-NONACHLOR	0.35	0.26
LDRIN	ND	ND
IELDRIN	0.72 J	0.80 J
NDRIN	ND	ND
IREX	ND	0.30
,4'DDE (O,P'DDE)	ND	0.14 J
,4'DDE (P,P'DDE)	3.16	4.30
,4'DDD (0,P'DDD)	1.58	1.68
,4'DDD (P,P'DDD)	9.05	7.22
,4'DDT (O,P'DDT)	0.08	0.30
4'DDT (P,P'DDT)	0.63	1.52

Data reported on a dry weight basis and corrected for surrogate recovery

.

LAB APPROVAL: Teny 2. words

LAB PROCEDURAL BLANKS

NATIONAL ESTUARY PROGRAM - PESTICIDE DATA - CASCO BAY - 1991	NATIONAL	ESTUARY	PROGRAM	-	PESTICIDE	DATA	-	CASCO	BAY	-	1991
--	----------	---------	---------	---	-----------	------	---	-------	-----	---	------

	Lab Procedural 81a	nks			
INVEST#:	BLANK	BLANK	BLANK	BLANK	BLANK
LABSAMNO:	Q2088	Q2092	92122	Q2126	Q2132
UNIT:	ppb	ррб	рро	ppb	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA
TOTAL BHC'S	ND	ND	ND	ND	ND
TOTAL CHLORDANES	ND	ND	ND	0.02	ND
TOTAL DDT'S	ND	ND	ND	ND	ND
ENDOSULFAN I	ND	ND	ND	ND	ND
ENDOSULFAN II	ND	ND	ND	ND	ND
ENDOSULFAN SULFATE	ND	ND	ND	ND	ND
ENDRIN ALDEHYDE	ND	ND	ND	ND	ND
TOXAPHENE	ND	ND	ND	ND	ND
LPHA-BHC	ND	ND	ND	ND	ND
ICB	ND	ND	ND	ND	ND
BETA-BHC	ND	ND	ND	ND	ND
GAMMA-BHC	ND	ND	ND	ND	ND
DELTA-BHC	ND	ND	ND	ND	ND
IEPTACHLOR	ND	ND	ND	ND	ND
EPTA-EPOXIDE	ND	ND	ND	ND	ND
XYCHLORDANE	ND	ND	ND	ND	ND
AMMA-CHLORDANE	ND	ND	ND	0.02 J	ND
LPHA-CHLORDANE	ND	ND	ND	ND	ND
RANS-NONACHLOR	ND	ND	ND .	ND	ND
IS-NONACHLOR	ND	ND	ND	ND	ND
LDRIN	ND	ND	ND	ND	ND
IELDRIN	ND	ND	ND	ND	ND
NDRIN	ND	ND	ND	ND	ND
IREX	ND	ND	ND	ND	ND
,4'DDE (O,P'DDE)	ND	ND	ND	ND	ND
,4'DDE (P,P'DDE)	ND	ND	ND	ND	ND
,4'DDD (0,P'DDD)	ND	ND	ND	ND	ND
,4'DDD (P,P'DDD)	ND	ND	ND	ND	ND
,4'DDT (O,P'DDT)	ND	ND	ND	ND	ND
,4'DDT (P,P'DDT)	ND	ND	ND	ND	ND

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

Ţ

LAB APPROVAL: Terry 2. Worde

MATRIX SPIKES

Sec. 1

No. allo

and the second

	Lab Procedural E
INVEST#:	BLANK
LABSAMNO:	Q2136
UNIT:	ррь
Analyte (Cont)	Conc DB QUAL
TOTAL BHC'S	ND
TOTAL CHLORDANES	ND
TOTAL DDT'S	ND
ENDOSULFAN I	ND
ENDOSULFAN II	ND
ENDOSULFAN SULFATE	ND
ENDRIN ALDEHYDE	ND
TOXAPHENE	ND
ALPHA-BHC	ND
ICB	NÐ
BETA-BHC	ND
GAMMA-BHC	ND
DELTA-BHC	ND
EPTACHLOR	ND
EPTA-EPOXIDE	ND
	ND
AMMA-CHLORDANE	ND ND
RANS-NONACHLOR	ND
IS-NONACHLOR	ND
LDRIN	ND
IELDRIN	ND
NDRIN	ND
IREX	ND
,4'DDE (O,P'DDE)	ND
,4'DDE (P,P'DDE)	ND
,4'DDD (0,P'DDD)	ND
,4'DDD (P,P'DDD)	ND
,4'DDT (0,P'DDT)	ND
,4'DDT (P,P'DDT)	ND

Data reported on a dry weight basis and corrected for surrogate recovery

DATE: 05-May-92

LAB APPROVAL: Terry 2. Wade

	Matrix Spikes
INVEST#:	IB-1
LABSAMNO:	Q2137
UNIT:	%
Analyte (Cont)	% Recov DB QUAL
TOTAL BHC'S	NA
TOTAL CHLORDANES	NA
TOTAL DDT'S	NA
ENDOSULFAN I	NA
ENDOSULFAN II	NA
ENDOSULFAN SULFATE	NA
ENDRIN ALDEHYDE	NA
TOXAPHENE	NA
ALPHA-BHC	106
КСВ	62
BETA-BHC	42
GAMMA-BHC	98
DELTA-BHC	93
HEPTACHLOR	107
HEPTA-EPOXIDE	98
OXYCHLORDANE	
GAMMA-CHLORDANE	89
ALPHA-CHLORDANE	88
TRANS-NONACHLOR	109
CIS-NONACHLOR	NA
ALDRIN	93
DIELDRIN	101
ENDRIN	36
MIREX	83
2,4'DDE (O,P'DDE)	105
4,4'DDE (P,P'DDE)	107
2,4'DDD (0,P'DDD)	107
4,4'DDD (P,P'DDD)	85
2,4'DDT (0,P'DDT)	107
4,4'DDT (P,P'DDT)	96

K.

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

LAB APPROVAL: Terry 2. Wade

	Matrix Spikes				
INVEST#:	EB-4	SW-5	EB-3	WB-1	IB-3
LABSAMNO:	Q2089	Q2093	92123	Q2127	Q2133
UNIT:	%	%	x	%	%
Analyte (Cont)	% Recov DB QUAL	% Recov DB QUA			
TOTAL BHC'S	NA	81.6	AL A		
TOTAL CHLORDANES	NA	NA NA	NA NA	NA NA	NA
TOTAL DDT'S	NA	NA	NA	NA	NA
	NA NA	NA	NA	NA	NA
ENDOSULFAN I	NA	NA	NA	NA	NA
ENDOSULFAN II	NA	NA	NA	NA	NA
ENDOSULFAN SULFATE	NA	NA	NA	NA	NA
ENDRIN ALDEHYDE	NA	NA	NA	NA	NA
TOXAPHENE	NA	NA	NA	NA	NA
ALPHA-BHC	83	75	114	77	79 M
НСВ	45	42	31	31	49 M
BETA-BHC	29	26	37	30	30 M
GAMMA-BHC	98	82	111	90	93 M
DELTA-BHC	95	84	99	74	96 M
HEPTACHLOR	89	92	98	83	68 M
HEPTA-EPOXIDE	81	69	98	78	96 M
DXYCHLORDANE					м
GAMMA-CHLORDANE	101	89	103	89	56 M
ALPHA-CHLORDANE	106	94	105	108	88 M
RANS-NONACHLOR	103	88	94	98	97 M
CIS-NONACHLOR	NA	NA	NA	NA	NA
LDRIN	100	96	100	94	104 M
IELDRIN	104	101	106	105	101 M
INDRIN	99	103	107	118	52 M
IIREX	100	92	64	93	91 M
2,4'DDE (0,P'DDE)	81	94	104	107	89 M
,4'DDE (P,P'DDE)	83	99	100	119	94 M
2,4'DDD (O,P'DDD)	104	86	93	87	115 M
,4'DDD (P,P'DDD)	107	100	87	93	161 M
4'DDT (0,P'DDT)	112	104	97	104	55 M
,4'DDT (P,P'DDT)	101	102	81	109	32 M

1

Data reported on a dry weight basis and corrected for surrogate recovery

.....

ł.

DATE: 05-May-92 LAB APPROVAL: Terry 2. World

1.6

PCB DATA

の一日

THE

FIELD DUPLICATES

日本

F	ield Duplicates			
INVEST#:	EB-3	EB-3	IB-1	IB-1
LABSAMNO:	C3079	C3193	C3095	C3195
UNIT:	ppb	ppb	ppb	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL
TOTAL PCB'S	14.0	21.1	79.2	79.4
AROCHLOR MIXTURE				
PCB 1242 (%)	ND	ND	ND	ND
PCB 1248 (%)	ND	ND	ND	ND
PCB 1254 (%)	97	98	98	98
PCB 1260 (%)	3	2	2	2
PCB # (CLORINATION)				
8 (CL2)	ND	ND	0.3	ND
18 (CL3)	0.1 J	0.1 J	0.1 J	ND
28 (CL3)	0.2	2.1	0.8	2.3
44 (CL4)	0.3	0.4	0.9	1.5
52 (CL4)	0.4	0.9	2.2	4.0
66 (CL4)	0.1 J	0.3	1.1	0.3
101 (CL5)	0.9	1.0	3.3	4.2
105 (CL5)	0.3	0.5	1.9	3.0
110/77 (CL5/4)	0.6	0.7	5.1	4.7
118/108/149(CL5/5/6)	0.6	0.6	4.4	3.0
128 (CL6)	0.6	0.9	0.8	2.0
138 (CL6)	0.6	0.8	6.2	4.1
126 (CL5)	0.7	0.7	2.5	2.9
153 (CL6)	0.8	0.8	5.2	4.0
170 (CL7)	0.4	0.2	ND	1.7
180 (CL7)	0.5	0.4	2.7	1.7
187/182/159(CL7/7/6)	0.3	0.3	1.1	0.6
195 (CL8)	0.1	0.1 J	0.4	0.3
206 (CL9)	ND	0.1 J	1.2	ND
209 (CL10)	ND	0.2	1.4	1.2
Surrogate Recoveries				
DBOFB%:	99.4	81.9	94.1	95.8
e-HCH%:	NA	NA	NA	NA
PCB#103%:	91.1	64.4	99.9	66.5
PCB#198%:	78.4	37.7	148.3	75.2

Data reported on a dry weight basis and corrected for surrogate recovery

LAB APPROVAL: Teny 2. wodp

	Field Duplicates	
INVEST#:	S₩-4	SW-4D
LABSAMNO:	C3149	C3151
UNIT:	ppb	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL
TOTAL PCB'S	19.0	13.0
AROCHLOR MIXTURE		
PCB 1242 (%)	ND	ND
PCB 1248 (%)	ND	ND
PCB 1254 (%)	97	95
PCB 1260 (%)	3	5
PCB # (CLORINATION)		
8 (CL2)	ND	0.1 J
18 (CL3)	ND	ND
28 (CL3)	0.2	0.2
44 (CL4)	0.2	0.2
52 (CL4)	0.9	0.7
66 (CL4)	0.4	0.2
101 (CL5)	0.6	0.7
105 (CL5)	0.7	0.4
110/77 (CL5/4)	1.4	0.9
118/108/149(CL5/5/6)	0.6	0.5
128 (CL6)	0.1 J	0.1 J
138 (CL6)	1.0	1.0
126 (CL5)	0.4 0.9	0.3
153 (CL6) 170 (CL7)		0.7
180 (CL7)	ND 0.5	ND 0.5
187/182/159(CL7/7/6)	0.3	0.2
195 (CL8)	0.1	0.1
206 (CL9)	ND	ND
209 (CL10)	1.5	0.1
Surrogate Recoveries		
DBOFB%:	81.3	71.7
e-HCH%:	NA	NA
PC8#103%:	82.0	73.7
PCB#198%:	119.5	100.3

Data reported on a dry weight basis and corrected for surrogate recovery

Teny 2. hade

LAB QA DUPLICATES

NATIONAL	ESTUARY	PROGRAM	_	PCB	DATA	-	01241	RAV	_	1001
		i nounnit		r CD	DATA	-	CASCO	BAT	-	1991

	Lab QA Duplicates				
INVEST#:	EB-4	EB-4	SW-5	SW-5	EB-3
LABSAMNO:	C3081	92087	C3153	92090	C3079
UNIT:	ppb	ppb	ppb	ppb	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAI
TOTAL PCB'S	14.3	16.7	7.3	8.8	14.0
AROCHLOR MIXTURE					
PCB 1242 (%)	ND	ND	ND		
PCB 1248 (%)	ND	ND	ND	ND	ND
PCB 1254 (%)	91	89	ND 97	ND	ND
PCB 1260 (%)	9	11	3	95 5	97
PCB # (CLORINATION)			2	2	3
8 (CL2)	0.1.1		•		
18 (CL3)	0.1 J	0.2	0.1	0.1 J	ND
28 (CL3)	ND	ND	ND	ND	0.1 J
44 (CL4)	0.1 J	0.2	0.1 J	0.1 J	0.2
52 (CL4)	0.1 J	0.1 J	0.1 J	0.1 J	0.3
56 (CL4)	0.1 J	0.1	0.3	0.2	0.4
01 (CL5)	0.1	0.3	0.1	0.1 J	0.1 J
05 (CL5)	0.1 0.3	0.2	0.4	0.2	0.9
10/77 (CL5/4)		0.2	0.2	0.1	0.3
18/108/149(CL5/5/6)	ND	ND	0.4	0.3	0.6
28 (CL6)	0.3	0.4	0.3	0.3	0.6
38 (CL6)	ND	ND	0.1 J	0.1 J	0.6
26 (CL5)	1.8	1.4	0.8	1.5	0.6
53 (CL6)	1.2	1.6	ND	0.1	0.7
70 (CL7)	0.7	0.8	0.4	0.4	0.8
80 (CL7)	0.7	0.9	ND	ND	0.4
87/182/159(CL7/7/6)	0.7	0.8	0.2	0.3	0.5
95 (CL8)	0.4	0.4	0.2	0.2	0.3
06 (CL9)	0.2	0.3	0.1 J	0.1	0.1
09 (CL10)	0.1	0.1 J	ND	0.1	ND
	0.5	0.7	0.1	0.3	ND
rrogate Recoveries					
OFB%:	89.2	87.8	79.0	85.2	99.4
HCH%:	NA	NA	NA	NA	99.4 NA
B#103%:	95.6	95.4	78.9	87.1	91.1
B#198%:	151.3	158.9	73.9	121.4	78.4

Data reported on a dry weight basis and corrected for surrogate recovery

Ľ.

-

LAB APPROVAL: Terry 2. Crede

NATIONAL	ESTUARY	PROGRAM	-	РСВ	DATA	-	CASCO	BAY	-	1991	
----------	---------	---------	---	-----	------	---	-------	-----	---	------	--

	Lab QA Duplicates				
INVEST#:	EB-3	WB-1	WB-1	IB-3	IB-3
LABSAMNO:	Q2121	C3175	Q2129	C3099	Q2135
UNIT:	ррб	ррб	ррб	ррь	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA
TOTAL PCB'S	27.1	11.7	10.8	42.1	48.7
AROCHLOR MIXTURE					
PCB 1242 (%)	ND	ND	ND	ND	ND
PCB 1248 (%)	ND	ND	ND	ND	ND
PCB 1254 (%)	97	96	95	97	98
PCB 1260 (%)	3	4	5	3	2
PCB # (CLORINATION)			÷		
8 (CL2)	ND	0.2	0.3	0.1 J	0.1 J
18 (CL3)	ND	ND	ND	ND	ND
28 (CL3)	3.1	0.3	0.3	1.2	ND
44 (CL4)	0.4	0.2	0.2	0.1	0.2
52 (CL4)	0.9	0.3	0.3	1.1	1.8
66 (CL4)	0.4	0.3	0.3	0.7	0.7
101 (CL5)	1.1	0.3	0.2	1.4	1.9
105 (CL5)	0.5	0.2	0.2	1.1	1.2
110/77 (CL5/4)	0.7	0.3	0.3	2.2	3.4
118/108/149(CL5/5/6)	0.8	0,4	0.4	2.0	2.5
128 (CL6)	1.2	0.1	0.1	ND	0.1
138 (CL6)	1.1	1.0	0.7	3.6	4.2
126 (CL5)	0.9	0.7	0.6	1.2	1.5
153 (CL6)	1.2	0.7	0.6	2.9	3.3
170 (CL7)	0.4	ND	ND	ND	ND
180 (CL7)	0.6	0.4	0.5	1.6	1.6
187/182/159(CL7/7/6)	0.4	0.1	0.1 J	0.7	0.7
195 (CL8)	0.1 J	0.2	0.2	0.4	0.4
206 (CL9)	0.2	0.1	0.1	0.7	0.8
209 (CL10)	0.4	0.3	0.2	1.0	1.1
Surrogate Recoveries					
BOFB%:	89.2	79.1	82.7	93.3	95.0
e-HCH%:	NA	NA	NA	NA	NA
PCB#103%:	75.9	79.3	82.5	98.0	102.5
°CB#198%:	63.5	125.9	121.9	139.5	149.6

Data reported on a dry weight basis and corrected for surrogate recovery

Pil

P

The second

1

LAB APPROVAL: Terry 2. Worde

L	ab QA D	uplicates		
INVEST#:	IB- 1		IB-	1
LABSAMNO:	C3095		Q213	9
UNIT:	ppb		pp	Ь
Analyte (Cont)	Conc	DB QUAL	Con	C DB QUAL
TOTAL PCB'S	79.2		93.	1
AROCHLOR MIXTURE				
PCB 1242 (%)		ND		ND
PCB 1248 (%)		ND		ND
PCB 1254 (%)	98		9	9
PCB 1260 (%)	2			1
PCB # (CLORINATION)				
8 (CL2)	0.3			ND
18 (CL3)	0.1	J		ND
28 (CL3)	0.8		2.	0
44 (CL4)	0.9		1.	
52 (CL4)	2.2		3.9	9
66 (CL4)	1.1		0.0	8
101 (CL5)	3.3		4.9	
105 (CL5)	1.9		3.	
110/77 (CL5/4)	5.1		6.4	4
118/108/149(CL5/5/6)	4.4		4.	
128 (CL6)	0.8		2.	7
138 (CL6)	6.2		5.0	6
126 (CL5)	2.5		3.0	
153 (CL6)	5.2		4.0	
170 (CL7)		ND	1.0	5
180 (CL7)	2.7		2.	
187/182/159(CL7/7/6)	1.1		1.1	1
195 (CL8)	0.4		0.3	
206 (CL9)	1.2		0.4	4
209 (CL10)	1.4		1.1	1
Surrogate Recoveries				
DBOFB%:	94.1		94.	
e-HCH%:		NA		NA
PCB#103%:	99.9		66.	
PCB#198%:	148.3		76.7	2

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

DATE: 05-May-92

LAB APPROVAL: Teny 2. Warde

LAB PROCEDURAL BLANKS

ALC: NO

No.

And a second

a state

1200

and the

	Lab Procedural Bla	nks			
INVEST#:	BLANK	BLANK	BLANK	BLANK	BLANK
LABSAMNO:	Q2088	92092	Q2122	Q2126	Q2132
UNIT:	ppb	ррь	ppb	ррб	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA
TOTAL PCB'S	1.3	1.6	0.1	0.6	0.4
AROCHLOR MIXTURE					
PCB 1242 (%)	NA	NA	NA	NA	NA
PCB 1248 (%)	NA	NA	NA	NA	NA
PCB 1254 (%)	NA	NA	NA	NA	NA
PCB 1260 (%)	NA	NA	NA	NA	NA
PCB # (CLORINATION)					
8 (CL2)	ND	ND	ND	ND	ND
18 (CL3)	ND	ND	ND	ND	ND
28 (CL3)	ND	ND	ND	ND	ND
44 (CL4)	ND	ND	ND	ND	ND
52 (CL4)	ND	ND	ND	ND	ND
66 (CL4)	ND	ND	ND	ND	ND
101 (CL5)	ND	ND	ND	ND	ND
105 (CL5)	ND	ND	ND	ND	ND
10/77 (CL5/4)	ND	ND	ND	ND	ND
18/108/149(CL5/5/6)	ND	ND	ND	ND	ND
28 (CL6)	ND	ND	ND	ND	ND
38 (CL6)	0.7	0.8	ND	0.3	0.2
26 (CL5)	ND	ND	ND	ŃD	ND
53 (CL6)	ND	ND	ND	ND	ND
70 (CL7)	ND	ND	0.1 J	ND	ND
80 (CL7)	ND	ND	ND	ND	ND
87/182/159(CL7/7/6)	ND	ND	ND	ND	ND
95 (CL8)	ND	ND	ND	ND	ND
06 (CL9)	ND	ND	ND	ND ST	ND
09 (CL10)	ND	ND	ND	ND	ND
urrogate Recoveries					
BOFB%:	88.9	89.9	82.5	73.5	86.6
HCH%:	NA	NA	NA	NA	NA
CB#103%:	109.4	100.7	82.4	77.1	105.5
CB#198%:	160.6	130.5	66.4	86.1	137.2

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

LAB APPROVAL: Temp 2. wede

	Lab Procedural E
INVEST#:	BLANK
LABSAMNO:	Q2136
UNIT:	ppb
Analyte (Cont)	Conc DB QUAL
TOTAL PCB'S	0.1
AROCHLOR MIXTURE	
PCB 1242 (%)	NA
PCB 1248 (%)	NA
PCB 1254 (%)	NA
PCB 1260 (%)	NA
CB # (CLORINATION)	
B (CL2)	ND
18 (CL3)	ND
28 (CL3)	ND
44 (CL4)	ND
52 (CL4)	ND
56 (CL4)	ND
101 (CL5)	ND
05 (CL5)	ND
10/77 (CL5/4)	ND
18/108/149(CL5/5/6)	
28 (CL6)	ND
38 (CL6)	ND
26 (CL5)	ND
53 (CL6) 70 (CL7)	ND
80 (CL7)	0.1 ND
87/182/159(CL7/7/6)	
95 (CL8)	ND
06 (CL9)	ND
09 (CL10)	ND
urrogate Recoveries	
BOFB%:	92.0
-HCH%:	NA
CB#103%:	93.0
CB#198%:	98.5

-

and and

1.10

1

and and

NATIONAL ESTUARY PROGRAM - PCB DATA - CASCO BAY - 1991

Data reported on a dry weight basis and corrected for surrogate recovery

LAB APPROVAL: Teny 2. crode

MATRIX SPIKES

.....

	Matrix Spikes				
INVEST#:	EB-4	SW-5	EB-3	WB-1	IB-3
LABSAMNO:	Q2089	Q2093	Q2123	Q2127	Q2133
UNIT:	*	%	%	%	%
Analyte (Cont)	% Recov DB QUAL	% Recov DB QUA			
TOTAL PCB'S	98	103	84	108	112 M
AROCHLOR MIXTURE					
PCB 1242 (%)	NA	NA	NA	NA	NA
PCB 1248 (%)	NA	NA	NA	NA	NA
PCB 1254 (%)	NA	NA	NA	NA	NA
PCB 1260 (%)	NA	NA	NA	NA	NA
PCB # (CLORINATION)					
8 (CL2)	82	100	129	102	88 M
18 (CL3)	36	55	59	51	45 M
28 (CL3)	86	103	120	119	108 M
44 (CL4)	90	108	163	117	106 M
52 (CL4)	79	96	116	103	98 M
66 (CL4)	125	155	234	127	178 M
101 (CL5)	91	95	99	86	88 M
105 (CL5)	137	140	214	136	163 M
110/77 (CL5/4)	80	97	66	110	88 M
118/108/149(CL5/5/6)	120	121	143	111	123 M
128 (CL6)	131	116	179	127	155 M
138 (CL6)	95	139	140	109	107 M
126 (CL5)	113	125	115	116	131 M
153 (CL6)	91	93	68	93	92 M
170 (CL7)	126	116	74	0	0 M
180 (CL7)	109	101	68	108	112 M
187/182/159(CL7/7/6)	85	100	45	114	90 M
195 (CL8)	114	105	73	124	111 M
206 (CL9)	91	106	45	92	104 M
209 (CL10)	129	113	31	113	125 M
Surrogate Recoveries					
DBOFB%:	85.2	89.5	81.7	85.9	100.2
e-HCH%:	NA	NA	NA	NA	NA
PCB#103%:	87.1	100.1	67.4	84.9	104.7
PCB#198%:	121.4	122.8	43.3	125.5	133.5

Data reported on a dry weight basis and corrected for surrogate recovery

1

Contraction of

-

and the second

1

DATE: 05-May-92

LAB APPROVAL: Teny 2. Wade

	Matrix Spikes
INVEST#:	IB-1
LABSAMNO:	Q2137
UNIT:	%
Analyte (Cont)	% Recov DB QUAL
TOTAL PCB'S	109
AROCHLOR MIXTURE	
PCB 1242 (%)	NA
PCB 1242 (%)	NA
PCB 1254 (%)	NA
PCB 1260 (%)	NA
PCB # (CLORINATION) 8 (CL2)	168
18 (CL3)	50
28 (CL3)	141
44 (CL4)	141
52 (CL4)	124
66 (CL4)	309
101 (CL5)	78
105 (CL5)	263
110/77 (CL5/4)	108
118/108/149(CL5/5/6)	
128 (CL6)	188
138 (CL6)	95
126 (CL5)	148
153 (CL6)	70
170 (CL7)	126
180 (CL7)	97
187/182/159(CL7/7/6)	
195 (CL8)	101
206 (CL9)	76
209 (CL10)	98
Surrogate Recoveries	
DBOFB%:	95.8
e-HCH%:	NA
PCB#103%:	70.4
PCB#198%:	73.8

Data reported on a dry weight basis and corrected for surrogate recovery

Tenyz. wode

ADDITIONAL PCB DATA

FIELD DUPLICATES

ſ

and the second

INCOT #		plicates	=				-	
INVEST#:	EB-3		EB-3		1B-1		IB-1	
LABSAMNO:	C3079		C3193		C3095		C3195	
UNIT:	ppb		ppb		ppb		ppb	
Analyte (Cont)	Conc	DB QUAL	Conc	DB QUAL	Conc	DB QUAL	Conc	DB QUA
Other PCB Congeners								
7 (CL2)		ND		ND		ND		ND
15 (CL2)	0.1		0.4		0.1			ND
24 (CL3)	0.1	•	0.4	ND	0.1		0.2	ND
16/32 (CL3)	0.9			ND	1.2	U C	3.6	
29 (CL3)	0.1			ND		ND	5.0	ND
26 (CL3)	••••	ND		ND		ND	0.1	ND
25 (CL3)		ND	0.1		0.2		0.1	J
50 (CL4)	0.1		0.8		0.5		0.5	-
31 (CL3)		ND	010	ND		ND	0.5	ND
33 (CL3)		ND	0.2		0.3		0.4	ND
22 (CL3)	0.4		0.5		0.7		0.8	
45 (CL4)	0.1		0.2		•••	ND	0.2	
46 (CL4)		ND	0.9		0.1		•••	ND
49 (CL4)		ND	0.5		0.6		1.3	
47/48 (CL4)		ND		ND	0.1			ND
37/42 (CL4)	0.1		0.2		0.4		0.6	
41/64 (CL4)	0.1		0.2		0.2			ND
40 (CL4)				ND				ND
100 (CL5)				ND				ND
74 (CL4)	1.4		0.9		3.5		6.3	
70 (CL4)	0.1		0.5		1.8		1.1	
88 (CL5)		ND	0.1	ſ	0.2		0.3	
60/56 (CL5)	0.1	J	0.4		0.6		0.4	
92? (CL5)		ND	0.2		0.2		0.1	J
84? (CL5)		ND	0.1	1	0.6			ND
99 (CL5)	4.2		0.3		1.5		6.8	
83 (CL5)	0.3		0.3		0.9		1.1	
97 (CL5)	0.1		0.5		0.6		0.7	
87 (CL5)	0.4		0.3		1.4		1.5	
85 (CL5)	0.1		0.1	J	0.3		0.4	
136 (CL6)		ND		ND	0.3			ND
32 (CL5)	0.1		0.2		2.6			ND
151 (CL6)	0.1		0.1		0.9		0.7	
107/108/144(CL5/5/6)	0.1	J	0.2		0.5		0.3	
149 (CL6)	0.4		0.3		2.7		1.2	
88 (CL7)	1.1	ND		ND		ND		ND

NATIONAL ESTUARY PROGRAM - OTHER PCB CONGENER DATA - CASCO BAY - 1991

Data reported on a dry weight basis and corrected for surrogate recovery

No. of Lot of Lo

and the second se

and the second

1

and and

3

and the

NATIONAL I	ESTUARY	PROGRAM	-	OTHER	PCB	CONGENER	DATA	(CONT)-	CASCO BA'	(-	1001
								(00)	011000 011		

	Field Duplicates			
INVEST#:	EB-3	EB-3	IB-1	IB-1
LABSAMNO:	C3079	C3193	C3095	C3195
UNIT:	ррь	ррб	ppb	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAI
146 (CL6)	0.2	0.2	0.6	0.7
141 (CL6)	ND	ND	0.7	ND
137 (CL6)	ND	0.1 J	0.2	0.2
UNK (CL6)	ND	ND	0.1 J	0.1
158 (CL7)	0.7	0.5	5.4	1.5
129 (CL6)	ND	ND	0.2	ND
178 (CL7)	ND	ND	ND	ND
183 (CL7)	0.1	0.1 J	0.6	0.1
167 (CL6)	ND	ND	0.3	ND
185 (CL7)	ND	ND	2.3	ND
174 (CL7)	0.2	0.1 J	1.1	1.0
177 (CL7)	0.4	0.3	0.8	1.8
156/171/202(CL6/7/8)	7.8	ND	0.9	21.6
200 (CL8)	ND	ND	0.4	0.2
172 (CL7)	0.3	0.1	1.3	0.7
191 (CL7)	ND	ND	ND	ND
201 (CL8)	0.2	0.1	1.2	0.8
196 (CL8)	0.3	0.1	1.4	0.7
189 (CL7)	ND	ND	0.2	ND
194 (CL8)	0.1	ND	0.7	0.2
205 (CL9)	ND	0.5	0.7	10.3

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

1

LAB APPROVAL: Teny 2. woode

. .

	Field Dup	licates		
INVEST#:	S₩-4		S₩-4D	
LABSAMNO:	C3149		C3151	
UNIT:	ppb		ppb	
Analyte (Cont)	Conc	DB QUAL	Conc	DB QUAL
Other PCB Congeners				
7 (CL2)		ND		ND
15 (CL2)	0.1		0.1	J
24 (CL3)	0.1	J		ND
16/32 (CL3)	0.3		0.3	
29 (CL3)		ND		ND
26 (CL3)		ND		ND
25 (CL3)		ND	0.1	
50 (CL4)	0.3		0.3	
31 (CL3)		ND		ND
33 (CL3)	0.2		0.1	
22 (CL3)	0.4		0.3	
45 (CL4)		ND		ND
46 (CL4)		ND	0.1	
49 (CL4)	0.4		0.3	
47/48 (CL4)	0.2		0.8	
37/42 (CL4)	0.2		0.2	
41/64 (CL4)		ND.	1.0	
40 (CL4)		ND		ND
100 (CL5)		ND		ND
74 (CL4)	0.9		0.6	
70 (CL4)	0.7		0.3	
88 (CL5)	0.1	J		ND
60/56 (CL5)	0.2		0.7	
92? (CL5)	0.1	J	0.1	
84? (CL5)	0.2		0.2	
99 (CL5)	0.3		0.3	
83 (CL5)	0.1		0.1	J
97 (CL5)		ND		ND
87 (CL5)	0.3		0.2	
85 (CL5)	0.1	J		ND
136 (CL6)		ND		ND
82 (CL5)	0.2		0.1	
151 (CL6)	0.2		0.1	L
107/108/144(CL5/5/6)		ND		ND
149 (CL6)	0.5		0.3	
188 (CL7)	-	ND		ND

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

LAB APPROVAL: Tenz 2. Wade

NATIONAL ESTUARY PRO	GRAM - OTHER	R PCB CONGENER	DATA (CONT))- CASCO	BAY -	1991
----------------------	--------------	----------------	-------------	----------	-------	------

F	ield Dup	olicates		
INVEST#:	s₩-4		S₩-4D	
LABSAMNO:	C3149		C3151	
UNIT:	ppb		ppb	
Analyte (Cont)	Conc	DB QUAL	Conc	DB QUAL
146 (CL6)	0.3		0.2	
141 (CL6)	0.2		0.1	J
137 (CL6)	0.2		0.1	
UNK (CL6)	0.1	J	0.1	J
158 (CL7)	0.9		0.7	
129 (CL6)		ND		ND
178 (CL7)		ND		ND
183 (CL7)		ND		ND
167 (CL6)		ND		ND
185 (CL7)		ND		ND
174 (CL7)	0.2			ND
177 (CL7)	0.2		0.2	
156/171/202(CL6/7/8)	0.2		0.1	J
200 (CL8)		ND	0.1	J
172 (CL7)	0.3		0.2	
191 (CL7)		ND		ND
201 (CL8)	0.2		0.1	J
196 (CL8)	0.3		0.4	
189 (CL7)	0.1			ND
194 (CL8)	0.1		0.1	
205 (CL9)	0.4		0.1	

Contraction of the

T.

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

LAB APPROVAL: Temy 2. Wade

LAB QA DUPLICATES

9

Comment

Change of the second

ł	ab QA Duplicates				
INVEST#:	EB-4	EB-4	S₩-5	SW-5	EB-3
LABSAMNO:	C3081	Q2087	C3153	Q2090	C3079
UNIT:	ppb	ppb	ppb	ppb	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA
146 (CL6)	0.2	0.2	ND	ND	0.2
141 (CL6)	ND	ND	0.1 J	ND	ND
137 (CL6)	ND	ND	ND	ND	ND
UNK (CL6)	ND	ND	0.1 J	ND	ND
158 (CL7)	1.2	1.8	ND	0.7	0.7
129 (CL6)	ND	ND	ND	ND	ND
178 (CL7)	ND	ND	ND	ND	ND
183 (CL7)	0.1	0.1	ND	0.1 J	0.1 J
167 (CL6)	0.1 J	0.1	ND *	ND	ND
185 (CL7)	0.2	0.1 J	ND	ND	ND
174 (CL7)	0.2	0.2	ND	0.1 J	0.2
177 (CL7)	0.4	0.6	0.3	0.3	0.4
156/171/202(CL6/7/8)	0.2	0.4	ND	0.1 J	7.8
200 (CL8)	0.2	0.2	ND	ND	ND
172 (CL7)	0.5	0.6	ND	0.2	0.3
191 (CL7)	ND	ND	ND	ND	ND
201 (CL8)	0.3	0.4	0.1 J	0.1	0.2
196 (CL8)	0.7	0.7	0.2	0.3	0.3
189 (CL7)	ND	ND	ND	ND	ND
194 (CL8)	0.1	0.2	0.1	ND	0.1
205 (CL9)	0.3	0.3	ND	0.6	ND

NATIONAL ESTUARY PROGRAM - OTHER PCB CONGENER DATA (CONT)- CASCO BAY - 1991

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

LAB APPROVAL: Leng 2. vede

	Lab QA Duplicates				
INVEST#:	EB-4	EB-4	SW-5	S₩-5	EB-3
LABSAMNO:	C3081	92087	C3153	Q2090	C3079
UNIT:	ррь	ppb	ppb	ppb	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAI
Other PCB Congeners					
7 (CL2)	ND				
15 (CL2)	ND ND	ND	ND	ND	ND
24 (CL3)	ND	ND ND	ND	ND	0.1 J
16/32 (CL3)	0.2	0.2	ND	ND	0.1
29 (CL3)	ND	ND	ND	ND	0.9
26 (CL3)	ND	ND	ND	ND	0.1 J
25 (CL3)	0.1 J	0.1	ND	ND	ND
50 (CL4)	0.2	0.3	ND 0.1 J	ND	ND
31 (CL3)	ND	ND		0.1 J	0.1 J
33 (CL3)	ND	ND	ND ND	ND	ND
22 (CL3)	0.1 J	0.1	0.1 J	ND	ND
45 (CL4)	ND	ND	ND	ND	0.4
46 (CL4)	0.1 J	0.1 J	ND	ND ND	0.1
49 (CL4)	0.1 J	0.1	0.1 J	0.1	ND
7/48 (CL4)	0.1 J	0.1 J	ND	ND	ND
37/42 (CL4)	0.1	0.1	ND	ND	ND 0.1
1/64 (CL4)	0.1	0.3	0.1	ND	0.1 J
0 (CL4)	ND	ND	ND	ND	
00 (CL5)	ND	ND	ND	ND	ND ND
4 (CL4)	0.2	0.2	ND	ND	1.4
0 (CL4)	0.2	0.3	0.1 J	0.1	0.1
8 (CL5)	ND	ND	ND -	ND	ND
0/56 (CL5)	ND	0.1	ND	ND	0.1 J
2? (CL5)	ND	ND	ND	ND	ND
4? (CL5)	ND	0.1 J	0.1 J	ND	ND
9 (CL5)	0.1	0.2	0.2	0.2	4.2
3 (CL5)	0.2	0.4	ND	ND	0.3
7 (CL5)	ND	ND	0.1 J	ND	0.1
7 (CL5)	ND	0.1 J	0.1	0.1	0.4
5 (CL5)	ND	ND	0.1 J	ND	0.1
36 (CL6)	ND	ND	ND	ND	ND
2 (CL5)	0.2	0.4	0.1 J	ND	0.1
51 (CL6)	ND	0.1 J	ND	ND	0.1
07/108/144(CL5/5/6)	0.1 J	0.1 J	0.1 J	0.1 J	0.1 J
49 (CL6)	0.5	0.8	0.3	0.2	0.4
38 (CL7)	ND	ND	ND	ND	ND

NATIONAL ESTUARY PROGRAM - OTHER PCB CONGENER DATA - CASCO BAY - 1991

Data reported on a dry weight basis and corrected for surrogate recovery

-

Contraction of the local distance of the loc

Contraction of the second

The second s

LAB APPROVAL: Terry 2. Wade

t	ab QA Duplicates				
INVEST#:	EB-3	WB - 1	WB-1	IB-3	IB-3
LABSAMNO:	92121	C3175	Q2129	C3099	Q2135
UNIT:	ppb	ppb	ppb	ppb	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA
146 (CL6)	0.2	0.1 J	0.1 J	0.2	0.3
141 (CL6)	ND	ND	ND	0.5	0.5
137 (CL6)	0.1	ND	ND	0.1	0.2
UNK (CL6)	0.1 J	ND	ND	0.1 J	0.1 J
158 (CL7)	0.9	1.2	0.9	3.5	3.9
129 (CL6)	ND	ND	ND	0.1 J	0.1 J
178 (CL7)	ND	ND	ND	ND	ND
183 (CL7)	0.1	0.1 J	0.1 J	0.3	0.3
167 (CL6)	ND	ND	ND	ND	ND
185 (CL7)	ND	0.3	0.3	1.5	1.6
174 (CL7)	0.2	0.1	0.1	0.4	0.5
177 (CL7)	0.4	0.2	0.1	0.6	0.8
156/171/202(CL6/7/8)	ND	0.2	0.3	0.5	0.6
200 (CL8)	ND	0.1	0.1	0.2	0.3
172 (CL7)	0.2	0.5	0.4	0.8	0.9
191 (CL7)	ND	ND	0.1 J	0.1 J	0.1 J
201 (CL8)	0.2	0.1	0.1 J	0.7	0.9
96 (CL8)	0.1	0.1 J	0.3	1.0	0.8
89 (CL7)	ND	0.1	0.2	0.1	0.1 J
94 (CL8)	0.1	0.1	0.1	0.4	0.4
205 (CL9)	1.0	0.2	0.2	0.4	0.5

NATIONAL ESTUARY PROGRAM - OTHER PCB CONGENER DATA (CONT)- CASCO BAY - 1991

Data reported on a dry weight basis and corrected for surrogate recovery

LAB APPROVAL:

Teny 2. wode

	Lab QA Duplicates				
INVEST#:	EB-3	W8-1	WB-1	18-3	IB-3
LABSAMNO:	Q2121	C3175	Q2129	C3099	Q2135
UNIT:	ppb	ppb	ррь	ppb	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA
Other PCB Congeners					
7 (CL2)	ND	ND	ND	ND	ND
15 (CL2)	ND	0.1	0.1	0.1	0.1 J
24 (CL3)	ND	ND	ND	0.1 J	ND
16/32 (CL3)	ND	0.3	0.3	0.6	0.6
29 (CL3)	ND	ND	ND	ND	ND
26 (CL3)	ND	0.1 J	0.1	ND	ND
25 (CL3)	0.1	0.1	0.1 J	ND	0.2
50 (CL4)	0.5	1.2	1.0	0.1	ND
31 (CL3)	ND	ND	ND	ND	ND
33 (CL3)	0.1 J	0.1 J	0.1	0.1 J	ND
22 (CL3)	0.4	0.2	0.2	0.3	0.4
45 (CL4)	0.2	ND	ND	ND	ND
46 (CL4)	0.6	0.1	0.1	0.6	ND
49 (CL4)	0.2	0.2	0.2	0.1	0.2
47/48 (CL4)	ND	1.5	1.3	ND	ND
37/42 (CL4)	0.2	0.1 J	0.1 J	0.1	0.2
41/64 (CL4)	0.1	ND	ND	0.1	0.2
40 (CL4)	ND	ND	ND	0.1 J	0.1 J
100 (CL5)	ND	ND	ND	ND	ND
74 (CL4)	1.1	0.9	0.7	2.1	2.4
70 (CL4)	0.4	0.3	0.3	0.7	0.9
38 (CL5)	0.1 J	ND	ND	0.1 J	0.1 J
60/56 (CL5)	0.5	0.4	0.5	1.9	2.2
2? (CL5)	0.1	ND	0.1	0.6	0.6
34? (CL5)	0.1 J =	ND	ND	0.3	0.4
9 (CL5)	0.3	0.3	0.2	3.6	4.2
33 (CL5)	0.4	0.3	0.2	0.4	0.5
97 (CL5)	0.2	ND	ND	0.2	0.4
37 (CL5)	0.4	0.1	0.1	0.6	0.8
5 (CL5)	0.1 J	ND	ND	0.1	0.1
36 (CL6)	ND	ND	ND	0.3	0.3
32 (CL5)	0.2	0.4	0.3	1.8	2.1
51 (CL6)	0.2	0.1	0.1	0.2	0.4
07/108/144(CL5/5/6)	0.2	0.4	0.2	ND	0.2
49 (CL6)	0.4	0.4	0.4	1.2	1.7
88 (CL7)	ND	ND	ND	ND	ND

NATIONAL ESTUARY PROGRAM - OTHER PCB CONGENER DATA - CASCO BAY - 1991

Data reported on a dry weight basis and corrected for surrogate recovery

10

LAB APPROVAL: Tenz 2. wode

NATIONAL	FOTUARY											
NATIONAL	ESTUARY	PROGRAM	-	OTHER	РСВ	CONGENER	DATA	(CONT)-	CASCO	BAY	-	1991

	Lab QA Duplicates	
INVEST#:	IB-1	IB-1
LABSAMNO:	C3095	Q2139
UNIT:	ррб	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL
146 (CL6)	0.6	0.5
141 (CL6)	0.7	ND
137 (CL6)	0.2	0.4
UNK (CL6)	0.1 J	0.6
158 (CL7)	5.4	5.4
129 (CL6)	0.2	ND
178 (CL7)	ND	ND
183 (CL7)	0.6	0.5
167 (CL6)	0.3	ND
185 (CL7)	2.3	0.4
174 (CL7)	1.1	1.1
177 (CL7)	0.8	2.0
156/171/202(CL6/7/8)	0.9	2.1
200 (CL8)	0.4	0.3
172 (CL7)	1.3	0.9
191 (CL7)	ND	ND
201 (CL8)	1.2	0.6
96 (CL8)	1.4	0.2
89 (CL7)	0.2	ND
94 (CL8)	0.7	0.2
05 (CL9)	0.7	7.6

1

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

LAB APPROVAL: Teny 2. Wood

	Lab QA Duplicates	3
INVEST#:	IB-1	IB-1
LABSAMNO:	C3095	Q2139
UNIT:	ppb	ррб
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL
Other PCB Congeners		
7 (CL2)	ND	ND
15 (CL2)	0.1 J	0.1 J
24 (CL3)	0.1 J	0.2
16/32 (CL3)	1.2	3.2
29 (CL3)	· ND	0.1 J
26 (CL3)	ND	0.1 J
25 (CL3)	0.2	0.2
50 (CL4)	0.5	0.6
31 (CL3)	ND	ND
33 (CL3)	0.3	0.4
22 (CL3)	0.7	0.7
45 (CL4)	ND	0.1
46 (CL4)	0.1	ND
49 (CL4)	0.6	1.1
47/48 (CL4)	0.1	ND
37/42 (CL4)	0.4	0.9
41/64 (CL4)	0.2	ND
40 (CL4)	ND	ND
100 (CL5)	ND	ND
74 (CL4)	3.5	5.4
70 (CL4)	1.8	1.7
38 (CL5)	0.2	0.5
60/56 (CL5)	0.6	0.8
92? (CL5)	0.2	1.1
34? (CL5)	0.6	ND
9 (CL5)	1.5	9.9
33 (CL5)	0.9	1.1
7 (CL5)	0.6	0.8
37 (CL5)	1.4	1.8
35 (CL5)	0.3	0.6
36 (CL6)	0.3	ND
32 (CL5)	2.6	0.9
51 (CL6)	0.9	0.7
07/108/144(CL5/5/6)	0.5	0.3
49 (CL6)	2.7	2.1
88 (CL7)	ND	C • 1

Data reported on a dry weight basis and corrected for surrogate recovery

LAB APPROVAL: Teny 2. World

LAB PROCEDURAL BLANKS

THE REAL

10.40

111

NATIONAL ESTUARY PROGRAM - OTHER PCB CONGENER DATA - CASCO BAY - 1991

	Lab Procedural Bla	iko -			
INVEST#:	BLANK	BLANK	BLANK	BLANK	BLANK
LABSAMNO:	Q2088	Q2092	92122	Q2126	Q2132
UNIT:	ppb	ppb	ppb	ppb	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA
Other PCB Congeners					
7 (CL2)	ND	ND	ND	ND	110
15 (CL2)	ND	ND	ND	ND	ND
24 (CL3)	ND	ND	ND	ND	ND
16/32 (CL3)	ND	ND	ND	ND	ND
29 (CL3)	ND	ND	ND	ND	ND
26 (CL3)	ND	ND	ND	ND	ND
25 (CL3)	ND	ND	ND		ND
50 (CL4)	0.1 J	ND	0.4	ND	ND
31 (CL3)	ND	ND		ND	ND
33 (CL3)	ND	ND	ND	ND	ND
22 (CL3)	ND	ND	ND 0.2	ND	ND
45 (CL4)	ND	ND		ND	ND
6 (CL4)	ND	ND	ND ND	ND	ND
69 (CL4)	ND	ND	ND	ND	ND
7/48 (CL4)	ND	ND	ND	ND	ND
57/42 (CL4)	ND	ND	ND	ND	ND
1/64 (CL4)	ND	ND	ND	ND	ND
0 (CL4)	ND	ND		ND	ND
00 (CL5)	ND	ND	ND	ND	ND
'4 (CL4)	ND	ND	ND	ND	ND
0 (CL4)	ND	ND	ND	ND	ND
8 (CL5)	ND	ND	ND	ND	ND
0/56 (CL5)	ND		ND	ND	ND
2? (CL5)	ND	ND	ND	0.2	ND
4? (CL5)	ND	ND	ND	ND	ND
9 (CL5)	ND	ND	ND	ND	ND
3 (CL5)		ND	ND	ND	ND
7 (CL5)	ND	ND	ND	ND	ND
7 (CL5)	ND	ND	ND	ND	ND
5 (CL5)	ND	ND	ND	ND	ND
36 (CL6)	ND	ND	ND	ND	ND
2 (CL5)	ND	ND	ND	ND	ND
51 (CL6)	ND	ND	ND	ND	ND
07/108/144(CL5/5/6)	ND	ND	ND	ND	ND
49 (CL6)	ND	ND	ND	ND	ND
88 (CL7)	ND ND	ND	ND	ND	ND

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

No. of Lot of Lo

1

A STATE

100

DATE: 05-May-92

LAB APPROVAL: Teny 2. Wadp

NATIONAL ESTUARY PROGRAM - OTHER PESTICIDE & PCB DATA - CASCO BAY - 1991

INVERT#	Lab Procedural
INVEST#:	BLANK
LABSAMNO:	Q2136
UNIT:	ppb
Analyte (Cont)	Conc DB QUA
Other PCB Congeners	
7 (CL2)	ND
15 (CL2)	ND
24 (CL3)	ND
16/32 (CL3)	ND
29 (CL3)	ND
26 (CL3)	ND
25 (CL3)	ND
50 (CL4)	0.2
31 (CL3)	ND
33 (CL3)	ND
22 (CL3)	0.3
45 (CL4)	ND
46 (CL4)	ND
49 (CL4)	ND
7/48 (CL4)	ND
37/42 (CL4)	ND
1/64 (CL4)	ND
0 (CL4)	ND
00 (CL5)	ND
74 (CL4)	ND
70 (CL4)	ND
88 (CL5)	ND
0/56 (CL5)	ND
2? (CL5)	ND
4? (CL5)	ND
9 (CL5)	ND
3 (CL5)	ND
7 (CL5)	ND
7 (CL5)	ND
5 (CL5)	ND
36 (CL6)	ND
2 (CL5)	ND
51 (CL6)	ND
07/108/144(CL5/5/6) 49 (CL6)	ND
88 (CL7)	ND
	ND

1

Data reported on a dry weight basis and corrected for surrogate recovery

LAB APPROVAL: Teny 2. Work

L	ab Procedural Bla	nks			
INVEST#:	BLANK	BLANK	BLANK	BLANK	BLANK
LABSAMNO:	Q2088	Q2092	Q2122	Q2126	Q2132
UNIT:	ррб	ppb	ppb	ppb	ppb
Analyte (Cont)	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUAL	Conc DB QUA
146 (CL6)	ND	ND	ND	ND	ND
141 (CL6)	ND	ND	ND	ND	ND
137 (CL6)	ND	ND	ND	ND	ND
UNK (CL6)	ND	ND	ND	ND	ND
158 (CL7)	ND	ND	ND	ND	ND
129 (CL6)	ND	ND	ND	ND	ND
178 (CL7)	ND	ND	ND	ND	ND
183 (CL7)	ND	ND	ND	ND	ND
167 (CL6)	ND	ND	ND -	ND	ND
185 (CL7)	ND	ND	ND	ND	ND
74 (CL7)	ND	ND	ND	ND	ND
77 (CL7)	ND	ND	ND	ND	ND
56/171/202(CL6/7/8)	ND	ND	ND	ND	ND
200 (CL8)	ND	ND	ND	ND	ND
72 (CL7)	ND	ND	ND	ND	ND
91 (CL7)	ND	ND	ND	ND	ND
01 (CL8)	ND	ND	ND	ND	ND
96 (CL8)	0.2	0.2	0.1 J	0.1	0.2
89 (CL7)	ND	ND	ND	ND	ND
94 (CL8)	ND	ND	ND	ND	ND
05 (CL9)	ND	ND	ND	ND	ND

NATIONAL ESTUARY PROGRAM - OTHER PCB CONGENER DATA (CONT)- CASCO BAY - 1991

Data reported on a dry weight basis and corrected for surrogate recovery

NATIONAL ESTUARY PROGRAM - O	THER PCB CONGENER D	DATA (CONT)- CASCO BAY -	· 1991
------------------------------	---------------------	--------------------------	--------

.

_	ab Procedural B
INVEST#:	BLANK
LABSAMNO:	Q2136
UNIT:	ррb
Analyte (Cont)	Conc DB QUAL
46 (CL6)	ND
141 (CL6)	ND
137 (CL6)	ND
UNK (CL6)	ND
158 (CL7)	0.1
129 (CL6)	ND
178 (CL7)	ND
183 (CL7)	ND
167 (CL6)	ND
185 (CL7)	ND
174 (CL7)	ND
177 (CL7)	ND
156/171/202(CL6/7/8)	ND
200 (CL8)	ND
172 (CL7)	ND
191 (CL7)	ND
201 (CL8)	ND
196 (CL8)	0.1 J
189 (CL7)	ND
194 (CL8)	ND
205 (CL9)	ND

Data reported on a dry weight basis and corrected for surrogate recovery

LAB APPROVAL: _

Teny 2. wade

MATRIX SPIKES

4

5

1

Contraction of the second

Real Control

1

all show

町時

NATIONAL ESTUARY PROGRAM - OTHER PCB CONGENER DATA - CASCO BAY - 1991

	Matrix Spikes				
INVEST#:	EB-4	sw-5	EB-3	WB-1	IB-3
LABSAMNO:	Q2089	Q2093	Q2123	Q2127	Q2133
UNIT:	%	*	%	%	%
Analyte (Cont)	% Recov DB QUAL				
Other PCB Congeners	s				
7 (CL2)	NA	NA	NA	NA	NA
15 (CL2)	NA	NA	NA	NA	NA
24 (CL3)	NA	NA	NA	NA	NA
16/32 (CL3)	NA	NA	NA	NA	NA
29 (CL3)	NA	NA	3 NA	- NA	NA
26 (CL3)	NA	NA	NA	NA	NA
25 (CL3)	NA	NA	NA	NA	NA
50 (CL4)	NA	NA	NA	NA	NA
31 (CL3)	NA	NA	NA	NA	NA
33 (CL3)	NA	NA	NA	NA	NA
22 (CL3)	NA	NA	NA	NA	NA
45 (CL4)	NA	NA	NA	NA	NA
46 (CL4)	NA	NA	NA	NA	NA
49 (CL4)	NA	NA	NA	NA	NA
47/48 (CL4)	NA	NA	NA	NA	NA
37/42 (CL4)	NA	NA	NA	NA	NA
41/64 (CL4)	NA	NA	NA	NA	NA
0 (CL4)	NA	NA	NA	NA	NA
00 (CL5)	NA	NA	NA	NA	NA
74 (CL4)	NA	NA	NA	NA	NA
0 (CL4)	NA	NA	NA	NA	NA
8 (CL5)	NA	NA	NA .	NA	NA
0/56 (CL5)	NA	NA	NA	NA	NA
2? (CL5)	NA	NA	NA	NA	NA
4? (CL5)	NA	NA	NA	NA	NA
9 (CL5)	NA	NA	NA	NA	NA
3 (CL5)	NA	NA	NA	NA	NA
7 (CL5)	NA	NA	NA	NA	NA
7 (CL5)	NA	NA	NA	NA	NA
5 (CL5)	NA	NA	NA	NA	NA
36 (CL6)	NA	NA	NA E	NA	NA
2 (CL5)	NA	NA	NA	NA	NA
51 (CL6)	NA	NA	NA	NA	NA -
07/108/144(CL5/5/6)		NA	NA	NA	NA
49 (CL6)	NA	NA	NA	NA	NA
88 (CL7)	NA	NA	NA	NA	N /2

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

DATE: 05-May-92

LAB APPROVAL: Terry 2. Wade

NATIONAL ESTUARY PROGRAM - OTHER PCB CONGENER DATA (CONT)- CASCO BAY - 1991

	Matrix Spikes				
INVEST#:	EB-4	SW-5	EB-3	WB-1	IB-3
LABSAMNO:	Q2089	92093	Q2123	Q2127	Q2133
UNIT:	*	%	%	%	%
Analyte (Cont)	% Recov DB QUAL	% Recov DB QUA			
146 (CL6)	NA	NA	NA	NA	NA
141 (CL6)	NA	NA	NA	NA	NA
137 (CL6)	NA	NA	NA	NA	NA
UNK (CL6)	NA	NA	NA	NA	NA
158 (CL7)	NA	NA	NA	NA	NA
129 (CL6)	NA	NA	NA	NA	NA
178 (CL7)	NA	NA	NA	NA	NA
183 (CL7)	NA	NA	NA	NA	NA
167 (CL6)	NA	NA	NA	NA	NA
85 (CL7)	NA	NA	NA	NA	NA
74 (CL7)	NA	NA	NA	NA	NA
77 (CL7)	NA	NA	NA	NA	NA
56/171/202(CL6/7/8)	NA	NA	NA	NA	NA
00 (CL8)	NA	NA	NA	NA	NA
72 (CL7)	NA	NA	NA	NA	NA
91 (CL7)	NA	NA	NA	NA	NA
01 (CL8)	NA	NA	NA	- NA	NA
96 (CL8)	NA	NA	NA	NA	
89 (CL7)	NA	NA	NA	NA	NA
94 (CL8)	NA	NA	NA	NA	NA
05 (CL9)	NA	NA	NA	NA	NA NA

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

DATE: 05-May-92

LAB APPROVAL: Teny 2. Wade

NATIONAL ESTUARY PROGRAM - OTHER PCB CONGENER DATA - CASCO BAY - 1991

	Matrix Spikes
INVEST#:	IB-1
LABSAMNO:	Q2137
UNIT:	%
Analyte (Cont)	% Recov DB QUAL
Other PCB Congeners	
7 (CL2)	NA
15 (CL2)	NA
24 (CL3)	NA
16/32 (CL3)	NA
29 (CL3)	NA
26 (CL3)	NA
25 (CL3)	NA
50 (CL4)	NA
31 (CL3)	NA
33 (CL3)	NA
22 (CL3)	NA
45 (CL4)	NA
46 (CL4)	NA
49 (CL4)	NA
47/48 (CL4)	NA
37/42 (CL4)	NA
41/64 (CL4)	NA
40 (CL4)	NA
100 (CL5)	NA
74 (CL4)	NA
70 (CL4)	NA
88 (CL5)	NA
60/56 (CL5)	NA
92? (CL5)	NA
84? (CL5)	NA
99 (CL5)	NA
83 (CL5)	NA
97 (CL5)	NA
87 (CL5)	NA
85 (CL5)	NA
136 (CL6)	NA
82 (CL5)	NA
151 (CL6)	NA
107/108/144(CL5/5/6) NA
149 (CL6)	NA
188 (CL7)	NA

a set

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

DATE: 05-May-92

LAB APPROVAL: Teny 2. crode

NATIONAL ESTUARY PROGRAM - OTHER PCB CONGENER DATA (CONT)- CASCO BAY - 1991

	Matrix Spikes		
INVEST#:	IB-1		
LABSAMNO:	Q2137		
UNIT:	%		
Analyte (Cont)	% Recov DB QUAL		
146 (CL6)	NA		
141 (CL6)	NA		
137 (CL6)	NA		
UNK (CL6)	NA		
158 (CL7)	NA		
129 (CL6)	NA		
178 (CL7)	NA		
183 (CL7)	NA		
167 (CL6)	NA		
185 (CL7)	NA		
174 (CL7)	NA		
177 (CL7)	NA		
156/171/202(CL6/7/8)	NA		
200 (CL8)	NA		
172 (CL7)	NA		
191 (CL7)	NA		
201 (CL8)	NA		
96 (CL8)	NA		
89 (CL7)	NA		
94 (CL8)	NA		
205 (CL9)	NA		

Data reported on a dry weight basis and corrected for surrogate recovery

LABNAME: GERG/TAMU

1

LAB APPROVAL:

Teny 2. Worde

QUALITY ASSURANCE DATA SUMMARIES FOR TRACE METALS

FIELD DUPLICATES

	Field Duplic	cates				
STATION ID:	IB-1-A		IB-1-B	IB-1-C	IB-2-A	IB-2-B
LABSAMNO:	910841		910842	910845	910843	910844
ANALYTE:	CONC DB	QUAL	CONC DB QUAL	CONC DB QUA	L CONC DB QUAL	CONC DB QUA
Bulk Parameters						
TOC (%):	3.0	14.1	NA	NA	3.3	NA
ORG NITROGEN (ppm):	2383		NA	NA	2278	NA
% SAND:	6.3		AN	NA	11.5	NA
% SILT:	57.7		NA	NA	46.8	NA
% CLAY:	36.0		NA	NA	41.7	NA
Elemental Analyses						
JNITS:	ppm		ppm	ppm	ppm	ppm
Ag:	0.57		0.59	0.59	0.46	0.49
ls:	12.80		15.60	14.70	9.90	10.30
Cd:	0.564		0.631	0.620	0.524	0.527
Cr:	82		83	84	85	81
lu:	48.40		46.60	47.80	29,60	33.70
lg:	0.269		0.289	0.300	0.271	0.284
li:	34.0		32.5	33.6	32.1	30.8
b:	55.6		63.3	61.9	49.9	50.1
e:	0.69		0.76	0.87	0.69	0.67
n:	125		139	135	109	110
NITS:	%		%	%	%	%
e:	3.61		3.60	3.56	3.38	3.43

Data reported on a dry weight basis

LABNAME: GERG/TAMU

LAB APPROVAL: Terry 2. words

	Field Duplicates	3
STATION ID:	S₩-4	SW-4-D
LABSAMNO:	910809	910810
ANALYTE:	CONC DB QUAL	CONC DB QUA
Bulk Parameters		
TOC (%):	1.9	1.8
ORG NITROGEN (ppm):	766	546
% SAND:	68.6	65.3
% SILT:	21.7	26.4
% CLAY:	9.7	8.4
Elemental Analyses		
UNITS:	ppm	ppm
Ag:	0.19	0.19
As:	1.62	2.84
Cd:	0.213	0.197
Cr:	31	26
Cu:	7.92	9.86
Hg:	0.097	0.075
Ni:	7.8	6.4
°b:	32.0	30.1
Se:	0.23	0.22
ľn:	35	35
UNITS:	%	%
e:	0.98	0.89

Data reported on a dry weight basis

LABNAME: GERG/TAMU

No.

「日本の

DATE: 17-Apr-92 LAB APPROVAL: Temp 2. worde

LAB QA DUPLICATES

ini al

	Lab QA Duplicates				
STATION ID:	OB-7	OB-7	CS-6	CS-6	₩B-5
LABSAMNO:	910791-A	910791-B	910804-A	910804-в	910826-A
ANALYTE:	CONC DB QUAL	CONC DB QUAL	CONC DB QUAL	CONC DB QUAL	CONC DB QUAL
Bulk Parameters					
TOC (%):	NA	NA	NA	NA	NA
ORG NITROGEN (ppm):	NA	NA	NA	NA	NA
% SAND:	NA	NA	NA	NA	NA
% SILT:	NA	NA	NA	NA	NA
% CLAY:	NA	NA	NA	NA	NA
Elemental Analyses					
UNITS:	ppm	ppm	ppm	ppm	ppm
Ag:	0.14	0.17	0.08	0.07	0.16
As:	11.2	12.5	4.81	5.49	15.3
Cd:	0.240	0.251	0.050	0.053	0,536
Cr:	NA	NA	NA	NA	NA
Cu:	14.4	13.8	5.96	6.04	21.1
Hg:	NA	NA	NA	NA	0.069
Ni:	24.7	24.7	14.9	15.5	36.1
Pb:	36.4	35.3	20.5	20.9	28.2
Se:	0.75	0.69	0.32	0.31	0.71
Zn:	75	75	47	45	149
UNITS:	%	%	%	%	%
Fe:	NA	NA	NA	NA	NA

Data reported on a dry weight basis

LABNAME: GERG/TAMU

LAB APPROVAL: Temp 2. wall

	Lab QA Duplicates				
STATION ID:	WB-5	CS-5	CS-5	OB-4	OB-4
LABSAMNO:	910826-B	910803-A	910803-в	910788-A	910788-B
ANALYTE:	CONC DB QUAL	CONC DB QUAL	CONC DB QUA	L CONC DB QUAL	CONC DB QUAL
Bulk Parameters	NA	NA	NA	NA	NA
TOC (%):		NA	NA	NA	NA
ORG NITROGEN (ppm)	NA NA	NA	NA	NA	NA
% SAND:	NA	NA	NA	* NA	NA
% SILT: % CLAY:	NA	NA	NA	NA	NA
Elemental Analyses			ррп	ppm	ppm
UNITS:	ррт	ppm	pp		
		0.08	0.11	NA	NA
Ag:	0.15	5.07	5.00	NA	NA
As:	14.8	0.036	0.035	NA	NA
Cd:	0.522	0.036 NA	NA	NA	NA
Cr:	NA	5.58	5.03	NA	NA
Cu:	22.0	NA NA	NA	0.109	0.099
Hg:	0.070	15.8	16.4	NA	NA
Ni:	34.0	20.3	19.8	NA	NA
Pb:	26.5	0.11	0.16	NA	NA
Se:	0.76		38	NA	NA
Zn:	130	38	50		
UNITS:	%	%	%	%	%
Fe:	NA	NA	NA	NA	NA

Data reported on a dry weight basis

LABNAME: GERG/TAMU

西上

-

L'AN

LAB APPROVAL: Terry 2. Codp

	Lab QA Duplicates	3			
STATION ID:	OB-5	OB-5	WB-4	WB-4	OB - 1
LABSAMNO:	910789-A	910789-в	910825-A	910825-в	910785-A
ANALYTE:	CONC DB QUAL	CONC DB QUAL	CONC DB QUAL	CONC DB QUAL	CONC DB QUA
Bulk Parameters	10.1				
TOC (%):	NA	NA	NA	NA	NA
ORG NITROGEN (ppm)		NA	NA	NA	NA
% SAND:	NA	NA	NA	NA	NA
% SILT:	NA	NA	NA -	NA	NA
% CLAY:	NA	NA	NA	NA	NA
Elemental Analyses					
UNITS:	ppm	ppm	ppm	ppm	ppm
Ag:	NA	NA	NA	NA	NA
As:	NA	NA	NA	NA	NA
Cd:	NA	NA	NA	NA	NA
Cr:	NA	NA	NA	NA	86
Cu:	NA	NA	NA	NA	NA
łg:	0.089	0.082	0.081	0.084	NA
li:	NA	NA	NA	NA	NA
°b:	NA	NA	NA	NA	NA
Se:	NA	NA	NA	NA	NA
in:	NA	NA	NA	NA	NA
NITS:	%	%	%	%	%
e:	NA	NA	NA	NA	3.88

Data reported on a dry weight basis

LABNAME: GERG/TAMU

LAB APPROVAL: Tenz 2. Wady

	Lab QA Duplicates			100 A	WB-1
STATION ID:	OB-1	CS-3	CS-3	WB-1	910822-B
LABSAMNO:	910785-B	910801-A	910801-B	910822-A	CONC DB QUAL
ANALYTE:	CONC DB QUAL	CONC DB QUAL	CONC DB QUAL	CONC DB QUAL	
Bulk Parameters				NA	NA
TOC (%):	NA	NA	NA	NA	NA
ORG NITROGEN (ppm):	NA	NA	NA		NA
% SAND:	NA	NA	NA	NA NA	NA
% SILT:	NA	NA	NA		NA
% CLAY:	NA	NA	NA	NA	10
Elemental Analyses			227	ppm	ppm
UNITS:	ppm	ppm	ppm	PPm	
Ag:	NA	NA	NA	NA	NA
As:	NA	NA	NA	NA	NA
Cd:	NA	NA	NA	NA	NA
Cr:	90	54	45	73	68
Cu:	NA	NA	NA	NA	NA
Hg:	NA	NA	NA	NA	NA
Ni:	NA	NA	NA	NA	NA
Pb:	NA	NA	- NA	NA	NA
Se:	NA	NA	NA	NA	NA
Zn:	NA	NA	NA	NA	NA
UNITS:	%	%	%	%	%
Fe:	3.87	2.20	2.24	3.30	3.28

Data reported on a dry weight basis

LABNAME: GERG/TAMU

DATE: 17-Apr-92

LAB APPROVAL: Terry 2. words

	Lab QA Duplicates	
STATION ID:	EB-9	EB-9
LABSAMNO:	910838-A	910838-в
ANALYTE:	CONC DB QUAL	CONC DB QUAL
Bulk Parameters		
TOC (%):	NA	- NA
ORG NITROGEN (ppm):	NA	NA
% SAND:	NA	NA
% SILT:	NA	NA
% CLAY:	NA	NA
Elemental Analyses		
UNITS:	ppm	ppm
Ag:	NA	NA
As:	NA	NA
Cd:	NA	NA
Cr:	101	96
Cu:	NA	NA
Hg:	NA	NA
Nî:	NA	NA
Pb:	NA	NA
Se:	NA	NA
Zn:	NA	NA
UNITS:	%	%
Fe:	3.30	3.31

Data reported on a dry weight basis

LABNAME: GERG/TAMU

LAB APPROVAL: Terry 2. Work

MATRIX SPIKES

and the

A STATE

	Matrix :	Spikes								
STATION ID:	OB-2	2	OB-4	•	EB-1		OB-6	5	OB-1	
LABSAMNO:	910786-9	SPK	910788-5	PK	910831-S	РК	910790-9		910785-s	
ANALYTE:	% RECOV	DB QUAL	% RECOV	DB QUAL	% RECOV			DB QUAL	% RECOV	
Bulk Parameters										
TOC (%):		NA		NA		NA		NA		NA
ORG NITROGEN (ppm):		NA		NA		NA		NA		NA
% SAND:		NA		NA		NA		NA		NA
% SILT:		NA		NA		NA	1	NA		NA
% CLAY:		NA		NA		NA		NA		NA
Elemental Analyses										
UNITS:	%		%		%		%		%	
Ag:	90.1		84.0		87.3		91.9			NA
As:	84.1		98.9		107.0		82.7			NA
Cd:	108.0		100.0		104.0		94.4			NA
Cr:		NA		NA		NA		NA		NA
Cu:	103.0		99.7		82.6		89.0			NA
lg:	101	NA		NA		NA		NA	98.5	
li:	101.0		90.5		103.0		96.8			NA
'b:	114.0		110.0		105.0		114.0			NA
Se:	99.3		75.2		90.0		81.9			NA
'n:	96.0		112.0		99.0		93.0			NA
WITS:	%		%		%		%		%	
e:		NA		NA		NA		NA		NA

Data reported on a dry weight basis

LABNAME: GERG/TAMU

1

LAB APPROVAL: Terry 2. Unde

	Matrix Sp	ikes								_	
STATION ID:	sw-15	sw-15			WB-9			S₩-4		IB-3	
LABSAMNO:	910821-SP	910821-SPK		νК	910830-si			10809-5		910846-SPK	
ANALYTE:	% RECOV	DB QUAL	% RECOV	DB QUAL	% RECOV	DB QU	AL %	RECOV	DB QUAL	% RECOV	DB QUAI
Bulk Parameters											
TOC (%):		NA		NA		NA			NA		NA
ORG NITROGEN (pp	ת):	NA		NA		NA			NA		NA
% SAND:		NA		NA		NA			NA		NA
% SILT:		NA		NA		NA	•		NA		NA
% CLAY:		NA		NA		NA			NA		NA
Elemental Analys	es									%	
UNITS:	%		*		%			%		6	
Ag:		NA		NA		NA			NA		NA
As:		NA		NA		NA			NA		NA
Cd:		NA		NA		NA			NA		NA
Cr:		NA		NA	102			88		103	
Cu:		NA		NA		NA			NA		NA
Hg:	105		107			NA			NA		NA
Nī:		NA		NA		NA			NA		NA
Pb:		NA		NA		NA			NA		NA
Se:		NA		NA		NA			NA		NA
Zn:		NA		NA		NA			NA		NA
UNITS:	%		%		%			%		%	
Fe:		NA		NA	105	i		95.0	5	10	5

Data reported on a dry weight basis

LABNAME: GERG/TAMU

DATE: 17-Apr-92

LAB APPROVAL: Teny 2. Unde

	Matrix S	nikoa
STATION ID:	OB-9	
LABSAMNO:	910793-S	
ANALYTE:	% RECOV	
Bulk Parameters		NA
TOC (%):		NA
ORG NITROGEN (ppm): % SAND:		NA
% SAND: % SILT:		NA
% CLAY:		NA
& CLAIT		
Elemental Analyses		
UNITS:	%	
Ag:		NA
As:		NA
Cd:		NA
Cr:	92	2
Cu:		NA
Hg:		NA
Ni:		NA
Pb:		NA
Se:		NA
Zn:		NA
UNITS:	%	
Fe:	96.4	

in little and

Data reported on a dry weight basis

LABNAME: GERG/TAMU

DATE: 17-Apr-92

LAB APPROVAL: Teny 1. Werde

STANDARD REFERENCE MATERIALS

1

- IESS

N.

	Reference	Materials				3
STATION ID:	REPORTED V	ALUES	SRM	SRM	SRM	SRM
LABSAMNO:	BEST		BEST-1	BEST-2	BEST-3	BEST-4
ANALYTE:	CONC	+/-	CONC DB QUAL	CONC DB QUAL	CONC DB QUAL	CONC DB QUAL
Bulk Parameters						1
TOC (%):			NA	NA	NA	NA
ORG NITROGEN (ppm):			NA	NA	NA	NA
% SAND:			NA	NA	NA	NA
% SILT:			NA	NA *	NA	NA
% CLAY:			NA	NA	NA	NA
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					*) 12	
Elemental Analyses				3		
UNITS:	ppm	ppm	ррт	ppm	ppm	ppm
Ag:			NA	NA	NA	NA
As:			NA	NA	NA	NA
Cd:			NA	NA	NA	NA
Cr:			NA	NA	NA	NA
Cu:			NA	NA	NA	NA
Kg:	0.092	0.009	0.078	0.085	0.088	0.082
Ni:			NA	NA	NA	NA
Pb:			I NA	NA NA	NA	NA
Se:			NA	NA 🚛	NA	NA
Zn:			NA	NA	NA	NA
UNITS:	%	%	%	%	%	%
Fe:			NA	NA	NA	NA

Data reported on a dry weight basis

LABNAME: GERG/TAMU

LAB APPROVAL: Terry 2. woold

to go a billion

NYS .

41₀

调

	Reference M	laterial	ls			
STATION ID:	REPORTED VA	LUES	SRM	SRM	SRM	SRM
LABSAMNO:	NBS-1646		NBS-1646-1	NBS-1646-2	NBS-1646-3	NBS-1646-4
ANALYTE:	CONC	+/-	CONC DB QUAL	CONC DB QUAL	CONC DB QUA	CONC DB QUAL
		t _{er} a				- 3
Bulk Parameters		-				4.11
TOC (%):	11 m	1.1	NA	NA	NA	* NA
ORG NITROGEN (ppm):			NA	NA	NA	NA
% SAND:			NA	NĂ	NA	NA
% SILT:			NA	NA	NA	NA
% CLAY:			NA	NA	NA	NA
					0-01	
Elemental Analyses						- Q.A
UNITS:	ppm	ppm	ррт	ppm	ppm	y ppm
						*
Ag:			NA	NA	NA	NA
As:			NA	NA	NA	NA -
Cd:			NA	NA	NA =	ŃA
Cr:	76	3	75	74	75	76
Cu:			NA	NA	NA	NA
Hg:			NA	NA	NA	NA
Ni:			NA	NA	NA	NA
Pb:			NA	NA	NA	NA
Se:			NA	NA	NA	NA
Zn:			NA	NA	NA	NA
JNITS:	%	%	%	%	%	%
e:	3.35	0.100	3.34	3.31	3.32	3.32

Data reported on a dry weight basis

LABNAME: GERG/TAMU

DATE: 17-Apr-92 LAB APPROVAL: Teny 2. Unde

	Reference	Materials					
STATION ID:	REPORTED	VALUES	SRM	SRM	SRM	SRM	
LABSAMNO:	NBS-1646	N	35-1646-1	NBS-1646-2	NBS-1646-3	NBS-1646-4	
ANALYTE:	CONC	+/-	CONC DB QUAL	CONC DB QUA	L CONC DB	QUAL CONC DB	QUAL
		15.5				- *	
Bulk Parameters		1.0				9.8	*8
TOC (%):		h	NA	NA	NA	NA	
ORG NITROGEN (ppm):			NA	NA	NA	NA	
% SAND:			NA	NA	NA	NA	
% SILT:			NA	NA	NA	NA	
% CLAY:			NA	NA	NA	NA	
Elemental Analyses							
JNITS:	ppm	ppm	ppm	ppm	ppm	ppm	
\g:			NA	NA	NA	NA	
ls:			NA	NA	NA	NA	- 50
d:			NA	NA	NA	ŃA	
îr:	76	3	75	74	75	76	
Cu:			NA	NA	NA	NA	
g:			NA	NA	NA	NA	
li:			NA	NA	NA	NA	
b:			NA	NA	NA	NA	
e:			NA	NA	NA	NA	
n:			NA	NA	NA	NA	
NITS:	%	%	%	%	%	%	
e:	3.35	0.100	3,34	3.31	3.32	3.32	

wa 👘

14

ij

Data reported on a dry weight basis

LABNAME: GERG/TAMU

DATE: 17-Apr-92 LAB APPROVAL: Teny 2. wode

STATION ID:	SRM
LABSAMNO:	NBS-1646-5
ANALYTE:	CONC DB QUAL
Bulk Parameters	
TOC (%):	NA
ORG NITROGEN (ppm):	NA
% SAND:	NA
% SILT:	NA
% CLAY:	NA
Elemental Analyses	
UNITS:	ррт
Ag:	NA
As:	NA
Cd:	NA
Cr:	79
Cu:	NA
Hg:	NA
Ni:	NA
Pb:	NA
Se:	NA
Zn:	NA
JNITS:	%
e:	3.45

Data reported on a dry weight basis

LABNAME: GERG/TAMU DATE: 17-Apr-92

LAB APPROVAL: Terry 2. Usode

	Reference					SRM	
STATION ID:	REPORTED V		SRM	SRM			4
LABSAMNO:	BCSS		ESS A-100	MESS B-12		MESS-1 12	
ANALYTE:	CONC	+/-	CONC DB G	UAL CONC	DB QUAL	CUNC	DB QUAL
Bulk Parameters							8
TOC'(%):			NA		NA		NA
ORG NITROGEN (ppm):			NA		NA		NA
% SAND:			NA		NA		NA
% SILT:			NA		NA		NA
% CLAY:			NA	÷.	NA		NA
Elemental Analyses				17			
UNITS:	ppm	ppm	ppm	ppm		ppm	
Ag:			0.15	0.15		0.15	
As:	10.6	1.20	9.36	10.0		10.0	
Cd:	0.590	0.100	0.653	0.604		0.698	
Cr:			NA		NA		NA
Cu:	25.1	3.80	24.5	24.9	2	25.1	
Hg:			· NA		NA		NA
Ni: 🖻	29.5	2.70	25.9	27.5		25.8	
Pb:	34.0	6.1	33.5 🗉	35.3		33.4	
Se:	0.34	0.06	0.42	0.45	~	0.47	
Zn:	191	17	168	170	0	169	
UNITS:	%	%	%	%		%	5
Fe:			NA	11 4	NA		NA

Data reported on a dry weight basis

LABNAME: GERG/TAMU

DATE: 17-Apr-92

LAB APPROVAL:

Teny 2. wade

STATION ID:	SRM
LABSAMNO:	NBS-1646-5
ANALYTE:	CONC DB QUAL
Bulk Parameters	
TOC (%):	NA
ORG NITROGEN (ppm):	NA
% SAND:	NA
% SILT:	NA
% CLAY:	NA
Elemental Analyses	
UNITS:	ppm
Ag:	NA
As:	NA
Cd:	NA
Cr:	79
Cu:	NA
Hg:	NA
Ni:	NA
Pb:	NA
Se:	NA
Zn:	NA
UNITS:	%
Fe:	3.45

Data reported on a dry weight basis

LABNAME: GERG/TAMU

DATE: 17-Apr-92

LAB APPROVAL: Terry 2. Woodp