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1.1. Biological sterols 

Sterols are important components in lipids, which are incorporated into 

phospholipid bilayer of organisms (e.g., Simons and Ikonen, 1997, Figs. 1-1 and 1-2). 

These compounds are present in almost all eukaryotes including zoo- and 

phytoplankton, terrestrial plants, animals, and fungi (e.g., Nelson et al., 2000; Volkman 

et al., 1998; Weete, 1989). Sterols in vivo play as membrane stabilizer for fluidity and 

phase inversion of temperature in membranes (Demel and De Kruyff, 1976; Bloch, 1983). 

In the history of life, the first appearance of sterols is thought to be after the formation 

of an oxidative environment on the earth. In fact, sterols are biosynthesized through 

squalene, and it is known that oxygen is necessary for this synthetic system (Ourisson 

et al., 1987). Before the production of oxygen in the earth’s history, it is suggested that 

hopanoids were used as a membrane stabilizer instead of sterols (Sáenz et al., 2012), 

and the evolution of these lipid compositions has also been studied as an interesting 

research subjects (e.g., Brocks and Banfield, 2009). 

Sterols have a variety of structures with number of carbon side chains and 

differences in position of double bonds and others, and those structural features vary 

within organisms. For example, campesterol, b-sitosterol, and stigmasterol are known 

as major sterol compositions in terrestrial plants. Meanwhile, in animal sterols, 

cholesterol is found widely in various organisms. In addition, phytoplankton species 

contain diatomsterol (brassicasterol), 24-methylencholesterol. 

 

1.2. Sterols in sediments as geochemical tracer  

Sterols are also widely detected in sediments including marine and lacustrine 

environments. Sterols in sediments have been used as tracers because of their 

structural features. Volkman (1986) examined characteristics of sterol compositions in 



Chapter 1 

11 

sediments and tried to identify their origins. In this examination, the sterol 

compositions in sediments were concluded to be mainly composed of terrestrial plants 

and/or phytoplankton origin. Therefore, in general, in the field of organic geochemistry, 

sterols have been used as tracers of phytoplankton and/or terrestrial inputs. Huang and 

Meinschein (1979) proposed that plant and plankton origins of sterols can be divided 

using C27, C28 and C29 sterols. Sterol compositions in terrestrial plants are composed of 

C29 sterol such as b-sitosterol. Plankton species contain rich C27 sterols such as 

cholesterol. Therefore, plots of C27, C28, and C29 sterols can indicate different 

distributions between plants and plankton (Fig. 1-3). This application has been used for 

various studies as a method for easily identifying sterol origin in sediments. On the 

other hand, as studies of sterols in sediments as bio-tracer progressed, the identification 

of specific sterol origins was required, and analysis of biological sterols in species level 

has also been actively carried out. These studies have been revised with the recognition 

of sterol biomarkers such as the fact that phytoplankton having b-sitosterol and 

campestanol is found and diatomsterol that has been thought to originate from diatoms 

is found in a wide range of phytoplankton species. Among these studies, characteristics 

of sterol compositions in diatoms compared with phylogenetic trees have been 

investigated (Rampen et al., 2010), and by such studies, sterol compositions in specific 

species have been gradually grasped. 

Structures of sterol vary not only by the structural features in organisms but 

also by geochemical factors in the deposition process. Diagenesis means chemical 

changes occurring geological time scale during deposition, and diagenetic reaction in 

sterols is documented well. Diagenetic reactions occurring in steroids are shown in Fig 

1-4. Sterols change to steren, diastererene, stellane, aromatic steroids, and others by 

diagenetic alteration. Ultimately, steroids undergo a cracking reaction and become a 
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polycyclic aromatic hydrocarbon (e.g., Mackenzie et al., 1982). As an example of the 

oldest steroid, eukaryotic biomarkers (steranes) have been detected from organic matter 

extracted from shale collected from the Pilbara Craton about 2.7 billion years ago 

(Brocks et al., 1999). However, this finding was shown to be contaminated by younger 

organic matter after about 2.2 billion years ago (Rasummusen et al., 2008). In any case, 

it is a unique study as an example of long-term preservation of sterols. 

In shorter time scale, sterols change composition by biotic (bacterial reduction 

of sterols) and abiotic (photo- and autoxidation) processes corresponding to their 

surrounding environmental conditions (Fig. 1-5). In abiotic processes, D4-3b,6a/b-

dihydroxysterols and 3b,5a,6b-trihydroxysterols is produced by photooxidation and 

autoxidation, respectively. Therefore, these compounds are useful tracers for estimation 

of phoooxidation and autoxidation (e.g., Rontani et al., 2014). Meanwhile, as biotic 

processes, D5-sterols are reduceded to 5a(H)-stanols under anoxic conditions by bacterial 

reaction. Thus, ration of 5a(H)-stanol / D5-sterol have been used for redox tracer (e.g., 

Zheng et al., 2015). These diagenetic, biotic, and abiotic alternation processes indicate 

that sterols in sediments are applicable as various environmental tracers recording 

sedimentary conditions. 

 

1.3. Methods of analysis for sterols  

As for sterol analysis methods, regardless of the sediment and biological samples, 

solvent extraction method by solvent has mainly been used. Regarding the steps of the 

method, at first, a solvent such as methanol is added to sample, and the solvent-soluble 

organic compounds are dissolved using an ultrasonic vibration or a soxhlet extractor. 

The extracted compounds are performed to hydrolysis by potassium hydroxide as 

necessary. The extracted compounds are divided into acidic and neutral fractions by 
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liquid-liquid partitioning. Then, the neutral fraction is divided mainly into four 

fractions using silica gel column chromatography. The polar fraction containing the 

sterol is derivatized with a trimethylsilyl (TMS) reagent or the likes and analyzed by 

gas chromatography (GC). This analytical method has been widely used in the most 

traditional way, but the pre-treatment steps to analysis take time as described above. 

Therefore, since it is necessary to analyze many specimens of sediment samples, it takes 

much labor to analyze sterols in sediment samples by this method. 

On the other hand, thermochemosis using tetramethyl ammonium hydroxide 

(TMAH) reagent has attracted attention as a method that can analyse various organic 

compounds in shorter time. In this method, with the assistance of TMAH, the organic 

compound in the sample is hydrolyzed and derivatized in simultaneously. Furthermore, 

the TMAH method is characterized by being able to analyze organic matter with a 

smaller amount of sample than solvent extraction method. Hatcher and Clifford (1994) 

applied the TMAH method to the soil sample, and showed that it is possible to analyze 

many organic compounds including fatty acids and phenol, which is suggested to be 

useful for understanding constituents of humic substances. To the best of my knowledge, 

this research is the first application to a geochemical sample of the TMAH method. Also, 

in the same age, Martin et al (1994) applied to fulvic acid. Clifford et al (1995) showed 

that the TMAH method is applicable to analyze lignin compounds. This method is 

recognized as analyzing for lignin and fatty acids. As other examples, analysis of organic 

substances such as cutin acids, sugars, and amino acids using the TMAH method have 

also been reported (e.g., del Rio and Hatcher, 1998; Schwarzinger et al., 2002; Zang et 

al., 2001). Utilizing the characteristics that can analyze numerous organic matters in a 

short time, this method has been used not only on geological samples but also on a wide 

range of samples. As one of interesting case study, in order to investigate the paint 
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ingredients used in Vermeer's art, some of the art were scraped and examined by the 

TMAH method (Pastorova et al., 1997). 

Meanwhile, as far as I know there is no application of analysis of sterols in 

sediments using the TMAH method. Asperger et al (1999b) analyzed lipid components 

in three natural waxes (bleached beeswax, lanolin, yellow carnauba wax) using the 

TMAH method, and reported that sterols can be obtained by the method as sterol methyl 

ester. Methylation efficiencies by TMAH method were observed to be in the range > 90% 

for sterols, and this result indicates that sterol analysis by the TMAH method can be 

applicable with stable methylation. If this method is applied for sterol analysis in 

sediments, it is possible to treat many samples in a shorter time. Therefore, in this study, 

I evaluate significance of sterol analysis in sediment as bio-tracer and sterol analysis 

with TMAH method. Especially, I focus D5-sterols and 5a(H)-sterols as redox tracer for 

paleo-environmental studies. 
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Fig. 1-1 Structure of sterols  
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Fig. 1-2 Illustration of membrane structure  
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Fig. 1-3 Distribution of C27, C28, and C29 sterols in marine plankton and higher plants 
(adapted from Huang and Meinschein, 1979). Orange and green circles denote marine 
plankton and higher plants, respectively. 
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Fig. 1-4 Diagenesis processes of steroid. The figure was modified from Ishiwatari and 
Yamamoto (2004). 
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Fig. 1-5 Degradation proccees of D5-sterols by aerobic bacterial degradation, 
autoxidation, and photooxidation. The figure was taken from Christodoulou et al. (2009), 
Rontani et al. (2009), and Rontani et al. (2014) with partial modification.
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2.1. Introduction 

Gas chromatography−mass spectrometry (GC−MS) analysis of sterols in 

sediments is performed by acetyl derivatization (e.g., Chikaraishi et al., 2005) or 

trimethylsilyl derivatization (TMS, e.g., Kondo et al., 1991a, 1991b; Yamamoto et al., 

2015) via organic solvent extraction process. TMS derivatization can also be used for 

acids and alcohols with carboxyl and hydroxyl groups. The derivatization is a simple 

and quantitative method of reaction for about 30 minutes at 75℃. However, TMS 

derivatized products are vulnerable to water and acids and have drawbacks that are 

susceptible to hydrolysis. Acetyl derivatization is also a simple and quantitative method 

that can be derivatized by mixing an extracted sample with the derivatization reagent 

and reacting it for several hours at room temperature. Especially, Acetylation is useful 

for isotopic compositions of hydroxy compounds at molecular level because it does not 

contain non-flammable elements such as silicon (Chikaraishi et al., 2005). However, this 

method has disadvantages such that it can be used only for alcohols, or when ester 

solvent is used, the substituent is transesterified. 

On the other hand, because of necessity to analyze many samples for 

paleoenvironmental studies, a method that can analyze many compounds with a small 

amount of required sample and is simple is desired. Therefore, the TMAH-GCMS 

method is used for geological samples (e.g., Challinor, 2001; Hatcher and Clifford, 1994; 

Ishiwatari et al., 2006; Yamamoto et al., 2007). When sample is heated with the TMAH 

reagent, the ester bond and the ether bond are hydrolyzed, and the obtained products 

become compounds having a functional group of a carboxyl group or a hydroxyl group, 

and these are methyl-derivatized. Although analyses of sterols using the TMAH–GC–

MS method have been applied in previous studies (Asperger et al., 1999a, 1999b; 

Asperger et al., 2001; Gonzalez-Vila et al., 2001; Spaccini and Piccolo, 2007), no mass 
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spectrums of sterol are reported. Thus, in this section, mass spectrum of methyl 

derivative of sterol analyzed by TMAH–GC–MS method of marine sediment sample and 

these characteristics and fragmentation patterns are described. 

 

2.2. Material and methods 

2.2.1. Sampling location 

The sediment core used in this study was collected by the Ocean Drilling 

Program (ODP) Leg 167 (Hole 1017E) from the Santa Lucia Slope (34°32.099’N, 

121°6.430’W; Fig. 2-1). 

 

2.2.2. Offline TMAH–GC–MS method 

Sterols and stanols were analyzed using the offline TMAH–GC–MS method. 

Finely powdered (< 106 µm) and dried sediment samples (~100 mg) were added to a 

glass ampoule with the TMAH reagent (97%, Sigma-Aldrich Co., 25 wt.% methanol; 150 

µL) and with nonadecanoic-d37 acid (99.1%, CDN isotopes Co., 100 ng/µL in methanol; 

50 µL) as an internal standard. The sample was left for 30 min in a vacuum desiccator 

and then dried under a stream of N2 on a hot plate at 40 °C. The ampoule was sealed 

under vacuumed conditions before being placed in an oven (SS TS-13K, Isuzu 

Seisakusho Co.) at 300 °C for 30 min. After cooling to room temperature, the yield 

sample was washed four times with 300 µL of ethyl acetate. The combined extracts were 

dried under a vacuum desiccator and dissolved in 50 µL of ethyl acetate. Finally, 2 µL 

of the dissolved sample was injected and analyzed by CG–MS (6890N GC– 5973 MS; 

Agilent Technologies Co.). The conditions of the GC–MS were as follows: (a) 30 m long 

DB-5MS capillary column with a 0.25 mm internal diameter (i.d.) and 0.25 µm film 

thickness (Agilent Technologies Co.); (b) splitless injection type with a temperature of 
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300 °C; helium carrier gas at 1.0 mL/min; an oven temperature of 60 °C (2 min) to 310 °C 

(6 °C /min) to 310 °C (20 min); MS ionization using an electron ionization (EI) mode MS 

ion source with a temperature or 230 °C; an electron impact spectra to 70 eV; a 

quadrupole temperature of 150 °C; and a mass spectrometer in full scan ion monitoring 

mode (50–650 Dalton) and with an MS scanning interval of 0.5 s.  

Fragmentation patterns of sterols were interpreted by comparing with previous 

studies of Idler et al. (1970) for that of methyl ether sterols and Henderson et al. (1972), 

Huang and Meinschein (1978), Smith et al. (1982 and 1983), Volkman et al. (1990), 

Kondo et al. (1991a, 1991b) and Yamamoto et al. (2015) for that of trimethylsilyl ether 

sterols. 

 

2.3. Results and discussion 

2.3.1. Detected sterols and fundamental fragment patterns 

Total ion chromatogram with detected sterols is shown in Fig. 2-1．The detected 

sterols in the sediment are identified ten type of sterol groups (thirty-six sterols): four 

D5-sterols, four 5a-stanols, five D22-sterols, six D5,22-sterols, four D24(28)-sterols, five 

D5,24(28)-sterols, two D7-sterols, four 4a-methylsterols, and two 4a-methly-D22-sterols 

(Table. 2-1 and Fig. 2-2).  

Basic fragmentation patterns of sterols have seven fragmentation as shown in 

Fig. 2-3, which are the same fragmentation patterns with the case of TMS derivatives 

sterols.  

 

2.3.2. D5-Sterols 

As D5-sterols, cholest-5-en-3b-ol (cholesterol) 24-methyl-cholest-5-en-3b-ol  

(campesterol), 23,24-dimethylcholest-5-en-3b-ol, and 24-ethylcholest-5-en-3b-ol (b-sito- 
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sterol) were identified (Fig. 2-4). Fragments at m/z 255, m/z 247, m/z 229, m/z 213, m/z 

71, and m/z 82 were found for D5-sterols, corresponding to loss of the side chain (Fig. 2-

4).  

 

2.3.3. 5a(H)-Stanols 

As 5a(H)-stanols, 5a(H)-cholestan-3b-ol (cholestanol), 24-methyl-5a(H)-chole- 

stan-3b-ol, 23,24-dimethyl-5a(H)-cholestan-3b-ol, 24-ethyl-5a(H)-cholestan-3b-ol (sti- 

gmastanol) were identified (Fig. 2-5). The mass spectrums of methyl ether 5a(H)-stanols 

were remarkably different from that of corresponding D5-sterols. For 5a(H)-stanols, 

fragments at m/z 257, m/z 248, m/z 230, and m/z 215 were found, resulting from loss of 

the side chain (Fig. 2-5). 

 

2.3.4. D22-Sterols 

 As D22-sterols, 24-norcholest-22-en-3b-ol (24-nordehydro-cholestanol), 5a(H)-

cholest-22-en-3b-ol (22-dehydrocholestanol), 24-methyl-5a(H)-cholest-22-en- 

3b-ol (brassicastanol), 23,24-dimethyl-5a(H)-cholest-22-en-3b-ol, 24-ethyl-5a(H)- 

cholest-22-en-3b-ol were identified (Figs. 2-6 and 2-7). Fragments at m/z 316, m/z 301, 

m/z 287, m/z 257, m/z 229, m/z 215, and m/z 201 for D22-Sterols were found, 

corresponding to loss of the side chain (Figs. 2-6 and 2-7). 

 

2.3.5. D5,22-Sterols 

As D5,22-sterols, 24-norcholesta-5, 22-dien-3b-ol (24-nor-dehydrocholesterol), 27-

nor-24-methylcholesta-5, 22-dien-3b-ol, cholesta-5,22-dien-3b-ol (22-dehydro 

cholesterol), 24-methyl-cholesta-5, 22-dien-3b-ol (diatomsterol), 23,24-dimethyl 
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cholesta-5, 22dien-3b-ol, 24-ethylcholest-5, 22-dien-3b-ol (stigmasterol) were identified 

(Figs. 2-7 and 2-8). Fragments at m/z 314, m/z 299, m/z 285, m/z 255, m/z 229, m/z 213, 

and m/z 199 were found from D5,22-sterols, corresponding to loss of the side chain (Figs. 

2-7 and 2-8). 

 

2.3.6. D24(28)-Sterols 

As D24(28)-sterols, 24-methyl-5a(H)-cholest-24(28)-en-3b-ol, 24-ethyl-5a(H)- 

cholest-24(28)E-en-3b-ol (fucostanol), 24-ethyl-5a(H)-cholest-24(28)Z-en-3b-ol (isofuco- 

stanol), and 24(E)-propylidene-5a(H)-cholestan-3b-ol were identified (Fig. 2-9) However, 

since clear spectrum of 24-ethyl-5a(H)-cholest-24(28)E-en-3b-ol was not obtained, the 

spectrum is not described. Fragments, resulting from loss of the side chain, at m/z 330, 

m/z 315, m/z 301, m/z 287, m/z 247, m/z 231, and m/z 215 were found for D24(28)-sterols 

(Fig. 2-9). 

 

2.3.7. D5,24(28)-Sterols 

As D5,24(28)-sterols, 24-methylcholesta-5,24(28)-dien-3b-ol (24- methylene- 

cholesterol), 24-ethylcholesta-5,24(28)E-dien-3b-ol (fucosterol), 24-ethyl-cholesta- 

5,24(28)Z-dien-3b-ol (isofucostero1), 24(E)- propylidene-cholest-5-en-3b-ol, and 24(Z)- 

propylidene-cholest-5-en-3b-ol were identified (Figs. 2-10 and 2-11). However, since 

clear spectrum of 24(Z)-propylidene cholest-5-en-3b-ol was not obtained, the spectrum 

is not described. Fragments at m/z 328, m/z 313, m/z 296, m/z 285, m/z 281, m/z 255, m/z 

253, m/z 243, m/z 229, m/z 213, and others were found for D5,24(28)-sterols, as results of 

loss of the side chain (Figs. 2-10 and 2-11). 
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2.3.8. D7-Sterols 

In D7-sterols, two compounds of 5a(H)-cholest-7-en-3b-ol (lathosterol) and 24-

ethyl-5a(H)-cholest-7-en-3b-ol were identified (Fig. 2-11). For D7-sterols, fragments at 

m/z 255, m/z 229, and m/z 213, and ions of [M]+, [M−15]+, [M−32]+, and [M−(32+15)]+ 

were found, as the same pattern with that of D5-sterols having a double bond in sterol 

backbone. 

 

2.3.9. 4a-Me-stanol 

As 4a-Me-stanol which is 5a(H)-stanol with a methyl group at the 4-position, 

4a-methyl-5 a(H)-cholestan-3b-ol, 4a,24-dimethyl-5a(H)-cholestan-3b-ol, 4a,23,24- 

trimethyl-5a(H)-cholestan-3b-ol (dinostanol), and 4a-methyl,24-ethyl- 5a(H)-chole- 

stan-3b-ol were identified (Fig. 2-12). For 4a-Me-stanols, ions of [M]+, [M−15]+, [M−32]+, 

[M−(32+15)]+ were found which are the same pattern with D5-sterols. Additionally, 

fragments at m/z 262, m/z 245, and m/z 229 were observed, corresponding to addition of 

a methyl group at 4-position of 5a(H)-stanol backbone (+14 daltons, Fig. 2-12). Ions of 

m/z 71 and [M-71]+, which are characteristic ions of D5-sterol, were also found (Fig. 2-

12). 

 

2.3.10. 4a-Me-D22-sterols 

4a-Me-D22-stanols are D22-sterol with a methyl group at the 4-position, and 

4a,24-dimethyl-5a(H)-cholest-22E-en-3b-ol and 4a,23,24-trimethyl-5a(H)-cholest-22- 

en-3b-ol (dinosterol) were identified as 4a-Me-D22-stanols (Fig. 2-13). For 4a-Me-D22- 

sterols, ions of m/z 330, m/z 315, m/z 301, m/z 271, m/z 245, m/z 229, [M]+, and [M−15]+ 

were found (Fig. 2-13). These ions can be interpreted as fragment patterns 
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corresponding to D22-sterols having a methyl function at 4-position (Fig. 2-13).  
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Table. 2-1 Sterols identified in the Southern California sediment (Hole 1017E-1H). 

  

Retention
Time

Symbol Systematic Name Trivial name Formula MW

Δ5α-stanol (m/z 215)

41.340 1 5α(H)-cholestan-3β-ol cholestanol C27H48O 388

42.181 2 24-methyl-5α(H)-cholestan-3β-ol campestanol C28H50O 402

42.754 3 4α,24-dimethyl-5α(H)-cholestan-3β-ol C29H52O 416

43.100 4 24-ethyl-5α(H)-cholestan-3β-ol sitostanol C29H52O 416
4α-Me-stanol (m/z 229)

41.639 5 4α-methyl-5α(H)-cholestan-3β-ol C28H50O 402

42.754 6 4α,24-dimethyl-5α(H)-cholestan-3β-ol C29H52O 416

43.563 7 4α,23,24-trimethyl-5α(H)-cholestan-3β-ol dinostanol C30H54O 430

43.657 8 4α-methyl-24-ethyl-5α(H)-cholestan-3β-ol C30H54O 430

Δ 5 -sterol, Δ 5,22 -sterol,  Δ 5,24(28)-sterol, and Δ 7 -sterol (m/z 255)

38.881 9 24-norcholesta-5,22-dien-3β-ol 24-nordehydrocholesterol C26H42O 370

40.256 10 27-nor-24-methylcholesta-5,22-dien-3β-ol occelasterol C27H44O 384

40.468 11 cholesta-5,22-dien-3β-ol 22-dehydrocholesterol C27H44O 384

40.900 12 cholest-5-en-3β-ol cholesterol C27H46O 386

41.340 13 24-methylcholesta-5,22-dien-3β-ol diatomsterol C28H46O 398

41.568 14 5α(H)-cholest-7-en-3β-ol lathosterol C27H46O 386

42.023 15 24-methylcholest-5-en-3β-ol campesterol C28H48O 400

42.173 16 23,24-dimethylcholesta-5,22-dien-3β-ol C29H48O 412

42.306 17 24-ethylcholest-5,22-dien-3β-ol stigmasterol C29H48O 412

42.833 18 23,24-dimethylcholest-5-en-3β-ol C29H50O 414

42.935 19 24-ethylcholest-5-en-3β-ol β-sitosterol C29H50O 414

43.595 20 24-ethyl-5α(H)-cholest-7-en-3β-ol C29H50O 414

Δ 22 -sterol (m/z 257)

39.054 21 24-norcholest-22-en-3β-ol 24-nordehydrocholestanol C26H44O 372

40.633 22 5α(H)-cholest-22-en-3β-ol 22-dehydrocholestanol C27H46O 386

41.505 23 24-methyl-5α(H)-cholest-22-en-3β-ol diatomstanol C28H48O 400

42.353 24 23,24-dimethyl-5α(H)-cholest-22-en-3β-ol C28H50O 414

42.479 25 24-ethyl-5α(H)-cholest-22-en-3β-ol C29H50O 414

Δ 5,24(28)-sterol (m/z 328)

41.945 26 24-methylcholesta-5,24(28)-dien-3β-ol 24-methylenecholesterol C28H46O 398

42.911 27 24-ethylcholesta-5,24(28)E-dien-3β-ol fucosterol C29H48O 412

43.092 28 24-ethylcholesta-5,24(28)Z -dien-3β-ol isofucosterol C29H48O 412

43.414 29 24(E)-propylidenecholest-5-en-3β-ol C30H50O 426

43.720 30 24(Z )-propylidenecholest-5-en-3β-ol C30H50O 426

Δ 24(28)-sterol, 4α-Me-Δ 22 -sterol (m/z 330)

42.086 31 4α,24-dimethyl-5α(H)-cholest-22-en-3β-ol C29H50O 414

42.110 32 24-methyl-5α(H)-cholest-24(28)-en-3β-ol C28H48O 400

42.927 33 4α,23,24-trimethyl-5α(H)-cholest-22-en-3β-ol dinosterol C30H52O 428

43.084 34 24-ethyl-5α(H)-cholest-24(28)E-en-3β-ol fucostanol C29H50O 414

43.257 35 24-ethyl-5α(H)-cholest-24(28)Z -en-3β-ol isofucostanol C29H50O 414

43.893 36 24(E)-propylidene-5α(H)-cholestan-3β-ol C30H52O 428
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Fig. 2-1 Location map for Site 1017 and Site 893.  
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Fig. 2-2. Mass chromatograms of sterols (methyl ethers) from the sediment of ODP 
Leg167 Hole 1017E-1H at 19.5 cm. (a): m/z 215 mass chromatogram. (b): m/z 229 mass 
chromatogram. (c): m/z 255 mass chromatogram. (d): m/z 257 mass chromatogram. (e): 
m/z 328 mass chromatogram. (f): m/z 330 mass chromatogram. See Table 2-1 for a list 
of identified compounds. 
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Fig. 2-3. Diagnostic fragmentation of sterols (methyl ethers). 
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Fig. 2-4 Mass spectra of D5-sterols.  
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Fig. 2-5 Mass spectra of 5a(H)-stanols.  
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Fig. 2-6 Mass spectra of D22-sterols.  
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Fig. 2-7 Mass spectra of D22-sterol and D 5,22-sterols.  
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Fig. 2-8 Mass spectra of D5,22-sterols. 
  

C28(24)Δ5,22: 24-Methylcholesta-5,22-dien-
3b-ol-methyl ether (diatomsterol)

C:28    M:412   SC:125

100 200 300 400

69

255 412

285105 145
380

314213

81

337173
397

365

159133

H3CO

125

m/z

M

M-32

341
M-71199

229 299

C29(24)Δ5,22: 24-Ethylcholesta-5,22-dien-3b-ol-methyl ether
(stigmasterol)

C:29  M:426   SC:139

C29(23,24)Δ5,22: 23,24-Dimethylcholesta- 5,22-
dien-3b-ol-methyl ether

C:29  M:426  SC:139

100 200 300 400

69

285
97 367255

314139 426
213

121 159 351173 394 411

H3CO

H3CO

100 200 300 400

426255

394351145 285
105 213 31483 121

173 379 411299

139

m/z

m/z

M

M

M-32

M-32

229

229199

199

299

159

145



Chapter 2 

37 

 

 

 

 

Fig. 2-9 Mass spectra of D24(28)-sterols. 
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Fig. 2-10 Mass spectra of D5,24(28)-sterols. 
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Fig. 2-11 Mass spectra of D5,24(28)-sterol and D7-sterols. 
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Fig. 2-12 Mass spectra of 4a-Me-stanols. 
  

100 200 300 400

229 430

26283 107
383193

161135 415

359
245 398

H3CO

H3CO

4a-Me-stanol

100 200 300 400

412

444
229

397

262
19383 161108

429

137 373245

100 200 300 400

229

444
10771 161 262

133
193

397

412373
245

429

100 200 300 400

229 416

369

262

71

107
193147

384

401

245

C28(4)Δ0: 4α-Methyl-5a(H)-cholestan-3b-ol-
methyl ether

C:28    M:416   SC:113

C29(4,24)Δ0: 4α,24-Dimethyl-5a(H)-cholestan-
3b-ol-methyl ether

C:29    M:430   SC:127

C30(4,23,24)Δ0: 4α,23,24-Trimethyl-5α(H)-
cholestan-3β-ol-methyl ether

C:30   M:444    SC:141

C30(4,24)Δ0: 4α-Methyl-24-ethyl-5α(H)-
cholestan-3β-ol-methyl ether

C:30   M:444    SC:141

m/z

m/z

m/z

m/z

71

71

M

M

M

M

M-32

M-32

M-32

M-32

M-71

345
M-71

M-71

M-71

261

261

261

261

161

147



Chapter 2 

41 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2-13 Mass spectra of 4a-Me-D22-sterols. 
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3.1. Introduction 

Redox events in marine or lake environments are important for understanding 

paleo-environmental systems. To trace paleo-anoxic conditions, various indicators have 

been used, including biomarkers (e.g., isorenieratene), levels of bioturbation, anoxic 

foraminifer, iron oxide ratios, and others (e.g., Sinninghe Damsté et al., 1993; Koopmans 

et al., 1996; Cannariato and Kennett, 1999; Cannariato et al., 1999; Rouxel et al., 2005). 

These tracers all have the advantages of being easy to analyze and of yielding robust 

results. 

Sterol ∆5 double bonds reduce to 5a(H)-stanols through microbiological 

conversion under anoxic condition (Rosenfeld and Hellman, 1971; Eyssen et al., 1973; 

Fig. 3-1); therefore, 5a(H)-stanol / D5-sterol ratios increase significantly under anoxic 

conditions in the water column and surface sediments (Nishimura and Koyama, 1977; 

Wakeham, 1989). On this basis, 5a(H)-stanol / D5-sterol ratios have been used as tracers 

for redox conditions. Canuel and Martens (1993) showed significant seasonal variability 

in the 5a(H)-stanol / D5-sterol ratio recorded in surface sediments from Cape Lookout 

Bight, North Carolina (USA), indicating that the 5a(H)-stanol / D5-sterol ratio can record 

environmental changes over short timescales. Furthermore, since the stanol to sterol 

conversion occurs in the water column and surface sediments, this tracer should be 

suitable for identifying paleo-environmental redox events in continual sediments 

sequences, allowing for the analysis of longer timescales. 

To analyze D5-sterol and 5a(H)-stanol, the compounds need to be extracted and 

derivatized for gas chromatography; however, these methods traditionally require the 

time-consuming extraction of a relatively large volume of organic compounds. Recently, 

tetramethylammonium hydroxide (TMAH) thermochemolysis, which simultaneously 

performs sample hydrolysis and derivatizes the produced compounds under heated 
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condition, has been used for analyzing organic compounds (Hatcher and Clifford, 1994; 

Pulchan et al., 2003; Ishiwatari et al., 2006, 2009a, 2009b). The TMAH method requires 

a relatively lower volume of sample material and provides high throughput; therefore, 

the method is suitable for high time resolution analysis that has many samples (e.g., 

sediment cores). Using this method on marine sediments from southern California, 

numerous D5-sterols and 5a(H)-stanols have been detected in Chapter 2. The use of 

5a(H)-stanol / D5-sterol ratios as an oxic/anoxic tracer is complicated by the fact that 

stanols are not only derived from the microbiological reduction of D5-sterols. Some 

organisms produce stanols directly (Fig. 3-1); for example, Robinson et al. (1984) 

reported freshwater-field dinoflagellate that contain 5a(H)-stanols such as cholestanol, 

stigmastanol and dinostanol. Furthermore, Volkman et al. (1990) reported 

prymnesiophyte algae of the genus Pavlova that contain significant amounts of stanols. 

On this basis, the use of 5a(H)-stanol / D5-sterol ratio as a tracer for oxic/anoxic requires 

caution. In particular, ratios need to be evaluated by testing absolute compound 

concentrations in sediments, and should be compared with other records of anoxic 

events. 

Along the southern California margin, the oxygen minimum zone (OMZ) could 

be controlled by the strength and location of Intermediate Pacific Water production and 

surface productivity (Kennett and Ingram, 1995; van Geen et al., 1996), which has 

varied with glacial-interglacial fluctuations during the late Quaternary (Cannariato 

and Kennett, 1999; Cannariato et al., 1999). The OMZ was strengthened in the warm 

periods, and was weakened in the cool periods during millennial-scale global climate 

changes. It is possible that 5a(H)-stanol / D5-sterol ratios record this fluctuation. In this 

study, I attempted to evaluate specific 5a(H)-stanol / D5-sterol ratios obtained using the 

TMAH GC–MS method for use as a proxy for oxic/anoxic events in late Quaternary 
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southern California sediments by comparison with OMZ proxies. 

 

3.2. Materials and methods 

3.2.1. Sampling location 

The sediment core used the same with Chapter 2 (Fig. 2-1). Hole 1017E is a 

high-resolution upper Pliocene-to-Holocene sediment section. In ordinary core sampling, 

collecting the upper part of sediment is unsuitable because coring of water-sediment 

surface is not designed. However, since Hole 1017E was collected using Advanced Piston 

Coring (APC), this hole successfully captured the uppermost part of the sediment 

column without any hiatus (Lyle et al., 1997). Therefore, high-resolution analysis of 

upper Pliocene-to-Holocene is possible.  At this location, the OMZ is located between 

~525 and 1000 m (Cannariato and Kennett, 1999), with Site 1017 (Water depth, 955.5m) 

located at the bottom of the present-day OMZ. Late Quaternary OMZ variability has 

been extensively studied using samples from Hole 1017E (Cannariato and Kennett, 

1999); therefore, the core is known to be suitable for estimating and comparing redox 

records. The core is cut at 3 cm intervals, with a time resolution of ~150 years per sample. 

After cutting, samples were freeze-dried and preserved in a refrigerator. The age model 

was estimated using AMS 14C dating of planktonic foraminifera shells (Kennett et al., 

2000). Seki et al. (2002) estimated sea surface temperature (SST) from alkenone 

unsaturation ratios. 

 

3.2.2. Offline TMAH–GC–MS method 

D5-Sterols and 5a(H)-stanols were analyzed using the same method as 

described in Chapter 2. Concentrations of sterols were calculated by comparing peak 

areas of total ion chromatogram with that of the internal standard (nonadecanoic-d37 
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acid). For quantifying concentrations, the total ion chromatogram areas of sterols were 

calculated from areas of characteristic mass fragments of each sterol using a correction 

factor for each of the sterols. The correction factors were calculated as ratios of total ions 

of each sterol to the characteristic mass fragments. For characteristic mass fragments, 

m/z 215 was used for cholestanol, campestanol, and sitostanol; m/z 255 was used for 24-

nordehydrocholesterol, 22-dehydrocholesterol, cholesterol, diatomsterol, campesterol, 

and b-sitosterol; and m/z 257 was used for 24-nordehydrocholestanol, 22-

dehydrocholestanol, and diatomstanol. 

Significance was analyzed using the Student’s T-test. Differences of p < 0.01 

were considered to be significant. 

 

3.2.3. Analytical reproducibility of the 5a(H)-stanol / D5-sterol ratio results 

Effect of the TMAH process on the stanol-to-sterol ratio was confirmed using 

cholesterol (analytical grade reagent, Wako) and cholestanol (> 95%, Sigma) reagents. 

Then, methylated cholesterol and cholestanol were detected, and no change in stanol-

to-stanol ratio and other compounds was confirmed under the TMAH reaction 

conditions. This implied that the TMAH process does not alter stanol-to-sterol ratios. 

In this study, each sample was analyzed once. However, two samples (41.7 cm; 

1.84 ka and 254.3 cm; 11.39 ka) were analyzed three times to determine the analytical 

reproducibility of the 5a(H)-stanol / D5-sterol ratio results using the offline TMAH–GC–

MS method. The average coefficients of variations for 24-nordehydrocholestanol / 24-

nordehydrocholesterol, diatomstanol / diatomsterol, cholestanol / cholesterol, 

campestanol / campesterol, sitostanol / b-sitosterol, and 22-dehydrocholestanol / 22-

dehydrocholesterol were ±5% (41.7 cm, ratio; 0.66 ± 0.03) and ±9% (254.3 cm, 0.53 ± 

0.05), ±9% (0.32 ± 0.03) and ±10% (0.21 ± 0.02), ±8% (0.25 ± 0.02) and ±10% (0.21 ± 0.02), 
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±5% (0.38 ± 0.02) and ±4% (0.46 ± 0.02), ±3% (0.78 ± 0.02) and ±9% (0.87 ± 0.08), and 

±8% (0.13 ± 0.01) and ±7% (0.15 ± 0.01), respectively. Hence, the analytical error of 

5a(H)-stanol / D5-sterol ratios was < 10%. 

 

3.3. Results 

3.3.1. Sterols and stanols in southern California marine sediments 

Based on previous cahpetr on the mass fragment interpretation of sterols and 

stanols in TMAH reaction from the sediment, I chose six pairs of 5a(H)-stanols and D5-

sterols with relatively high abundance for analysis. Absolute sterol concentrations vary 

between pairs; however, temporal trends are similar (Fig. 3-2). The mean 

concentrations of D5-sterol and 5a(H)-stanol are shown in Table 3-1. The concentrations 

of 24-methylcholesta-5,22E-dien-3b-ol (diatomsterol or brassicasterol), cholest-5-en-3b-

ol (cholesterol) and cholesta-5,22E-dien-3b-ol (22-dehydrocholesterol) were relatively 

high (diatomsterol; 1.98 ± 1.40 µg/g-ds [dey sediment], cholesterol; 1.99 ± 1.53 µg/g-ds, 

22-dehydrocholesterol; 1.36 ± 1.18 µg/g-ds). Among stanols, 24-methyl-5a(H)-cholest-

22E-en-3b-ol (diatomstanol or brassicastanol) and 5a(H)-cholestan-3b-ol (cholestanol) 

showed a relatively high concentration (diatomstanol; 0.48 ± 0.40 µg/g-ds, cholestanol; 

0.46 ± 0.35 µg/g-ds). I found that 24-ethylcholest-5-en-3b-ol (b-sitosterol) and 24-ethyl-

5a(H)-cholestan-3b-ol (sitostanol) varied with almost the same range (b-sitosterol; 0.52 

± 0.46 µg/g-ds, sitostanol; 0.40 ± 0.38 µg/g-ds). All D5-sterol and 5a(H)-stanol 

concentrations increased from the Holocene warming interval onward. 

 

3.3.2. 5a(H)-stanol / D5-sterol variability 

Mean 5a(H)-stanol / D5-sterol ratios are shown in Table 3-2. All D5-sterol 
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concentrations were higher than 5a(H)-stanol concentrations, with the exception of b-

sitosterol to sitostanol. The sitostanol / b-sitosterol ratio varied from 0.20 to 1.09, and 

was over “one” for some periods (Fig. 3-3e). The ratios of 24-norcholest-22E-en-3b-ol (24-

nordehydrocholestanol) to 24-norcholesta-5,22E-dien-3b-ol (24-nordehydrocholesterol) 

and 24-methyl-5a(H)-cholestan-3b-ol (campestanol) to 24-methylcholest-5-en-3b-ol 

(campesterol) showed similar ranges (24-nordehydrocholestanol / 24-

nordehydrocholesterol; 0.49 ± 0.09, campestanol / campesterol; 0.39 ± 0.12). The 

diatomstanol / diatomsterol and cholestanol / cholesterol ratios also varied over the 

same range (diatomstanol / diatomsterol; 0.23 ± 0.03, cholestanol / cholesterol; 0.23 ± 

0.03). The 24-nordehydrocholestanol / 24-nordehydrocholesterol and diatomstanol / 

diatomsterol ratios increased during warming periods of the Dansgaard-Oeschger (D/O) 

cycle and from the Bølling-Ållerød (B/A) interval onwards, and decreased during cooling 

periods of the D/O cycle and Heinrich events (Fig. 3-3a–b). In contrast, although the 

cholestanol / cholesterol and campestanol / campesterol ratios increased during 

warming intervals of the D/O cycle during MIS3, they did not increase from the B/A 

interval onward (Fig. 3-4c–d). The ratios of sitostanol / b-sitosterol and 5a(H)-cholest-

22E-en-3b-ol (22-dehydrocholestanol) / 22-dehydrocholesterol showed no trend with 

warming and cooling intervals (Fig. 3-3e–f). 

 

3.4. Discussion 

3.4.1. Records of 5a(H)-stanol / D5-sterol 

Bioturbation-level and benthic foraminiferal record OMZ variability during the 

late Quaternary, and strongly imply that the OMZ varied with warm and cool intervals 

(Behl and Kennett, 1996; Cannariato and Kennett, 1999; Cannariato et al., 1999). The 

OMZ fluctuations at Site 1017E reconstructed using benthic foraminiferal records 
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(Cannariato and Kennett, 1999) have been roughly divided into three sections: (1) 

“suboxic” conditions at 0.6–0.8 km water depth during modern times, interstadial 

periods, and during the last glacial maximum (suboxic in Fig. 3-3h); (2) a “dysoxic” zone 

at 0.4–1.1 km water depth during interstadial periods 14, 11, 8, B/A, and the earliest 

Holocene (dysoxic in Fig. 3-3h); and (3) an “oxic” zone at 0.75–0.8 km water depth during 

stadial periods (oxic in Fig. 3-3h). These fluctuations were significant during MIS3 and 

exhibited a millennial-scale cycle (D/O cycle). Cholestanol / cholesterol, 24-

nordehydrocholestanol / 24-nordehydrocholesterol and diatomstanol / diatomsterol 

ratios increased during some intervals of MIS3 interstadial periods (e.g., interstadial 

periods 4–11) and decreased during MIS3 cooling events (especially Heinrich events 3 

and 4; Fig. 3-3). Student T-test results showed significant differences between the 

5a(H)-stanol/D5-sterol ratios of interstadial and stadial periods of MIS3 (p < 0.001; Fig. 

3-4a–b); although both show an increasing trend from the B/A interval onward during 

stable anoxic condition (Fig. 3-3a–b). These results confirm that the 24-

nordehydrocholestanol / 24-nordehydrocholesterol and diatomstanol / diatomsterol 

ratios record oxic/anoxic conditions. The significant relationship between the two ratios 

(R = 0.667; Fig. 3-5) implies that both recorded the same event. I speculate that two 

ratios did not show unity because diatomsterol might be less affected by redox 

conditions than 24-nordehydrocholesterol or because of differences in conversion rates 

from D5-sterol to 5a(H)-stanol caused by a difference in habitat depth of origins for each 

sterol source. 

In contrast, the other 5a(H)-stanol/D5-sterol ratios considered (cholestanol / 

cholesterol, campestanol / campesterol, sitostanol / b-sitosterol, and 22-

dehydrocholestanol / 22-dehydrocholesterol) showed no significant correlations (p = 

0.073, p = 0.14, p = 0.89, and p = 0.48, respectively) during MIS3 (Fig. 3-4c–f). Although 
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the cholestanol / cholesterol ratio varied with oxic/anoxic events during MIS3 (Fig. 3-

3c), the fluctuations are not significant, and the ratio did not increase from the B/A 

interval onward. These results indicate that these 5a(H)-stanol / D5-sterol ratios are not 

useful as tracers for redox events in the southern California region. 

 

3.4.2. Detailed comparison between stanol/sterol ratio and other redox records 

 In order to increase the credibility of the 5a(H)-stanol / D5-sterol ratios (24-

nordehydrocholestanol / 24-nordehydrocholesterol and diatomstanol / diatomsterol 

ratios) as a redox indicator, I performed a detailed comparison with other redox records 

from Hole 1017E (Fig. 3-6). Since 24-nordehydrocholestanol / 24-nordehydrocholesterol 

and diatomstanol / diatomsterol ratios showed similar trends (Fig. 3-5), only the 24-

nordehydrocholestanol / 24-nordehydrocholesterol ratio was chosen for comparison in 

Fig. 3-7. 

 Tada et al (2000) reconstructed redox conditions of bottom-water using changes 

in degree of pyritization (ratio of pyrite Fe within total Fe; DOPT) from Hole 1017E (Fig. 

3-6c). This tracer (DOPT) was used to perform a relative evaluation of bottom-water 

oxygenation. High DOPT suggests a less oxic condition (Berner, 1984; Calvert and 

Karlin, 1991; Tada et al., 1992; Tada et al., 1999). Variations in DOPT tended to increase 

during the B/A interval and MIS3 interglacial periods and during the Last Glacial 

Maximum (LGM). These trends were similar to the 5a(H)-stanol / D5-sterol ratios. On 

the other hand, the tendency of DOPT in the Holocene period lower than the B/A interval 

was different from the relatively stable 5a(H)-stanol / D5-sterol ratios from the B/A 

interval onward (Fig. 3-6b–c). In another research finding, Cannariato and Kennett 

(1999) reconstructed redox conditions using benthic foraminiferal assemblages from 

Hole 1017E (Fig. 3-6d). Benthic foraminiferal species were classified into dysoxic, 
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suboxic, and oxic, according to differences in bottom-water oxygenation (Cannariato and 

Kennett, 1999). Interglacial periods were characterized by a high rates of dysoxic and 

suboxic I species, indicating less oxic conditions during interglacial periods. These 

species also increased in the LGM. On the other hand, during glacial periods, increases 

in suboxic II and oxic species were observed, indicating that glacial periods had 

relatively oxic conditions. These trends were consistent with the trend of the 5a(H)-

stanol / D5-sterol ratios. In particular, the two records of OMZ fluctuations in the 

interstadials and stadials of MIS 3 were in good agreement (Fig. 3-6b and d). On the 

other hand, dysoxic and suboxic I species increased from the B/A interval to the earliest 

Holocene, implying a less strong oxic condition. However, after that, those species 

showed a gradual decrease to the present, and this trend was similar to the trend of 

DOPT. These trends were not consistent with the 5a(H)-stanol / D5-sterol ratios. As a 

whole, although there was a different tendency, the 5a(H)-stanol / D5-sterol ratios show 

a tendency similar to other records, and the 5a(H)-stanol / D5-sterol ratios recorded 

redox events in southern California as an independent indicator. 

 The discrepancy between the 5a(H)-stanol / D5-sterol ratios and other records 

around the B/A interval and the Holocene is probably due to the different characteristics 

of each record. In surface sediments, sulfate ions present in water bodies are reduced to 

hydrogen sulfide by bacterial action, and then pyrite is produced from reaction of iron 

with hydrogen sulfide (Berner, 1984). Therefore, the DOPT records redox conditions at 

the surface sediment. In addition, the benthic foraminiferal assemblage records were 

classified according to differences in bottom-water oxygenation. On the other hand, 

since conversion from 5a(H)-sterol to D5-stanol occurs in water column and surface 

sediments (Nishimura and Koyama, 1977; Wakeham, 1989), the 5a(H)-stanol / D5-sterol 

ratios record not only the sediment surface condition but also the redox condition of 
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water column. Therefore, the differences between the 5a(H)-stanol / D5-sterol ratios and 

the other two tracers were probably due to the difference in this redox state recording 

range. Benthic foraminiferal assemblage records of Site 893 (more shallow than Site 

1017; water depth 576.5 m) show a stable high rate of dysoxic species, suggesting that 

the shallow water column was stable under less oxic conditions during the Holocene in 

southern California (Cannariato et al., 1999). This trend is consistent with the relatively 

stable trend of the 5a(H)-stanol / D5-sterol ratios in the Holocene. It seems that this 

characteristics of 5a(H)-stanol / D5-sterol ratio should be considered when applied to 

other samples. Therefore, the 5a(H)-stanol / D5-sterol ratio can be used as an 

independent index for a redox record, but redox condition is preferably interpreted by 

comparing with other records to reconstruct detailed paleo-environment analysis. 

 

3.4.3. Origin of 5a(H)-stanol and D5-sterol 

Before D5-sterols and 5a(H)-stanols ratios can be used to reconstruct redox 

conditions, their formation by planktonic organisms must be discounted. Diatomsterol 

is found in various phytoplankton, including dinoflagellates (Teshima et al., 1980; Goad 

and Withers, 1982), diatoms (Kanazawa et al., 1971; Orcutt and Patterson, 1975; 

Ballantine et al., 1979; Gillan et al., 1981), and prymnesiophyte algae (Berenberg and 

Patterson, 1981; Volkman et al., 1981; Lin et al., 1982; Marlowe et al., 1984). In addition, 

24-nordehydrocholesterol can be derived from phytoplankton, and especially from 

diatoms (Smith et al., 1982), and has also been identified in zooplankton such as jellyfish 

and amphipods (Nelson et al., 2000; 2001). It is reported that the reduction of D5-sterol 

to 5a(H)-stanol under anoxic conditions by bacteria occurs at the D5 double bond, but 

not at the D22 and D7 double bonds (Eyssen et al., 1973); therefore, diatomsterol and 24-

nordehydrocholesterol can be converted to diatomstanol and 24-nordehydrocholestanol, 
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respectively, under anoxic condition by bacterial reduction. In organisms that create 

brassicastanol and 24-nordehydrocholestanol directly (e.g., zooplanktons such as 

jellyfish), the ratios of diatomstanol / diatomsterol and 24-nordehydrocholestanol / 24-

nordehydrocholesterol are relatively high, ~28 and ~19, respectively (Nelson et al., 

2000; 2001). However, there is a low possibility that these zooplankton could be the 

main source of organic compounds. Although there are some cases where sterols 

(cholesterol and 22-dehydrocolesterol) make significant contributions to sediment from 

molts and fecal pellets of zooplankton (e.g., copepods and euphausiids; Gagosian et al., 

1983), most sedimentary sterols are contributed by phytoplanktonic and terrigenous 

sources (e.g., Huang and Meinschein, 1976; Gagosian et al., 1983; Volkman, 1986). 

Furthermore, sedimentary sterols (brassicasterol, cholesterol, b-sitosterol) and stable 

carbon isotope values in core 1017E have been shown to have a phytoplanktonic origin 

(Matsumoto et al., 2000). The low biomass and content of the two stanols suggest that 

the contribution from red algae is low (Chardon-Loriaux et al., 1976). Gymnodinium 

sanguineum (a species of dinoflagellate) has a high diatomstanol content (~30% of total 

sterols; Mansour et al., 1999); therefore, where it is present in abundance, 5a(H)-stanol 

/ D5-sterol ratios cannot be used as a tracer for oxic/anoxic conditions. However, 

Gymnodinium sanguineum is not the primary phytoplankton taxon in southern 

California (Goodman et al., 1984); therefore, its contribution was not taken into account 

in this study. In summary, there is little or no input of stanols from living organisms in 

the sediment, and the main sources of diatomstanol and 24-nordehydrocholestanol are 

the reduction of bacteria under anoxic conditions. In particular, because organisms that 

create 24-nordehydrocholestanol are restricted to just a few low-abundance marine 

plankton species (Chardon-Loriaux et al., 1976), the 24-nordehydrocholestanol / 24-

nordehydrocholesterol ratio provides the best tracer for anoxic conditions in late 
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Quaternary sediments. However, it should be noted that the results gained using this 

method should be considered with caution. While their full characterization was beyond 

the scope of this study, sterol diagenetic and degradation processes can influence 5a(H)-

stanol / D5-sterol ratios. Sterols convert to sterene by dehydration, and it is reported that 

this reaction can occur in marine surface sediment (Gagosian and Farrington, 1978). 

Volkman (1986) showed that marine sterols are relatively easier to degrade than 

terrestrial sterols (Volkman, 1986). It has also been suggested that D5-sterols more 

easily decompose under oxic condition relative to 5a(H)-stanols (Arzayus and Canuel, 

2005; Bogus et al., 2012). 

Previous studies into the stanols and sterols in organisms and sediments have 

shown parallel distributions, which suggests that the contribution of living organisms 

to recent sediments cannot always be ignored (Nishimura and Koyama, 1976; 

Nishimura and Koyama, 1977). This is consistent with our results, where the other 

5a(H)-stanol / D5-sterol (cholestanol / cholesterol, campestanol / campesterol, sitostanol 

/ b-sitosterol, and 22-dehydrocholestanol / 22-dehydrocholesterol) ratios were found to 

be unsuitable as redox tracers (Fig. 3-4). This likely reflects the contribution of 

organisms that produce stanols directly (Table 1); for example, cholestanol is observed 

in dinoflagellates, haptophyte, and red algae (Chardon-Loriaux et al., 1976; Volkman et 

al., 1990; Mansour et al., 1999). In particular, the Scrippsiella species of dinoflagellate 

has high content of cholestanol (cholestanol/cholesterol ratio, <122). Campestanol is 

observed in dinoflagellates (Volkman et al., 1990; Mansour et al., 1999), where 

campestanol / campesterol ratios are <3.8. Fresh water Peridinium lomnickii has 

significant cholestanol and campestanol contents (cholestanol / cholesterol ratio = ~100; 

campestanol / campesterol ratio = ~1.8). Finally, despite its relatively low 

concentrations, sitostanol was obtained from Pavlova lutheri (sitostanol / b-sitosterol 
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ratio, <0.09) (Volkman et al., 1990).  

In this study, the sitostanol / b-sitosterol ratio in the sediment was over “one” 

for some periods, likely reflecting a contribution of converted sitostanol from terrestrial-

derived b-sitosterol during transport by degradation, reduction, and/or contribution 

from an unreported rich source of organism-derived sitostanol. Regarding 22-

dehydrocholestanol / 22-dehydrocholesterol, it has previously been reported that sources 

of 22-hydrochorestanol are confined to a small number of organisms (e.g., red algae; 

Chardon-Lariaux et al., 1976); therefore, it was thought this ratio would be a useful 

tracer for redox conditions. However, no significant trend was observed, suggesting the 

existence of unreported sources of organism-derived-22-hydrochorestanol and/or 

different decomposition process from other sterols. 

 

3.5. Conclusions 

The results of this study show that some, but not all, 5a(H)-stanol / D5-sterol 

ratios are useable as anoxic tracers. In particular, 24-nordehydrocholestanol / 24-

nordehydrocholesterol and diatomstanol / diatomsterol ratios recorded variability based 

on anoxic/oxic event related to glacial-interglacial cycles in marine sediments from 

southern California. The results of this study have also confirmed the suitability organic 

compound analysis using the TMAH GC–MS method for reconstructing redox conditions. 

Data from this study show that 24-nordehydrocholestanol / 24-nordehydrocholesterol 

and diatomstanol / diatomsterol ratios increased during warming intervals of MIS3 and 

from the B/A interval onwards, but decreased during stadial periods of MIS3 and during 

Heinrich events. On the other hand, other 5a(H)-stanol / D5-sterol ratios did not record 

redox events because sources of stanol were not only derived from the reduction 

products of bacteria, but were also derived from stanol-creating organisms. Based on 
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this result, the use of 5a(H)-stanol / D5-sterol ratios as a redox tracer should be taken 

with caution, ensuring that appropriate selection of D5-sterols and 5a(H)-stanols.  
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Table 3-1. Mean sterol and stanol concentrations (mean ± standard deviation: µg/g-ds 
[dry sediment]) and presumed sources 

 

  

Compounds Mean concentration Presumed sources References
D 5 -Sterols

24-Nordehydrocholesterol 0.60 ± 0.33 Phytoplankton (diatom),
zooplankton ( jellyfish,
amphipods)

Smith et al., 1982; Nelson et al.,
2000; 2001

Diatomsterol 1.98 ± 1.40 Phytoplankton (diatoms,
dinoflagellates,
prymnesiophyceae algae)

Kanazawa et al., 1971; Orcutt and
Patterson, 1975; Ballantine et al.,
1979; Teshima et al., 1980;
Berenberg and Patterson, 1981;
Gillan et al., 1981; Volkman et al.,
1981; Goad and Withers, 1982; Lin
et al., 1982; Marlowe et al., 1984

Cholesterol 1.99 ± 1.53 Phytoplankton, zooplankton Volkman, 1986; Volkman et al.,
1998

Campesterol 0.35 ± 0.23 Phytoplankton
(cyanobacteria, diatom,
dinoflagellate, green algae),
terrestrial plant

Volkman, 1986; Volkman et al.,
1990; Mansour et al., 1999; Killops
and Killops, 2013

b-Sitosterol 0.52 ± 0.46 Phytoplankton, terrestrial
plant

Paoletti et al., 1976; Matsumoto et
al., 1982; Killops and Killops, 2013

22-Dehydrocholesterol 1.36 ± 1.18 Phytoplankton (diatom,
dinoflagellate,
bangiophyceae)

Beastall et al., 1971, 1974; Orcutt
and Patterson, 1975; Ballantine et
al., 1979; Volkman et al., 1980;
Nichols et al., 1984; Volkman et al.,
1984

5a (H)-Stanols

24-Nordehydrocholestanol 0.30 ± 0.20 Red alage, zoopkankton
(jellyfish), reduction by
bacteria

Chardon-Loriaux et al., 1976;
Nelson et al., 2000; 2001

Diatomstanol 0.48 ± 0.40 Dinoflagellate, red alage,
zoopkankton (jellyfish),
reduction by bacteria

Chardon-Loriaux et al., 1976;
Mansour et al., 1999; Nelson et al.,
2000; 2001

Cholestanol 0.46 ± 0.35 Dinoflagellates, haptophyte,
red algae, reduction by
bacteria

Chardon-Loriaux et al., 1976;
Volkman et al., 1990; Mansour et
al., 1999

Campestanol 0.13 ± 0.10 Dinoflagellates, reduction by
bacteria

Volkman et al., 1990; Mansour et
al., 1999

Sitostanol 0.40 ± 0.38 Haptophyte, reduction by
bacteria

Volkman et al., 1990

22-Dehydrocholestanol 0.21 ± 0.14 Reduction by bacteria
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Table 3-2. Mean 5a(H)-stanol / D5-sterol ratios (mean ± standard devi-
ation). 

 

  

5a(H)-stanol/D5-sterol ratio
24-Nordehydrocholestanol/24-nordehydrocholesterol 0.49 ± 0.09
Diatomstanol/diatomsterol 0.23 ± 0.03
Cholestanol/cholesterol 0.23 ± 0.03
Campestanol/camplesterol 0.39 ± 0.12
Sitostanol/b-sitosterol 0.76 ± 0.12
22-Dehydrocholestanol /22-dehydrocholesterol 0.17 ± 0.03
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Fig. 3-1 Stanol generation processes through bacterial biogenic and a dehydrogenate 
reactions.   

HO

HO
Cholestanol

Cholesterol
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Fig. 3-2 Vertical profiles of D5-sterol and 5a(H)-stanol concentration. (a) 24-
Nordehydrocholesterol and 24-nordehydrocholestanol concentrations (µg/g-ds [dry 
sediment]), (b) diatomsterol and diatomstanol concentrations (µg/g-ds), (c) cholesterol 
and cholestanol concentrations (µg/g-ds), (d) campesterol and campestanol 
concentrations (µg/g-ds), (e) b-sitosterol and sitostanol concentrations (µg/g-ds), and (f) 
22-dehydrocholesterol and 22-dehydrocholesanol concentrations (µg/g-ds). Black lines 
denote sterols and blue lines denote stanols. MIS3 = marine isotope stage 3. Numbers 
4–12 denote interstadial periods. H1, H3, and H4 = Heinrich events 1, 3, and 4. B/Å = 
Bølling-Ållerød. The timings of those events are taken from Seki et al., 2002. 
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Fig. 3-3 Vertical profiles of 5a(H)-stanol / D5-sterol and geo-records. (a) 24-Norhydrocho- 
lestanol / 24-norhydrocholesterol ratio, (b) diatomstanol / diatomsterol ratio, (c) 
cholestanol / cholesterol ratio, (d) campestanol / campesterol ratio, (e)  sitostanol / b-
sitosterol ratio, (f) 22-hydrocholestanol / 22-hydrocholesterol ratio, (g) alkenone-SST 
record of Hole 1017E (ODP Leg167), and (h) reconstructed oxygen level at Site 1017. 
Black lines in (a)–(f) denote three point running average. MIS3 = marine isotope stage 
3. Numbers 4–12 denote interstadial periods. H1, H3 and H4 = Heinrich events 1, 3 and 
4. B/Å = Bølling-Ållerød. The timings of those events and the alkenone-SST record are 
taken from Seki et al., 2002. Reconstructed oxygen levels at Site 1017 are taken from 
Cannariato and Kennett, 1999. Relationships between 5a(H)-stanol/D5-sterols and 
alkenone-SST record are given in Fig 3-7.  
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Fig. 3-4. Comparisons of 5a(H)-stanol / D5-sterol ratios between interstadial and stadial 
periods during marine isotope stage 3 (27.7–44.5 ka). (a) 24-Norhydrocholestanol / 24-
norhydrocholesterol ratio, (b) diatomstanol / diatomsterol ratio, (c) cholestanol / 
cholesterol ratio, (d) campestanol / campesterol ratio, (e) sitostanol / b-sitosterol ratio, 
and (f) 22-hydrocholestanol / 22-hydrocoresterol ratio. Values are means ± standard 
deviation Interstadial; n = 36, Stadial; n = 33. n.s. = no significance (p > 0.01). 
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Fig. 3-5. Relationship between the 24-norhydrocholestanol / 24-norhydrocholestanol 
ratio and the diatomstanol / diatomsterol ratio in sediments using the 
tetramethylammonium hydroxide thermochemolysis (TMAH) method (Y = 0.255x + 
0.107, n = 163, R = 0.667). Relationships among other 5a(H)-stanol / D5-sterol ratios 
show no significant correlation (See Fig. 3-8). 
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Fig. 3-6. Vertical distribution of alkenone-SST record, 24-norhydrocholestanol / 24-
norhydrocholesterol ratio, DOPT, and Benthic foraminiferal assemblage, classified 
according to the oxygen level of Hole 1017E.  (a) alkenone-SST record (Seki et al., 2002), 
(b) 24-nordehydrocholestanol / 24-nordehydrocholestanol ratio, (c) DOPT (Tada et al., 
2000), (d) Benthic foraminiferal assemblage (species are grouped into dioxic, suboxic, 
and oxic indicators) (Cannariato and Kennett, 1999). Black lines in (b) denote three 
point running average. Interstadials and peaks of benthic foraminifera under low-
oxygen conditions are connected with thin dotted lines.  MIS3 = marine isotope stage 
3. Numbers 4–12 denote interstadial periods. H1, H3 and H4 = Heinrich events 1, 3 and 
4. B/Å = Bølling-Ållerød. The timings of those events and the alkenone-SST record are 
taken from Seki et al., 2002. The chronology is taken from Kennett et al., 2000.  
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Fig. 3-7. Relationships between 5a(H)-stanol / D5-sterols and alkenone-SST record (n 
= 100). The alkenone-SST record is taken from Seki et al., 2002. 
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Fig. 3-8. Relationships among 5a(H)-stanol / D5-sterol ratios (n = 163). 
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4.1. Introduction 

Redox events occur on various time-scales ranging from the seasonal to 

millennial scale (e.g., Sholkovitz et al., 1992; Cannariato and Kennett, 1999); these 

events are important for understanding paleoclimatic changes and for the 

interpretation of potential factors affecting organic matter preservation (e.g., Didyk et 

al., 1978; Kennett and Ingram, 1995; Meyers, 2006). For redox event reconstruction, 

various tracers (e.g., isorenieratene and iron oxide ratios) have been developed (e.g., 

Sinninghe Damsté et al., 1993; Rouxel et al., 2005). In the field of organic geochemistry, 

the 5a(H)-stanol / D5-sterol ratio is recognized as a useful redox tracer (e.g., Nishimura 

and Koyama, 1977; Gaskell and Eglinton, 1975; Wakeham, 1989). A ∆5 double bond of 

D5-sterol is reduced by microorganisms under anoxic conditions to form 5a(H)-stanol 

(Rosenfeld and Hellman, 1971; Eyssen et al., 1973). Thus, 5a(H)-stanol / D5-sterol ratios 

take high values under anoxic conditions, and have been used as a tracer for 

environmental changes (e.g., Canuel and Martens, 1993; Bertrand et al., 2012; Zheng 

et al., 2015). 

To analyze D5-sterol and 5a(H)-stanol using gas chromatography (GC), 

compounds need to be extracted and derivatized; these steps are time consuming and 

require a large amount of sample. In contrast, for tetramethylammonium hydroxide 

(TMAH) thermochemolysis with gas chromatography-mass spectrometry (GC–MS) 

analysis, methylation and hydrolysis are performed simultaneously during the TMAH 

reaction; therefore, it is possible to analyze in a relatively short time and with a 

relatively small amount of sample. This makes the method suitable for high time 

resolution analysis of multiple samples (e.g., sediment cores). The method has been used 

for the reconstruction of paleo-environments and for the analysis of sediments (e.g., 

Hatcher and Clifford, 1994; Ishiwatari et al., 2006; Vidal et al., 2016). In this method, 
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sterols are hydrolyzed to methyl derivatives and can be detected as the sterol methyl 

ester (Asperger et al., 1999b, 2001); therefore, analysis of 5a(H)-stanol / D5-sterol ratios 

using this method can be used to reconstruct redox state. 

When using the 5a(H)-stanol / D5-sterol ratio, inputs from organisms that 

directly produce stanols should be considered. Organisms that directly produce stanols 

include phytoplankton and zooplanktons (e.g., Chardon-Loriaux et al., 1976; Robinson 

et al., 1984; Volkman et al., 1990; Mansour et al., 1999; Nelson et al., 2000; 2001). 

Biological production of those stanols can be reflected in the composition of organic 

matter in sediments (Nishimura and Koyama, 1976, 1977; Nishimura, 1977a; Robinson 

et al., 1984); therefore, there was a possibility that it would be difficult to capture redox 

events using 5a(H)-stanol / D5-sterol ratios. However, 5a(H)-stanol / D5-sterol ratios 

analyzed using the TMAH method as a redox tracer in late-Quarternary sediments from 

southern California (Ocean Drilling Program; ODP, Leg167, Hole 1017E) in Chapter 3. 

These sediments had been strongly influenced by variations in the oxygen minimum 

zone. Of a variety of 5a(H)-stanol / D5-sterol ratios, two specific ratios (24-

nordehydrocholestanol / 24-nordehydrocholesterol and diatomstanol / diatomsterol 

ratios) best recorded redox events during the last 45 ka. The study was the first to show 

the usefulness of 5a(H)-stanol / D5-sterol ratios using the TMAH method as a redox 

tracer. However, the usefulness of the 5a(H)-stanol / D5-sterol ratio using the TMAH 

method has so far been limited to southern Californian marine sediments. 

Improvements to the 5a(H)-stanol / D5-sterol redox tracer method can be expected by 

applying the approach in other locations (e.g., lake sediments). In this study, I evaluate 

the usefulness of the 5a(H)-stanol / D5-sterol ratio by the TMAH method using Lake 

Suigetsu sediment samples, where the redox state has seen dramatic changes. 
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4.2. Lake Suigetsu study site 

Lake Suigetsu is a brackish lake (maximum water depth = 34 m) belonging to 

the Lake Mikata Five Lakes, Fukui Prefecture, Japan (Fig. 4-1). Lake Suigetsu has 

become a strongly anoxic environment following a series of events (Table 4-1; 

Matsuyama, 1973; Masuzawa and Kitano, 1982; Uemura et al., 1992). First, in 1664, in 

order to prevent flood damage, the Urami Canal was constructed, and Lake Suigetsu 

changed from being a freshwater lake to a brackish one; it is thought that persistently 

anoxic conditions formed at this time. In 1800, the Saga Tunnel was opened between 

Lake Hiruga and Lake Suigetsu, and was then rebuilt in 1848. It is reported that 

expansion works on the Urami Canal and Saga Tunnel between 1934 and 1935 caused 

further expansion of the chemocline depth, from 15 to 7 m, in Lake Suigetsu 

(Matsuyama, 1973). The current Lake Suigetsu is composed of a freshwater upper zone 

(water depth above 5–7 m) and an anoxic lower zone (water depth below 5–7 m) 

containing hydrogen sulfide (Kondo et al., 2000, 2009; Mori et al., 2013). At the redox 

boundary layer, green sulfur bacteria were found to be the major photosynthetic sulfur 

bacteria (Mori et al., 2013). The 5a(H)-stanol/D5-sterol ratio in Lake Suigetsu is expected 

to record these redox events. 

Lake Suigetsu has an annual varve-thicknesses over the last 70,000 years, 

which is a rare geologic feature worldwide (Fukusawa et al., 1995; Bronk Ramsey et al., 

2012). The varves have been formed by suitable geological surrounding environments 

of Lake Suigetsu including no large river inputs, blocking strong winds by surrounding 

mountains, and no benthic organism due to a less oxygen level at the bottom. These 

varves show different colors according to the year, making it possible to analyze high 

resolution paleoenvironmental records. Therefore, various studies have been reported 

using the sediments including varve choronology (e.g., Kitagawa and Van Der Plicht, 
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1997; Nakagawa et al., 2003, 2006). Likewise, in this study, it is expected that 

reconstruction of the redox conditions of Lake Suigetsu is possible without influence of 

disturbances in the sediments. 

 

4.3. Materials and methods 

4.3.1 Sediment samples 

Lake Suigetsu sediment samples (SUI92-1 and SUI92-2) were collected at a 

depth of 34 m from the center of the lake in 1992 (Fig. 4-1). The core length of SUI92-1 

is 90 cm and that of SUI92-2 is 85 cm. Both cores were cut at intervals of 2 cm between 

0 and 50 cm, and cut every 5 cm below 50 cm, and were kept frozen. The frozen samples 

were freeze-dried and ground into powder at the time of analysis. 

 

4.3.2 Organic carbon analysis and the TMAH method 

Sterols were analyzed using the offline TMAH GC–MS method. A dried and 

finely ground sediment sample (~25 mg) was put into a 10 ml glass ampoule with 150 

µl of TMAH reagent (97%, Sigma-Aldrich Co., 25 wt.% in methanol) and 50 µl of 

nonadecanoic-d37 acid (99.1%, CDN isotopes Co.) as an internal standard (100 mg/ml in 

methanol). After drying the solvent, the sample was sealed under vacuum conditions, 

and placed in an oven at 300°C for 30 min. The heated sample was then cooled to room 

temperature and extracted four times with 300 µl of ethyl acetate. The combined 

extracts were dried in a vacuum desiccator and then dissolved in 50 µl of ethyl acetate.  

The dissolved extract was injected and analyzed by capillary GC– MS (6890N 

GC-5973 MS: Agilent Technologies Co.). The conditions of the GC–MS were as follows: 

GC column: DB-5MS capillary column, 30 m length, 0.25 mm i.d., and 0.25 µm film 

thickness; injection type: splitless; injector temperature: 300°C; carrier gas: helium (1.0 
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ml/min); oven temperature: 60°C for 20 min then increased to 310°C at 6°C/min and 

held for 20 min; MS ionization: EI mode; MS ion source temperature: 230°C; electron 

impact spectra: 70 eV; MS quadrupole mass temperature: 150°C; mass spectrometer: 

full scan ion monitoring mode (50–650 Dalton); MS scanning interval: 0.5 s.  

Concentrations of D5-sterols and 5a(H)-stanols were calculated by comparing 

compound peak areas against internal standard peak areas, from the peak areas 

obtained by the characteristic mass fragments using a correction factor for each of the 

compounds. For characteristic mass fragments, m/z 215 was used for cholestanol, 

campestanol, and sitostanol; m/z 255 was used for 24-nordehydrocholesterol, 22-

dehydrocholesterol, cholesterol, diatomsterol, campesterol, and b-sitosterol; and m/z 257 

was used for 24-nordehydrocholestanol, 22-dehydrocholestanol, and diatomstanol. 

 

4.3.3. Effect of the TMAH reaction on 5a(H)-stanol / D5-sterol ratio 

In Chapter 3, I tested for the effect (e.g., isomerization) of the TMAH process 

on D5-sterol and 5a(H)-stanol structures using a mixture of cholesterol and cholestanol 

reagents, and confirmed that no reactions triggered structural changes in the 

compounds. In this study, to confirm the effect on further ratios, different rates of 

cholestanol (> 95%, Sigma) and cholesterol (analytical grade reagent, Wako) reagents 

(cholestanol: cholesterol at 60:40, 40:60, and 20:80) were analyzed. Then, methylated 

cholesterol and cholestanol were detected; no other compounds were produced under the 

TMAH reaction conditions, consistent with previous results (Fig. 4-2a). Errors in ratios 

before and after the TMAH reaction were within < ± 3%. Furthermore, those 

relationships show an almost one-to-one linear correlation (Y = 1.029X, R2 = 0.99; Fig. 

4-2b). These results show that the TMAH process does not alter stanol-to-sterol ratios 

even in various ratio patterns. 
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4.3.4. Analytical reproducibility of the 5a(H)-stanol / D5-sterol ratio results in Lake 

Suigetsu sediments 

Analytical reproducibility of the 5a(H)-stanol / D5-sterol ratio of sediment 

samples was estimated using Core SUI92-1 at 17 cm and repeating the analysis four 

times. Estimated values (the mean coefficient of variation of the four tests) were as 

follows: 24-nordehydrocholestanol / 24-nordehydrocholesterol, ± 1.7%; 22-

dehydrocholestanol / 22-dehydrocholesterol, ± 8.7%; diatomstanol / diatomsterol, ± 8.3%; 

cholestanol / cholesterol, ± 6.7%; and campestanol / campesterol, ± 7.1%; sitostanol / b-

sitosterol, ± 9.0%. For all, errors were within 9.0%. This reproducibility was similar to 

that in the southern California sediments (Chapter 3). 

 

4.3.5. Age model and presupposition on records 

An age model was taken from Fukusawa et al., 1995 (Fig. 4-3). This age model 

was estimated using the detected ages of historical earthquakes, floods, and human 

activity. The error of in the age model is calculated to be ±10 years. From the age model, 

it is estimated that the events in Lake Suigetsu occurred in 1664, 1800, 1848, and 1935–

1936, corresponding to depths of 40.3 cm, 20.8 cm, 16.4 cm, and 6.5 cm, respectively (Fig. 

4-3; Table 4-1). 

In this study, although the age model (Fukusawa et al., 1995), diatom 

assemblage analysis (Masuzawa and Kitano, 1982), degree of pyritization (Matsuyama, 

1974), farnesol concentration (Uemura et al., 1992), and 5a(H)-stanol / D5-sterol ratio 

were compared in units of centimeters, the different records are based on data from 

different cores. However, comparisons by depth units are assumed to be sufficient 
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because these cores were taken from almost the same place at the center of the Lake 

and in the same water depth (34 m). 

 

4.4. Results 

4.4.1. Detected D5-sterols and 5a(H)-stanols 

I successfully detected five 5a(H)-stanol / D5-sterol pairs (24-norcholesta- 

5,22E-dien-3b-ol [24-nordehydrocholesterol] and 24-nor-5a(H)-cholest-22E-en-3b-ol [24-

nordehydrocholestanol], cholesta-5,22E-dien-3b-ol [22-dehydrocholesterol] and 5a(H)-

cholest-22E-en-3b-ol [22-dehydrocholestanol], cholest-5-en-3b-ol [cholesterol] and 

5a(H)-cholestan-3b-ol [cholestanol], 24-methylcholesta-5,22E-dien-3b-ol [diatom- 

sterol] and 24-methyl-5a(H)-cholest-22E-en-3b-ol [diatomstanol], 24-methylcholest-5- 

en-3b-ol [campesterol] and 24-methyl-5a(H)-cholestan-3b-ol [campestanol], and 24-

ethylcholest-5-en-3b-ol [b-sitosterol] and 24-ethyl-5a(H)-cholestan-3b-ol [sitostanol]; 

Fig. 4-4, Table 4-2). Hydroxyl groups in the sterols were derivatized to methyl ether 

during the thermochemolysis reaction with the TMAH reagent. Thus, sterols found 

through the TMAH GC–MS method were detected as methyl ether compounds 

(Asperger et al., 1999b, 2001). 

 

4.4.2. D5-Sterol and 5a(H)-stanol concentrations in Lake Suigetsu sediments 

D5-Sterol and 5a(H)-stanol distributions show similar trends between Core 

SUI92-01 and Core SUI92-2 (Fig. 4-5). All D5-sterols were detected in both freshwater 

and brackish conditions, except for 24-nordehydrocholesterol, which was detected 

primarily above ~40 cm (SUI92-1; < 13.9 µg/g, SUI92-2; < 11.9 µg/g), and at very low 

levels below ~40 cm (SUI92-1 and SUI92-2; ≃ 0). Among the six D5-sterols, cholesterol 
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is the highest in concentration (SUI92-1; 16.2-112 µg/g, SUI92-2; 10.3-71.5 µg/g), 

whereas 24-nordehydrocholesterol is detected in the lowest concentration (SUI92-1; 

0.00-13.9 µg/g, SUI92-2; 0.00-11.9 µg/g). All D5-sterols show higher concentrations than 

the opposing stanol concentrations. Among the 5a(H)-stanols, cholestanol showed the 

highest range (SUI92-1; 3.61-34.8 µg/g, SUI92-2; 2.80-16.5 µg/g) and 24-

nordehydocholestanol the lowest (SUI92-1; 0.00-3.99 µg/g, SUI92-2; 0.00-2.14 µg/g). 24-

Nordehydrocholestanol was present at low levels below ~40 cm (SUI92-1 and SUI92-2; 

≃ 0), similar to 24-nordehydrocholesterol. 

 

4.4.3. Variabilities of 5a(H)-stanol / D5-sterol ratios  

 The 5a(H)-stanol / D5-sterol ratio distributions show similar trends between 

Core SUI92-01 and Core SUI92-2 (Fig. 4-6). The values of all ratios are under 1.0. 24-

nordehydrocholestanol / 24-nordehydrocholesterol, diatomstanol / diatomsterol, and 22-

dehydrocholestanol / 22-dehydrocholesterol ratios show similar trends and the highest 

values around the surface. In contrast, cholestanol / cholesterol, campestanol / 

campesterol, and sitostanol / b-sitosterol ratios show decreasing trends from ~40 cm. 

The cholestanol / cholesterol ratio slightly increases in the surface sediments. 

Comparisons of 5a(H)-stanol / D5-sterol ratios in the sediments of fresh water 

(below 40 cm) and those from brackish water (above 40 cm) conditions are shown in 

Figure 4-7. The 24-nordehydrocholestanol / 24-nordehydrocholesterol and diatomstanol 

/ diatomsterol ratios imply significantly higher values during the brackish water age 

than those during the fresh water age (P < 0.01). The 22-dehydrocholestanol / 22-

dehydrocholesterol ratio shows no significant difference between the ages (p = 0.84). 

Finally, the cholestanol / cholesterol, campestanol / campesterol, and sitostanol / b-
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sitosterol ratios presented significantly higher values in the freshwater age than those 

in the brackish water age (p < 0.01). 

 Relationships between 5a(H)-stanol / D5-sterol ratios in the sediments are 

strong (R2 > 0.5) with 24-nordehydrocholestanol / 24-nordehydrocholesterol and 

diatomstanol / diatomsterol, 24-nordehydrocholestanol / 24-nordehydrocholesterol and 

22-dehydrocholestanol  / 22-dehydrocholesterol (excepting the relationship in SUI92-

01 Core [R2 = 0.47]), diatomstanol / diatomsterol and 22-dehydrocholestanol / 22-

dehydrocholesterol, and cholestanol / cholesterol and campestanol / campesterol ratios 

(Fig. 4-8). In contrast, relationships among other 5a(H)-stanol / D5-sterol ratios show no 

significant correlation (R2 < 0.5; Fig. 4-9). 

 

4.5. Discussion 

4.5.1. Changing redox states in Lake Suigetsu 

As described above, environmental change in Lake Suigetsu can be roughly 

divided into a freshwater age (below ~40 cm, –1664) and a brackish water age (above 

~40 cm, 1664–). The brackish water age is characterized by four intervals that reflect 

the canal and tunnel constructions: Brackish I) an interval from immediately after 

opening the Urami Canal to the construction of the Saga Tunnel (40.3–20.8 cm, 1664–

1800); II) an interval from the opening of the Saga Tunnel to its re-building (20.8–16.4 

cm, 1800–1848); III) an interval from the re-building of the Saga Tunnel to 1934 (16.4–

6.5 cm, 1848–1934); and IV) an interval from 1934 to the present (above 6.5 cm; Table 

4-1, Fig. 4-6). 

Masuzawa and Kitano (1982) analyzed the diatom assemblage in sediments 

from Lake Suigetsu (Fig. 4-6a). They reported that the freshwater species of diatoms 

(Stephanodiscus carconensis) abruptly decreased in abundance from ~40 cm, when the 
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record of brackish conditions begin; diatoms of marine origin (Coscinodiscus lacustris) 

appear from ~35 cm. The variability of diatom assemblage records a dramatic 

environmental change towards a brackish water environment in the lake. 

Matsuyama (1974) analyzed various sulfur compounds (total-, elemental, 

sulfate, sulfide, and residual sulfur) in sediments from Lake Suigetsu. The most 

dominant form of sulfur in the sediment was residual sulfur (<40%), which is calculated 

from the difference between the total sulfur and the sum of elemental, sulfide, and 

sulfate sulfur. Most residual sulfur should form as pyrite (Kaplan et al., 1963; Berner, 

1984), where sulfate ions are reduced to hydrogen sulfide by bacterial action, and then 

pyrite is produced by the reaction of iron with hydrogen sulfide in surface sediments 

(Berner, 1984). Therefore, the degree of pyritization (DOP) recorded in sediments has 

been used as a redox tracer for bottom-water conditions (Calvert and Karlin, 1991; Tada 

et al., 1992; Tada et al., 1999; Tada et al, 2000). Although DOP is generally estimated 

from the ratio of pyrite iron to total iron, assuming the residual sulfur content is all 

pyrite, DOP in this study was calculated using data from Matsuyama (1974; Fig. 4-

6b). The DOP in Brackish I shows a relatively higher value than that from the 

freshwater sediments, but is not high compared with values from the other brackish 

water intervals, suggesting the redox state in bottom-water was not strong during the 

onset of brackish conditions. The DOP increases to ~0.27 during Brackish II, and then 

abruptly increases in Brackish III and IV (Brackish III, < 0.67; Brackish IV, < 0.72). 

Therefore, it can be concluded that strong redox states occurred in Lake Suigetsu 

bottom-water after the re-building of the Saga tunnel in 1848. Since there is not a large 

difference in DOP values between Brackish III and IV, the redox states in both intervals 

were similar. 
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Uemura et al. (1992) detected farnesol above 30 cm in Lake Suigetsu sediment 

(0.02–12.9 mg/g-OC; Fig. 4-6c). Farnesol is derived from green sulfur bacteria 

(chlorobiaceae), which are photoautotrophic bacteria inhabiting an anaerobic 

environment (Rapoport and Hamlow, 1961; Caple et al., 1978; Otte et al., 1993; Airs and 

Keely, 2003). Therefore, the presence of farnesol in sediments indicates anoxic 

conditions. Nevertheless, the Brackish I conditions probably started at an interval 

corresponding to a depth of ~40 cm, while the first appearance of farnesol is at ~30 cm 

(Fig. 4-6a–c). This result suggests that there was a delay in the anoxic zone reaching 

photosynthetic depths, in spite of the anoxic starting conditions. 

Interestingly, despite the lack of differences in DOP values, farnesol 

concentrations have smaller values in Brackish III than in Brackish IV (Brackish III; < 

7.11, Brackish IV; < 12.9, Uemura et al., 1992). These differences can be attributed to 

the characteristics of the two tracers (DOP and farnesol). According to Matsuyama 

(1973), since further expansion of the anoxic zone occurred in Brackish IV, redox tracers 

are likely to record these trends. Since farnesol is derived from photosynthetic bacteria, 

this compound could record the habitat depth of photosynthetic bacteria and of 

fluctuations controlled by changing the anoxic photosynthetic zone (Fig. 4-10). In fact, 

this tracer clearly recorded the further expansion of the anoxic zone in Brackish IV (Fig. 

4-6c). On the other hand, DOP is a tracer for bottom-water and surface sediment redox 

state; therefore, under stable anoxic conditions in bottom-water, even though the anoxic 

zone depth in the water column expanded towards the subsurface, differences in DOP 

values between Brackish III and IV do not occur (Fig. 4-10). In fact, DOP values during 

the transition are similar (Fig. 4-6b). Thus, comparison of both tracers (farnesol and 

DOP) reveals redox states in the water column and bottom conditions of the Lake, 
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respectively. Therefore, 5a(H)-stanol/D5-sterol ratios can be also expected to record 

those redox states. 

 

4.5.2. Comparison between 5a(H)-stanol / D5-sterol ratios and other redox tracers 

Among trends of 5a(H)-stanol / D5-sterol ratios, 24-nordehydrocholestanol / 24-

nordehydrocholesterol, diatomstanol / diatomsterol, and 22-dehydrocholestanol / 22-

dehydrocholestanol ratios are most similar to the redox tracers (DOP and farnesol); 

therefore, these ratios record redox states in the Lake (Fig. 4-6d–f). The significant 

relationships between the ratios (R2 > 0.5; Fig. 4-8a–c) imply that they record the same 

events. In particular, the trends of the ratios closely accord with farnesol concentration. 

Considering that DOP is a tracer for bottom-water redox state and farnesol fluctuates 

with changing redox state in the water column, these results indicate that 5a(H)-stanol 

/ D5-sterol ratios are more influenced by anoxic conditions in the water column than by 

the bottom water conditions. Wakeham (1989) studied in situ microbial reduction of D5-

sterol to 5a(H)-stanol in water columns of the Cariaco Trench and Black Sea, and 

reported that substantial reduction of D5-sterol to 5a(H)-stanol occurs near oxic–anoxic 

interfaces. Furthermore, they pointed out that the conversion rate of D5-sterol to 5a(H)-

stanol might be reflected in the residence time of D5-sterol at a microbially active redox 

interface. Therefore, it is suggested that the expansion of the anoxic zone in Lake 

Suigetsu during Brackish IV made the residence time longer for D5-sterols in the anoxic 

zone, and promoted the conversion of D5-sterols to 5a(H)-stanols (Fig. 4-10). Although it 

is reported that stanol conversion also occurs in surface sediments (e.g., Nishimura and 

Koyama, 1977), our results suggest that this effect is less important than conversion in 

the water column. A similar result, in which 5a(H)-stanol / D5-sterol ratios are 

influenced by anoxic conditions in the water column, was recognized in the southern 
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California sediment by comparison of 5a(H)-stanol / D5-sterol ratios, DOP, and 

foraminiferal species (Chapter 3). This characteristic might be important for the 

reconstruction of paleo-environmental changes when 5a(H)-stanol / D5-sterol ratios are 

used as a redox tracer. 

 

4.5.3. Ratios of 5a(H)-stanol / D5-sterol under fresh and brackish water conditions 

Although 24-nordehydrocholestanol / 24-nordehydrocholesterol, diatomstanol / 

diatomsterol, and 22-dehydrocholestanol / 22-dehydrocholestanol ratios show a 

significant relationship (R2 > 0.5, Fig. 8a–c), detailed trends in these ratios were 

different. Although diatomstanol / diatomsterol and 22-dehydrocholestanol / 22-

dehydrocholestanol ratios from the freshwater sediments (below 40 cm) showed < 0.10 

and < 0.15, respectively, the 24-nordehydrocholestanol / 24-nordehydrocholesterol ratio 

in freshwater conditions was ≃0 (Fig. 6d–f). This difference might be attributed to 

variation in sterol sources. According to previous studies on the origins of 24-

nordehydrocholesterol, the sterol is found in marine organisms such as phytoplankton 

(Smith et al., 1982; Nelson et al., 2000; 2001), but there are no reports from freshwater 

organisms. Therefore, detection, or not, of sterol is important for inferring source 

organisms and the environmental conditions of the Lake. As shown in Figure 4-6a, 

freshwater diatoms were replaced by marine diatoms during Brackish I (~20–40 cm). 

Since neither 24-nordehydrocholestanol nor 24-nordehydrocholesterol were detected in 

the freshwater sediments, the sources of both are likely marine. In contrast, the 

significant fluctuation of the 24-nordehydrocholestanol / 24-nordehydrocholesterol ratio 

in the same period (Fig. 4-6d) suggests that both the source of the sterol and the 

condition of the lake was unstable. 
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On the other hand, diatomsterol and 22-dehydrocholesterol were detected in 

both the freshwater and brackish sediments (Fig. 4-5b–c), suggesting potential for the 

use of the ratios as a redox tracer in freshwater environments. When comparing the 

fresh-water conditions and Brackish I, diatomstanol / diatomsterol (freshwater; 0.06 ± 

0.02 [mean in SUI92-1 and -2 ± standard deviation], Brackish I; 0.07 ± 0.02 in SUI92-2) 

and 22-dehydrocholestanol / 22-dehydrocholesterol (freshwater; 0.09 ± 0.04 in SUI92-2, 

Brackish I; 0.07 ± 0.02 in SUI92-2) ratios are similar (Fig. 4-6e–f). These trends could 

reflect seasonally anoxic conditions in Lake Suigetsu before the onset of brackish 

conditions. In Lake Suigetsu, annually laminated sediments suggest that anoxic 

conditions have occurred throughout the late Quaternary. The sediments have been 

used for detailed paleo-environmental analysis by recent studies (e.g., Marshall et al., 

2012; Schlolaut et al., 2012, 2014; Nakagawa et al., 2013; Smith et al., 2013). Therefore, 

the trends in the 5a(H)-stanol / D5-sterol ratios during the freshwater period (below ~40 

cm) are thought to reflect anoxic conditions in a freshwater environment caused by the 

reduction of D5-sterol by bacteria, rather than other factors. However, given the small 

DOP values and non-detection of farnesol in the freshwater sediments, anoxic 

conditions during the freshwater period were less extreme than those during the 

brackish water conditions. 

 

4.5.4. Sources of 24-nordehydrocholestanol, diatomstanol, and 22-dehydrocholestanol 

To use 5a(H)-stanol / D5-sterol ratios as a redox tracer, it is necessary to select 

5a(H)-stanol / D5-sterol ratios that are influenced little by factors other than the 

reduction of D5-sterol by bacteria. Some organisms contain 24-nordehydrocholestanol, 

for example, jellyfish, amphipods, and red algae (Chardon-Loriaux et al., 1976; Nelson 

et al., 2000; 2001). However, since the sources of typical sedimentary sterols are 
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recognized to be phytoplankton and terrigenous plants (e.g., Huang and Meinschein, 

1978, 1979; Gagosian et al., 1983; Volkman, 1986), there is a low possibility that there 

could be other contributions to sediments. On the other hand, Mansour et al. (1999) 

compared sterol compositions of nine marine dinoflagellates, and reported that 

Scrippsiella sp. CS-295/c contains 24-nordehydrocholestanol. However, the 

concentration of 24-nordehydrocholestanol in the dinoflagellate is only 0.2% of the total 

sterols, and stanol is not detected in other dinoflagellates. Therefore, since the source of 

24-nordehydrocholetanol is likely restricted to just a few species, it was speculated that 

the 24-nordehydrocholestanol / 24-nordehydrocholesterol ratio provides the best tracer 

for anoxic conditions in sediments (Chapter 3). This speculation is supported by the 

results from southern California and by those from this study. However, since 24-

nordehydrocholesterol have not been detected in the freshwater sediments in Lake 

Suigetsu, this ratio could be unsuitable for comparison of redox conditions between fresh 

and brackish conditions. 

It is known that diatomstanol is present in red algae and zooplankton (jellyfish; 

Chardon-Loriaux et al., 1976; Nelson et al., 2000; 2001). However, since these sources 

are not phytoplankton and terrigenous sources, they are not considered a main source 

of organic compounds in sediments. Furthermore, since diatomsterol is detected in both 

marine and freshwater conditions, the ratio has the potential to be a good redox tracer 

in both of marine and lacustrine environments. On the other hand, diatomstanol is 

present in some dinoflagellate species (Mansour et al., 1999). Among them, 

Gymnodinium sanguineum has high diatomstanol content (~31.7% of total sterols; 

Mansour et al., 1999). Since Gymnodinium sanguineum is a dinoflagellate species that 

can occur in red tides, the diatomstanol / diatomsterol ratio might be not useful as a 

redox tracer in areas where red tides occur. 
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Only a small number of organisms contain the 22-dehydrochorestanol (e.g., red 

algae; Chardon-Loriaux et al., 1976). Therefore, it was thought that 22-

dehydrochorestanol / 22-dehydrochoresterol ratio would be a useful tracer for redox 

states. However, in southern California sediments, the 22-dehydrocholestanol / 22-

dehydrocholesterol ratio did not record the redox events (Chapter 3). Therefore these 

results show that the usefulness of the 22-dehydrocholestanol / 22-dehydrhocholesterol 

ratio is dependent on location. Furthermore, since sources of 22-dehydrocholestanol are 

also unclear, it is difficult to separate the source of 22-dehydrocholestanol from stanol-

creating organisms. Therefore, when applied to other sediment samples, it is important 

to compare with other 5a(H)-stanol / D5-sterol ratios (e.g., 24-nordehydrocholestanol / 

24-nordehydrocholesterol and diatomstanol / diatomsterol ratios). 

 

4.5.5. Cholestanol, campestanol, and sitostanol in freshwater sediments 

While 24-nordehydrocholestanol / 24-nordehydrocholesterol, diatomstanol / 

diatomsterol, and 22-dehydrocholestanol / 22-dehydrocholesterol ratios recorded the 

redox states in Lake Suigetsu, cholestanol / cholesterol, campestanol / campesterol, and 

b-sitosterol / sitostanol ratios did not, reflecting the fact that these ratios are 

significantly higher under freshwater conditions than under brackish conditions (Figs. 

6g–i and 7). This likely reflects other contributions besides the reduction of sterol by 

bacteria. The decreasing trends in cholestanol / cholesterol, campestanol / campesterol, 

and sitostanol / b-sitosterol ratios from 40 cm show that there was a large input of stanol 

under freshwater conditions (Fig. 4-6g–i). These sources are presumed to be from two 

main origins: freshwater phytoplankton that are rich in stanol and/or re-sedimentation 

from terrestrial sterol. 
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Robinson et al (1987) identified the sterol composition in four freshwater 

dinoflagellates (Woloszynskia coronate, Ceratium furcoides, Peridinium lomnickii, and 

Peridinium cinctum), and found that freshwater dinoflagellates have high contents of 

cholestanol and a high cholestanol / cholesterol ratio (< 20% of total sterols; cholestanol 

/ cholesterol ratio = ~100). Therefore, sterol composition in the sediments, where these 

phytoplankton are abundant, might be influenced by those cholestanol inputs. 

Campestanol and sitostanol, although minor relative to cholestanol, are found in 

freshwater dinoflagellates (campestanol; < 1% of total sterols, sitostanol; < 2% of total 

sterols; Robinson et al., 1987). The rapid decrease in freshwater diatoms at the 

boundary between freshwater and brackish conditions seems to support the input of 

stanol from freshwater dinoflagellates (Fig. 4-6a). However, since these species are not 

present in the current Lake Suigetsu in any large numbers (Moriyama, 2015), other 

contributions to the stanols should be considered. 

Other possibilities include inputs of stanol concentrated by degraded processes 

of higher plant-derived sterols. Although campesterol and b-sitosterol are presented in 

phytoplankton (Paoletti et al., 1976; Matsumoto et al., 1982; Volkman, 1986; Volkamn 

et al., 1990; Mansour et al., 1999), these sterols are recognized as sterols from terrestrial 

plants (Yunker et al., 1995; Belicka et al., 2004; Killops and Killops, 2013). Likewise, 

although present in small amounts, plants contain campestanol and sitostanol (e.g., 

Nishimura and Koyama, 1977). Nishimura (1977a) pointed out that stanols from living 

organisms are concentrated by selective degradation processes of D5-sterols under 

oxidative conditions. Since D5-sterols are easily degraded in oxidative conditions 

compared to 5a(H)-stanols, high 5a(H)-stanol / D5-sterol ratios in sediments are 

expected even if the amount of 5a(H)-stanol in living organisms is low. Furthermore, it 
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is suggested that 5a(H)-stanols, especially of terrestrial origins (terrestrial and soils), 

could contribute to sediments through this degradation process (Nishimura, 1997a).  

In the southern California sediments, high sitostanol contents were considered 

to potentially reflect terrestrially derived degraded products (sitostanol / b-sitosterol 

ratio; < 1.09, Chapter 3). Rontani et al (2014) suggested that high contents of sitostanol 

and campestanol in the Mackenzie Shelf (sitostanol / b-sitosterol ratio; < 7.21, 

campestanol / campesterol ratio; < 6.00) were influenced by inputs from degraded sterols. 

As these previous studies suggested, the influence of terrestrial stanol by degraded 

products cannot be ignored. Therefore, the significantly high values of these ratios in 

the freshwater conditions (under 40 cm) of Lake Suigetsu could be influenced by inputs 

from terrestrial stanol through degraded products.  

The good correlation between campestanol / campesterol and cholestanol / 

cholesterol ratios (Fig. 4-8d) indicates the same sources; thus, I speculate that 

cholestanol is also affected by the contribution of terrestrial degraded products. Indeed, 

Arzayus and Canuel (2005) interpreted high 5a(H)-stanol / D5-sterol ratios (including 

cholestanol / cholesterol ratio) in the York River as being possibly derived from a large 

contribution of older organic material. There is a high possibility that the cholestanol / 

cholesterol ratio in Lake Suigetsu also was influenced by terrestrial degraded products. 

On the other hand, at Brackish I, the cholestanol / cholesterol ratios show similar trends 

with the redox tracers of the 5a(H)-stanol/D5-sterol ratios (i.e., high values of surface 

layers). Additionally, this trend appeared when sitostanol / b-sitosterol ratio was the 

lowest. These results indicate that if the stanol contributions of degraded products of 

terrestrial origin are less, the ratio could possibly be used as a redox tracer. 
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4.6. Conclusions 

In this study, 5a(H)-stanol / D5-sterol ratios using the TMAH method were applied 

to lacustrine depositional sediments for reconstruction of redox states, and compared 

with other redox tracers. Characteristics of the obtained 5a(H)-stanol/D5-sterol ratios 

from Lake Suigetsu sediments are as follows: 

¨ The 24-nordehydrocholestanol / 24-nordehydrocholesterol, diatomstanol / 

diatomsterol, and 22-dehydrocholestanol / 22-dehydrocholesterol ratios in Lake 

Suigetsu sediments record redox events that occurred from the 17th century onward. 

Therefore, the results confirm the usefulness of 5a(H)-stanol/D5-sterol ratios as 

redox tracers in lake sediments. 

¨ Diatomsterol and 22-dehydocholesterol were detected in both freshwater and 

seawater environments and showed potential as redox tracers in both. 

¨ On the other hand, other 5a(H)-stanol/D5-sterol ratios (cholestanol / cholesterol, 

campestanol / campesterol, and sitostanol / b-sitosterol ratios) appeared not to 

record the redox events in Lake Suigetsu, likely because they are influenced by 

inputs of terrestrial stanol by degraded products. 

  



Chapter 4 

87 

Table. 4-1 Lake Suigetsu events recorded in changing redox conditions 

 
* Events and years from Matsuyama, 1973; Masuzawa and Kitano, 1982; Ue- 
mura et al., 1992. 
** Chronology taken from Fukusawa et al., 1995. 

 

  

Events* Year*
Depth

estimated
from dating**

Intervals

Fresh-water (-1664)

Brackish IV (1935-)

16.4 cm
Brackish III (1848-1935)

Chemocline increase 1934-1935 6.5 cm

Urami Canal opened 1664 40.3 cm
Brackish I (1664-1800)

Saga Tunnel construction 1800 20.8 cm
Brackish II (1800-1848)

Saga Tunnel reconstruction 1848
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Table. 4-2 Identified sterol and stanol compositions from Lake 
Suigetsu sediments (SUI92-1 and SUI92-2). 

 
* Symbols refer to Fig. 4-4  

 

  

Symbol* Systematic Name Trivial name

D 5 -Sterols
i 24-Norcholesta-5,22E-dien-3β-ol 24-Nordehydrocholesterol

ii Cholesta-5,22E-dien-3β-ol 22-Dehydrocholesterol

iii Cholest-5-en-3β-ol Cholesterol

iv 24-Methylcholesta-5,22E-dien-3β-ol Diatomsterol

v 24-Methylcholest-5-en-3β-ol Campesterol

vi 24-Ethylcholest-5-en-3β-ol b−Sitosterol

5a (H)-Stanols

vii 5α(H)-Cholestan-3β-ol Cholestanol

viii 24-Methyl-5α(H)-cholestan-3β-ol Campestanol

ix 24-Ethyl-5α(H)-cholestan-3β-ol Sitostanol

x 24-Nor-5a(H)-cholest-22E-en-3β-ol 24-Nordehydrocholestanol

xi 5α(H)-Cholest-22E-en-3β-ol 22-Dehydrocholestanol

xii 24-Methyl-5α(H)-cholest-22E-en-3β-ol Diatomstanol
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Fig. 4-1 Location map of Lake Suigetsu, showing surrounding lakes, connected rivers, 
and a river tunnel. The star (★) denotes the sampling point. River water from the Hasu 
River flows through Mikata Lake, and seawater flows through Lake Hiruga and Lake 
Kugashi before flowing into Lake Suigetsu. 
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Fig. 4-2 (a) Representative total ion chromatogram of the sterols obtained by the TMAH 
method. (b) Relationship between cholestanol	 /	 cholesterol ratio before and after the 
TMAH reactions. 
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Fig. 4-3 Age model for Lake Suigetsu sediment. The age model is taken from Fukusawa 
et al., 1995. 
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Fig. 4-4 Mass chromatograms from gas chromatography-mass spectrometry (GC–MS) 
using the tetramethylammonium hydroxide thermochemolysis (TMAH) method. Data 
were collected for sterols and stanols (as methyl ethers) of Lake Suigetsu sediments 
(SUI-92-2) [(a) m/z 255, (b) m/z 215, (c) m/z 257]. Identified sterols and stanols are listed 
in Table 4-2. 
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Fig. 4-5 Vertical distributions of sterol and stanol concentrations (µg/g) in Lake 
Suigetsu sediments. SUI92-1 and SUI92-2 are represented by open circles (○) and black 
circles (●), respectively. 
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Fig. 4-6 Vertical distribution of diatom species, degree of pyritization (DOP), farnesol, 
and 5a(H)-stanol / D5-sterol ratios recorded in Suigetsu Lake sediments. (a) Number of 
diatom valves (mg on an ignited weight basis [mg on IWB]) of marine diatom 
(Coscinodiscus lacustris [open diamonds, ◇]) and freshwater diatom (Stephanodiscus 
carconensis [black diamonds, ◆]) (Masuzawa and Kitano, 1982); (b) DOP, calculated 
using data from Matsuyama (1974); (c) farnesol concentration (mg/g-TOC [total organic 
carbon]) by Uemura et al. (1992); (d) 24-Nordehydrocholestanol / 24-
nordehydrocholesterol ratio; (e) diatomstanol / diatomsterol ratio; (f) 22-
dehydrocholestanol / 22-dehydrocholesterol ratio; (g) cholestanol / cholesterol ratio; (h) 
campestanol / campesterol ratio; and (i) sitostanol / b-sitosterol ratio. Core SUI92-1 and 
SUI92-2 are represented by open circles (○) and black circles (●), respectively. The 
chronology is taken from Fukusawa et al., 1995.  
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Fig. 4-7 Comparisons of 5a(H)-stanol / D5-sterol ratios between the freshwater age 
(below 40cm; green color) and the brackish water age (above 40 cm; blue color) in Lake 
Suigetsu [(a) SUI92-1, and (b) SUI92-2]. Values are shown as means ± standard 
deviation. For freshwater, n = 12; for brackish water, n = 21. * = significance (p < 0.01). 
ns = no significance (p > 0.01). 
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Fig. 4-8 Relationships between 5a(H)-stanol / D5-sterol ratios (n = 34). Red colored 
numbers are significantly correlated at R2 > 0.05. Relationships between other 5a(H)-
stanol/D5-sterol ratios show no significant correlation (See Fig. 4-9). 
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Fig. 4-9 Relationships between 5a(H)-stanol / D5-sterol ratios. 
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Fig. 4-10 Characteristics of each tracer (degree of pyrization, farnesol, and stanols and 
sterols) between different anoxic zone environments. Pyritization occurs in surface 
sediments (Berner, 1984), therefore the degree of pyritization records bottom-water 
conditions. Farnesol is derived from green sulfur bacteria (Rapoport and Hamlow, 1961; 
Caple et al., 1978; Otte et al., 1993; Airs and Keely, 2003). An expansion of the anoxic 
zone can be speculated to increase the habitat of green sulfur bacteria and its related 
farnesol concentration in sediment. Reduction of sterol to stanol occurs in the water 
column and surface sediments (e.g., Nishimura and Koyama, 1977; Wakeham, 1989), 
therefore the expansion of an anoxic zone in the water column promotes the reduction 
of D5-sterol to 5a(H)-stanol, and increases the 5a(H)-stanol / D5-sterol ratio. However, 
when there are other contributions besides the reduction of D5-sterol by bacteria, those 
inputs are added into this model figure. (a) Stable anoxic condition during Brackish III; 
(b) expanded stable anoxic condition during Brackish IV. The chemocline in the present 
Lake Suigetsu is at around 6–7 m depth and phototrophic sulfur bacteria (mostly 
Chlorobiaceae) has a habitat depth of 5–10 m (the maximum densities are at 6–7 m; 
Mori et al., 2013), as shown in (b). Fig. 9a sets the oxic-anoxic boundary to 15 m depth. 
Photosynthetic active radiation of the present Lake Suigetsu has reached > 10 m (Mori 
et al., 2013), therefore it is expected that a phototrophic sulfur bacteria habitat at 
around 15 m could be possible. 
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5.1. Introduction 

 Sterols have been widely distributed from marine and lacustrine sediments 

(e.g., Ishiwatari et al., 2009a; Bertrand et al., 2012; Yamamoto et al., 2015; Huang et 

al., 2016). Sources of sterols in sediments are phytoplankton and terrestrial plants 

(Volkman, 1986). 24-Ethylcholest-5-en-3b-ol (b-sitosterol) and 24-methylcholest-5-en-

3b-ol (campesterol) are major sterol components in higher plants (Yunker et al., 1995; 

Belicka et al., 2004; Killops and Killops, 2013). 24-Methylcholesta-5, 22E-dien-3b-ol 

(diatomsterol or brassicasterol) is mainly derived from phytoplankton such as diatom 

and haptophyte algae (e.g., Volkman et al., 1981b, 1998; Rampen et al., 2010). 

Utilization of their structural features, such as the number and position of the double 

bonds, types of functional groups, and the carbon content, sterols can be used as tracers 

for photo- and auto-oxidation (Christodoulou et al., 2009; Rontani et al., 2012, 2014). On 

the contrary, the 5a(H)-stanol / D5-sterol ratio can be used as a tracer for redox 

conditions because the D5-sterol is reduced to 5a(H)-stanol by bacterial reactions under 

anoxic conditions (Rosenfeld and Hellman, 1971; Eyssen et al., 1973; Fig. 1C). Therefore, 

in anoxic conditions, high value of the 5a(H)-stanol/D5-sterol ratio are expected 

(Nishimura and Koyama, 1977; Wakeham, 1989). In Chapter 3, it was shown that this 

tracer was useful for reconstructing the redox events recorded in continuous sediment 

sequences (marine sediments off southern California, Ocean Drilling Program, Leg 167, 

Hole 1017E) over the last 45 kyr. 

In contrast, inputs of 5a(H)-stanol were obtained by not only the bacterial 

reduction of D5-sterol but also the other sources (e.g., Nishimura, 1977a; Gagosian et al., 

1980; Volkman et al., 1990), which complicate the interpretation of 5a(H)-stanol/D5-

sterol ratio as redox tracer. In fact, high 5a(H)-stanol inputs was reported at various 

sites other than anoxic environments (Kondo et al., 1994; Rontani et al., 2014). 
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Furthermore, it is suggested that living organisms such as higher plants and 

phytoplankton containing high 5a(H)-stanols might be important sources of 5a(H)-

stanols in sediments (Nishimura and Koyama, 1977; Robinson et al., 1984; Volkman et 

al., 1990; Fig. 1A). Also, the sedimentary 5a(H)-stanol/D5-sterol ratio can significantly 

change by selective degradation during sedimentation processes of D5-sterols 

(Nishimura, 1977a; Nishimura and Koyama, 1977; Fig. 1B). Regarding the selective 

degradation of D5-sterols, there have been reports in the sediments of Lake Shirakoma-

ike (Nagano, Japan), suggesting 5a(H)-stanol compositions in the sediments were 

significantly affected by plant-derived degradation products because plant-derived 

5a(H)-stanols (such as 24-ethyl-5a(H)-cholestan-3b-ol; sitostanol) could be abundantly 

found (Nishimura, 1977a). From these insights, it is suggested that such selective 

degradation of D5-sterol can occur under oxidative environments, although our 

understanding of the origins and fate of 5a(H)-stanols still require further examination. 

The investigation of production and diagenetic processes for the 5a(H)-stanol in oxic 

environments should provide better understanding of its source and behavior.  

In addition, tetramethylammonium hydroxide (TMAH) thermochemolysis was 

employed for the 5a(H)-stanol / D5-sterol analysis of the sediments in our study. Organic 

compound analysis using the TMAH method was utilized since hydrolysis and 

methylation are simultaneously performed, and in a relatively short time. Using the 

TMAH method, various sterols including D5-sterols, 5a(H)-stanols, and 4a-methyl-

sterols were identified from marine sediment, and thus, this method makes it possible 

to analyze variety of sterols, as analyzed by trimethylsilyl derivatization (Asperger et 

al., 1999b, 2001).  

In the present study, I observed Pond of Literature (Bungaku-no-ike pond) 

within Soka University as a new site where the 5a(H)-stanol / D5-sterol ratios were high 
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in the sediments of oxidative conditions, and report the sterol compositions to examine 

the applicability of redox indicator using the 5a(H)-stanol / D5-sterol ratios. 

 

5.2. Material and methods 

5.2.1. Sampling location and pond samples 

Pond of Literature is a small pond (ca. 3000 m2) located in Soka University, 

Hachioji, Tokyo, Japan (35°41'24"N, 139°19'41"E) (Fig. 5-2). The water depth is < 2 m, 

and the pond is not connected to a river system.  

Sediment samples (St. 1 and St.2) were obtained on August 20, 2017 using an 

Ekman–Birge grab sampler. The sediment samples were frozen, lyophilized and finely 

powdered for tetramethylammonium hydroxide (TMAH) thermochemolysis. The 

vegetation around the pond includes: konara oak (Quercus serrate), several cherry trees 

(Cerasus yedoensis), and azalea (Rhododendron). The distribution of vegetation 

surrounding the pond is summarized in Fig. 5-3. 

At the sampling location, dissolved oxygen (DO) was measured in triplicate 

using a DO water test kit (Kyoritsu Chemical-Check Lab. Corp.). The DO at the water 

surface (ca. 10 cm in water depth) and bottom (ca. 1.8 m in water depth) were 7.3 ± 0.6 

mg/L and 5.5 ± 0.5 mg/L, respectively, indicating that the pond is under oxidative 

conditions. The DO values were measured on the same day of sampling of the sediments 

(August 20, 2017). Similar values of DO were also confirmed on July 25, 2017 during a 

preliminary experiment (the surface; ca. 6 mg/L, the bottom; ca. 5 mg/L). Although DO 

data are limited from July to August, a fountain water circulation system is operational 

throughout the year preventing stagnation of the aquatic conditions in the pond. 
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5.2.2. Plant samples around the pond 

Leaf samples of Quercus serrate, Cerasus yedoensis, Rhododendron satsuki, 

and Rhododendron tsutsuji were taken on November 5 and 6, 2017. The samples were 

lyophilized and powdered for sterol composition analysis. 

 

5.3.2. Methods 

5.3.2.1 Carbon content and stable isotope analysis 

Total organic carbon (TOC), total nitrogen (TN), and the carbon isotope ratio 

in the sediment samples were analyzed using an elemental analyzer (EA1110, Thermo 

Fisher Co.) and an isotope ratio mass spectrometer (Delta V Advantage, Thermo Fisher 

Co.). Powdered sediment samples (ca. 10 mg) were wrapped in tin foil, and then 

analyzed with the instruments. The carbon isotope ratio was expressed in δ notation 

referenced to Vienna Pee Dee Belemnite limestone. The analysis error was < ± 0.24‰. 

 

5.3.2.2 Analysis of organic matter using the TMAH method 

Sterol compositions in the sediments were analyzed using TMAH 

thermochemolysis gas chromatography-mass spectrometry (TMAH GC-MS). The 

samples (ca. 100 mg for the sediment and 5 mg for the leaf samples) were placed in a 10 

mL glass ampoule and the TMAH reagent (25 wt.% in methanol; 150 µL) was added. 

Nonadecanoic-d37 acid (100 ng/µL in methanol; 50 µL) was added as an internal 

standard. After the methanol (MeOH) evaporated, the ampoule was sealed under 

vacuum conditions and placed in a 300°C oven for 30 min. The combined extracts (with 

ethyl acetate) were dried in a vacuum desiccator and were re-dissolved in 100 µL of 

ethyl acetate. Lastly, 2 µL of the dissolved sample was injected (splitless injection at 

300 °C) and analyzed with a GC-MS (6890N GC5973 MS; Agilent Technologies Co.) on 
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a DB-5MS capillary column (0.25 mm internal diameter (i.d.), 0.25 µm film thickness 

(Agilent Technologies Co.), 30 m in length) using helium as the carrier gas at 1.0 mL/min. 

The oven temperature was set at 60°C for 2 min, changed to 310°C (6°C/min) and was 

then maintained at 310°C for 20 min. The mass spectrometer was set to a full scan ion 

monitoring mode (50–650 Dalton) with an MS scanning interval of 0.5 s. Sterol 

concentrations were calculated by comparing with internal standards. 

 

5.3. Results 

5.3.1. Bulk carbon, nitrogen content, and sterol compositions in the sediment samples 

 TOC and TN in the sediment samples are similar (Table 5-1); high TOC 

(12.8%–13.7%), low TN (1.2%–1.3%) with C/N ratio of 10.2–10.6. The carbon isotope 

ratios (δ13C) are -30.5‰ in both of the sediment samples. 

 The major sterols were identified in the sediment samples included cholest-5-

en-3b-ol (cholesterol), diatomsterol, campesterol, b-sitosterol, 5a(H)-cholestan-3b-ol 

(cholestanol), 24-methyl-5a(H)-cholestan-3b-ol (campestanol), 24-methyl-5a(H)-cholest-

22E-en-3b-ol (diatomstanol or brassicastanol), and sitostanol (Fig. 5-4). The sterol 

compositions are listed in Table 5-2. Among the D5-sterols, concentration of b-sitosterol 

is the highest (9.43–13.52 µg/g), whereas that of diatomsterol is much lower (1.48–1.77 

µg/g). Sitostanol is the major 5a(H)-stanol component in the sediments (2.78–3.88 µg/g). 

Although the diatomstanol was detected in the sediment, only trace amounts were found 

(< 0.28 µg/g). 

 The ratios of cholestanol / cholesterol and campestanol / campesterol in the 

sediments show high values of 0.76–0.85 and 0.60–0.80, respectively. The sitostanol / b-

sitosterol ratios are smaller (0.29) than the cholestanol / cholesterol and campestanol / 

campesterol ratios despite the high concentration of sitostanol. The diatomstanol / 
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diatomsterol ratio has a significantly lower value (0.11–0.16) than the other ratios. 

 

5.3.2. Sterols of higher plants from the area surrounding a pond. 

 Sterol compositions of the leaves obtained from the area surrounding the pond 

are listed in Table 5-2, and the representative mass chromatograms are shown in Fig. 

5-5. The b-sitosterol was identified as the major sterol component from all leaf samples 

(373.9–426.4 µg/g). The concentrations of campesterol in leaf samples of Cerasus 

yedoensis are lower than that of the b-sitosterol (9.29 µg/g). As for the 5a(H)-stanols, 

only trace amounts of sitostanol were detected in Quercus serrate. 

 

5.4. Discussion 

5.4.1. Major sterol sources in the sediment 

b-Sitosterol is documented in higher plants as the major sterol components 

(Yunker et al., 1995; Belicka et al., 2004; Killops and Killops, 2013). The b-sitosterol has 

the highest concentration in the D5-sterols in the sediment samples, and is the main 

sterol found in the leaf samples from the area around the pond (Table. 5-2). Diatomsterol 

is found in phytoplankton including diatoms and haptophyte algae (Kanazawa et al., 

1971; Orcutt and Patterson, 1975; Teshima et al., 1980; Volkman et al., 1981b, 1998; 

Lin et al., 1982; Marlowe et al., 1984; Rampen et al., 2010). The concentration of 

diatomsterol is much lower in the sediments (Table 5-2). Huang and Meinschein (1979) 

indicated that the ternary plots of C27, C28, and C29 sterol compositions can be used as 

an ecological indicator. Phytoplankton contain high amounts of C27 sterols, while 

terrestrial plants contain high amounts of C29 sterols. Plots of C27, C28, and C29 sterol 

compositions in the sediments show closer distribution to terrestrial plants (Fig. 5-6), 

suggesting that the sterols in the sediments are mainly derived from higher terrestrial 
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plants. 

 

5.4.2. Environmental condition of the pond evaluated by 5a(H)-stanol compositions in 

the sediments 

In general, high contribution of 5a(H)-stanol in natural environment is thought 

to be resulted from three routes; (1) bacterial reduction of D5-sterol under anoxic 

condition (e.g., Gagosian et al., 1979; Wakeham, 1989, Fig. 5-1C), (2) direct inputs from 

unique living organisms containing high 5a(H)-stanols (Robinson et al., 1984; Volkman 

et al., 1990, Fig. 5-1A), and (3) selective degradation of D5-sterol during sedimentation 

processes (e.g., Nishimura, 1977a, Fig. 1B). For the first route of bacterial reduction of 

D5-sterols, the 5a(H)-stanol generates by the bacterial reduction of D5-sterol under 

anoxic conditions (Rosenfeld and Hellman, 1971; Eyssen et al., 1973). Therefore, the 

5a(H)-stanol / D5-sterol ratio can be used as a tracer of bacterial anoxic activity, and also 

can apply to evaluation of depositional environments including paleo-studies (Canuel 

and Martens, 1993; Bertrand et al., 2012; Zheng et al., 2015). Under anoxic condition, 

the microbial conversion of D5-sterol to 5a(H)-stanol occurs in surface sediments and 

water columns (Nishimura and Koyama, 1977; Wakeham, 1989; Fig. 5-1C). Also, the 

5a(H)-stanol / D5-sterol records were reported in marsh environment and peat sequences 

in the Miocene, and increase of their ratios may be attributed to degradation and 

microbial hydrogenation of biosterols during the early diagenetic stage (Sawada et al., 

2013; Stefanova et al., 2016). However, it should be noted that variations of the 5a(H)-

stanol / D5-sterol ratios can also be related to environmental conditions, and the 5a(H)-

stanols are derived directly from organisms or that the D5-sterols were converted to 

5a(H)-stanols in the early diagenesis (Stefanova et al., 2016). 

The higher 5a(H)-stanol / D5-sterol ratios was reported in severe anoxic water 
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and sediment of the Black Sea (0 µmol/kg in DO below ca. 100m); remarkable high 

values at redox boundaries of the water column (>1; Wakeham, 1989) and the surface 

sediments (>1; Gagosian et al., 1979). In sediments from offshore of the southern 

California, 24-nordehydrocholestanol / 24-nordehydrocholestanol and diatomstanol / 

diatomsterol ratios indicated high values (~ 0.7) during suboxic (warming) intervals of 

the Marine Isotope Stage (MIS) 3 (Chapter 3).  

Among the 5a(H)-stanol / D5-sterol ratios, diatomstanol / diatomsterol ratio is 

suggested to be a good redox tracer, because inputs other than reduction of sterols in 

anoxic conditions is considered to be small in both marine and lacustrine sediments (See 

Chapters 3 and 4). However, the diatomstanol / diatomsterol ratios are low (< 0.16) in 

the Pond of Literature of the present study, which is strikingly lower than the 5a(H)-

stanol / D5-sterol records in the anoxic conditions reported previously. The result 

suggests that the pond in our work is an oxidizing environment based on the organic 

chemical trace, as well as the DO contents in the bottom water (5.5 ± 0.5 mg/L).  

On the other hand, the ratios of cholestenol / cholesterol, campestanol / 

campesterol, and sitostanol / b-sitosterol shows markedly higher values compared to 

diatomstanol / diatomsterol ratio, similar to typical anoxic condition levels found in the 

Black Sea and southern California. The results indicate use of these ratios as a redox 

tracer is not suitable, and the higher contents of 5a(H)-stanol (cholestanol, campestanol, 

sitostanol) in the sediments are possibly caused by biological/geochemical effect(s) other 

than the bacterial reduction of the D5-sterols. 

 

5.4.3. Possibility of source of 5a(H)-stanol in the sediment 

In previous studies, high 5a(H)-stanol contents (cholestanol, campestanol, and 

sitostanol) have been documented even in oxidative conditions. Kondo et al (1994) found 
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high choletanol (cholestenol / cholesterol ratio; 0.66–0.85), campestanol (campestanol / 

campesterol ratio: 0.63–0.67) and sitostanol (sitostanol / b-sitosterol ratio: 0.59–0.63) 

contents (Table. 5-4) in the sediments from acidic lake such as Lake Fudo-ike (Kirishima, 

Japan). Nishimura (1977a) also reported high values of 5a(H)-stanol / D5-sterol ratios 

(cholestenol / cholesterol; 0.56–0.82, campestanol / campesterol; 0.37–1.00, sitostanol / 

b-sitosterol; 0.67–1.22) from the sediments of Lake Shirakoma-ike (Nagano, Japan). 

Previous studies suggested that the contribution of 5a(H)-stanols except the bacterial 

reduction of D5-sterols was significantly large to the sterol composition in freshwater 

sedimentary environments, which agrees with our results. The high 5a(H)-stanol inputs 

complicate interpretation of the 5a(H)-stanol / D5-sterol ratio as an indicator of redox 

condition. Thus, it is important to explore the cause of high 5a(H)-stanol contents other 

than reducing environments, and as the results suggest, it is expected to provide better 

interpretation of the 5a(H)-stanol / D5-sterol ratio as the indicator. 

 

5.4.3.1. Terrestrial sources 

 The high 5a(H)-stanol contents in the sediments from the Pond of Literature 

are likely to be related to terrigenous sources, because the ternary plots of C27, C28, and 

C29 sterols indicate significant contribution from higher plants (Fig. 5-6). In general, the 

content of 5a(H)-stanol in living higher plants are low (e.g., Nishimura, 1977b; Table 3), 

which is similar to the results in the present study (Table 5-2). However, according to 

Nishimura (1977b), only Quercus serrata is known to have relatively high sitostanol 

content (30.3% of all the sterols; sitostanol / b-sitosterol ratio: 0.48; Table 3). Since the 

Pond of Literature is surrounded by Quercus serrata, there is a possibility that the 

plant-derived 5a(H)-stanols contributed to the sediments. However, content of 

sitostanol in the leaf samples of Quercus serrata around the pond were trace in the 
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present study (Table 2). The difference of the sterol compositions in Quercus serrate 

between Nishimura (1977b) and our study may be attributed to chemical compositional 

variability as a result of seasonal and environmental effects.  

Another possibility is a mechanism that the 5a(H)-stanols from living 

organisms are concentrated by selective degradation process of D5-sterols under 

oxidative environments (Nishimura, 1977a; Nishimura and Koyama, 1977). Since the 

D5-sterols are easily degraded in oxidative conditions compared to 5a(H)-stanols, high 

5a(H)-stanol / D5-sterol ratios in sediments are expected even if the direct contribution 

of 5a(H)-stanol from living organisms is low (Fig. 5-1B). Furthermore, Nishimura 

(1977a) suggests that 5a(H)-stanol, especially derived from terrestrial organism, could 

contribute to sediment through the degradation process. Since sitostanol was detected 

in the leaf samples, the high sitostanol / b-sitosterol ratio in the sediments can be 

interpreted as the results that the sitostanol was concentrated by the selective 

degradation process of b-sitosterol (Table 5-2). Although the sitostanol / b-sitosterol 

ratio in our work is lower than those in Lake Shirakoma-ike (0.67–1.22; Nishimura, 

1977a), fresh plant inputs around the Pond of Literature might be the cause. In fact, 

the sterol compositions in living plants around the pond showed high b-sitosterol 

concentrations (Table 5-2). Similarly, high 5a(H)-stanol contents in sediments from oxic 

conditions have been interpreted by inputs of degradation products from terrestrial 

sources associating with such the mechanism (Kondo et al., 1994; Arzayus and Canuel, 

2005; Rontani et al., 2014). Since cholestanol and campestanol were not detected in the 

investigated plants (Table 5-2), it is difficult for the sources of campesterol and 

cholesterol to account for factors of the terrestrial plant sources and the degradation 

processes. 
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5.4.3.2. Phytoplanktonic sources 

In aquatic organisms, the 5a(H)-stanol contents are conclusively low, although 

the same 5a(H)-stanols have been identified in zooplankton and phytoplankton 

(Nishimura and Koyama, 1976, 1977; Chardon-Loriaux et al., 1976). However, high 

contents of 5a(H)-stanol are known in some organisms as unique cases (Volkman et al., 

1990). In freshwater phytoplankton species, to the best of our knowledge, high 5a(H)-

stanol contents were reported in some dinoflagellates only (Robinson et al., 1984, 1987). 

Therefore, the 5a(H)-stanols from dinoflagellates could contribute to organic 

composition in sediments (Fig. 5-1A). In fact, the dinoflagellates have cholestanol and 

campestanol, which cannot be explained by the terrestrial sources. On the other hand, 

freshwater dinoflagellates are known to have high contents of 4a-methyl sterols, such 

as 4a-methyl-5a-cholestan-3b-ol and 4a,23,24-trimethyl-5a-cholest-22-en-3b-ol 

(Robinson et al., 1987). Although dinoflagellate was not investigated in the present 

study, the high contents of 5a(H)-stanols in the pond sediments are not thought to be 

derived from the dinoflagellates because of no detection of 4a-methyl sterols. 

Based on our results, it is difficult to reveal the cause of high 5a(H)-stanol 

sources in the sediments by only comparing the sterol compositions of plants and 

phytoplankton. As other possibility, it is pointed out that degradation and microbial 

hydrogenation of biosterols during the early diagenetic stage cause increasing of 5a(H)-

stanol / D5-sterol ratio in the Miocene geological records (Sawada et al., 2013; Stefanova 

et al., 2016). Although the time scale is more widely than our study site, these results 

suggest that effects of the early diagenetic stage should be consider for interpretation of 

5a(H)-stanol / D5-sterol ratio. Future studies will need to identify the specific sources of 

high 5a(H)-stanol in the pond sediment, such as multi-source analyses from 
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phytoplankton, plants and soils during long term studies including various seasons. 

 

5. Conclusions 

 The present study reports the sterol compositions in an oxidative pond 

surrounded by higher plants. Compositions of D5-sterol in the sediments are 

characterized as high contribution of terrestrial sterol (b-sitosterol) and low autogenous 

sterol (diatomsterol). High contents of cholestanol, campestanol, and sitostanol and high 

ratios of cholestenol / cholesterol and campestanol / campesterol were found in the 

sediments. A new case of high amounts of 5a(H)-stanols were found in an oxidative 

environment. The sources of 5a(H)-stanols and high 5a(H)-stanol / D5-sterol ratio in the 

oxidative pond were dependent on three factors; 1) phytoplankton, 2) higher plants, and 

3) preferential degradation of D5-sterol under oxidative conditions. Although critical 

sources of cholestanol, campestanol, and sitostanol in the pond were not determined, 

the sitostanol might be formed as a result of the selective degradation of D5-sterols 

during the early diagenesis, as suggested previously. These specific sources and 

production processes of the 5a(H)-stanols are expected to become clearer with more 

studies being performed on this model site. 
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Table 5-1 Organic carbon and nitrogen data in the sediment 
sample from the Pond of Literature. 

 

  

TOC TN δ13C
(‰)

St. 1 13.7 1.3 10.5 -30.5
St .2 12.8 1.2 10.7 -30.5

C/N
(%)
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Table 5-2 List of major sterols detected in the sediment samples from the Pond of 
Literature and sterols of higher plants collected the area around the pond. 

 
Q.s. = Quercus serrata, C.y. = Cerasus yedoensis, R.s. = Rhododendron satsuki, and R.t. 
= Rhododendron tsutsuji. 
* The values are given as % of the eight sterols, and the values in parentheses are given 
as % of total D5-sterols and total 5a(H)-stanols. 
 
  

 Q.s. C.y. R.s. R.t.
 (µg/g) (%)*  (µg/g) (%)*

Δ5-Sterols
Cholesterol 2.00 7.5 (11.2) 1.42 7.7 (11.8) - - - -
Campesterol 2.28 8.5 (11.6) 1.21 6.5 (9.0) - 9.29 - -
Brassicasterol 1.77 6.6 (9.1) 1.48 8.0 (10.9) - - - -
β-Sitosterol 13.52 50.4 (69.1) 9.43 50.9 (69.6) 399.0 394.6 426.4 373.9
5α(H)-Stanols
Cholestanol 1.70 6.3 (23.5) 1.08 5.8 (21.6) - - - -
Campestanol 1.37 5.1 (19.0) 0.97 5.2 (19.5) - - - -
Brassicastanol 0.28 1.1 (3.9) 0.16 0.9 (3.3) - - - -
Sitostanol 3.88 14.5 (53.6) 2.78 15.0 (55.6) trace - - -

Ratios
Cholestanol/cholesterol - - - -
Campestanol/campesterol - - - -
Brassicastanol/brassicasterol - - - -
Sitostanol/β-sitosterol - - - -

0.85 0.76

Sediment samples Higher plants
St. 1 St. 2

(µg/g)

0.60 0.80
0.16 0.11
0.29 0.29
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Table 5-3 Sterols of freshwater dinoflagellates and higher plants reported by 
previous studies (Robinson et al., 1987; Nishimura, 1977b; Nishimura and Koyama, 
1977). 

 
P.l. = Peridinium lomnickii, P.c. = Peridinium cinctum, C.f. = Ceratium furcoides. 
I.p. = Ilex pedunculosa, P.d. = Pinus densiflora, Q.s. = Quercus serrata, Z.l. = Zizania 
latifolia. 
The sterol composition data in freshwater dinoflagellates and higher plants are taken from 
Robinson et al. (1987), Nishimura (1977b), and Nishimura and Koyama (1977), 
respectively. 
*The values are given as % of the eight sterols. 

  

P.l. P.c. C.f. I.p. P.d. Q.s. Z.l.

Δ5-sterols
Cholesterol trace 94.6 80.2 trace trace 2.9 trace
Campesterol - 1.8 - 3.0 7.8 3.6 5.3
Brassicasterol - - - - - - -
β-Sitosterol 17.9 - - 93.0 90.2 62.5 93.8
5α(H)-stanols
Cholestanol 71.4 3.6 18.7 trace trace trace trace
Campestanol 3.5 - 1.1 0.2 0.1 0.6 0.1
Brassicastanol - - trace - - - -
Sitostanol 7.2 - - 3.8 1.8 30.3 0.9
Ratios
Cholestanol/cholesterol - 0.04 0.23 - - - -
Campestanol/campesterol - - - 0.05 0.02 0.17 0.02
Brassicastanol/brassicasterol - - - - - - -
Sitostanol/β-sitosterol 0.40 - - 0.04 0.02 0.49 0.01

Freshwater dinoflagellates Higher plants

(%) (%)
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Table 5-4 Sterols in sediment samples from other sites reported by previous studies 
(Nishimura, 1977a; Kondo et al., 1994). 

 
S-1 = Lake Shirakoma-ike (0-3 cm), S-2 = L. Shirakoma-ike (3-6 cm), S-3 = L. Shirakoma-ike (6-
12 cm), S-4 = L. Shirakoma-ike (12-20 cm), F-1 = L. Fudo (0-2 cm), F-4 = L. Fudo (6-8 cm). 
The sterol composition data in sediment samples of Lake Shirakoma-ike and Lake Fudo are 
taken from Nishimura (1977a) and Kondo et al. (1994), respectively. 
 
  

S-1 S-2 S-3 S-4 F-1 F-4

Δ5-sterols
Cholesterol 8.4 8 5.3 6.4 1.38 0.81

Campesterol 8.4 10.3 4.1 8.6 1.20 0.78

Diatomsterol trace 6.6 trace 2.1 1.08 0.54

β-Sitosterol 45.8 39.7 27.6 47.3 2.38 1.76
5α(H)-stanols
Cholestanol 6.9 4.5 3.2 4.2 1.12 0.69

Campestanol 5.4 3.8 4.1 4.6 0.80 0.49
Brassicastanol - - - - 0.35 0.15

Sitostanol 43.6 26.6 33.7 37.8 1.40 1.11

Ratios
Cholestanol/cholesterol 0.82 0.56 0.60 0.66 0.81 0.85
Campestanol/campesterol 0.64 0.37 1.00 0.53 0.67 0.63
Brassicastanol/brassicasterol - - - - 0.32 0.28
Sitostanol/β-sitosterol 0.95 0.67 1.22 0.80 0.59 0.63

Sediment samples

(µg/g)
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Fig. 5-1 Scheme of the high 5a(H)-stanol / D5-sterol ratio in sediment. (A) Direct inputs 
from higher plants and/or phytoplankton containing high 5a(H)-stanol levels. 
Contributions of 5a(H)-stanol derived from living organisms are few, although 
organisms with high 5a(H)-stanol levels have also been reported (Robinson et al., 1984; 
Volkman et al., 1990; Nishimura, 1977b). (B) Selective degradation of sterol during 
sedimentation processes. Since the sterols are more susceptible to decomposition than 
the 5a(H)-stanols under oxidative conditions, 5a(H)-stanols from living organisms can 
be concentrated during the sedimentation process (Nishimura, 1977a; Nishimura and 
Koyama, 1977). (C) Bacterial reduction of D5-sterol under anoxic condition. The 
reduction occurs in the water column and surface sediments (e.g., Nishimura and 
Koyama, 1977; Wakeham, 1989). Therefore, the 5a(H)-stanol / D5-sterol ratio can be 
used as a redox tracer (e.g., Bertrand et al., 2012; Zheng et al., 2015). 
 

  

Bacterial reduction of
65-sterol under anoxic 

condition

High ratio of 
5_(H)-stanol/65-sterol

in sediment

Direct inputs from higher plants 

and/or phytoplankton containing 

high 5_(H)-stanol levels
Anoxic condition

Phytoplankton

Higher plants

Selective degradation of 6 5-sterol 

during sedimentation processes

(A)

(B)
(C)
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Fig. 5-2 Location of the Pond of Literature. The stars (★) denote sampling sites. The 
upper and the lower sites are St. 1 and St. 2, respectively.  
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Fig. 5-3 Distribution of vegetation around the Pond of Literature: (A) Original picture. 
(B) Distribution of vegetation. The original picture was obtained from Google Earth 
(https://www.google.com/earth/). 
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Fig. 5-4 Mass chromatograms (m/z 255, m/z 215, and m/z 257) of sterols from the 
sediment of St. 1.  
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Fig. 5-5 Representative mass chromatograms (m/z 255 and m/z 215) of sterols from the 
plants (Quercus serrate). 
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Fig. 5-6 Distribution of C27, C28, and C29 sterols in aquatic plankton, higher plants, and 
sediment samples. Gray triangles (▲) = plankton. White diamonds (◇) = higher plants. 
Red circles (●) = sediment samples from the Pond of Literature. C27 sterols = 22-
dehydrocholesterol and cholesterol. C28 sterols = diatomsterol, campesterol, and 24-
methylenecholesterol. C29 = stigmasterol and b-sitosterol. Plankton and higher plant 
distributions obtained from Huang and Meinschein (1979), including Attaway et al. 
(1971), Nishimura and Koyama (1976), Pryce (1971), and Meinschein and Kenney 
(1957).

  

C 27

C29

C
28

0

0

0

20

20

40

40
60

60

80

80

100

100

20 40 60 80 100

Plankton
Higher plants
Sediments (Bungaku-no-ike) 



 

 

Chapter 6  
General Discussion 
 

 
 



Chapter 6 

 123 

6.1. Application and expectation of the TMAH method for paleo-enviromental 

studies. 

 In this study, the Offline TMAH–GC–MS method was applied for analysis of 

organic compounds. In this method, TMAH reagent is added to the sample in an 

ampoule tube, and then organic matters are hydrolyzed and derivatized under 

thermochemical reaction. This method can also be performed with smaller amounts of 

sample (5 mg–100 mg dry weight) than in extraction method. Additionally, since pre-

treatment of samples can be performed in shorter time, more number of samples can be 

treated with shorter time using the method. 

 As applications for sediment samples in previous studies, the TMAH method 

has been recognized as analysis method for lignin phenols and fatty acids which are 

mainly derived from terrestrial plants (e.g., Van Heemst et al., 2000; Ishiwatari et al., 

2006; Bertrand et al., 2013; Ohira et al., 2014). On the other hand, in the TMHA method, 

detection cases and spectral patterns of other compounds such as cutin acids (e.g., del 

Rio and Hatcher, 1998), sterols (e.g., Asperger et al., 1999b, 2001; Yamamoto et al., 

2015a), sugars (e.g., Schwarzinger et al., 2002; Tanczos et al., 2003), and amino acids 

(e.g., Gallois et al., 2007) have been reported from other than sediment samples. These 

compounds are organic tracers that are also widely found in sediments. If we can 

analyze such numerous organic compounds from sediment samples at once by the 

TMAH method, it could help us obtain a lot of paleoenvironment information stored in 

sediments. Therefore, this method has good potentials for grasping compositions of 

organic matter in geo-samples such as sediments and for reconstructing 

paleoenvironment using these various organic tracers. 

 In this study, I have selected sterols as a case of application of the TMAH 

method, although over 100 types of organic compounds have been detected from 
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California sediments using this method. The lists of organic compounds from the 

sediment is shown in Table 6-1 and Fig 6-1. From the sediment, not only fatty acids and 

lignin phenols but also various other organic compounds including cutin acids, di-ols, 

and hopanols as useful tracers have been detected. Cutin acids are organic compounds 

derived from cuticular layer of leaves, and these compositions vary depending on types 

of plants (Goni and Hedges, 1990). Therefore, it can be accepted that compositions of 

cutin acid in sediments can be used for tracking detailed vegetation changes in paleo-

environment. Di-ols are aliphatic hydrocarbons having two hydroxyl groups. Rampen et 

al (2012) proposed that long chain 1,13- and 1,15-diols can be used as paleo-temperature 

indicator, and, after this report, these compounds have been attracting attention in the 

field of organic geochemistry. To the best of my knowledge, there has been no report on 

an application of di-ols in sediments using the TMAH method, and in future, it can be 

said that it is important to show usefulness of di-ol analysis by TMAH method as a more 

convenient method. Hopanols are compounds derived from a bacterial (prokaryotic 

organisms) lipids. Hopanol is widely detected in sapolopel-like sedimentary rocks (e.g., 

in Oceanic Anoxic Events) having high organic compound (e.g., Ohkouchi, 1997; 

Summons et al., 1999). This indicates that the high organic layers were generated by 

prokaryotes (cyanobacteria) in an anoxic environment. In the case of California, 

hopanols may be derived from prokaryotic organisms living in the poor oxygen water 

which is described in Chapter 3. 

 Advantages of the TMAH method, which can detect many compounds, can be 

found even in comparison with classical methods. The solvent extraction method is 

commonly used and well-established for analysis of organic matters including di-ols, 

hopanols, and sterols, but this pretreatment relatively requires more labor and time. 

Furthermore, in the solvent extraction method, lignin phenols, strong land biomarker, 
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cannot be detected because b–O–4 linkages which are bonds of lignin to lignin cannot be 

cleaved by the method. On the other hand, the CuO oxidation method can analyze lignin 

phenols and this method has been mainly used for lignin analysis in the field of organic 

geochemistry (e.g., Requejo et al., 1991; Goñi et al., 1998; Hu et al., 1999). However, this 

method is not suitable for analysis of organic compounds such as sterols other than 

lignin phenols, and it has a complicated pretreatment and extraction method. Therefore, 

to analyze organic compounds of terrestrial origin such as lignin phenol and aquatic 

origin such as sterol from the same sediment, it was necessary to analyze separately by 

the two methods (i.e., the solvent extraction and the CuO oxidation methods, e.g., 

Bertrand et al., 2012, 2013). On the other hand, the TMAH method can analyze both of 

terrestrial and marine origin compounds such as lignin phenols and sterols, and makes 

it possible to interpret terrestrial and aquatic contributions at the same time. This is a 

great advantage of the TMAH method. 

 As shown above, organic compounds which have a potential for various 

indicators are widely found from the TMAH method. This shows a strong possibility 

that the TMAH method will be one of the general methods for analysis of organic 

compounds in sediments. Therefore, the proposal of sterol analysis using the TMAH 

method in this study is a pioneer studies for detection and application of various 

compounds in sediments using the TMAH method. 

 

6.2. Significance of sterols in sediments as geochemical proxies 

 Sterols in sediments are mainly derived from terrestrial plants or 

phytoplankton. They can be used to trace input of terrestrial plants and primary 

production of phytoplanktons in aquatic environment. Especially, primary production 

is caused by regional to global climatic changes such as ocean current changes according 
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with atmospheric circulations. Therefore, it is an important tracer for reconstruction of 

paleo-environmental changes. 

 Until now, total organic carbon (TOC) and foraminifera fossils in sediments 

have been used as powerful indicators for primary production (e.g., Ishiwatari et al., 

2000). However, the sterol tracer provides advantages that are not found in TOC 

amount and foraminifera fossils. Basically, a high organic content in sediments with 

respect to high primary productivity and high TOC shows that the productivity was 

high in paleo-environments. However, TOC in sediments is affected by other than 

autogenous source inputs. In fact, form marine sediments, fragments of plants are 

observed, and plant-derived organic compounds are widely detected. Ohira et al (2014) 

interpreted that organic compounds in lacustrine sediments (Lake Biwa) are 

constituted by terrestrial sources during the last 147,000 years, from strong correlation 

between TOC content and lignin phenols in the sediments. These previous studies 

strongly indicate that TOC contents in sediments is not completely controlled by aquatic 

primary productions. On the other hands, sterols can demark origins into terrestrial 

and aquatics using their structural features. For example, campesterol and b-sitosterol 

are major sterol component in terrestrial plants, and phytoplankton has characteristic 

sterols such as diatomsterol and 4a-methyl sterols. Therefore, it sterols can be used as 

tracers that are not influenced by something other than autogenous source inputs. 

 Foraminifera fossils are preserved in sediments by keeping their original forms. 

Since foraminiferal differ in their skeleton depending on species, foraminiferal fossil in 

sediments makes it possible to estimate paleo-environment from differences in their 

habitat such as warm and cold currents (e.g., Barron et al., 2003). Although 

foraminiferal fossils are affected by storage and dissolution of skeletons, dilution by 

clastic particles and organic matter, the changes in their amount reflects the primary 
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production. However, foraminiferal are usually not dominant species in aquatic 

environments, and thus it is possible that the fossils may not reflect overall primary 

productivity changes in paleoenvironments. Kouduka et al. (2017) attempted to 

reconstruct a biota of late Pleistocene using eukaryotic DNA stored in cold deep 

sediments from the Japan Sea. As the result, the most dominant species was Sargassum 

vachellianum, which is a seaweed that inhabitates in the shallow waters around the 

Japanese archipelago from the East China Sea, and the second of that was radiolarians 

of Chaunacanthida which is not preserved as microfossils. The diatom species were less 

than 10% of the total. Therefore, reconstruction of primary production using 

foraminifera fossils is very useful for certain species, but a whole phytoplanktonic 

variability may not be captured. On the other hand, sterols in sediment reflect a whole 

phytoplanktonic primary production as sterols are detected from nearly all 

phytoplankton species, which is strong advantage of sterol analysis in sediments as the 

tracer. 

 

6.3. Application and proposal of stanol / sterol ratio as a redox tracer 

 This study has showed the utility of 5a(H)-stanol/D5-steorl ratio as a redox 

tracer in sediment samples. Furthermore, in this study, 5a(H)-stanol/D5-steorl ratios 

could be divided into useable ratios for oxic–anoxic tracer and unsuitable ratios for one. 

In generally, 5a(H)-stanol/D5-steorl ratio has been used as ratio of total 5a(H)-stanols 

to total D5-sterols in previous studies. For example, Bertrand et al. (2012) calculated the 

5a(H)-stanol/D5-steorl ratio from total D5-sterols (cholesterol + campesterol + 

stigmasterol + b-sitostrol) and total 5a(H)-stanols (cholestenol + campestanol + 

stigmastanol + sitostanol). Zheng et al (2015) defined the 5a(H)-stanol/D5-steorl ratio as 

ratio of campestanol and sitostanaol to campesterol and sitoterol. However, these 
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equations include 5a(H)-stanols (cholestenol, campestanol, and sitostanol) which are 

considered not suitable as redox tracer in this study. Therefore, the total 5a(H)-

stanols/D5-steorls ratio is likely to be composed by high contribution by unsuitable 

5a(H)-stanols as redox tracer. Contribution to the total 5a(H)-stanols/D5-steorls ratio of 

5a(H)-stanols that are influenced other than reduction of D5-sterol in anoxic 

environments is examined using the sediments used in present study. The ratio has 

been defined as: 

 

 

 

(1) 

  

 5a(H)-Stanols which were not useful as redox tracers as 5a(H)-stanol/D5-steorl 

ratios in California sediments are 22-dehydrocholestanol, cholestanol, campestanol and 

sitostanol. In a total 5a(H)-stanols/D5-steorls ratio determined by the formula, these 

5a(H)-stanols accounted for 54%–67% (ave. 59%) of the total 5a(H)-stanols. Likewise 

the California sediments, in the Suigetsu sediment, contribution of unusable 5a(H)-

stanols (cholestenol, sitostanol, and campestnaol) to total 5a(H)-stanols are calculated, 

which imply 70％–94% (ave. 85%). These results show that the major constituent is of 

unusable 5a(H)-stanols as the redox index, and it is clearly indicated that 5a(H)-stanols 

/ D5-sterols ratio determined from the total amount cannot capture past oxic-anoxic 

conditions well. Therefore, for reconstruction of pleo-redox conditions recorded in 

sediments, suitable specific 5a(H)-stanols and D5-sterols as the tracer should be selected, 

24-nordehydrocholestanol	+	diatomstanol +	cholestanol +	campestanol +	sitostanol +	22-dehydrocholestanol		

5a(H)-stanols
D5-sterols =

24-nordehydrocholesterol	+	diatomsterol +	cholesterol	+	campesterol +	sitosterol +	22-dehydrocholesterol		
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such as 	 diatomstanol and diatomsterol, and 24-nordehydrocholestanol and 24-

nordehydrocholesterol. 

 To using organic matter as biological indicators for reconstruction of 

paleoenvironments, interpretation of their preservation and degree of decomposition 

are required. Therefore, some organic indicators have been proposed for interpreting 

their preservation. For example, lignin phenols, a strong indicator of terrestrial plants, 

have a degradation tracer called Ad/Al ratio (Hedges, et al., 1982). This tracer, since 

aldehyde group of lignin phenols is altered to acid group by oxidizing action of fungi, 

can estimate the degree of decomposition of lignin phenols. In general, Ad / Al ratio in 

sediments is obtained as ratio of vanillic acid to vanillin or syringic acid to 

syringaldehyde (e.g., Thevenot et al., 2010). In previous studies using lignin phenol in 

sediment as an indicator of plants, the lignin phenol distributions have been interpreted 

together with the Ad/Al ratio to discuss whether the lignin phenols vertical distributions 

can indicate their preservation or input of terrestrial plants (e.g., Ishiwatari et al., 2006; 

Bertrand et al., 2013; Ohira et al., 2014). Conversely, the presence of Ad/Al ratio as 

preservation tracer of lignin is one of reason that lignin phenols have been used as a 

good terrestrial tracer.  

 On the other hand, sterols in sediments has not been proposed as a good tracer 

to interpret their preservation and degradation. Therefore, it was difficult to interpret 

whether sterol fluctuations in sediments reflect primary production. However, it is 

expected that the 5a(H)-stanol/D5-steorl ratio can become such a tracer. For example, 

when both of 5a(H)-stanols/D5-steorls ratio and their respective concentrations are high, 

it may be interpreted to be obtained by high preservation of the sterols. Likewise, high 

sterol concentrations with low 5a(H)-stanols/D5-steorls ration may indicate high 

primary productivity. Furthermore, since conversion from D5-sterol to 5a(H)-stanol 
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under anoxic condition occurs in water column, it is suitable for discussing preservation 

of sterols associated with fluctuation of oxic-anoxic conditions during sedimentation 

process.  
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Table. 6-1. Identification of organic compounds found by the TMAH method in 
California marine sediment. 

 
  

Peak
No.

Retention
Time Compound Formula MW

Methylated
Formula MW

1 7.476 butanedioic acid, dimethyl ester C6H10O4 146

2 8.23 2-methyl-butan-1, 4-dioic acid methyl ester C7H12O4 160

3 9.95 dimethyl  pentane-1,5-dioate C7H12O4 160

4 10.178 1,2-dimethoxy-benzen C8H10O2 138

5 10.634 1,4-dimethoxy-benzene C8H10O2 138

6 10.964 1,2,6,-trimethoxyhexsan C9H20O3 176

7 12.943 4-methoxy- benzaldehyde (p -hydroxybenzaldehyde:Ph) C7H6O2 122 C8H8O2 136

8 13.218 methyl 3-phenylpropanoate C10H12O2 164

9 14.703 3-methoxybenoic acid methyl ester (Ma) C8H8O3 152 C9H10O3 166

10 15.119 3-methoxy acetophenone (p -hydroxyacetophenone:Po) C8H8O2 136 C9H10O2 150

11 15.363 1,2,4-Trimethoxybenzene C9H12O3 168

12 15.512 4-methoxy-benzoic acid methyl ester (p -hydroxybenzoic acid:Pa) C8H8O3 152 C9H10O3 166

13 15.704 2-propenoic acid-3-phenyl-methyl ester C10H10O2 162

14 16.235 1,3,5-trimethoxy benzene C9H12O3 168

15 16.619 methyl 3-methoxy-4-methylbenzoate C10H12O3 180

16 17.79 3,4-dimethoxy benzaldehyde(vanilin:Vh) C8H8O3 152 C9H10O3 166

17 18.52 n -dodecanoic acid methyl ester (n -C12 FA) C12H24O2 200 C13H26O2 214

18 19.447 3,4-dimethoxy acetophenone(acetovanillon: Vo) C9H10O3 166 C11H16O2 180

19 19.863 3,5-dimethoxy benzoic acid methyl ester  (3,5-diOH) C9H10O4 182 C10H12O4 196

20 19.934 3,4-dimethoxy benzoic acid methyl ester  (vanillic acid:Va) C9H10O4 182 C10H12O4 196

21 20.107 3,4,5-trimethoxybenzaldehyde (syringealdehyde:Sh) C9H10O4 182 C10H12O4 196

22 21.529 3,4,5-ttimethoxy acetophenone (acetosyringone:So) C10H12O4 196 C11H14O4 210

23 21.615 3-(4-methoxyphenyl)2-propenoic acid methylester (p -coumaric Acid: Pc) C10H10O3 178 C11H12O3 192

24 22.275 3,4,5-trimethoxy benzoic acid-methyl ester (syringic acid: Sa) C10H12O5 212 C11H14O5 226

25 22.393 n -tetradecanoic acid methyl ester (n -C14 FA) C14H28O2 228 C15H30O2 242

26 23.509 9-methyl- (br -C14 FA) C14H28O2 228 C15H30O2 242

27 23.509 erythreo- or threo-3,4-dimethoxy-1-(1,2,3-trimethoypropane)-benzen (Vtmp1) C9H10O5 198 C14H20O5 268

28 23.642 methyl 12-methyltetradecanoate (br -C14 FA) C14H28O2 228 C9H10O5 198

29 23.736 erythreo- or threo-3,4-Dimethoxy-1-(1,2,3-trimethoypropane)-benzen (Vtmp2) C9H10O5 198 C14H20O5 268

30 24.161 n -pentadecanoic acid methyl ester (n -C15 FA) C15H30O2 242 C16H32O2 256

31 24.844 5,9,13-trimethyl-tetradecanoic acid methyl ester (br -C14 FA) C17H34O2 270 C18H36O2 284

32 25.237 3-(3,4-dimethoxyphenyl)-2-propenoic acid methylester (ferulic acid: Vc) C10H10O4 194 C12H14O4 222

33 25.339 erythreo- or threo-3,4,5-trimethoxy-1-(1,2,3-trimethoypropane)-benzen (Stmp 1) C10H12O6 214 C15H22O6 298

34 25.496 9-hexadecenoic acid, methyl ester (C16:1 FA) C16H30O2 264 C17H32O2 268

35 25.543 erythreo- or threo-3,4,5-trimethoxy-1-(1,2,3-trimethoypropane)-benzen (Stmp 2) C10H12O6 214 C15H22O6 298

36 25.881 n -hexadecanoic acid methyl ester (n -C16 FA) C16H32O2 256 C17H34O2 270

37 25.983 glucuronic acid C6H10O7 194 C11H20O7 264

38 28.049 phytol C20H40O 296 C21H42O 310
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Table. 6-1. Identification of organic compounds found by the TMAH method in 
California marine sediment (continue). 

 
 
  

Peak
No.

Retention
Time Compound

Methylated
Formula MW

39 29.054 n -octadecanoic acid methyl ester (n -C18 FA) C18H36O2 284 C19H38O2 298

40 31.387 8,16-/9,16-/10,16-dimethoxy C16 acid methyl ester (Cutin acid A) C15H30O4 274 C18H36O4 316

41 31.599 11-eicosenoic acid C20H38O2 310 C21H40O2 324

42 31.695 11-eicosenoic acid C20H38O2 310 C21H40O2 324

43 31.992 n -eicosanoic acid methyl ester (n -C20 FA) C20H40O2 312 C21H42O2 326

44 32.731 7-/8-methoxy C16 diacid dimethyl ester (Cutin B) C16H30O5 302 C17H32O5 316

45 33.021 13-docosen-1-ol C22H44O 324 C23H46O 338

46 33.108 13-docosen-1-ol C22H44O 324 C23H46O 338

47 33.375 docosan-1-ol C22H46O 326 C23H48O 340

48 34.011 11,18-dimethoxy C18:1 acid methylester (11,18-diOHC18:1(cis)FA) C17H34O4 302 C20H40O4 344

49 34.121 octadecanoic acid-11,18-diol C18FA C17H36O4 304 C20H42O4 346

50 34.341 13-tetracosanoic acid C22H42O2 338 C23H44O2 342

51 34.443 13-tetracosanoic acid C22H42O2 338 C23H44O2 342

52 34.71 n -docosanoic acid  methyl ester (n -C22 FA) C22H44O2 340 C23H46O2 354

53 34.828 11,18-dimethoxy C18:1 acid methylester (11,18-diOHC18:1(trans)FA) C17H34O4 302 C20H40O4 344

54 35.229 9,10,18-trimethoxy C18 acid methyl ester (Cutin C) C17H34O5 318 C21H42O5 374

55 35.653 13-tetracosan-1-ol C24H46O 352 C25H48O 366

56 35.739 13-tetracosan-1-ol C24H46O 352 C25H48O 366

57 35.959 1-docosanol C24H48O 354 C25H50O 368

58 36.446 9,10-dimethoxy C18 diacid dimehtyl ester C17H36O4 304 C20H42O4 346

59 36.878 tetracosenoic acid C24H46O2 366 C25H48O2 380

60 36.965 tetracosenoic acid C24H46O2 366 C25H48O2 380

61 37.192 n -tetracosanoic acid methyl ester (n -C24 FA) C24H48O2 366 C25H50O2 382

62 37.478 13-hydroxy-tetradocosen-1-ol (1,13-diOHC24) C23H48O2 356 C25H52O2 384

63 38.654 14-hydroxy-pentacosan-1-ol (1,14-diOH C25) C24H50O2 370 C26H54O2 398

64 38.866 24-norcholesta-5,22E-dien-3β-ol C26H42O 370 C27H44O 384

65 39.038 24-norcholest-22E-en-3β-ol C26H44O 372 C27H46O 386

66 39.172 glucuronic acid 482

67 39.533 n -Hexacosanoic acid methyl ester (n -C26 FA) C26H52O2 396 C27H54O2 410

68 39.769 11-/12-/13-/14-hydroxy-hexacosan-1-ol (1,11-/1, 12-/1,13-/1, 14-di OH C26) C25H52O2 384 C27H56O2 412

69 39.824 g-tocopherol C27H46O2 402 C28H48O2 416

70 40.232 27-nor-24-methylcholesta-5,22E-dien-3β-ol C27H44O 384 C28H46O 398

71 40.413 5a-cholest-22-en-3b-ol C27H46O 386 C28H48O 400

72 40.437 cholesta-5,22E-dien-3β-ol  (22-dehydrocholesterol) C27H44O 384 C28H46O 398

73 40.61 a-tocopherol C29H50O2 430 C30H52O2 444
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Table. 6-1. Identification of organic compounds found by the TMAH method in 
California marine sediment (continue). 

 
 
  

Peak
No.

Retention
Time

Compound Methylated
Formula

MW

74 40.877 cholest-5-en-3β-ol (cholesterol) C27H46O 386 C28H48O 400

75 40.884 13-/12-hydroxy-heptacosan-1-ol (1, 13-/1, 12-diOHC27) C26H54O2 398 C28H58O2 426

76 40.939 a-tocoenol C29H48O2 428 C30H50O2 442

77 41.042 5α(H)-cholestan-3β-ol (cholestanol) C27H48O 388 C28H50O 402

78 41.324 24-methylcholesta-5,22E-dien-3β-ol (diatomsterol) C28H46O 398 C29H48O 412

79 41.552 5α(H)-cholest-7-en-3β-ol (lathosterol) C27H46O 386 C28H48O 400

80 41.489 24-methyl-5α(H)-cholest-22E-en-3β-ol C28H48O 400 C29H50O 414

81 41.733 n -octacosanoic acid methyl ester (n -C28 FA) C28H56O2 424 C29H58O2 438

82 41.928 24-methylcholesta-5,24(28)-dien-3β-ol C28H46O 398 C29H48O 412

83 41.937 12-/13-/14-hydroxy-octacosan-1-ol (1,12-/1,13-/1, 14-diOH C28) C27H56O2 412 C29H60O2 440

84 42.008 24-methylcholest-5-en-3β-ol (campesterol) C28H48O 400 C29H50O 414

85 42.008 24-methyl-5α(H)-cholest-24(28)-en-3β-ol C28H48O 400 C29H50O 414

86 42.102 4α,24-dimethyl-5α(H)-cholest-22E-en-3β-ol C29H50O 414 C30H52O 428

87 42.157 23,24-dimethylcholesta-5,22E-dien-3β-ol C29H48O 412 C30H50O 426

88 42.157 24-methyl-5α(H)-cholestan-3β-ol C28H50O 402 C29H52O 416

89 42.283 24-ethylcholest-5,22E-dien-3β-ol (stigmasterol) C29H48O 412 C30H50O 426

90 42.33 23,24-dimethyl-5α(H)-cholest-22E-en-3β-ol C29H50O 414 C30H52O 428

91 42.448 24-ethyl-5α(H)-cholest-22E-en-3β-ol C29H50O 414 C30H52O 428

92 42.817 23,24-dimethylcholest-5-en-3β-ol C29H50O 414 C30H52O 428

93 42.895 4α,23,24-trimethyl-5α(H)-cholest-22-en-3β-ol (dinosterol) C30H52O 428 C31H54O 442

94 42.927 24-ethylcholest-5-en-3β-ol (β-sitosterol) C29H50O 414 C30H52O 428

95 42.974 23,24-dimethyl-5α(H)-cholestan-3β-ol C29H52O 416 C30H54O 430

96 42.982 13-hydroxy-nonacosan-1-ol (1,13-diOH C29) C28H58O2 426 C30H62O2 454

97 43.068 24-ethyl-5α(H)-cholestan-3β-ol (sitostanol) C29H52O 416 C30H54O 430

98 43.068 24-ethylcholesta-5,24(28)E-dien-3β-ol (fucosterol) C29H48O 412 C30H50O 426

99 43.312 24-ethylcholesta-5,24(28)Z-dien-3β-ol (isofucosterol) C29H48O 412 C30H50O 426

100 43.563 24-ethyl-5α(H)-cholest-7-en-3β-ol C29H50O 414 C30H52O 428

101 43.642 4α, 23, 24-trimethyl-5α-cholestan-3β-ol C30H54O 430 C31H56O 444

102 43.799 n -triacontanoic acid methyl ester  (n -C30 FA) C30H60O2 452 C31H62O2 466

103 43.964 15-/14-/13-tricontan-1-ol (1,15-/1,14-/1,13-diOHC30) C29H60O2 440 C31H64O2 468

104 44.867 n -hentriacontanoic acid methyl ester  (n -C31 FA) C31H62O2 466 C32H64O2 480

105 45.095 15-hydroxy-hentriacontan-1-ol (1, 15-diOH C31) C30H62O2 454 C32H66O2 482

106 46.124 n -dotriacontanoic acid methyl ester  (n -C32 FA) C32H64O2 480 C33H66O2 494

107 46.328 15-hydroxy-dotriacontan-1-ol (1,15-diOH C32) C32H66O2 482 C34H70O2 510

108 47.821 17b,21b-homohomohopanol methylation C31H54O2 442 C32H56O2 456

109 49.777 17b,21b-bishomohopanol methylation C32H56O2 456 C33H58O 470

110 52.377 17b,21b-trishomohopanol methylation C33H58O 470 C34H60O 484
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Fig. 6-1. Total ion chromatogram found in offline TMAH‒GC‒MS method form a 
California marine sediment at section 6‒9cm. Peak assignments are given in Table 6-1. 
IS = internal standard (nonadecanoic-d37 acid). 
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