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In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole
merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors.
Producing an estimate from each detector’s differential arm length control loop readout signals requires
applying time domain filters, which are designed from a frequency domain model of the detector’s
gravitational-wave response. The gravitational-wave response model is determined by the detector’s opto-
mechanical response and the properties of its feedback control system. The measurements used to validate
the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure
actuator, with cross-checks provided by optical and radio frequency references. We describe how the
gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how
the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar
days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 days of
coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than
10% in magnitude and 10° in phase across the relevant frequency band, 20 Hz to 1 kHz.

DOI: 10.1103/PhysRevD.95.062003

I. INTRODUCTION

On September 14, 2015 09:50:45 UTC, the two
Advanced LIGO detectors observed a gravitational-wave
(GW) signal, GW150914, originating from the merging of
two stellar-mass black holes [1]. The event was observed in
coincident data from the two LIGO detectors between
September 12 to October 20, 2015. These detectors, H1
located on the Hanford Reservation in Richland,
Washington, and L1 located in Livingston Parish,
Louisiana, are laser interferometers [2] that use four mirrors
(referred to as test masses) suspended from multistage
pendulums to form two perpendicular optical cavities
(arms) in a modified Michelson configuration, as shown
in Fig. 1. GW strain causes apparent differential variations
of the arm lengths which generate power fluctuations in the
interferometer’s GW readout port. These power fluctua-
tions, measured by photodiodes, serve as both the GW

readout signal and an error signal for controlling the
differential arm length [3].
Feedback control of the differential arm length degree of

freedom (along with the interferometer’s other length and
angular degrees of freedom) is required for stable operation
of the instrument. This control is achieved by taking a
digitized version of the GW readout signal derrðfÞ, apply-
ing a set of digital filters to produce a control signal dctrlðfÞ,
then sending the control signal to the test mass actuator
systems which displace the mirrors. Without this control
system, differential length variations arising from either
displacement noise or a passing GW would cause an
unsuppressed (free-running) change in differential length,
ΔLfree ¼ Lx − Ly ¼ hL, where L≡ ðLx þ LyÞ=2 is the
average length of each detector’s arms, with lengths Lx
and Ly, and h is the sensed strain, h≡ ΔLfree=L. In the
presence of feedback control, however, this free-running
displacement is suppressed to a smaller, residual length
change given by ΔLres ¼ ΔLfreeðfÞ=½1þ GðfÞ�, where
GðfÞ is the open loop transfer function of the differential
arm length servo. Therefore, estimating the equivalent GW
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strain sensed by the interferometer requires detailed char-
acterization of, and correction for, the effect of this loop.
The effects of other feedback loops associated with other
degrees of freedom are negligible across the relevant
frequency band, from 20 Hz to 1 kHz.
The differential arm length feedback loop is character-

ized by a sensing function CðfÞ, a digital filter function
DðfÞ, and an actuation function AðfÞ, which together give
the open loop transfer function

GðfÞ ¼ AðfÞDðfÞCðfÞ: ð1Þ
The sensing function describes how residual arm length
displacements propagate to the digitized error signal,
derrðfÞ≡ CðfÞΔLresðfÞ; the digital filter function describes
how the digital control signal is generated from the digital
error signal, dctrlðfÞ≡DðfÞderrðfÞ; and the actuation
function describes how the digital control signal produces
a differential displacement of the arm lengths, ΔLctrl ≡
AðfÞdctrlðfÞ. These relationships are shown schematically
in Fig. 2.
Either the error signal, the control signal, or a combi-

nation of the two can be used estimate the strain sensed by
the detector [4]. For Advanced LIGO, a combination was
chosen that renders the estimate of the detector strain output
insensitive to changes in the digital filter function D, and
makes application of slow corrections to the sensing and
actuation functions convenient:

hðtÞ ¼ 1

L
½C−1 � derrðtÞ þA � dctrlðtÞ�; ð2Þ

where A and C−1 are time domain filters generated from
frequency domain models of A and C, and � denotes
convolution.
The accuracy and precision of this estimated strain rely

on characterizing the sensing and actuation functions of
each detector, C and A. Each function is represented by a
model, generated from measurements of control loop
parameters, each with associated statistical uncertainty
and systematic error. Uncertainty in the calibration model
parameters directly impacts the uncertainty in the recon-
structed detector strain signal. This uncertainty could limit
the signal-to-noise ratios of GW detection statistics, and
could dominate uncertainties in estimated astrophysical
parameters, e.g., luminosity distance, sky location, com-
ponent masses, and spin. Calibration uncertainty is thus
crucial for GW searches and parameter estimation.
This paper describes the accuracy and precision of the

model parameters and of the estimated detector strain
output over the course of the 38 calendar days of obser-
vation during which GW150914 was detected. Section II
describes the actuation and sensing function models in
terms of their measured parameters. Section III defines the
treatment of uncertainty and error for each of these
parameters. In Sec. IV, a description of the radiation
pressure actuator is given. Sections V and VI discuss the
measurements used to determine the static statistical
uncertainties and systematic errors in the actuation and
sensing function models, respectively, and their results.
Section VII details the systematic errors in model param-
eters near the time of the GW150914 event resulting from
uncorrected, slow time variations. Section VIII discusses
each detector’s strain response function that is used to
estimate the overall amplitude and phase uncertainties
and systematic errors in the calibrated data stream hðtÞ.

FIG. 1. Simplified diagram of an Advanced LIGO interferom-
eter. Four highly reflective test masses form two Fabry–Pérot arm
cavities. At lower left, a power recycling mirror placed between
the laser and the beamsplitter increases the power stored in the
arms to 100 kW. A signal recycling mirror, placed between
the beamsplitter and the GW readout photodetector, alters the
frequency response of the interferometer to differential arm
length fluctuations. For clarity, only the lowest suspension stage
is shown for the optics. Inset: one of the dual-chain, quadruple
pendulum suspension systems is shown.

FIG. 2. Block diagram of the differential arm length feedback
control servo. The sensing function, digital filter function, and
actuation function combine to form the open loop transfer
function GðfÞ ¼ AðfÞDðfÞCðfÞ. The signal xðPCÞT is the modu-
lated displacement of the test masses from the radiation pressure
actuator described in Sec. IV.
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Section IX discusses the intersite uncertainty in the relative
timing of each detector’s data stream. In Sec. X the
implications of these uncertainties on the detection and
astrophysical parameter estimation of GW150914 are
summarized. Finally, in Sec. XI we give an outlook on
future calibration and its role in GW detection and
astrophysical parameter estimation.

II. MODEL DESCRIPTION

We divide the differential arm length feedback loop into
two main functions, sensing and actuation. In this section,
these functions are described in detail. The interferometer
response function is also introduced; it is composed of
these functions and the digital control filter function (which
is precisely known and carries no uncertainty), and is useful
for estimating the overall uncertainty in the estimated
strain.

A. Sensing function

The sensing function C converts residual test mass
differential displacement ΔLres to a digitized signal repre-
senting the laser power fluctuation at the GW readout
port, derr, sampled at a rate of 16 384 Hz. It includes the
interferometric response converting displacement to laser
power fluctuation at the GW readout port, the response of
the photodiodes and their analog readout electronics, and
effects from the digitization process.
The complete interferometric response is determined by

the arm cavity mirror (test mass) reflectivities, the reflec-
tivity of the signal recycling mirror (see Fig. 1), the length
of the arm cavities and the length of the signal recycling
cavity [5,6]. The response is approximated by a single-pole
low-pass filter with a gain and an additional time delay.
The sensing function is thus given by

CðmodelÞðfÞ ¼ KC

1þ if=fC
CRðfÞ expð−2πifτCÞ; ð3Þ

where KC is combined gain of the interferometric response
and analog-to-digital converter (see Fig. 3). It describes, at
a reference time, how many digital counts are produced in
derr in response to differential arm length displacement. The
pole frequency, fC, is the characteristic frequency that
describes the attenuation of the interferometer response to
high-frequency length perturbations [5,7]. Though each
interferometer is designed to have the same pole frequency,
the exact value differs as result of discrepant losses in their
optical cavities: 341 Hz and 388 Hz for H1 and L1,
respectively. The time delay τC includes the light travel
time L=c along the length of the arms (L ¼ 3994.5 m),
computational delay in the digital acquisition system, and
the delay introduced to approximate the complete inter-
ferometric response as a single pole. Finally, the dimen-
sionless quantity CRðfÞ accounts for additional frequency
dependence of the sensing function above 1 kHz, arising

from the properties of the photodiode electronics, as well
as analog and digital signal processing filters.

B. Actuation function

The interferometer differential arm length can be
controlled by actuating on the quadruple suspension system
for any of the four arm cavity test masses. Each of these
systems consists of four stages, suspended as cascading
pendulums [8,9], which isolate the test mass from residual
motion of the supporting active isolation system [10]. Each
suspension system also includes an adjacent, nearly-
identical, cascaded reaction mass pendulum chain which
can be used to independently generate reaction forces on
each mass of the test mass pendulum chain. A diagram of
one of these suspension systems is shown in Fig. 1.
For each of the three lowest stages of the suspension

system—the upper intermediate mass (U), the penultimate
mass (P), and the testmass (T)—digital-to-analog converters
and associated electronics drive a set of four actuators that
work in concert to displace each stage, and consequently the
test mass suspended at the bottom. The digital control signal
dctrl is distributed to each stage and multiplied by a set of
dimensionless digital filters FiðfÞ, where i ¼ U, P, or T, so
that the lower stages are used for the highest frequency signal
content and the upper stages are used for high-range, low-
frequency signal content.
While the differential arm length can be controlled using

any combination of the four test mass suspension systems,

FIG. 3. The magnitude and phase of the sensing function model
CðfÞ for the L1 detector. Below 1 kHz the frequency dependence
is determined by fC, while above 1 kHz it is determined by the
analog-to-digital conversion process.
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only one, the Y-arm end test mass, is used to create ΔLctrl.
Actuating a single test mass affects both the common and
the differential arm lengths. The common arm length
change is compensated, however, by high-bandwidth
(∼14 kHz) feedback to the laser frequency.
The model of the actuation function A of the suspension

system comprises the mechanical dynamics, electronics,
and digital filtering, and is written as

AðmodelÞðfÞ ¼ ½FTðfÞKTATðfÞ þ FPðfÞKPAPðfÞ
þ FUðfÞKUAUðfÞ� expð−2πifτAÞ: ð4Þ

Here Ki and AiðfÞ are the gain and the normalized
frequency dependence of the ith suspension stage actuator,
measured at a reference time, that define the actuation
transfer function for each suspension stage; τA is the
computational delay in the digital-to-analog conversion.
The overall and individual stage actuation functions are
plotted as a function of frequency in Fig. 4. The gain
converts voltage applied at suspension stage i to test mass
displacement. The frequency response is primarily deter-
mined by the mechanical dynamics of the suspension, but

also includes minor frequency dependent terms from
digital-to-analog signal processing, analog electronics,
and mechanical interaction with the locally-controlled
suspension stage for the top mass (see Fig. 1). While
opto-mechanical interaction from radiation pressure can
affect the actuation function [11], the laser power resonat-
ing in the arm cavities during the observation period was
low enough that radiation pressure effects can be ignored.
The H1 and L1 suspensions and electronics are identical by
design, but there are slight differences, mostly due to the
digital filtering for each stage Fi, which are precisely
known and carry no uncertainty.

C. Response function

For uncertainty estimation, it is convenient to introduce
the response function RðfÞ that relates the differential arm
length servo error signal to strain sensed by the interfer-
ometer: hðfÞ ¼ ð1=LÞRðfÞderrðfÞ. As shown schemati-
cally in Fig. 2, the response function is given by

RðfÞ ¼ 1þ AðfÞDðfÞCðfÞ
CðfÞ ¼ 1þ GðfÞ

CðfÞ : ð5Þ

We will use this response function to evaluate the overall
accuracy and precision of the calibrated detector strain
output. The actuation function dominates at frequencies
below the differential arm length servo unity gain fre-
quency, 40 Hz and 56 Hz for H1 and L1, respectively.
Above the unity gain frequency, the sensing function
dominates (see Figs. 3 and 4).

III. DEFINITIONS OF PARAMETER
UNCERTAINTY

From Eqs. (3) and (4), we identify the set QðmodelÞ of
parameters shown in Table I that define the model for each
detector’s sensing and actuation functions. These model
parameters have both statistical uncertainty and systematic
error. In this section, we outline how the uncertainty and
error for each parameter are treated. Discussion of how
these are propagated to inform the total uncertainty and
error in final estimated strain hðtÞ is left to Sec. VIII.
Combinations of the model’s scalar parameters (KC, KT ,

KP, KU, fC, and τC) and frequency-dependent functions
(ATðfÞ, APðfÞ, AUðfÞ, and CRðfÞ) are constrained by a set
of directly measurable properties of the detector QðmeasÞ:

QðmeasÞðfÞ ¼ fKTATðfÞ;
KPAPðfÞ;
KUAUðfÞ;
KCCRðfÞ=ð1þ if=fCÞ expð−2πifτCÞg: ð6Þ

The parameters in QðmodelÞ not included in Table I, FiðfÞ
and τA, are part of the digital control system, known with

FIG. 4. Overall actuation transfer function AðfÞ and actuation
functions for each suspension stage FiðfÞKiAiðfÞ for the L1
detector. The mechanical response of the pendulums and Fi
dictate the characteristics of each stage. The strongest actuator,
that for the upper intermediate mass, is used below a few Hz.
Above ∼30 Hz, only the test mass actuator is used. At certain
frequencies (e.g., 10, 14, and 500 Hz), digital notch filters are
implemented for high quality factor features of the pendulum
responses in order to avoid mechanical instabilities. The H1
actuation function differs slightly in scale, frequency dependence,
and digital filter choice.
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negligible uncertainty, and are thus removed from the
measured quantities without consequence. Each quantity

qðmeasÞ
i ∈ QðmeasÞ is measured using sinusoidal excitations

injected at various points in the control loop while the
detector is in its lowest noise state. The measurements
consist of excitations that are injected consecutively at
discrete frequencies, fk. Only measurements made at a
reference time t0 are used to determine the corresponding

model parameters qðmodelÞ
i , however the measurements are

repeated periodically to inform and reduce uncertainty.
The frequency-dependent model parameters QðmodelÞ

described in Table I do not completely describe the
frequency-dependent quantities in QðmeasÞ at the reference
time. In addition, the scalar quantities in QðmeasÞ vary with
time after the reference measurement. Both discrepancies
are systematic errors, δqi. Albeit small, they are carried
with each parameter QðmodelÞ through to inform the known
systematic error in the response function, and quantified in
the following fashion.
Any discrepancy between AiðfÞ and CRðfÞ and the

measurements exposes poorly modeled properties of the
detector, and thus are systematic errors in Eqs. (3) and (4);

δqi ¼ qðmeasÞ
i − qðmodelÞ

i . We find it convenient to quantify
this systematic error in terms of a multiplicative correction

factor to Eqs. (3) and (4), ζðfdÞi ≡ qðmeasÞ
i =qðmodelÞ

i ≡
1þ ðδqi=qðmodelÞ

i Þ, instead of dealing directly with the
systematic error δqi. These frequency-dependent discrep-
ancies are confirmed with repeated measurements beyond
the reference time.
The scalar parameters, Ki and fC, are monitored con-

tinuously during data taking to track small, slow temporal
variations beyond the reference measurement time t0.
Tracking is achieved using a set of sinusoidal excitations
at select frequencies, typically referred to as calibration
lines. The observed time dependence is treated as an
additional systematic error, δqiðtÞ, also implemented as a

correction factor, ζðtdÞi ≡ δqiðtÞ=qðmodelÞ
i .

In order to quantify the statistical uncertainties in the
frequency-dependent parameters in QðmodelÞ, we divide the
measurements QðmeasÞ by the appropriate combination of

reference model parameters qðmodelÞ
i , time-dependent scalar

correction factors, ζðtdÞi , and a fit to any frequency-dependent

correction factors, ζðfd;fitÞi to form a statistical residual,

ξðstatÞi ¼ qðmeasÞ
i =ðqðmodelÞ

i ζðtdÞi ζðfd;fitÞi Þ − 1: ð7Þ

We assume this remaining residual reflects an estimate of
the complex, scalar (i.e. frequency independent), statistical
uncertainty, σqiqj , randomly sampled over themeasurement
frequency vector fk, and may be covariant between

parameter qðmeasÞ
i and qðmeasÞ

j . Thus, we estimate σqiqj by
computing the standard deviation of the statistical residual,

ξðstatÞi , across the frequency band,

σqiqj ¼
XN
k¼1

ðξðstatÞi ðfkÞ−ξðstatÞi ÞðξðstatÞj ðfkÞ−ξðstatÞj Þ
ðN−1Þ ð8Þ

where ξðstatÞi ¼ P
kξ

ðstatÞ
i ðfkÞ=N is the mean across the N

points in the frequency vector fk.
The time-dependent correction factor, ζðtdÞi , has associ-

ated statistical uncertainty σ
ζðtdÞi

that is governed by the

signal-to-noise ratio of the continuous excitation. Only a
limited set of lines were used to determine these time-
dependent systematic errors, so their estimated statistical
uncertainty is also, in general covariant.
In Secs. V, VI, and VII, we describe the techniques for

measuring QðmeasÞ at the reference time t0, and discuss
resulting estimates of statistical uncertainty σqiqj and
systematic error δqi, via correction factors ζi, for each
detector. In Sec. VIII, we describe how the uncertainty and
error estimates for these parameters are combined to
estimate the overall accuracy and precision of the calibrated
detector strain output hðtÞ.

IV. RADIATION PRESSURE ACTUATOR

The primary method for calibrating the actuation func-
tion A and sensing function C is an independent radiation
pressure actuator called the photon calibrator (PC) [12].
A similar system was also used for calibration of the initial
LIGO detectors [13].
Each detector is equipped with two photon calibrator

systems, one for each end test mass, positioned outside the
vacuum enclosure at the ends of the interferometer arms.
For each system, 1047 nm light from an auxiliary, power-
modulated, Nd3þ:YLF laser is directed into the vacuum
envelope and reflects from the front surface of the mirror
(test mass). The reflected light is directed to a power sensor
located outside the vacuum enclosure. This sensor is an

TABLE I. The set of differential arm length control loop
parameters, QðmodelÞ that must be characterized to define the
sensing and actuation functions.

Parameter Description

ATðfÞ Normalized test mass actuation function
APðfÞ Normalized penultimate mass actuation function
AUðfÞ Normalized upper intermediate mass actuation function
CRðfÞ Residual sensing function frequency dependence
KC Sensing function gain
KT Test mass actuation function gain
KP Penultimate mass actuation function gain
KU Upper intermediate mass actuation function gain
fC Cavity pole frequency
τC Sensing function time delay
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InGaAs photodetector mounted on an integrating sphere
and is calibrated using a standard that is traceable to the
National Institute of Standards and Technology (NIST).
Power modulation is accomplished via an acousto-optic
modulator that is part of an optical follower servo that
ensures that the power modulation follows the requested
waveform. After modulation, the laser beam is divided
optically and projected onto the mirror in two diametrically
opposed positions. The spots are separated vertically,
�11.6 cm from the center of the optical surface, on the
nodal ring of the drumhead elastic body mode, to minimize
errors at high-frequency caused by bulk deformation
[13–16].
The laser power modulation induces a modulated dis-

placement of the test mass that is given by [13]

xðPCÞT ðfÞ ¼ 2PðfÞ
c

sðfÞ cos θ
�
1þMT

IT
~a · ~b

�
: ð9Þ

This modulated displacement is shown schematically on
the left of Fig. 2. The terms entering this formula are as
follows: f is the frequency of the power modulation, PðfÞ
is the power modulation amplitude, c is the speed of light,
sðfÞ is the mechanical compliance of the suspended mirror,
θ≃ 8.8° is the angle of incidence on the mirror, MT ¼
39.6 kg and IT ¼ 0.415 kgm2 are the mass and rotational

moment of inertia of the mirror, and ~a and ~b are displace-
ment vectors from the center of the optical surface to the
photon calibrator center of force and the main interferom-
eter beam, respectively. These displacements determine the
amount of unwanted induced rotation of the mirror.
The compliance sðfÞ of the suspended mirror can be

approximated by treating the mirror as rigid body that is
free to move along the optical axis of the arm cavity:
sðfÞ≃ −1=½MTð2πfÞ2�. Cross-couplings between other
degrees of freedom of the multistage suspension system,
however, require that sðfÞ be computed with a full, rigid-
body model of the quadruple suspension. This model has
been validated by previous measurements [9,17] and is
assumed to have negligible uncertainty.
Significant sources of photon calibrator uncertainty

include the NIST calibration of the reference standard
(0.5%), self-induced test mass rotation uncertainty (0.4%),
and uncertainty of the optical losses along the projection
and reflection paths (0.4%). The overall 1σ uncertainty
in the displacement induced by the photon calibrator,

xðPCÞT ðfÞ, is ≃0.8%.

V. ACTUATION FUNCTION CALIBRATION

The actuation strength for the ith suspension stage,
½KiAiðfÞ�ðmeasÞ, can be determined by comparing the
interferometer’s response, derrðfÞ, to an excitation from
that suspension stage’s actuator, exciðfÞ, with one from the

photon calibrator, xðPCÞT ðfÞ,

½KiAiðfÞ�ðmeasÞ ¼ xðPCÞT ðfÞ
derrðfÞ

×
derrðfÞ
exciðfÞ

: ð10Þ

Figures 5 and 6 show the collection of these measurements
for the H1 and L1 interferometers in the form of correction

factors, ζðfdÞi ¼ ½KiAiðfÞ�ðmeasÞ=½KiAiðfÞ�ðmodelÞ. The col-
lection includes the reference measurement and subsequent
measurements normalized by any scalar, time-dependent

correction factors, ζðtdÞi . These data are used to create the

fit, ζðfd;fitÞi , and estimate the actuation components of the
statistical uncertainty σqiqj.
As described in Sec. II, the actuation function, and

therefore its uncertainty and error, only contribute signifi-
cantly to the uncertainty estimate for h below ∼45 Hz,
which is the unity gain frequency for the differential arm
length servo. While there are no data at frequencies above
100 Hz for H1, the L1 high-frequency data confirm that
above 100 Hz, frequency-dependent deviations from the
model are small.
There are larger frequency-dependent errors in the

models for the upper intermediate stages KUAU for both
detectors. Additional measurements, not explicitly included
in this paper, have shown that these result from unmodeled
mechanical resonances as well as the non-negligible
inductance of the electromagnetic coil actuators. As shown

FIG. 5. Measured frequency-dependent correction factors, ζðfdÞi ,
for the actuators of the lower three stages of the H1 suspension

(symbols) and corresponding fits, ζðfd;fitÞi (solid lines). Only data
up to 100 Hz for the bottom two stages were collected because the
sensing function dominates the actuation function above ∼45 Hz.
Data for the upper intermediate mass is presented only up to
30 Hz because the actuation function for this stage is attenuated
sharply above ∼5 Hz.
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in Fig. 4, however, the actuation strength of the upper
intermediate mass is attenuated sharply above ∼5 Hz by
FU. It therefore does not substantially impact the overall
actuation model in the relevant GW frequency band.
A systematic photon calibrator error would result in an

overall error in the calibrated detector strain output. To
investigate the possibility of such unknown systematic
errors, two alternative calibration methods were employed.
This is similar to what was done during initial LIGO [18].
One alternative method uses a radio-frequency oscillator
reference and 532 nm laser light resonating in the inter-
ferometer arm cavities to calibrate the suspension actuators.
The other method, which was also used during initial
LIGO, uses the wavelength of the 1064 nm main laser light
as a length reference. Their comparison with the photon
calibrator is discussed in the Appendix. No large systematic
errors were identified, but the accuracy of the alternate
measurements is currently limited to ∼10%.

VI. SENSING FUNCTION CALIBRATION

The sensing function, CðmeasÞðfÞ, can be measured
directly by compensating the interferometer response to

photon calibrator displacement, derrðfÞ=xðPCÞT ðfÞ, for the
differential arm length control suppression, ½1þGðfÞ�,

CðmeasÞðfÞ ¼ ½1þ GðfÞ� × derrðfÞ
xðPCÞT ðfÞ

; ð11Þ

where GðfÞ is measured independently with the calibrated
actuator.
Figure 7 shows the collection of these measurements

for H1 and L1 in the form of correction factors, ζðfdÞC ¼
CðmeasÞðfÞ=CðmodelÞðfÞ, appropriately normalized with

time-dependent correction factors, ζðtdÞi . Corresponding fits

to the frequency-dependent correction factors, ζðfd;fitÞC , are
also shown. Together, these are used to establish the
sensing components of the statistical uncertainty, σqiqj .
The frequency-dependent correction factor seen in H1

exposes detuning of its signal recycling cavity [7], resulting
from undesired optical losses. Such detuning modifies the
interferometric response but is not included in the sensing
function model [Eq. (11)]. The sensing function contribu-
tion to the response function, RðfÞ, only dominates above
the unity gain frequency of the differential arm length servo
(f > 45 Hz). As such, this correction factor becomes
negligible when folded into the overall systematic error.

VII. TIME-DEPENDENT SYSTEMATIC ERRORS

The scalar calibration parameters KC; fC, and KT have
been found to vary slowly as a function of time [19].
Changes in these parameters are continuously monitored
from the calibration lines observed in derr; these lines are
injected via the photon calibrator and suspension system

FIG. 6. Measured frequency-dependent correction factors, ζðfdÞi ,
for the actuators of the lower three stages of the L1 suspension

(symbols) and corresponding fits, ζðfd;fitÞi (solid lines). Data
collected up to 1.2 kHz confirms the expected frequency
dependence of the correction factors for the bottom two stages.
Data for the upper intermediate mass is presented up to 30 Hz
because the actuation function for this stage is attenuated sharply
above ∼5 Hz.

FIG. 7. Measured frequency-dependent sensing function cor-
rection factors, ζðfdÞi , for L1 (blue crosses) and H1 (red circles)

and their fits, ζðfd;fitÞi .
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actuators. The amplitude of each calibration line is tuned to
have a signal-to-noise ratio (SNR) of ∼100 for a ten-second
Fourier transform of derr. The calibration lines are demodu-
lated, and their complex ratios are stored at a rate of 16 Hz.
Running means of the complex ratios are computed over
128 s of this data, and are used to compute the scalar
parameter as a function of time. The length of the running
mean was chosen to reduce statistical uncertainty while still
maintaining signal integrity for the chosen amplitudes, and
to reduce the effect of non-Gaussian noise transients in the
interferometer.
The optical parameters KC and fC change in response to

variations in the alignment or the thermal state of the
interferometer optics. The most dramatic changes occur
over the course of the few minutes immediately after the
interferometer achieves resonance, when the interferome-
ter’s angular control system is settling and the optics are
coming into thermal equilibrium.
Variations in KT occur due to the slow accumulation of

stray ions onto the fused silica test mass [20,21]. Test mass
charging thus creates a slow change in the actuation gain,
which takes several days to cause an observable change.
The upper stage actuation gains, KP and KU, are also
monitored, but the measurements do not show time-
dependent variations that are larger than the precision of
the tracking measurements.
Changes in the gains Ki are represented by time-

dependent correction factors, κiðtÞ¼ 1þδKiðtÞ=Ki ∈ ζðtdÞi .
Changes in the pole frequency, however, are reported as an
absolute change: fCðtÞ ¼ fC þ δfC. Time-dependence in
fC results in a time-dependent, frequency-dependent cor-

rection factor ζðtdÞfC
ðfÞ, determined by taking the ratio of two

normalized, single-pole transfer functions, onewith fC at the
reference time and the other with fC at the time of relevant
observational data. All time-dependent correction factors
also have statistical uncertainty, which is included in σqiqj .
Measurements to be used as references for the interfer-

ometer models were made 3 days prior and 1 day prior to
GW150914 at H1 and L1, respectively. Since the charge
accumulation on the test mass actuators is slow, any charge-
induced changes in the test mass actuation function
parameters during these few days was less than 1%.
At the time of GW150914, H1 had been observing for

2 hours and L1 had been observing for 48 minutes, so both
detectors had achieved stable alignment and thermal con-
ditions. We thus expect that sensing function errors were
also very small, though they fluctuate by a few percent
around the mean value during normal operation. This level
of variation is consistent with the variation measured during
the September 12 to October 20 observation period. The
correction factors measured at the time of GW150914 are
shown in Table II.

VIII. ESTIMATE OF TOTAL UNCERTAINTY

The statistical uncertainty of all model parameters are
combined to form the total statistical uncertainty of the
response function,

σ2RðfÞ ¼
X
qi

X
qj

�∂RðfÞ
∂qi

��∂RðfÞ
∂qj

�
σqiqj ; ð12Þ

where ∂RðfÞ=∂qi is the partial derivative of R with respect
to a given parameter qi.
The total systematic error in the response function, δR,

represented as a correction factor, 1þ δR=R, is evaluated
by computing the ratio of the response function with its
parameters evaluated with and without time- and fre-
quency-dependent actuation and sensing correction factors

1þ δRðf; tÞ
RðfÞ ¼ Rðf; q1; q2;…; qnÞ

Rðf; t; q1 þ δq1; q2 þ δq2;…; qn þ δqnÞ
:

ð13Þ

Therefore, the response function correction factor quanti-
fies the systematic error of the calibrated detector strain
output at the time of GW150914.
Measurements made during and after the observation

period revealed that the estimate of xðPCÞT also includes

systematic errors δxðPCÞT , resulting in frequency-independent
correction factors of 1.013 and 1.002 for H1 and L1,
respectively. These errors affect both the actuation and
sensing function, and are included accordingly with other
known systematic errors in the response function.
Figure 8 shows the total statistical uncertainty and

correction factors for each interferometer’s response func-
tion, RðfÞ, at the time of GW150914 and defines the 68%
confidence interval on the accuracy and precision of hðtÞ.
Systematic errors at low frequency are dominated by the
systematic errors in the actuation function, whereas at high
frequencies, the systematic error is dominated by the
sensing function systematic error. The frequency depend-
ence of the sensing and actuation models, and of the
uncertainties presented here, is expected to be smoothly
varying in the 20 Hz to 1 kHz band. For all frequencies
relevant to GW150914, between 20 Hz and 1 kHz, the
uncertainty is less than 10% in magnitude and 10° in phase.
The comparison of measurements with models presented in

TABLE II. Dimensionless correction factors κi and systematic
error in cavity pole frequency, and their associated statistical
uncertainties (in parenthesis) during GW150914.

H1 L1

Magnitude Phase (deg.) Magnitude Phase (deg.)

κT 1.041(2) −0.7ð1Þ 1.012(2) −1.2ð1Þ
κPU 1.022(2) −1.3ð2Þ 1.005(3) −1.5ð2Þ
κC 1.001(3) � � � 1.007(3) � � �
δfC (Hz) −8.1ð1.4Þ � � � 0.5(1.9) � � �
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Sec. V and Sec. VI of this paper are consistent with that
expectation.

IX. INTERSITE TIMING ACCURACY

Digital signals derr and dctrl are derived from signals
captured by analog-to-digital converters as a part of the
LIGO data acquisition system [22] and are stored in a mass
data storage system which records these signals for later
analysis. The LIGO timing system [23] provides the
reference timing information for the data acquisition
system, which records the data with an associated
Global Positioning System (GPS) time stamp.
Each detector’s timing system uses a single Trimble

Thunderbolt E GPS receiver as the timing reference.
Additional GPS receivers and one cesium atomic clock
serve as witness clocks independently monitoring the
functionality of the main GPS reference. Once a second,
timing comparators monitor the clock edge differences
(modulo one second) between the main GPS receiver and
the witness clocks with sub-microsecond accuracy. We did
not observe any anomaly at the time of GW150914.
Large absolute timing offsets must also be ruled out with

the GPS units at each site, which may be out of range of the
timing comparators. The GPS units produce IRIG-B time
code signals which can be recorded by the data acquisition
system. The IRIG-B time code provides a map from the
acquisition system’s GPS time to Coordinated Universal

Time (UTC). At the time of GW150914, IRIG-B signals
generated by the witness GPS receivers were recorded at
H1. At L1, IRIG-B signals generated by the reference GPS
receiver were recorded as a self-consistency check.
Throughout all 38 days of observation, no large offset
was observed between any witness or reference IRIG-B
signals and UTC at either site. Witness receivers were
added at L1 after the initial 38 days, and their IRIG-B codes
showed no inconsistency. We expect the uncertainty in this
comparison to be smaller than the 1 μs specifications of
typical GPS systems [24–26].
Additional monitoring is performed to measure any

potential timing offset which may occur internally between
the timing system and the analog-to-digital and digital-to-
analog converters. This monitoring system is described in
detail in [23], but summarized here. Two analog, sinusoidal
diagnostic signals at 960 and 961 Hz are generated by each
data acquisition unit. The beat note of these two sine waves
and all ADCs and DACs in the unit itself are synchronized
with a one-pulse-per-second signal sent from the reference
GPS receiver via optical fiber with accuracy at the micro-
second level. Within a given converter, the channel-to-
channel synchronization is well below this uncertainty
[27,28]. The known diagnostic waveform is also injected
into a subset of analog-to-digital converters in each data
acquisition unit. The recorded waveform can then be
compared against the acquisition time stamp, accounting
for the expected delay. Any discrepancy would reveal that
data acquisition unit’s timing is offset relative to the timing
reference. The diagnostic signals on units directly related to
the estimated detector strain hðtÞ—the GW readout and
photon calibrator photodetectors—are recorded perma-
nently. These signals were examined over a 10-minute
window centered on the time of GW150914. In both
detectors, these offsets were between 0.6 and 0.7 μs
depending on the unit, with the standard deviation smaller
than 1 ns in each given unit. Although potential timing
offsets between different channels on the same analog-to-
digital-converter board were not measured, there is no
reason to believe that there were any timing offsets larger
than a few microseconds.
Based on these observations we conclude that the LIGO

timing systems at both sites were working as designed and
internally consistent over all 38 days of observation. Even
if the most conservative estimate is used as a measure of
caution, the absolute timing discrepancy from UTC, and
therefore between detectors, was no larger than 10 μs. The
impact of this level of timing uncertainty is discussed in
Sec. X.

X. IMPACT OF CALIBRATION
UNCERTAINTIES ON GW150914

The total uncertainty in hðtÞ reported in Sec. VIII is less
than 10% in magnitude and 10° in phase from 20 Hz to
1 kHz for the entire 38 calendar days of observational data

FIG. 8. Known systematic error and uncertainty for the
response function RðfÞ at the time of GW150914, expressed
as a complex correction factor 1þ δRðf; tÞ=RðfÞ (dashed lines)
with surrounding uncertainty �σRðfÞ (solid lines). The upper
panel shows the magnitude, and the lower panel shows the
phase. The solid lines define the 68% confidence interval of the
precision and accuracy of our estimate of hðtÞ.
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during which GW150914 was observed. The astrophysical
searches used for detecting events like GW150914 are not
limited by this level of calibration uncertainty [29,30].
Calibration uncertainties directly affect the estimation

of the source parameters associated with events like
GW150914.The amplitudeof thegravitationalwave depends
on both the luminosity distance and the orbital inclination of
the source, so uncertainty in the magnitude of the calibration,
determined by the photon calibrator, directly affects the
estimation of the luminosity distance. The luminosity dis-
tance also depends strongly, however, on the orbital inclina-
tion of the binary source, which is poorly constrained by the
two nearly co-aligned Advanced LIGO detectors. Thus, the
10% uncertainty in magnitude does not significantly degrade
the accuracy of the luminosity distance for GW150914 [31].
The absolute scale is cross-checked with two additional
calibration methods, one referenced to the main laser wave-
length and another referenced to a radio-frequency oscillator
(Appendix). Each method is able to confirm the scale at the
10% level in both detectors, comparable to the estimate of
total uncertainty in absolute scale.
An uncertainty of 10% in the absolute strain calibration

results in a ∼30% uncertainty on the inference of coales-
cence rate for similar astrophysical systems [32]. Since the
counting uncertainty inherent in the rate estimation sur-
rounding GW150914 is larger than the 30% uncertainty in
rates induced by the calibration uncertainty, the latter does
not yet limit the rate estimate.
Estimating the sky-location parameters depends partially

on the intersite accuracy of the detectors’ timing systems
[33]. These systems, and the consistency checks that were
performed on data containing GW150914, are described
briefly in Sec. VI. The absolute time of detectors’ data
streams is accurate to within 10 μs, which does not limit the
uncertainty in sky-location parameters for GW150914
[31,34]. Further, the phase uncertainty of the response
function as shown in Sec. VIII is much larger than the
corresponding phase uncertainty arising from intrasite
timing in the detection band (a �10 μs timing uncertainty
corresponds to a phase uncertainty of 0.36° at 100 Hz).
All other astrophysical parameters rely on the accuracy

of each detector’s output calibration as a function of
frequency. The physical model of the frequency depend-
ence underlying this uncertainty was not directly available
to the parameter estimation procedure at the time of
detection and analysis of GW150914. Instead, a prelimi-
nary model of the uncertainty’s frequency dependence was
used, the output of which was a smooth, parametrized
shape over the detection band [31,35]. The parameters of
the preliminary model were given Gaussian prior distribu-
tions such that its output was consistent with the uncer-
tainties described in this paper. Comparison between the
preliminary model and the physical model presented in this
paper have shown that the preliminary model is sufficiently
representative of the frequency dependence. In addition, its

uncertainty has been shown not to limit the estimation of
astrophysical parameters for GW150914 [31].

XI. SUMMARY AND CONCLUSIONS

In this paper, we have described how the calibrated strain
estimate hðtÞ is produced from the differential arm length
readout of the Advanced LIGO detectors. The estimate is
formed from models of the detectors’ actuation and sensing
systems and verified with calibrated, frequency-dependent
excitations via radiation pressure actuators at reference
times. This radiation pressure actuator relies on a NIST-
traceable laser power standard and knowledge of the test
mass suspension dynamics, which are both known at the
1% level. The reference and subsequent confirmation
measurements inform the static, frequency-dependent sys-
tematic error and statistical uncertainty in the estimate of
hðtÞ. Time-dependent correction factors to certain model
parameters are monitored with single-frequency excitations
during the entire observation period. We report that the
value and statistical uncertainty of these time-dependent
factors are small enough that they do not impact astro-
physical results throughout the period from September 12
to October 20, 2015.
The reference measurements and time-dependent cor-

rection factors are used to estimate the total uncertainty in
hðtÞ, which is less than 10% in magnitude and 10° in phase
from 20 Hz to 1 kHz for the entire 38 calendar days of
observation during which GW150914 was observed. This
level of uncertainty does not significantly limit the esti-
mation of source parameters associated with GW150914.
We expect these uncertainties to remain valid up to 2 kHz
once the forthcoming calibration for the full LIGO observ-
ing run is complete.
Though not yet the dominant source of error, based on

the expected sensitivity improvement of Advanced LIGO
[36], calibration uncertainties may limit astrophysical
measurements in future observing runs. In the coming
era of numerous detections of gravitational waves from
diverse sources, accurate estimation of source populations
and properties will depend critically on the accuracy of the
calibrated detector outputs of the advanced detector net-
work. In the future, the calibration physical model and its
uncertainty will be directly employed in the astrophysical
parameter estimation procedure, which will reduce the
impact of this uncertainty on the estimation of source
parameters. We will continue to improve on the calibration
accuracy and precision reported here, with the goal of
ensuring that future astrophysical results are not limited by
calibration uncertainties as the detector sensitivity improves
and new sources are observed.
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APPENDIX: PHOTON CALIBRATOR
CROSS-CHECK

It is essential to rule out large systematic errors in the
photon calibrator by comparing it against fundamentally
different calibration methods. For Advanced LIGO, two
alternative methods have been implemented. One is based
on a radio-frequency oscillator and the other based on the
laser wavelength. Each of them is described below.

1. Calibration via radio-frequency oscillator

As part of the control sequence to bring the interferom-
eter to resonance, the differential arm length is measured
and controlled using two auxiliary green lasers with a
wavelength of 532 nm [2,37,38]. Although designed as part
of the interferometer controls, this system can provide an
independent measure of the differential arm length.

The two green lasers are offset from each other in
frequency by 158 MHz. The frequency of each is inde-
pendently locked to one of the arm cavities with a control
bandwidth of several kilohertz. Therefore, the frequency
fluctuations of each green laser are proportional to the
length fluctuations of the corresponding arm cavity through
the relation Δνg=νg ≈ ΔL=L, where νg is the frequency of
either of the auxiliary lasers [39]. Beams from these two
lasers are interfered and measured on a photodetector,
producing a beat-note close to 158 MHz. As the differential
arm length varies, the beat-note frequency shifts by the
amount defined by the above relation. This shift in the beat-
note frequency is converted to voltage by a frequency
discriminator based on a voltage controlled oscillator at a
radio frequency. Therefore the differential arm length can
be calibrated into physical displacement by calibrating the
response of the frequency discriminator.
A complicating factor with this method is the limited

availability. This method is only practical for calibration in
a high noise interferometer configuration because sensing
noise is too high. Another set of measurements is thus
required to relate the high noise actuators to the ones
configured for low noise observation. These extra mea-
surements are conducted in low noise interferometer state
where both high and low noise actuators are excited. Since
both excitations are identically suppressed by the control
system, simply comparing their responses using the readout
signal derr allows for propagation of the calibration. In
summary, one can provide an independent calibration of
every stage of the low noise actuator by three sets of
measurements:

½KiAiðfÞ�ðrfÞ ¼
�

ΔL
excHRðfÞ

�
×

�
excHRðfÞ
derrðfÞ

�
×

�
derrðfÞ
exciðfÞ

�
;

ðA1Þ

where excHR is digital counts applied to excite a high noise
actuator. The first term on the right-hand side represents the
absolute calibration of the high noise actuator, and the final
two ratios represent the propagation of the calibration in
low noise interferometer state.

2. Calibration via laser wavelength

The suspension actuators can be calibrated against the
main laser wavelength (λr ¼ 1064 nm) using a series of
different optical topologies. The procedure is essentially
the same as the procedure for initial gravitational wave
detectors [40,41].
First, the input test masses and the beamsplitter are

used to form a simple Michelson topology, which allows
the input test mass suspension actuators to be calibrated
against the main laser wavelength. Then, a laser (either
main or auxiliary green) is locked to the Fabry–Pérot cavity
formed by the X-arm input and end test masses. This allows
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the end test mass actuators to be calibrated against the
corresponding input test mass actuators. Finally, in the full
optical configuration, the low noise suspension actuators
(of the Y-arm end test mass) are calibrated against the
X-arm end test mass suspension actuators.
In Advanced LIGO, one practical drawback is the narrow

frequency range in which this technique is applicable. Not
all input test masses suspensions have actuation on the final
stage, so the penultimate mass suspension actuators must
be used instead. This limits the frequency range over which
one can drive above the displacement sensitivity of the
Michelson. The penultimate stage actuators themselves are
also weak, further reducing the possible signal-to-noise
ratio of the fundamental measurement. As a consequence,
the useable frequency range is limited to below 10 Hz.

3. Results and discussion

Figures 9 and 10 show the correction factor for KTAT.
Only the test mass stage is shown for brevity. This

comparison was done for all three masses of actuation
system and show similar results. With the correction factors
of both independent methods (radio frequency oscillator
and laser wavelength) within 10% agreement with that as
estimated by radiation pressure (again, for all stages of
actuation), we consider the absolute calibration of the
primary method confirmed to that 10% level of accuracy.
At this point, the independent methods are used merely to
bound the systematic error on the radiation pressure
technique’s absolute calibration; considerably less effort
and time were put into ensuring that all discrepancies and
systematic errors within the independent method were well-
quantified and understood. Only statistical uncertainty—
based on coherence for each compound-measurement point
in each method—is shown, because the systematic error
for these independent methods have not yet been identified
or well-quantified. Refinement and further description of
these techniques is left for future work.
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