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Abstract We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel,
electrostatic waves associated with magnetic reconnection at the Earth’s magnetopause. The observed waves
have parallel electric fields (E||) with amplitudes on the order of 100mV/m and display nonlinear characteristics
that suggest a possible net E||. These waves are observed within the ion diffusion region and adjacent to (within
several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current
layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be
driven by a two stream instability, which is a consequence of mixing cold (<10eV) plasma in themagnetosphere
with warm (~100eV) plasma from themagnetosheath on a freshly reconnectedmagnetic field line. The frequent
observation of these waves suggests that cold plasma is often present near the magnetopause.

1. Introduction

Magnetic reconnection at the magnetopause occurs in an asymmetric setting between warm (~100 eV), dense
(10 cm�3–100 cm�3) plasma in the magnetosheath and low-density (~1 cm�3) plasma in the magnetosphere
[e. g. Paschmann et al., 2013, and references therein; Hesse et al., 2014]. Both the magnetosheath plasma and
magnetosphere plasma are highly variable in density (n) and electron and ion temperatures (Te and Ti). The
magnetosphere plasma contains hot (~1 keV) plasma but frequently has a cold (<10 eV) component as well.

Waves associated with magnetic reconnection at the magnetopause are well documented [e. g. Labelle and
Treumann, 1988; Deng and Matsumoto, 2001; Farrell et al., 2002; Chaston et al., 2005; Khotyaintsev et al., 2006].
The observation ofwhistler waves at themagnetopause, for example, has sparked debate on their role inmagnetic
reconnection [Deng and Matsumoto, 2001; Vaivads et al., 2007; Fujimoto and Sydora, 2008]. The Magnetospheric
Multiscale (MMS) mission [Burch et al., 2016a] is designed to study magnetic reconnection at the magnetopause
at high temporal and spatial resolution. This region also has been observed [Paschmann et al., 2013] and studied
with numerical simulations and analytic analysis [e. g. Burch and Drake, 2009, and references therein].

In this article, we present observations of intense, electrostatic waves that are parallel to the background mag-
netic field (B). The MMS mission provides unambiguous identification of the ion diffusion regions and electron
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diffusion regions, allowing for detailed
analysis of the relationship between
waves and magnetic reconnection. We
find that near (within several electron
skin depths, λe) the electron diffusion
region, large-amplitude (~25mV/m to
>200mV/m), parallel electrostatic
waves are frequently observed. In many
of the observed cases, there is evidence
of cold plasma.

To investigate the origin of these
waves, we employ a 2-D Vlasov code
[Newman et al., 2001] to simulate the
mixing of the warm magnetosheath
plasma with a cold component in the
magnetosphere. The results have good
qualitative and quantitative agreement
with observations. The waves appear to
be driven by a two-stream instability
(electron and/or ion) that results from
plasma mixing. Several different wave
modes can appear depending on the
relative densities, temperatures, and
drift speeds of the mixing plasmas.
The strongest waves can be explained
as electron acoustic waves [Watanabe
and Taniuti, 1977; Gary, 1987] in regions
where magnetosheath plasma is start-
ing to penetrate into the magneto-
sphere. A beam mode appears if the
cold plasma is accelerated into the
magnetosheath plasmas. Ion acoustic
waves also can be driven under specific
density and temperature ratios. The
wave modes can be a hybrid in that
both the ion response of the magne-
tosheath plasma (traditional ion acous-
tic wave) and the electron response of
the cold plasma (electron acoustic
wave) can play a role. Because these
waves are often within a few λe of the
electron diffusion region, they may be
a good indicator or marker of magnetic
reconnection. The frequent occurrence
of such waves, when near a magnetic
reconnection site, supports previous
findings that cold plasma is often pre-
sent at the subsolar magnetopause
[Su et al., 2000; McFadden et al., 2008;
Toledo-Redondo et al., 2015].

The intense, electrostatic waves are often observed in a nonlinear state with a possible net parallel potential.
The 2-D Vlasov simulation results indicate that a parallel potential acts to retard magnetosheath electrons
from an in-rush into the magnetosphere, preserving the quasi-neutral plasma. Such parallel electric fields

Figure 1. MMS4 observations on 22 October 2015 of a magnetic reconnec-
tion region. (a and b) The differential ion energy flux and differential electron
energy flux as a function of energy (vertical axis) and time. (c) The parallel and
perpendicular components of Ti and Te. (d) Vi. (e) Ve. (f) B. The black trace is |B|.
(g–i) Emeasured (black), �Vi ×B (red), �Ve×B (blue). (j) The electric field
spectral power density summed over all three components as a function of
frequency (vertical axis) and time. (k) E in the frequency band of DC to ~3.2 kHz
displayed at 8192 samples per second. All vectors are in GSE coordinates.
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have been reported from laboratory experiments [e. g. Carr et al., 2013] and from several simulations of mag-
netic reconnections [Li et al., 2012; Egedal et al., 2015], albeit these simulations did not include a cold popula-
tion. The same electric fields appear to accelerate cold electrons from the magnetosphere toward the
reconnection site.

The large-amplitude, parallel, electrostatic waves are rarely observed in isolation. Often, observations over an
extended region near the magnetic reconnection site include a mixture of waves including electrostatic
whistler waves, lower hybrid waves, ion cyclotron waves, electromagnetic whistler waves, and Langmuir
waves. The amplitudes and occurrence of the various wave modes are highly variable and are the subjects
of future articles.

2. Observations

The observations in Figure 1 display 10 s of data (horizontal axis) from the MMS4 spacecraft near an electron
diffusion region [Burch and Drake, 2009; Burch et al., 2016a, 2016b]. Figures 1a and 1b plot the ion and elec-
tron differential energy fluxes (color) as a function of energy (vertical axis) and time [Pollock et al., 2016].
Figure 1c plots the parallel and perpendicular measurements of Ti and Te. The colors distinguish the measure-
ments as labeled on the right side of the plot. Figures 1d and 1e plot the ion velocity (Vi, 8 samples per sec-
ond) and electron velocity (Ve, 32 samples per second). Figure 1f plots B [Torbert et al., 2016; Russell et al.,
2016] at 128 samples per second. All vector quantities and the spacecraft position at the top of the plot
are in geocentric solar ecliptic (GSE) coordinates.

Figures 1g–1i display the three components of the electric field, Ex, Ey, and Ez, respectively [Torbert et al., 2016;
Lindqvist et al., 2016; Ergun et al., 2016]. The measured electric field (E) is in black, �Ve×B is in blue, and
�Vi×B is in red. During this period, the uncertainty in the Ex and Ey components is ~1mV/m. The uncertainty
in the Ez component, however, varies. It increases to ~5mV/m between ~06:05:19 UT and ~06:05:22 UT due a
spacecraft wake, possibly from cold plasma [Engwall et al., 2006]. The uncertainty in Ez, is plotted in orange in
Figure 1i, is derived from several sources including known measurement errors and offsets, and the time
average of E.B:

ΔE ¼ 1
Δt

∫
Δt=2

�Δt=2
E � B B

Bj j2 dt (1)

ΔE is derived from the E.B offset over an array of values of Δt starting at several hours reducing by a factor of 2
until Δt~10 s. The dominant contribution in the uncertainty (Figure 1i) comes with Δt~10 s. When large E ·B
offsets on time scales>10 s are seen, offset removal is implemented down to Δt = 0.5 s using medians rather
than averages to preserve E|| measurements of less than 0.5 s duration. An increase in uncertainty in the axial
component suggests a possible cold plasma wake [Engwall et al., 2006]. The axial electric field measurement
is most susceptible to spacecraft wake errors [e.g., Cully et al., 2007]. At the same time, the Ez uncertainty
increases, a cold plasma component is observed in the ions (Figure 1a).

The data in Figure 1 suggest that the MMS4 spacecraft is near (within several λe) an electron diffusion region
at 22 October 2015, ~06:05:22 UT (this event is briefly discussed by Burch et al. [2016b]). The indicators include
a reversal in Bz and a near null in |B| (Figure 1f), increased parallel Te (Figure 1c), a reversal in the Z component
of Vi (Figure 1d), a reversal in the Z component of Ve (Figure 1e), and a positive Ex (Figure 1g) [e. g. Shay et al.,
1998; Hesse et al., 2011; Paschmann et al., 2013, and references therein; Shuster et al., 2015]. In addition,
Figures g–1i show good agreement between measured E and �Ve×B, but �Vi×B noticeably differs, which
indicates that the ions are de-coupled from the electrons and that MMS4 is in the ion diffusion region or a Hall
electric field region, and near to the electron diffusion region.

Just before the magnetic reconnection event, the ions (Figure 1a) show the presence of ~10 eV plasma
between ~06:05:19 UT and ~06:05:22 UT. At ~06:05:21.5 UT, perpendicularly convected cold ions are briefly
observed at energies near ~20 eV to ~50 eV (see later, Figure 2a); after which, the cold ions are not observed.
The convection of the cold ions appears to increase as the magnetic field decreases. An enhancement in
the ~10 eV electrons is not clearly seen (Figure 1b); however, the ~10 eV electrons become field aligned
(not displayed) between ~06:05:19 UT and ~06:05:22 UT. These observations and the possible detection of
a spacecraft wake (Figure 1i) suggest that cold (<10 eV) plasma is present on the magnetosphere side from
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~06:05:19 UT to ~06:05:22 UT. Such cold plasma is supported by previous observations [Su et al., 2000;
McFadden et al., 2008; Toledo-Redondo et al., 2015].

At the same period that cold plasma is inferred, large-amplitude waves are observed (Figures 1j–1l). The red
traces (which are nearly parallel to B) just after ~06:05:19 UT (Figure 1l) are ~300Hz waves as are the spiky red
traces just before ~06:05:23 UT. The blue trace just after ~06:05:22 UT is dominated by a DC Hall electric field
(see Figure 1g), so the waves are primarily parallel to B. Figure 1j displays the omni-directional spectral power
density of B [Le Contel et al., 2016], and Figure 1k displays the omni-directional spectral power density of E.
Increased power in E is seen from ~50Hz to ~1 kHz in frequency at the same time as the fluctuations in
the red traces (Figure 1l). On the other hand, little or no enhancement is detected in B in the ~50Hz to
~1 kHz frequency range, which indicates that the waves are electrostatic.

B, Vi, and Ve observations (Figures 1d–1f) are consistent with the MMS position being near a magnetic recon-
nection region as displayed in Figure 2j. Prior to the reconnection event (~06:05:22 UT), Bz is positive and the
Z components of Vi and Ve are negative, indicating that MMS is on the �Z and �X side of the reconnection
region. After the reconnection event, Bz and |B| remain low. The ion distributions are typical of the magne-
tosheath, the By component begins to dominate, and Vi and Ve are positive.

Figure 2 displays the same event from all four MMS spacecraft. The time period is reduced to 4 s to highlight
the region of the intense wave emissions. Figure 2a is the differential ion energy flux from MMS1 plotted in
the same fashion as in Figure 1. Figures 2b–2e display B from the four MMS spacecraft at 128 samples per
second. Figures 2f–2i display E (DC to ~3.2 kHz) at 8192 samples per second from the four MMS spacecraft
in the same order. The relative positions of the four MMS spacecraft, which form a tetrahedron with
separations of roughly 20 km, are displayed in Figure 2k.

Figure 2. Observations of the event in Figure 1 from four MMS spacecraft. (a) The differential ion energy flux. (b–e) B. (f–i) E. (j) The approximate position of the MMS
spacecraft (red line) inferred from observations plotted over a simulation of the magnetic reconnection region in the magnetopause [see Lapenta et al., 2015].
λi ~ 60 km. (k) The relative positions of the MMS spacecraft in GSE coordinates. (l–o) Expanded views of wave emissions from Figures 2f–2i.
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The ion distributions show only small differences as seen by comparing Figures 1a and 2a. All of the MMS
spacecraft infer a cold plasma prior to the magnetic reconnection event at ~06:05:22 UT. The magnetic fields
display similar signatures. The minimum in |B| appears first in the MMS3 and MMS4 measurements
(Figures 2d and 2e) and later in MMS1 and MMS2 observations (Figures 2d and 2e). The time delay is roughly
0.3 s. E observations on all four spacecraft show large-amplitude, electrostatic waves parallel to B. These
waves appear at different times indicating that the wave emissions are not coherent over a 20 km separation
but can extend over regions greater than ~20 km.

Figures 2l and 2m display expanded views of the Ewaveforms (0.4 s time scales) fromMMS1 andMMS2 about
1 s prior the |B| minimum. The waves are in the Ez direction, have frequencies between 100Hz and 1 kHz, and
display nonlinear evolution. The negative excursions are greater than the positive excursions, which would
imply a net potential that retards electron flow from the magnetosheath into the magnetosphere. Figures
2n and 2o show expanded views of E waveforms (again, 0.4 s time scales) from MMS3 and MMS4 about
3.5 s prior the |B| minimum. The wave signatures have the same properties. Although no formal statistical
study has been made, many dozens of similar events have been identified indicating that such emissions
are frequent on the magnetosphereside of potential reconnection regions. Amplitudes often reach
over 100mV/m.

The wave powers in all of the events (Figures 2l–2o) are enhanced between ~100Hz and ~1 kHz. The density
(n) at that time is ~15 cm�3. Accordingly, the ion plasma frequency (ωpi) is ~800Hz and the electron plasma
frequency (ωpe) is ~34 kHz. It is possible that the observed waves are ion acoustic, electron acoustic, or a
beam mode. The wave power above ωpi could be from Doppler shift. On the other hand, there are several
similar observations at other times (not shown), in which the wave frequencies are considerably higher than
ωpi (almost all observations are show frequencies lower than ωpe) suggesting electron acoustic waves.

3. Simulations

Prior observations of plasma waves at the magnetopause [e. g. Labelle and Treumann, 1988] include whistler
waves [Deng and Matsumoto, 2001], Langmuir waves [Farrell et al., 2002], Alfvén waves [Chaston et al., 2005],
and waves associated with turbulence [e. g. Khotyaintsev et al., 2006]. The MMS observations place intense
parallel electrostatic wave activity within the ion diffusion region and adjacent (within a few λe) to the
electron diffusion region. The data suggest that these waves may be ion acoustic, electron acoustic, or
two-stream modes that are driven from the mixing of the warm, O(100 eV), dense, O(10 cm�3), magne-
tosheath plasma with cold (<10 eV), low-density (<1 cm-3) plasma in the magnetosphere. The basic idea is
that on a freshly reconnected plasma line, warm, dense magnetosheath electrons are expected to flow into
the magnetosphere. This electron inrush can drive a two-stream instability resulting in ion acoustic, electron
acoustic, or beam mode emissions. The magnetosheath ions move at slower speeds, so a retarding electric
field is expected to develop to slow the electron inrush. This same retarding electric field can accelerate
the cold plasma in the magnetosphere into beam, which, again, can drive strong waves. The wave modes
depend on the densities and temperatures of the magnetosheath plasma and those of the cold plasma in
the magnetosphere. The hot (~1 keV) population in the magnetosphere is unlikely to play a strong role.

To explore the generation of these waves, we perform a basic Vlasov simulation in two spatial dimensions
[Newman et al., 2001] of plasma mixing at the magnetopause. The simulation covers 2400 × 300 Debye
lengths (λD) in the spatial domain corresponding to roughly 48 × 0.6 km. The simulation extends ±6 vthew
(vthew is the thermal velocity of the warmmagnetosheath population) in the velocity domain. The mass ratios
are realistic. The simulation is strongly magnetized in one spatial direction (Z) but allows for development of
oblique modes (see Newman et al. [2001] for details). The parallel direction (Z direction) has open boundaries.
The perpendicular boundaries are periodic.

Figure 3a displays a snapshot of the electron distribution early in the simulation. The simulation was initia-
lized with representative magnetosheath ion and electron distributions (n=30 cm�3; Te, Ti= 100 eV) on the
right side and cold plasma (n= 2 cm�3; Te, Ti= 1 eV) on the left side. The boundary between the two plasmas
was smoothed over 120 λD to prevent a large transient upon startup.

Almost immediately after start, the magnetosheath electrons flow into the magnetosphere and a parallel elec-
tric field develops to retard the electron inrush. The parallel electric field accelerates the cold magnetosphere
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electrons into a beam directed
toward the magnetosheath. Strong
parallel waves are seen on both
sides of the boundary (Figure 3b).
The largest amplitude waves are
on the magnetosphere side, which
appear to be primarily electron
acoustic driven by the relative
streaming of the two electron
populations. The magnetosheath
electrons are streaming to the left
with respect to the cold electrons,
which, in turn, are drifting toward
the magnetosheath. The parallel
waves on the right side appear to
come from a much higher velocity
two-stream or beam instability dri-
ven by accelerated cold electrons
(Figure 3a).

In the simulation frame, the waves
on the left side have a frequency

Figure 3. A Vlasov simulation of the
cold (1 eV) magnetosphere plasma mix-
ing with warm magnetosheath plasma
(100 eV). (a) The electron distribution
early in the simulation. The dense
(30 cm�3) magnetosheath electrons
flow into the magnetosphere (2 cm�3)
setting up a retarding electric field,
which, in turn, accelerates the cold
electrons into the magnetosheath.
(b) Initially, electron acoustic modes
develop on the magnetosphereside
while a beam mode appears on the
magnetosphere side. (c) Later in the
simulation, the magnetosheath elec-
trons (and ions, not shown) penetrate
farther into the magnetosphere. (d)
Oblique modes develop at later times.
(e) A model of the electron distribution
on themagnetosphereside showing the
electron acoustic mode solution with a
frequency of ~300Hz in the plasma rest
frame. The hot electrons are included
then removed to demonstrate that the
hot population does not significantly
influence wave growth. The blue
dashed line is an electron distribution
from the simulation, compiled from
several distributions from z/λD=�250
to z/λD=�80. (f) A model of the elec-
tron distributions on the magne-
tosheath side showing the beam mode
solution. Again, the frequency is
~300Hz in the plasma rest frame. The
blue dashed line is an electron distribu-
tion from the simulation at z/λD=200.
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of ~600Hz. However, since the wavelengths (25 λD, λD~12m) are on the order of 300m, a change in drift velo-
city of the electrons, a change in the plasma properties, or a Doppler shift could result in a significant difference
in an observed frequency. The frequency the observed waves (~300Hz) compares well, given the uncertainties.
The waves on the right side of the simulation have significantly higher frequency, on the order of 10–20 kHz,
which is below the local plasma frequency. Again, these waves can have significantly different frequencies in
observations due to a change in the cold plasma drift velocity or a Doppler shift.

An analytic analysis is used to identify the wave modes. The dispersion relation

ϵ ¼ 1þ χce þ χwe þ χhe þ χci þ χwi þ χhi (2)

can be solved numerically from the Fried-Conte dispersion relation [Fried and Conte, 1961]. Here χe
c repre-

sents the parallel susceptibility of cold magnetosphere electrons, χe
w represents warmmagnetosheath elec-

trons, and χe
h represents hot electrons, often seen in the magnetosphere. The subscript (i) represents the

ion susceptibilities. In almost all cases that we explore χe
h and χi

h can be ignored. In general, there can be
multiple roots to equation (2). The solutions are not necessarily well-established normal modes often
derived in Maxwellian plasmas.

Figure 3e displays modeled electron distributions on the magnetosphere side (left side) of the simulation.
The electron instrument on MMS [Pollock et al., 2016] does not resolve electrons below ~10 eV, so a direct
comparison of measured electron distributions with those in the simulation is not possible. An electron
distribution from the simulation, compiled from several distributions from z/λD=�250 to z/λD=�80, is
plotted as a dashed blue line. The hot electrons from the simulation have strong variation as a function of
velocity due to the strong nonlinear wave activity. The modeled electrons and ions are represented as a
set of drifting Maxwellian distributions to best reproduce the electrons observed in the simulation.
Equation (2) is used to solve for roots (wave modes) and growth. The cold electrons are modeled as a drifting
(positive is toward the right or magnetosheath) 1 eV population with a density of 2 cm�3. The warm electrons
that have penetrated into the magnetosphere are assigned a density of 1.5 cm�3 and are flowing into the
magnetosphere as seen in Figure 3a. The electron densities, temperatures, and drift speeds are on the
Figure 3e. A hot population of 0.5 cm�3 with Te= 1 keV was added and then removed to verify that the hot
population does not noticeably influence the results.

The waves on themagnetosphere side are best described as electron acoustic waves with χe
w~ωpew

2/(γk||vthew)
2

(acoustic response) offsetting χe
c~�ωpec

2/(ω� k||vdc)
2 (Doppler shifted plasma response). Here ωpec and ωpew

are electron plasma frequencies of the cold and warm electrons, ω is the wave frequency, k|| is the wave vector,
vthew is the thermal velocity of thewarm electrons, and vdc is the drift velocity of the cold electrons with respect to
the center of mass of all electrons. The electron acoustic wave mode shows positive growth under a variety of
densities and temperatures as long as vthec< vdc< vthew, where vthec is the thermal velocity of the cold electrons.

Figure 3f displays the modeled electron distributions on the magnetosheath side (right side) of the simula-
tion. The blue dashed line represents an electron distribution from the simulation at z/λD=200. The cold
electrons are drifting into nearly stationary warm electrons at ~2.4 vthew. In this case, χe

w~�ωpew
2/ω2 (plasma

response) is offset by χe
cwith a positive acoustic-like response. χe

c is difficult to describe analytically as it has a
strong imaginary contribution. This mode is best described as a beam mode as vdc> vthew. Notably, the ion
susceptibilities can participate or even dominate if the drift speeds, densities, or temperatures are such that
the electron acoustic mode or beam mode cannot develop. Under these conditions, the ion acoustic modes
dominate. We cannot rule out the possibility that the observed waves (Figure 1) are ion acoustic without
detailed observations of the cold ion and cold electron distributions.

The simulation results (Figures 3a and 3b) suggest that parallel wave modes dominate the initial stage of
mixing of the cold magnetosphere plasma and magnetosheath plasma. The two-stream instability appears
to have the fastest growth rate. The initial mixing is expected to be near the electron diffusion region. As a
result, the simulation results support that parallel waves are observed near the electron diffusion region.

Figure 3c displays the electron distribution at a later time (3.3ms, ~1000 time steps of 1/ωpew) in the simula-
tion. The magnetosheath electrons (and ions, not shown) have penetrated farther into the magnetosphere.
The retarding electric field is decreased but extended. Large-amplitude parallel waves remain, but oblique
waves begin to appear (Figure 3d).
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Interestingly, the beam mode and electron acoustic roots, the real part of equation (2), can vanish as
distributions are altered by quasi-linear and nonlinear diffusion before the distributions are stabilized. It is
possible that at a later time and thus at larger distances from the electron diffusion region (or mixing region),
oblique modes such as whistler waves, lower hybrid waves, and ion cyclotron waves can develop.
Observation of oblique modes on reconnected field lines farther from the mixing region is in concert with
prior observations [e.g., Labelle and Treumann, 1988]. Oblique waves are also observed by MMS (not shown)
farther from the electron diffusion region. The simulation, however, could not be run on a large enough
domain or for a long enough time to determine if oblique modes dominate far from the mixing region.

4. Discussion and Conclusions

MMS observations allow us to accurately place magnetopause wave modes in context of the ion diffusion
region and electron diffusion region. Wave activity at the magnetopause otherwise has been well documen-
ted [e. g. Labelle and Treumann, 1988]. MMS observations, supported by simulations, suggest that the large-
amplitude, parallel, electrostatic waves are driven by a two-stream instability due to plasma mixing on a
newly reconnected magnetic field. MMS observes these waves frequently inside of the ion diffusion region
and adjacent to the electron diffusion region. The Vlasov simulations suggest that parallel, electrostatic waves
dominate in early evolution of the mixing process. These results suggest that large-amplitude, parallel,
electrostatic waves are a good indication of a nearby electron diffusion region. The frequent observation
of such waves also suggests that cold plasma is common at regions of magnetic reconnection.

It is unclear if the parallel waves could have a direct influence on the magnetic reconnection process. It is
significant that the observed waves have evolved to a nonlinear state that has a possible net parallel potential.
The direction of a net potential is such that it would act to retard electrons moving from themagnetosheath into
the magnetosphere. Such electric fields in the form of double layers have been reported in simulations relevant
to solar magnetic reconnection [Li et al., 2012; Egedal et al., 2015]. Such a potential can alter the electron and ion
distributions in the electron diffusion region and, possibly affect the reconnection process.
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