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Chapter 1

Introduction

Glycans are macromolecular substances that are known to be extremely vital in regards

to recognition signals for biological phenomena such as cell-cell communication, biological

development and cancer metastases (Fig. 1.1) [1, 2, 3]. For example, selectins, such

as L-, E- and P-selectin, are molecules expressed on the cell surface of leukocytes. L-

selectin and sulfated glycans play an important role for the infiltration of lymphocytes

[4, 5, 6, 7]. First, lymphocytes, which through blood vessel with high speed, start rolling

on vascular endothelial cell surface by the specific interaction of L-selectin of lymphocytes

and glycans endothelial cell surface. Then, activated integrins of leukocytes strongly

adhere with endothelial cells and promote the infiltration of leukocytes. Furthermore,

studies about a tumor-associated antigen using glycan structures have been reported in

the last decades. Hamid et al. have suggested that tri-sialilated N -glycans can be applied

as a stage diagnostic marker of breast cancer [8].

Despite their importance, it has been difficult to study glycans and their synthesis. Be-

cause they are molecules that are synthesized by enzymes, in contrast to template-based
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Figure 1.1: An example of glycan biological role. Glycans have complicated

structures such as the variety of monosaccharides and multi-branched form. They

are, in general, bound to proteins or lipids on the cell surface to act as a key role

for the adhesion of other cells, toxins and bacteria.

synthesis of nucleic acids and proteins. Therefore, it is not possible to predict glycan

structures directly from genetic information. Hence, the study of the biological functions

of glycans is still at early stage.

Glycans are classified according to their core structure. The N -glycan class is on of the

major classes that covalently bind to asparagine (Asn) residues found in the consensus-

peptide sequence Asn-X-Ser/Thr (X can be any amino acid residue). Although many

enzymes are involved in the biosynthesis of glycans, and the glycome of tissues and species

is highly complex, the prediction of N - and O-glycan structures that can be formed is

becoming feasible with our expanding knowledge of the glyco-machinery.

Glycan structures and related information that are experimentally described are stored
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in several databases such as Kyoto Encyclopedia of Genes and Genomes (KEGG) GLY-

CAN database [9, 10, 11], the Consortium for Functional Glycomics (CFG) [12], and

GlycomeDB [13]. These databases use different formats to represent glycan structures

which were developed for their respective purposes. However, there is no standard uni-

versal format for all databases, and so users are required to convert the format manually

when they want to search or compare between databases. Another issue lies in the fact

that the majority of the algorithms for glycoscience research has not been developed as

tools, and thus biologists in practice are not able to apply them to their original data.

Hence, we initially focused on the development of a web-based resource for glycan analysis

named RINGS (Resource for informatics of glycomes as Soka) [14].

It is evident, based on the network size proposed by Krambeck and Betenbaugh and

others, that existing glycan structure and experimental databases severely underrepre-

sent the complexity of the glycome. For example, UniCarbKB [15, 16] is restricted to

approximately 3,000 N -linked glycan structures compared to an estimated 10,000-20,000

generated by Krambeck and Betenbaugh [17, 18]. As such it is likely that we are missing

critical information that could be of biological importance. Previously, we developed the

Glycan Pathway Predictor (GPP) tool as part of RINGS, which takes a single N -glycan

structure and displays all possible glycans that can be synthesized by a defined set of

glycosyltransferases. It implements the mathematical model of N -glycosylation described

by Krambeck et al. that characterizes substrate-specificity, and the resulting glycans are

displayed as a pathway map - albeit the current list of glycosyltransferases is currently

limited. Therefore, we focused on a systematic method to defined the properties and

substrate specificity rules of mammalian glycosyltransferases involved in the biosyntheisis
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of N -linked glycans as a part of the UniCorn project. The proposed mode is designed to

streamline: i) the automated construction of single glycosylation reactions using enzyme

definitions; ii) the simulation of an entire N -glycosylation reaction network; and iii) mass

spectrometry glycan analysis by providing a library of structures for data mining/match-

ing.

The complexity of glycan structures

A glycan is constructed by linking monosaccharides with various glycosidic linkages. When

a monosaccharide forms a stereoisomer by cyclization reaction, depending on the direc-

tion of an anomeric carbon and an anomeric reference atom, the anomer conformation

of a monosaccharide is defined as alpha or beta (Fig. 1.2) [19, 20]. A disaccharide is

formed by glycosidic linkage between an anomeric carbon with another monosaccharide.

The monosaccharide, which anomeric carbon used for the glycosidic linkage, is defined as

non-reducing end, and which has a free anomeric carbon is defined as reducing end (Fig.

1.3) [21]. Theoretically, it is possible that a glycosidic linkage can be at position C2, C3,

C4, C6, and C8 of a reducing end monosaccharide. Therefore, a glycan structure is able

to form a wide variety structure [22].

Glycans can be classified based on their structure patterns or connection manner with

other molecules. N -glycans binds to the nitrogen atom (N) of an asparagine residue.

Furthermore, N -glycans have a core structure that are constructed with three man-

noses and two N-acetylglucosamines. O-glycans bind to the oxygen atom (O) of a

serine or threonine residue. On the other hand, glycosphingolipids and GPI-anchor
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Figure 1.2: An example of anomer conformation. An anomer conformation of a

monosaccharide is determined based on the configuration of the anomeric carbon

and the anomeric reference atom. For example, a glucose, if the anomeric carbon

(C1) and the anomeric reference atom (C5) are the same direction, the anomer

conformation is defined as “α”. If they are different, it is defined as “β”.

Figure 1.3: An example of a disaccharide. Anomeric information of the non-

reducing end monosaccharide and a carbon number of the reducing end monosac-

charide is used to represent a glycosidic linkage. In this example, a galactose and a

glucose is linked “β1-4”, and this disaccharide is named Lactose.
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(glycosylphosphatidylinositol-anchor) are major classes that binds to lipids [20]. Fig-

ure 1.4 shows an example structures of each class. Each structure has an identifier named

G-id which is composed of G and five numbers. These identifiers are given by KEGG

so that users are able to see the detailed information referring to the structures from

glycan-related databases.

N -glycans can be classified into three sub-groups based on the pattern of substruc-

tures that extend from the core structure (Fig.1.5). A high mannose type contains only

mannose in the substructure extending from the core structure. If an N-acetylglucosamine

residue is connected to the core structure, the glycan is grouped in the complex type. A

hybrid typed structure has high mannose and complex type characteristics: one of the

mannoses of the core structure, Man(α1-3), has an N-acetyl glucosamine extension, and

the other core mannose, Man(α1-6), has mannose extension.

A definition of the tree representation in glycome in-

formatics

A glycan structure can be treated as a “tree” in glycome informatics field. Figure 1.6

explains how a glycan is treated as a tree structure. A node represents a monosaccharide,

an edge represents a glycosidic linkage and a link represents the combination of a node

and an edge. A reducing end is named root and non-reducing ends are named leaves

because a glycan structure looks like a tree structure. Moreover, a glycan substructure is

represented as subtree. A reducing end node of disaccharide is described as parent, and

non-reducing end node is described as child. When a parent has two carbohydrate, they
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Figure 1.4: An example of representative glycan classes. Glycans are classified

into different classes depending on their structure patters and binding to proteins

or lipids. As shown in this in this example, a glycan connected to the asparagine

residue of a consensus sequence “Asn-X-Ser/Thr (where X is any amino acid)”, is

defined as an N -linked glycan. If a glycan connected to a serine or threonine residue

is defined as an O-linked glycan. Glycosphingolipid and GPI-anchor classes are the

major that bind to lipids.
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Figure 1.5: An example of N -glycan subclasses. N-glycans are classified

based on the extension types from the core structure which consists of two N-

acetylglucosamine and three mannose residues. When only mannose residues are

extended, the structure is grouped as a high mannose type. When other residues,

such as N-acetylglucosamine and galactose are extended, the structure is complex

type. A glycan having both properties is classified as hybrid.
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Figure 1.6: An example of lexicon used in glycome informatics. A glycan structure

is represented as tree, and a substructure is described as subtree. A node stands

for a monosaccharide and an edge stands for a glycosidic link. A link represents a

pair of a node and an edge. A reducing end of disaccharide is defined as a parent

and its non-reducing end is a child. When a parent has two or more nodes, they

are defined as brothers.

are represented as brothers or children.

In the next chapter, we describe RINGS, which is the first web resource related to

glycan structure analysis, especially focused on the development of tools and utilities

followed by a description of the algorithm and the usage. We describe the development

of theoretical glycan database in chapter 3. We also describe an overview of future work

and concluding remarks.
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Chapter 2

Development of RINGS: Resource

for INformatics of Glycomes at Soka

2.1 Introduction

2.1.1 Glycome informatics

Storage of experimentally identified glycan structures and other experiment-related data,

annotating the analysis results and development of glycan analysis algorithms and tools

are promoted in the glycome informatics area. For example, Agravat et al. have developed

a web resource named GlycoPattern [23]. This is used for helping users to analyze glycan

array data which may promote understanding of the relationship between glycans and

glycan binding proteins. Moreover, Li et al. have reviewed about the glycoinformatics

tools for analysis of mass spectrometry data [24]. However, the analysis of not only

glycan structures but also their functions may increase the difficulty of the development of

glycoinformatics. For instance, the mechanisms of recognition of glycan binding proteins
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cell surface!

glycoprotein 
or lipid!

multivalent 
receptor!

Figure 2.1: An example of recognition of multivalent glycan binding proteins. A

single glycan is not able to strongly interact with glycan binding proteins (GBPs).

However, glycans may take to cover it. Furthermore, some GPBs have multiple

glycan recognition sites, such as Concanavalin A, which recognizes mannoses via

four glycan-binding sites. Thus, it is possible to exert a strong interaction with a

larger number of recognition sites of GPBs and glycans.

(GBPs) are depends on species and organ tissues specificity. Furthermore, GBPs may

recognize multiple glycans at the same time (Fig.2.1). On the other hand, it is not easy

to synthesize or predict glycans because they are synthesized by glycosyltransferases.

Therefore, it is difficult to identify the expression of glycan structures and their functions

in biological samples [25].

By combining identification of experimental data and glycoinformatics technology, the

accuracy of predicting glycan structures and functions may be increased, just as BLAST

[26] and FASTA [27] is essential in protein analysis to accurately identify and predict

the function of a given amino acid sequence. When RINGS was developed, there was no

web-based glycan analysis tool that biologists could use freely. One of the reasons for

this was that there was no standard description format of glycan structures defined yet.
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Therefore, glycobiologists were forced to understand the characteristics of each glycan

related databases and their glycan structure formats when they search for particular

glycans across different databases. Furthermore, since most of the algorithms for glycan

analysis reported in the past decades had not been developed as a web tool, biologists

could not apply them to their experimental data. Hence, as the first purpose of this study,

we have developed a web resources named RINGS (Resource for informatics of glycomes at

Soka), which incorporates glycan analysis tools and a database, for breakthrough research

in the glycoinformatics field. We are developing glycan analysis tools based on reported

algorithms and continually update various glycan related information, which are freely

available via web.

2.1.2 Glycan related Databases associated with RINGS

One of the roles for glycoinformatics is the management of glycan related data. A variety

of glycan related databases have been developed over the years. Not only glycan struc-

ture information, but annotation information, including experimental protocols have been

collected in the individual databases from unique perspectives (Table.2.1). For example,

KEGG (Kyoto Encyclopedia of Genes and Genomes) has been developed by the Institute

for Chemical Research of Kyoto University since 1995 [9, 11]. KEGG stores a wide vari-

ety of data related to molecular interaction networks of systems biology such as the cell,

the organism and the ecosystem from molecular level information based on large-scale

molecular datasets obtained by genome sequencing and other experimental technologies.

CFG (Consortium for Functional Glycomics) developed a function glycomics gateway as

a resource for experimental data for providing glycan-protein interactions [12]. Users can

search the data based on species, experimental conditions, cell lines and other experimetal
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backgrounds. GlycomeDB has collected structural information from several glycan-related

databases, and stored glycan structures in their own format allowing users to cross search

glycan related information between different databases at once [13].

Table 2.1: A list of glycan related databases associated with RINGS.

Name Major features Year released

KEGG a wide variety of information about pathways,

genes and chemical compounds

1995

CFG experimental data related to glycan-protein in-

teraction

2001

GlycomeDB glycan structure data integrated from several

databases

2008

Each individual database developed their own format to represent a glycan structure

that is suitable for their objective. KEGG Chemical Function (KCF) is a standard for-

mat used in KEGG [28]. It gives X and Y coordinate data on monosaccharides so that

developers and users are able to treat a glycan structure as a graph on a canvas. An-

other format named GlycoCT is specialized for glycan structures [29]. This format is

mainly used in GlycomeDB, UniCarbKB and UniCarb-DB. GlycoCT is able to describe

more chemical information of monosaccharides compared to KCF. When drawing a glycan

structure, CFG symbols are often used for representing monosaccharides so that users are

able to understand a structure more intuitively. Figure 2.2 lists symbols especially found

in mammalian glycan structures. Glycans are also represented as linear strings, and major

formats include LinearCode R© [30] and IUPAC nomenclature for monosaccharides [31].
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Figure 2.2: A list of CFG symbols. These monosaccharides are especially seemed

in mammalian.

A monosaccharide is represented with one or two alphabets in the LinearCode R© format,

so that a glycan can be written in the shortest manner. The IUPAC foramt represents

a glycan structure without abbreviation, so that users can understand a structure easily.

Figure 2.3 shows an example of a glycan structure represented in each format respectively.

2.1.3 Algorithms used in RINGS

Various algorithms for glycan structure analysis have been reported in the last decades.

Aoki et al. have reported the glycan alignment algorithm, named KCaM (KEGG Car-

bohydrate Matcher) [28]. This algorithm is used for calculating the similarity between

two glycan structures, and implemented in query searching systems of several databases

including KEGG and RINGS. In RINGS, this algorithm is installed in database search-

ing system in DrawRINGS and similarity calculations of the algorithm for Glycan Score

14



Figure 2.3: An example of glycan structure (A) represented in different formats;

(B) KCF, (C) LinearCode, (D) IUPAC and (E) GlycoCT{condensed}.
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Matrix tool.

Another algorithm used in RINGS is used for calculating glycan score matrices [32].

Amino acid scoring matrices, such as BLOSUM (BLOcks SUbstitution Matrix) [33], re-

flects the physicochemical similarity between a pair of amino acids. Therefore, high

accuracy alignments of the amino acid sequences are possible by using the appropriate

amino acid scoring matrix. Although glycans do not necessarily have evolutionary rela-

tionships, their recognition processes may be due to the similarity of monosaccharides.

Therefore, Kinoshita et al. have reported that glycan score matrices are possible to im-

prove the accuracy of glycan alignments [32]. Hence, glycan score matrices may reflect

physicochemical properties between a pair of monosaccharides and the glycosidic bonds.

Glycan structures are synthesized by carbohydrate precursors and the activities of

glycosyltransferases and glycosidases. Krambeck et al. have reported an algorithm for

simulating glycan synthesis in 2005 [17]. Two kinds of glycosidases and nine glycosyl-

transferases are used in this model. They then extended the model to use two types

of glycosidases and seventeen types of glycosyltransferases in 2009 [18]. These enzymes

used in these algorithms are the basic enzymes involved in the synthesis of N -glycans.

Krambeck et al. constructed the algorithm based these enzymatic reactions. In the 2005

model, they were able to calculate 7,500 glycans as a result of simulation. Moreover, in

the 2009 model, they simulated 20,000 types of N -glycans even though they limited the

mass < 4,000. We have developed Glycan Pathway Predictor (GPP) in RINGS based on

these models.

Algorithms for extracting featured substructure(s) by comparing two types of glycan

datasets have been developed since 2005. Hizukuri et al. [34] and Kuboyama et al. [35]

16



have reported the learning model to classify large amounts of data based on Support

Vector Machines (SVMs) [36]. In this algorithm, input glycans are first decomposed into

substructures, which contains the distance information from the reducing end. Hizukuri

et al. have focused on tri-saccharides substructures, while Kuboyama et al. have de-

composed glycans into substructures ranging from one to nine monosaccharides. The

substructures are, then, vectorized for kernel classification to extract the most featured

substructure. Hao et al. [37] have developed a new model by introducing similarities of

monosaccharides and glycosidic bonds based on SIMCOMP [38]. The Glycan Kernel Tool

in RINGS was developed based on this newest model.

Hosoda et al. have developed a novel algorithm for multiple glycan alignment named

MCAW (Multiple Carbohydrate Alignment with Weight) [39]. This algorithm is based

on BLAST [26], which is used for multiple alignment of protein sequences. Users are

able to calculate configuration properties of a glycan data set. The MCAW calculation

is promoted based on the dynamic programming algorithm. This novel model is used for

calculating “blocks” in the Glycan Score Matrix algorithm.

2.1.4 RINGS architecture

RINGS is a resource that provides glycan related data as well as tools that have been

developed for glycan analysis and data mining. Glycan structure information that is

stored in RINGS have been extracted mainly from KEGG GLYCAN and GlycomeDB.

In RINGS, glycans are represented using CFG symbols (Fig.2.2) so that users are able to

understand the structure intuitively.

RINGS was developed using Perl, Java, Ruby and HTML language for coding tools
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Figure 2.4: An example of RINGS architecture. Queries from RINGS tool and

utilities are computed via the middleware, and input and results are displayed on

the GUI (Graphical User Interface).

and utilities, and MySQL was used for constructing database. Figure 2.4 is an example of

the framework of RINGS, which is composed of GUI, middleware and RINGS database.

Users are able to run queries and tools, and view the results via GUI (Graphical User

Interface), which are basically coded by HTML and Java. Middleware contains software

modules which are groups of functions written in Perl. Modules are used to enhance the

efficient operation of databases.

2.2 Materials and Methods

To develop RINGS as a web-resource, we mainly used R and Perl languages for coding Gly-

can Score Matrix, Glycan Kernel Tool, IUPACtoKCF and GlycoCT{condensed}toKCF

programs. Moreover, we used HTML language for developing each web page, and MySQL

language for modifying the RINGS database. Furthermore, we used glycan data stored

in RINGS database for glycan structure analysis.

18



2.2.1 Glycan Score Matrix development

DrawRINGS allows users to draw a glycan structure on the canvas by mouse operation

or using KCF format. The drawn glycan is able to be used as a query for searching

similar structures from RINGS database and/or GlycomeDB. Furthermore, users are able

to choose the scoring methods from “Matched” or “Similarity”. These scoring methods

have been developed based on the KCaM algorithm. The matched scoring method, which

developed for as a local alignment algorithm, calculates a score by adding the score of

matched nodes and edges (Fig. 2.5(a)). Meanwhile, a score calculated by the similarity

method represents a percentage of the similarity between a pair of glycan structures (Fig.

2.5(b)). This calculation was developed for as a global alignment algorithm. These scoring

algorithms give constant values when a pair of monosaccharides or linkages are completely

matched. For example, it gives 70 for matched monosaccharides, ten for each matched

linkage information, and 0 for not matched.

During the calculation of a glycan score matrix, a clustering tree is used as a guide tree

for glycan multiple alignment. Distance scores are required to generating a clustering tree.

A distance score is given by subtracting an alignment score from the maximum score. We

computed clusters based on the Fitch-Margoliash algorithm [40]. First, we generated a

distance table composed of glycans and their distances. Second, we searched for the pair

of glycans that has the nearest (smallest) distance value. Third, we calculated the average

distance from glycans contained in the new cluster to all of the other glycans and clusters.

Fourth, we computed the branch distances using the equation 2.1, 2.2 and 2.3. When a

new cluster contains two glycans, such as A and B, equation 2.1 was calculated for the

distance (D(a)) (Fig.2.6(i)). When, a cluster contains two or more glycans, equation 2.2
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and 2.3 are used for calculating each branch distance (Fig.2.6(ii)) Based on these model,

we calculated a distance table for input data set.

D(a) = (D(a+ b)−D(b+ x) +D(a+ x))/2 (2.1)

D(a) = (D(bc+ a+ c) +D(a+ x)−D(c+ x)−D(b))/2 (2.2)

D(bc) = (D(a+ bc+ c) +D(c+ x)−D(a+ x)−D(b))/2 (2.3)

KCaM algorithms are able to calculate the concordance percentage between a pair of

glycans, although it is difficult to measure the similarity with taking biological background

into the consideration. To improve the accuracy of the glycan searching algorithm, we

have added a concept of “blocks” into the scoring system called Glycan Score Matrix [32],

and then we introduced the new Glycan Score Matrix into DrawRINGS. Blocks are one of

the calculation processes of BLOSUM, which are non-gapped amino acid sequences of the

result of multiple alignment (Fig. 2.7). Moreover, blocks are considered to be conserved

sequences of the query, such as species and protein families.

We have used MCAW for glycan multiple alignment to calculate the blocks of glycan

structures. First, in this study, a hierarchical clustering of the input glycan structures

are dynamically calculated. We have developed a code for determining the order of

the multiple alignments by using this clustering as a guide tree. Furthermore, in order

to obtain the largest blocks, we calculated blocks after dividing glycans based on each

cluster. Figure 2.8 is an example of the calculation. A clustering tree is divided based

on the threshold, which is decided by a parameter. Then, the alignment is progressed

from the closest pairs. First, a glycan pair, G12723 and 12722, is aligned. They are very

similar structures, so that both structures are treated as a block (orange line). In the other

20



Figure 2.5: An example of scoring for matched and similarity. The substructures

framed with dash lines are aligned links. When 70 points are given to aligned

monosacchrides, and ten points are given to each linkage information, the matched

alignment score is 1030 and similarity is 0.79. The distances between two glycans

are required to calculate a clustering tree. The distance is calculated by subtracting

an alignment score from the maximum score.
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Figure 2.6: An example of the branch distance calculation. (i) When a new cluster

contains two glycans (A and B), distance (D) a is calculated by equation 2.1. (ii) If

a new cluster contains a glycan and a group of two glycans (B, C and A), equation

2.2 is used for calculating D(a). Equation 2.3 is used for calculating D(bc). In this

graph, X refers to any glycan or cluster.

Figure 2.7: An example of blocks of amino acid sequences. Blocks are the re-

sults of multiple alignments which are non-gaped amino acid sequences. They are

considered to be conserved sequences.
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hand, another cluster, G00374 and G00272 are first aligned, and then G00232 is aligned.

Blocks do not contain gaps, therefore, blue dash lined substructures are defined as the

block of this cluster. Then, pairs of links, monosaccharide and its glycosidic linkage, were

extracted from blocks, and glycan score matrices are calculated based on the frequency

of the links. Unlike proteins, it has not been confirmed genetic conservation in glycan

structures. However, we suggest that glycan blocks may considered as domain or motif

structures. We have introduced the new glycan score matrix that contains this blocks

concept. Fi,j represents the frequency of aligned link i and j, and Ftotal represents the

total number of all alignments. Then, the probability of alignment Gi,j is obtained by

equation 2.4. The probability of alignment of a link i (pi) is calculated by equation 2.5.

The expected probability of alignment of link i and j (Ei,j) is obtained based on equation

2.6. We are, then, able to calculate the score of link i and j by equation 2.7.

Gi,j = Fi,j /Ftotal (2.4)

pi = Gi,i +
∑
i 6=j

Gi,j/2 (2.5)

Ei,j =

 pipj for i = j

2pipj for i 6= j

(2.6)

Si,j = log2 (Gi,j /Ei,j) (2.7)

2.2.2 Glycan Kernel Tool

We have developed Glycan Kernel Tool based on Jiang [37] model. Input glycan data sets,

such as target (X) and control (Y ) groups, are decomposed into substructures. When
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Figure 2.8: An example of glycan blocks calculation. A clustering tree is used as a

guide tree for multiple alignments. To obtain larger blocks, the The clustering tree

is divided into smaller class to extract the largest block(s). The threshold to divide

the clusters is decided by the parameter. In this example, the closest pair, G12723

and 12722, are aligned (1). This alignment does not have any gap, so that whole

structures are treated as a block (orage lined). G00272 and G00374 are aligned

based on another cluster (2), and then G00232 is aligned (3). As the result of this

multiple alignment, blue dash lined substructure is defined as another block.
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N kinds of substructures are generated in total, the decomposed glycans are transformed

into vectors based on the occurrences of each substructures (X and Y ). Then, the vectors

are positioned into a certain space. Generically, it is not able to classify the target (black)

and control (plane) in this space. Therefore, these positions are transferred by kernel

computing for extracting the featured structure(s) (Fig.2.9).

This calculation is coded in Matlab and Perl which is specialized for mathamatical

calculation. However, because of the large amount of memory and calculation time, we

have divided these process into four steps. Figure 2.10 shows an example of the process

of Glycan Kernel Tool. First, a calculation id is generated when a user run a query to

save the input, parameter and result data into RINGS database. Then, glycan kernel

calculation promoted, and its progress situation is saved as well. Therefore, the user is

able to check the calculation progress and the result using calculation id.

2.2.3 RINGS Utilities

I have developed two utilities, IUPACtoKCF and GlycoCT{condensed}toKCF, using Perl

and HTML languages in this study. Both utilities uses RINGS modules individually.

Figure 2.11 shows the workflow of each utilities. When users input glycan structure

which form is IUPAC or GlycoCT{condensed}, the query is passed into each modules.

IUPAC and GlycoCT{condensed} are totally different formats, however, the conversion

process into KCF is similar. The input glycan is decomposed into monosaccharides and

glycosidic bonds, at the same time the relationship between each monosaccharide, such

as which monosaccharide is connected to the other, are saved. Then, monosaccharides

are converted into Node section of KCF format, and glycosidic bond are Edge section.

The relationships between each monosaccharide are referred to the X and Y coordinates
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Figure 2.9: An example of kernel classification. When users input two types of

glycan data, such as target (X) and control (Y ). They are decomposed into sub-

structures (Xn,Yn), and the total number of substructures is N . The substructures

are transformed into vectors by the occurrence of each structure. The positioned

vectors into a space is not able to classify into target (black) and control (plane).

Hence, the space is further transferred by kernel computing for extracting the fea-

tured structure(s)
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Figure 2.10: An example of the process of Glycan Kernel Tool. Input glycan

structures and parameters are saved in RINGS database with unique calculation

ID. Users are able to see the progress and the result data by using the calculation

ID.
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Figure 2.11: An example of the progress of utilities. When a user input a glycan

structure in IUPAC or GlycoCT{condensed}, it is passed in RINGS module (Iu-

pacToKCF.pm or GycoctToKCF.pm). Then, the input structure is converted into

KCF format, and returned as the output data.

of Node section and the order of the index of Edge section. Finally, the converted KCF

format is viewed on the screen via IUPACtoKCF and GlycoCT{condensed}toKCF perl

program respectively.

2.3 Results

2.3.1 Glycan Score Matrices

We were able to construct the calculation algorithm of distance matrices and phyloge-

netic analysis. Figure 2.12 shows the result of clustering using test data based on Fitch-

Margoliash method. We were successfully able to classify the test data into five classes

based on each feature. High-mannose group were divided by the number of mannoses,
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Figure 2.12: An example to glycan clustering based on Fitch-Margoliash method.

Each cluster contains different features. The high-mannose groups, which contains

seven or eight mannoses, and the nine mannoses group are the closest classes. Gly-

cans, which have sialic acid(s) at the non-reducing end, and which have a bisecting

GlcNAc, are separated individually. The furthest group contains small structures

which nodes are from four to six.

however position were closest. Glycans with sialic acid(s), and a bisecting GlcNAc were

clearly divided. Moreover, glycans which contains from four to six monosaccharides, were

classified as the furthest group.

We have calculated a glycan score matrix using N -glycans that stored in RINGS.

Figure 2.13 is a part of the score matrix. The highest score was 44 point were given to

pairs of identical link paired. The pairs of GlcNAc(a1-6) - Man(1-6) and a pair GlcNAc(a1-

6) - Man(a1-6) were given lower scores because the pairs were aligned lower times than
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Figure 2.13: An example of glycan score matrix. This is a part of the result of

N -glycan score matrix. The highest score was 44, which the same link was paired.

The scores of a pair GlcNAc(a1-6) and Man(1-6), and a pair GlcNAc(a1-6) and

Man(a1-6) were lower than others. It is because that the pairs were aligned but

the frequency was less than the others. The blanks means that the pair was not

aligned.

the others. Blanks represents that the pairs were not aligned within the blocks. We

calculated glycan score matrices using N - and O-glycans and Sphingolipids, and saved

them into RINGS database. We also programmed these matrices into DrawRINGS, so

that the score matrix is able to be reflected to the query search (Fig. 2.14).

2.3.2 Glycan Kernel Tool

We have developed Glycan Kernel Tool based Jian et al. algorithm [37]. Figure 2.15

is a snapshot of the tool. Users need to input a data set name to save the input data

and the calculation results into RINGS database. Furthermore, both control and target

glycan data sets are required. The glycan structures can be input or load a file in KCF

format. As a parameter, users are able to input the number of monosaccharides in the

substructures to extract. The range of substructures should be at least one and at most

nine. Once the program starts, a calculation ID is given to the user (Fig 2.16 (a)). Users
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Figure 2.14: The interface of query search of DrawRINGS. Users are able to draw

a glycan structure by using DrawRINGS. The drawn structure is used as a query for

searching the same or similar structures in RINGS database. Searching is executed

by ”Run query” button, and then a pop-up dialog opens. Users are able to choose

a score matrix from the option in the dialog.
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are able to browse the results by input the calculation ID. Figure 2.17 is an example of

the result page. The scores represent the degree of the differences of the substructure

(Feature) from the control data. The layer represents the depth of the substructure from

the reducing end of the input glycan.

　　 　　

2.3.3 RINGS Utilities

We have developed utilities, IUPACtoKCF and GlycoCT(condensed)toKCF (Fig. 2.18

and 2.19). Users are able to use a bracket or square bracket for a branching site in

IUPAC format. Both utilities are available to input multi glycans, however, a blank line

is required for GlycoCT(condensed)toKCF between glycans. Input glycans are converted

by clicking ”Get KCF”.
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Figure 2.15: A snapshot of Glycan Kernel Tool. Users are required to input

data set name and target and control glycan data sets. The data set name is used

for saving the input data and the calculation results into RINGS database. The

glycans are required to written in KCF format. As a parameter, users can input

the number of monosaccharides (size) in the substructures to extract. The range

of the size should be at least one and at most nine. If users have used this tool

previously, users are able to view the result by typing the calculation ID.
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Figure 2.16: An example of usability of calculation ID. Glycan Kernel Tool re-

quires some time for the calculation. So that, users are given a calculation ID to

retrieve the result. When the calculation process is finished, a new link to the result

page is generated (d).
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Figure 2.17: An example of the result page of Glycan Kernel Tool. The scores

represent the degree of the differences of the substructure (Feature) from the control

data. The layer represents the depth of the substructure from the reducing end of

the input glycan.
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Figure 2.18: A snapshot of IUPAC to KCF utility. To represent a branching

position, users are able to use bracket or square bracket. Users are also able to

input multiple glycans in each line. The input structure(s) is converted by clicking

”Get KCF”.
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Figure 2.19: A snapshot of GlycoCT(condensed) to KCF utility. Users are also

able to input multiple glycans by inserting a blank line between glycans. The input

structure(s) is converted by clicking ”Get KCF”.
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2.4 Discussions

In this study,I have developed calculating system for glycan score matrices, Glycan Kernel

tool and conversion utilities. I have developed and introduced glycan score matrices into

the DrawRINGS query search tool to improve the accuracy of the database searching

including physico-chemical meanings. However, current score matrices give higher score

to the link, a monosaccharide and its glycosidic linkage, pairs which alignment frequency

is low. For example, the score given to a link pair “Glc(?1-3)” and “Gal(?1-3)” is 44 points

which is one of the second highest score among the N -glycan score matrix. Furthermore,

the highest score in this matrix was given to a link pair “Gal(β1-4)” and “GlcNAc(α1-

6)”. This may be caused by the scoring calculation during pair-wised alignments and/or

multiple alignments. Unlike amino acids neither genome sequences, genetic conservation

of glycan sequences in process of evolution has not been proven. Therefore, it is difficult

to compute the alignment scores with biological weights. However, this study is still in

the first stage, and there is a necessity for variety of efforts, such as the investigation of

the input data and the development of a new alignment and clustering algorithms, to

improve this study.

I also have developed a Glycan Kernel tool. In order to assess the generality of the

ability of this tool to extract meaningful substructures, I utilized a data set obtained

from the CFG to evaluate the feature selection performance. I obtained O- and N -glycan

profile data extracted from the brain of mouse train C57BL/6 [41],which consisted of 47

structures in wildtype and 50 structures in FucTIV+VII knockout mice[42]. I also chose

the size to extract substructures as at least one to five to avoid substructures of large

sizes from the learning algorithm. As a result, the feature with the top score extracted by
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this tool was “NeuAc(2-3/6)Gal(β1-4)[Fuc(1-3)]GlcNAc” at layer four, which represents

a depth (the number of monosaccharide from the reducing end) of the input glycan struc-

ture. This featured structures is sialyl-Lewis X, which was previously confirmed for this

sample [43]. Thus, this tool is shown to be able to extract unique and accurate glycan

structures from the target data set compared to the control. Moreover, I have allowed

biologists to take advantage of a powerful tool for glycan feature extraction with this new

tool.

The implementation of utilities IUPACtoKCF and GlycoCT{condensed}toKCF are

essential to the users of RINGS because these are the most commonly used format in

glycoscience research. Before these utilities were developed, many researchers had dif-

ficulty using the RINGS tools and were forced to start drawing all their input glycans

using DrawRINGS. However, because of these utilities, users can directly convert their

structures and quickly use the RINGS tools.
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Chapter 3

Construction of theoretical N -glycan

database

3.1 Introduction

3.1.1 Mathematical models for predicting glycan synthetic path-

way

Because various computational models have been reported in the last decades, glycome

informatics including mathematical models has progressed. Umana and Bailey has re-

ported an algorithm to predict small glycan synthesis computationally [44]. Their theory

has demonstrated that the alterations of glyco-patterns (or glycan profiles), which may

occur by mislocalization or by a gene knockout of a specific glycosyltransferase, can be

predicted. This model is one of the earliest computational models related to glycan syn-

thesis, moreover, it is the first report that an in silico approach of glyco-engineering is

feasible. Similar to the Umana and Bailey approach, in 2009, Krambeck et al. reported
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a mathematical model using reaction conditions of seventeen glycosyltransferases and

two glycosidases associated with N -glycans [18, 17]. 10,000-20,000 theoretical N -glycans

were calculated from this model. One feature of this model is that concentrations of

the enzymes are adjusted based on a numerical optimization method to help correlate

experimentally observed glycans with calculated glycans.

Several algorithms to analyze glycan functions and structures have been reported.

However, these algorithms are constructed based on biological backgrounds, such as en-

zymatic conditions and reaction properties along their aims. Therefore, it may be neces-

sary to limit the target sample or the parameters. For the glycan synthetic systems, it

depends on a number of factors, such as the effectiveness of a donor, the adjustment of

the paradigm and/or bio-processing, a culture kinetics of a sample and the design of a

metabolic networks.

3.1.2 A tool for predicting glycan synthetic pathway

In RINGS, we have developed several web tools, that users are able to freely use, based on

published algorithms. One of the tools, we have developed is Glycan Pathway Predictor

(GPP) (Fig. 3.1). This tool allows users to predict glycan synthesis using a selection

of N -glycan glycosyltransferases and glycosidases. GPP implements the Krambeck 2009

mathematical models, and outputs the dynamically calculated result as synthetic pathway

maps.
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Figure 3.1: A snapshot of Glycan Pathway Predictor (GPP). Users can use an N -

glycan structure written in KCF format as input. Two glycosidases and seventeen

glycosyltransferases are listed. The chosen enzymes are used for calculating the

potential biosynthetic pathways, and the calculation continues until the maximum

of the molecular mass is reached. The calculated pathways can be browsed as a

map. The detail information of each reaction is displayed by clicking each structure

in the map.
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3.1.3 glycan related databases associated with theoretical N -

glycan database

Activity and the gene expression levels of glycosyltransferases fluctuate by pathophys-

iological conditions such as nucleotide sugars and receptor molecules, nucleotide sugar

transporters, and expression levels of endogenous lectins in tumor cells. For example, the

epithelial-mesenchymal transition (EMT) refers to the phenomenon where epithelial cells

obtain the ability of migration or invasion [45]. The EMT processes is one of the key

roles for cancer metastasis. The decreasing of GnT-III concentration, which synthesizes

a bisecting GlcNAc, during EMT processes has been reported by Xu et al. [46].

Several databases are storing glycan related information. For instance, KEGG GLY-

CAN has been developed for collecting glycan related data such as KEGG Pathway Maps

for Glycans, Glycans in Cancer Pathways, Glycosyltransferases, Glycan Binding Proteins

and KEGG GLYCAN Structures [47]. Figure 3.2 shows an example of N -glycan biosyn-

thesis pathways in KEGG Pathway Maps. N -glycan precursors are synthesized in the

cytosol and endoplasmic reticulum (ER). Then, it is transferred to an asparagine residue

by oligosaccharyltransferase (OST) and passed to golgi membranes after the trimming by

glucosidases and mannosidases. Glycosyltransferases related to N -glycans are thought to

be expressed in the golgi membrane, however, it is remained to be elucidated. KEGG

GLYCAN also has developed Composite Structure Map (CSM), which is a static repre-

sentation of all carbohydrate structures in KEGG GLYCAN overlapped with one another

and displayed in a global tree format (Fig. 3.3) [48]. CSM contains links to corresponding

glycosyltransferase information, if the data is available in the KEGG database.

One of the other databases related to glycosyltransferases is Carbohydrate-Active en-
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Figure 3.2: An example of N -glycan synthetic pathway map. Each synthetic

reaction and structure are save in KEGG GLYCAN database. However, glycan

synthesis may be depends on species, organs and pathological conditions. So that

it is difficult to elucidate the whole pathway maps.
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Figure 3.3: A snapshot of KEGG Glycan Composite Structure Map. Users are

able to limit for overlapping structures by obtain a map by choosing non-reducing

end monosaccharide(s) and species.
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ZYmes (CAZy) database, which have been developed since 1998 in France [49]. In CAZy,

Glycan related proteins are classified into five families, such as glycosyltransferases, gly-

coside hydrolase, polysaccharide lyase, Carbohydrate esterase and carbohydrate-binding

module family. Moreover, BRaunschweig ENzyme DAtabase (BRENDA) have been de-

veloped as enzyme information repository since 1987 in Germany [50]. The enzymes are

classified by the Enzyme Nomenclature and contains background data related to molec-

ular biology, biochemistry, medical research, and biotechnology. GlycoGene DataBase

(GGDB) [51] is one of the project included in Japan Consortium for Glycobiology and

Glycotechnology DataBase (JCGGDB). GGDB collected data based on glycan related

gene, for instance, gene names, enzyme names and types of substrate specificity. The Uni-

versal Protein Resource (UniPort) has been developed as a resource for protein sequence

and annotation data. Users are able to find accurate, consistent and rich annotation in-

formation via the UniProt Knowledgebase (UniProtKB) [52]. Furthermore, UniCarbKB

has stored experimentally described glycan structures reported in the literature [53, 16].

3.1.4 Development of the novel database for glycan synthetic

pathway prediction

In this manuscript we describe a systematic method to use the properties and substrate

specificity rules of all the described human glycosyltransferases involved in the biosyn-

thesis of N -glycans to produce a theoretically possible collection of N -glycan structures

based on current pathway knowledge. The proposed model is designed to facilitate: i)

the automated construction of single glycosylation reactions using enzyme-substrate re-

lationships; ii) the simulation of an entire N -glycosylation synthetic network; and iii)
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mass spectrometry glycan analysis by providing a library of theoretically possible glycan

structures for data mining/matching. The proposed theoretical N -glycan structures that

result from this computation are available in the UniCorn section of UniCarbKB. UniCorn

has been introduced in response to concerns that existing structural and experimental

databases under-represent the N -glycome, that current experimental glyco-analysis pro-

tocols are not observing all structures and that the traditional time- and labor-intensive

manual curation of the published literature may be complemented by such a database.

UniCorn also aims to provide an effective curation and quality-checking tool of newly dis-

covered curated glycan structures populating UniCarbKB. Such an application will assist

researchers in validating previously unrecognized glycan structures, provide information

on biosynthetic glycan pathways and enable the generation of mass spectral fragments

from biosynthetically putative structures.

3.2 Materials and Methods

3.2.1 Glycosyltransferase catalog

We have collected the human glycosyltransferase information related to N - and precursor

N -glycans from previous studies [17, 18] and existing databases including KEGG, GGDB,

CAZy, CFG, BRENDA and UniProt. In particular we included in our computation

any described additional residues, substrate structures, intercellular localization, genes

and synthetic condition information. The collected information is used for calculating a

theoretical glycan database and glycosyltransferase (GT) candidates analysis (Fig. 3.4).

In this work, glycosyltransferases are represented based on the name of UniProt database

due to the usages of different protein name or identifiers among databases. A glycan is
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Figure 3.4: A flowchart of generating a glycosyltransferase catalog. We have col-

lected human glycosyltransferase (GT) information related to N -glycans including

precursor N -glycans from previous reports and databases. We finally gathered 50

types of GTs, and they were used for calculating theoretical glycan database and

GT candidates research.

represented in IUPAC format in our catalog.

3.2.2 Development for a tool for glycosyltransferase candidates

prediction

A tool for glycosyltransferase candidates prediction have been developed for predicting

glycosyltransferases activities may worked on a glycan structure. For example, users are

able to obtain a list of glycosyltransferases that may associated to synthesize an input gly-

can structure by comparing each glycosidic linkage of input glycan and glycosyltransferase

catalog which contains a donor and an acceptor information (Fig. 3.5).
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Figure 3.5: A flowchart of a tool for glycosyltransferase candidates prediction.

When a glycan structure was input, each glycosidic linkage is compared with our

glycosyltransferase (GT) catalog that contains a donor and an acceptor information.

A list of glycosyltrnasferases are output if the synthetic pattern is matched.

3.2.3 Theoretical N -glycan calculation algorithm

We have developed a code for generating theoretical N -glycans by using glycosyltrans-

ferase catalog of human and database to save the generated structures. We used Perl

language for the code and PostgreSQL for the database. The database contains two main

tables, glycan structure and glycan tree. Glycan structure table is used for saving the

generated structures without duplication. A structure is written in LinearCode format

which is able to represent a glycan in the shortest manner. Each structure is given an id

as an identifier and a level as the number of monosaccharide contained in the structure.

Glycan tree table is used for saving the synthetic pathway relationships. A structure prior

to the synthesis is labeled as “parent” and its id is stored as parent id. On the other hand,

the structure after the reaction is stored as child id. This reaction pattern is saved with
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Figure 3.6: An entity relationship diagram of theoretical glycan database.

Glycan structure table stores “id” for the identifier, “structure” for generated glycan

structure and “level” for the number of monosaccharides in the glycan. Glycan tree

table stores “no” for the identifier, “child id”, “enzyme” and “parent id”. A

parent id and a child id represents the prior and after the reaction structure ids.

The glycosyltransferase is stored as “enzyme”.

the identifier “no” and its glycosyltransferase “enzyme”.

Figure 3.7 shows an image of this program. When a glycan structure is given to

the program, the structure is compared with the reaction pattern of the GT catalog.

If a reaction pattern is matched, a theoretically synthesized glycan is generated. This

calculation continues the size, the number of monosaccharide in a glycan, is less than

fifteen.

In total, 46 unique reaction patterns are specified in our model that involve the transfer

of a monosaccharide from a nucleotide-sugar donor to an acceptor from 50 human gly-

cosyltransferases including which related to precursor N -glycans. For example, MGAT5

adds GlcNAc(β1-6) onto Man(α1-6). However, it may also have the potential to add

GlcNAc(β1-6) on Man(α1-3) [54]. Moreover, additional possible (previously described)
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Figure 3.7: An example of generating theoretical N -glycans in human. The calcu-

lation starts with Man3GlcNAc2 which is a core structure of N -glycan. The input

structure is compared with the reaction patterns of the list of glycosyltransferases

of N -glycans in human (GT catalog). When a substrate the reaction pattern is

matched with the input glycan, a theoretical structure is generated. This calcula-

tion continues until the size, the number of monosaccharide in a glycan, ≤ 15.

substrates are included in the catalogue, such as “GlcNAc(β1-2) [ˆ] Man(α1-3)” and

“GlcNAc(β1-2) [GlcNAc(β1-4)] [ˆ] Man(α1-3)”, where a caret represents the insertion

position and square brackets represent a branching position. For simplicity, the stere-

ochemical information (α/β) is inferred from the known specificities of the enzymes.

For instance, all fucosyltransferases and sialyltransferases produce α-linked structures,

the galactosyltransferases and N-acetylglucosaminyltransferases are assumed to form β-

glycosidic linkages while N-acetylgalactosaminyltransferases is assumed to form α prod-

ucts.
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3.3 Results

3.3.1 A tool for glycosyltransferase candidates prediction

We have developed a tool for predicting glycosyltransferase candidates. Figure 3.8 shows

an example of the result. Each monosaccharide and its glycosidic linkage in the input

glycan is given a number as a position. So that, it is able to make difference when the same

monosaccharide and glycosidic linkage appears more than twice in a glycan. This program

output a list of two residues, donor and substrate, and possible glycosyltransferase which

may synthesize the residue. The number before each residue represents the position in

the input glycan structure. This tool is available in the structure page of UniCarbKB

(Fig. 3.9)

3.3.2 Glycosyltransferase catalog

We collected glycosyltransferase information based on N -glycosylation pathways in hu-

mans as currently known and described by databases, such as KEGG, CFG, CAZy, GGDB

and BRENDA. Table 3.1 lists the protein and gene names used in our catalog, and Table

3.2 lists the gene names and their reaction pattern used for the calculation of theoretical

glycan database. Our catalog includes enzymes that related to the synthesis of precur-

sor N -glycans in human. Moreover, in Table 3.2, glycans are represented in LinearCode

format that a monosaccharide is represented in one or two letters of the alphabet. Fur-

thermore, we used a caret for representing the insertion position and square brackets

for a branching position. We were able to collect 45 reaction patterns to calculate the

theoretical N -glycans from 50 glycosyltransferases.
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Figure 3.8: An example of the result of glycosyltransferase candidates prediction.

Each monosaccharide and its glycosidic linkage is given a number as a position,

so that users are able to see the specific pair of monosaccharides and its possible

glycosyltransferase.
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Figure 3.9: An example of the interface of glycosyltransferase candidates predic-

tion. This tool is available in the structure page of UniCarbKB.
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Table 3.1: A list for the proteins and genes used in our glycosyltransferase catalog.

No. Protein Name Gene Name

1 Histo-blood group ABO system tranferase ABO

2 Dol-P-Man:Man(5)GlcNAc(2)-PP-Dol alpha-1,3-mannosyltransferase ALG3

3 Dolichyl pyrophosphate Man9GlcNAc2 alpha-1,3-glucosyltransferase ALG6

4 Probable dolichyl pyrophosphate Glc1Man9GlcNAc2 alpha-1,3-glucosyltransferase ALG8

5 Alpha-1,2-mannosyltransferase ALG9 ALG9

6 Dol-P-Glc:Glc(2)Man(9)GlcNAc(2)-PP-Dol alpha-1,2-glucosyltransferase ALG10

7 GDP-Man:Man(3)GlcNAc(2)-PP-Dol alpha-1,2-mannosyltransferase ALG11

8 Dol-P-Man:Man(7)GlcNAc(2)-PP-Dol alpha-1,6-mannosyltransferase ALG12

9 Galactosylgalactosylxylosylprotein 3-beta-glucronosyltransferase 1 B3GAT1

10 Galactosylgalactosylxylosylprotein 3-beta-glucronosyltransferase 2 B3GAT1

11 Beta-1,3-galactosyltransferase 1 B3GALT1

12 Beta-1,3-galactosyltransferase 2 B3GALT2

13 N-acetyllactosaminide beta-1,3-N-acetylgulcosaminyltransferase B3GNT1

14 UDP-GlcNAc: beta Gal beta-1,3-N-acetylglucosaminlytransferase 7 B3GNT7

15 Beta-1,4-N-acetylgalactosaminyltransferase 3 B4GALNT3

16 N-acetyl-beta-glucosaminyl-glycoprotein 4-beta-N-acetylgalactosaminyltransferase 1 B4GALNT4

17 Beta-1,4-galactosyltransferase 1 B4GALT1

18 Beta-1,4-galactosyltransferase 2 B4GALT2

19 Beta-1,4-galactosyltransferase 3 B4GALT3

20 Beta-1,4-galactosyltransferase 4 B4GALT4

21 Galactoside 2-alpha-L-fucosyltransferase 1 FUT1

22 Galactoside 2-alpha-L-fucosyltransferase 2 FUT2

23 Galactoside 3(4)-L-fucosyltransferase FUT3

24 Alpha-(1,3)-fucosyltransferase 5 FUT5

25 Alpha-(1,3)-fucosyltransferase 6 FUT6

26 Alpha-(1,3)-fucosyltransferase 7 FUT7

27 Alpha-(1,6)-fucosyltransferase FUT8

28 Alpha-(1,3)-fucosyltransferase 9 FUT9

29 Alpha-(1,3)-fucosyltransferase 11 FUT11

30 Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase3 GCNT3

31 Alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase MGAT1

32 Alpha-1,6-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase MGAT2

33 Beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase MGAT3

34 Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase A MGAT4A
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Table 3.1: A list for the proteins and genes used in our glycosyltransferase catalog.

No. Protein Name Gene Name

35 Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase B MGAT4B

36 Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase C MGAT4C

37 Alpha-1,6-mannosyl-glycoprotein 6-beta-N-acetylglucosaminyltransferase A MGAT5

38 CMP-N-acetylneuraminate-beta-1,4-galactoside alpha-2,3-sialyltranferase 1 ST3GAL1

39 CMP-N-acetylneuraminate-beta-1,4-galactoside alpha-2,3-sialyltranferase 2 ST3GAL2

40 CMP-N-acetylneuraminate-beta-1,4-galactoside alpha-2,3-sialyltranferase ST3GAL3

41 CMP-N-acetylneuraminate-beta-1,4-galactoside alpha-2,3-sialyltranferase 4 ST3GAL4

42 Type 2 lactosamine alpha-2,3-sialyltransferase ST3GAL6

43 Beta-galactoside alpha-2,6-sialyltransferase 1 ST6GAL1

44 Beta-galactoside alpha-2,6-sialyltransferase 2 ST6GAL2

45 Alpha-N-acetylneuraminide alpha-2,8-sialyltransferase ST8SIA1

46 Alpha-2,8-sialyltransferase 8B ST8SIA2

47 Sia-alpha-2,3-Gal-beta-1,4-GlcNAc-R:alpha 2,8-sialyltransferase ST8SIA3

48 CMP-N-acetylneuraminate-poly-alpha-2,8-sialyltransferase ST8SIA4

49 Alpha-2,8-sialyltransferase 8E ST8SIA5

50 Alpha-2,8-sialyltransferase 8F ST8SIA6
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Table 3.2: A list of genes and their synthetic activities used in our catalog. A

caret represents the insertion position and square brackets represent a branching

position.

No. Gene Name Substrate Donor

residue

Condition rule

1 ABO Fa2[ˆ]Ab ANa3 -

2 ABO Fa2[ˆ]Ab Aa3 -

3 ALG3 ˆMa6 Ma3 On the “Ma6” arm of the N -glycan core. No

A,F,NN in the glycan

4 ALG6 ˆMa2Ma2Ma3 Ga3 On the “Ma3” arm of the N -glycan core. No

A,F,NN in the glycan

5 ALG8 ˆGa3Ma2Ma2Ma3 Ga3 On the “Ma3” arm of the N -glycan core. No

A,F,NN in the glycan

6 ALG9 ˆMa3Ma6 Ma2 On the “Ma6” arm of the N -glycan core. No

A,F,NN in the glycan

7 ALG9 Ma3[ˆMa6]Ma6 Ma2 On the “Ma6” arm of the N -glycan core. No

A,F,NN in the glycan

8 ALG10 ˆGa3Ga3Ma2Ma2 Ga2 On the “Ma3” arm of the N -glycan core. No

A,F,NN in the glycan

9 ALG11 ˆMa3 Ma2 On the “Ma3” arm of the N -glycan core. No

A,F,NN in the glycan

10 ALG11 ˆMa2Ma3 Ma2 On the “Ma3” arm of the N -glycan core. No

A,F,NN in the glycan

11 ALG12 Ma3[ˆ]Ma6 Ma6 On the “Ma6” arm of the N -glycan core. No

A,F,NN in the glycan

12 B3GALT1,

B3GALT2

ˆGNb Ab3 Not on the bisecting GlcNAc

13 B3GAT1,

B3GAT2

ˆAb4GN Ub3 -

14 B3GNT1 ˆAb4GN GNb3 -

15 B3GNT7 ˆAN GNb3 -

16 B4GALNT3,

B4GALNT4

ˆGN ANb4 Not on the bisecting GlcNAc
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Table 3.2: A list of genes and their synthetic activities used in our catalog. A

caret represents the insertion position and square brackets represent a branching

position.

No. Gene Name Substrate Donor

residue

Condition rule

17 B4GALT1,

B4GALT2

ˆGa Ab4 -

18 B4GALT1,

B4GALT2,

B4GALT3,

B4GALT4

ˆGN Ab4 Not on the bisecting GlcNAc

19 FUT1, FUT2 ˆAb3GNb Fa2 -

20 FUT1, FUT2 ˆAb4GNb Fa2 -

21 FUT3 Ab3[ˆ]GNb Fa4 Fa2 or NNa3 can connect on Ab3

22 FUT3, FUT4,

FUT5, FUT6,

FUT9

Ab4[ˆ]GNb Fa3 Fa2 or NNa3 is not connected on Ab4

23 FUT3, FUT4,

FUT5, FUT6,

FUT7

NNa3Ab4[ˆ]GNb Fa3 Fa2 is not connected on Ab4

24 FUT3, FUT4,

FUT5, FUT6,

FUT9

Fa2Ab4[ˆ]GNb Fa3 NNa3 is not connected on Ab4

25 FUT8 GNb4[ˆ]GN Fa6 On the N -glycan core (root). No Ab in the

glycan

26 FUT10,

FUT11

GNb4[ˆ]GN Fa3 On the N -glycan core (root). No Ab in the

glycan

27 GCNT3 ˆAb4GN GNb6 -

28 GCNT3 Ab4GNb3[ˆ]Ab GNb6 -

29 GCNT3 Ab4GNb3[ˆ]Ab GNb6 -

30 MGAT1 ˆMa3 GNb2 On the “Ma3” arm of the N -glycan core

31 MGAT2 ˆMa6 GNb2 On the “Ma6” arm of the N -glycan core

32 MGAT3 Ma3[Ma6][ˆ]Mb4 GNb4 On the N -glycan core. No bisecting GlcNAc

and Ab in the glycan.
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Table 3.2: A list of genes and their synthetic activities used in our catalog. A

caret represents the insertion position and square brackets represent a branching

position.

No. Gene Name Substrate Donor

residue

Condition rule

33 MGAT4A,

MGAT4B,

MGAT4C

GNb2[ˆ]Ma3 GNb4 On the “Ma3” arm of the N -glycan core. No

bisecting GlcNAc in the glycan.

34 MGAT4A,

MGAT4B,

MGAT4C

GNb2[GNb6][ˆ]Ma3 GNb4 On the “Ma3” arm of the N -glycan core. No

bisecting GlcNAc in the glycan.

35 MGAT5 GNb2[ˆ]Ma6 GNb6 On the “Ma6” arm of the N -glycan core. No

bisecting GlcNAc in the glycan.

36 MGAT5 GNb2[GNb4][ˆ]Ma6 GNb6 On the “Ma6” arm of the N -glycan core. No

bisecting GlcNAc in the glycan.

37 MGAT5 GNb2[ˆ]Ma3 GNb6 On the “Ma3” arm of the N -glycan core. No

bisecting GlcNAc in the glycan.

38 MGAT5 GNb2[GNb4][ˆ]Ma3 GNb6 On the “Ma3” arm of the N -glycan core. No

bisecting GlcNAc in the glycan.

39 ST3GAL1,

ST3GAL2,

ST3GAL4

ˆAb3 NNa3 -

40 ST3GAL3,

ST3GAL4,

ST3GAL6

ˆAb4GN NNa3 -

41 ST6GAL1,

ST3GAL2

ˆAb4GN NNa6 -

42 ST8SIA1,

ST8SIA3,

ST8SIA4,

ST8SIA5,

ST8SIA6

ˆNNa3Ab NNa8 -
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Table 3.2: A list of genes and their synthetic activities used in our catalog. A

caret represents the insertion position and square brackets represent a branching

position.

No. Gene Name Substrate Donor

residue

Condition rule

43 ST8SIA2,

ST8SIA3,

ST8SIA4,

ST8SIA5

ˆNNa8NNa3 NNa8 -

44 ST8SIA2,

ST8SIA3,

ST8SIA4,

ST8SIA5,

ST8SIA6

ˆNNa6Ab NNa8 -

45 ST8SIA2,

ST8SIA3,

ST8SIA4,

ST8SIA5

ˆNNa8NNa6 NNa8 -

3.3.3 Theoretical N -glycan database

Table 3.3 lists the number of N -glycan structures generated by our deductive method,

based on the sugar-transition catalogue described in Table 3.2. In this table, we list the

number of structures generated based on the number of monosaccharides in a glycan (size)

as well as the number of reactions in which the glycan was used as a substrate for the next

monosaccharide addition. In total, by using the constraints defined in Table 3.2 and by

restricting the size of the N -glycan to fifteen monosaccharide residues (corresponding to
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approximately 90% of glycans in UniCarbKB), we were able to generate almost 1.1 million

potential N -glycan structures based on our model. These were generated using over 4.7

million enzyme reactions, and these are stored in the theoretical N -glcyan database.

Figure 3.10 shows an example of the result of our theoretical pathway model. These

structures are stored in our database with identifier and its size. Moreover, precursor and

produced structure and related enzyme name are also stored. Those generated structures

are used for calculating the subsequent products.

Next, we compared the theoretically generated N -glycan structures with the literature

described structures listed in UniCarbKB. The structure listings were filtered based on the

following conditions; i) structure must contain the chitobiose core, ii) the compositions are

restricted to common human N -glycan monosaccharide residues (not containing sulfates,

phosphates, methyl groups or non-human monosaccharides), iii) the structure size is be-

tween five and fifteen monosaccharide residues, and iv) only defined structures (whereby

glycosidic linkages are not fuzzy) are compared. Interestingly, only 310 unique struc-

tures (582 in total), ranging from fully defined elongated biantennary to fully sialylated

penta-antennary structures, stored in UniCarbKB were matched against our database -

demonstrating the huge gulf between the observed structures reported in the literature

and the theoretically possible structures.

3.4 Discussions

In this manuscript, we have described a computational model to generate over 1.1 mil-

lion theoretically possible N -glycan structures based on a strict set of biosynthetic rules,

which have been obtained from that described in the established databases KEGG Gly-
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Table 3.3: A summary of the number of glycan structures and reactions de-

termined by the described model and classified by monosaccharide size 5>x<15

residues. The ‘reactions’ value corresponds to the number of enzymatic reactions be-

tween each composition size, for example, 134 putative substrate-glycosyltransferase

reactions were recorded between glycan composition size 7 and 8.

Monosaccharide

composition size

Number of generated structures Reactions

5 1 7

6 7 37

7 29 152

8 115 646

9 461 2,966

10 1,822 13,351

11 7,094 57,388

12 26,964 236,385

13 99,762 939,249

14 360,793 3,623,307

15 1,280,472 -

Total 1,777,520 4,873,488
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Figure 3.10: These structures are stored in our database with identifier and its

size. Moreover, precursor and produced structure and related enzyme name are

also stored.
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can, CFG, CAZy, GGDB and BRENDA. To constrain the output, a maximum cutoff

of 15 monosaccharides was imposed, which is representative of the largest composition

typically reported in the majority of structure databases including UniCarbKB. Even by

constraining the maximum size, the predicted library has more than 500 times the num-

ber of glycan structures that have been fully characterized experimentally (including all

linkages) on eukaryotic glycoproteins, as there are only approximately 2,000 fully-defined

N-glycans described in existing glycan databases.

To explore this difference in number, we compared the structures in the theoreti-

cally generated glycan database with the experimentally determined structures reported

in UniCarbKB. Surprisingly, approximately half of all the experimentally determined

N -glycan structures in UniCarbKB were not contained in our theoretically generated hu-

man pathway based data. This may be explained by the associated biological source,

with many literature based reported structures derived from non-human glycoproteins or

biological fluids. For example, a high-mannose glycan (bearing more than nine mannose

residues) with a terminal α1,2 galactose, which was found on yeast proteins [55] and

a bisecting GlcNAc with a terminal α1,3 galactose, which was reported in non-primate

mammalian and new world monkey glycoproteins [56], are not found in the theoreti-

cal database. In addition, some glycans reported in UniCarbKB that are not predicted

in our database are not a product of known glycan biosynthetic pathway rules. For

example, the experimentally determined GlcNAc(β1-6)Man(α1-6)[Man(α1-3)]Man(β1-

4)GlcNAc(β1-4)[Fuc(α1-6)]GlcNAc in UniCarbKB (ID=911) may be the result of degra-

dation during sample preparation, in source fragmentation, incorrect structure assign-

ment, glycosidase action or indeed the product of a previously unreported pathway. Based

on our library, GlcNAc(β1-6) may be transferred by MGAT5 or GCNT3 but both are re-
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ported to require substrates that are part of this structure. Therefore, our theoretical

N -glycan database does not contain this structure because the substrate does not satisfy

any of our reaction rules.

Glycosylation reactions are dependent on many variables such as the concentrations

of enzymes and availability of precursor-sugars, as well as reaction kinetics and enzyme

location constraints. Furthermore, some synthetic reactions may occur so rapidly that

the intermediate products may not be detected by current technologies. Figure 3.11

shows a snapshot of the glycan biosynthetic pathway using structure entries from our

theoretical database and experimentally reported UniCarbKB databases. In this exam-

ple UniCarbKB has no information associated with Man(α1-6) [Gal(β1-3)GlcNAc(β1-

2)Man(α1-3)] Man(β1-4)GlcNAc(β1-4) [Fuc(α1-6)] GlcNAc (structure B) or GlcNAc(β1-

2)Man(α1-6) [Gal(β1-3)GlcNAc(β1-2)Man(α1-3)] Man(β1-4)GlcNAc(β1-4) [Fuc(α1-6)]

GlcNAc (structure E), but the products (C) and (F) are listed. However information is

available for two fuzzy structures such like Gal(β1-?)GlcNAc(β1-?)Man(α1-?) [Man(α1-

?)] Man(β1-4)GlcNAc(β1-4) [Fuc(??-?)] GlcNAc (UniCarbKB ID: 1534) and Gal(??-

?)GlcNAc(??-?)Man(α1-?) [GlcNAc(??-?)Man(α1-?)] Man(β1-4)GlcNAc(β1-4) [Fuc(??-

6)] GlcNAc (UniCarbKB ID: 1797), that may be suitable descriptors for these fully defined

structures.

Unlike genomics and proteomics, glycomics has no template strategies to completely

determine a glycan structure with all sequence and linkage information defined. Fur-

thermore, when we considered enzyme activities and substrate specificities, it was not

possible to assign kinetic rates of activity because of the lack of information in the lit-

erature and the variation imposed by the sample conditions and cellular concentrations

of donor and acceptors. We know from the BRENDA database the enzyme activity and
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Figure 3.11: An example of the glycan synthetic pathway model used to generate

the theoretical N -glycan database. A glycan is represented with the accession

numbers from the theoretical database (T) alongside the matching UniCarbKB (U)

entry. Structures “B” and “E” are not registered in UniCarbKB, however, they can

be represented by two UniCarbKB entries (1534 and 1797) that are missing some

glycosidic bond linkage information.
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reaction rates vary widely depending on the environmental and experimental conditions

for the same enzyme [57]. For example, the specific activity of MGAT3 in normal liver

is 1.3 ∗ 10−7[µmol/min/mg] compared to 1.24 ∗ 10−5[µmol/min/mg] in hepatic carci-

noma cells [58]. Thus, the fact that many glycan structures that are the substrates of

these enzymes are not found in experimentally derived databases may be due to the low

concentrations and high turnovers that cannot be detected by current technologies.

We also analysed the usage frequency of glycosyltransferases used in our model (Fig.

3.12). MGAT3, which adds a bisecting GlcNAc, and FUT8, which adds a fucose to the

core structure, have smaller usage frequencies compared to the other enzymes because of

the characteristic feature that they only add single monosaccharides to existing oligosac-

charide structures. Furthermore, glycosyltransferases responsible for attaching terminal

residues (e.g sialyltransferases) are more frequent in the synthesis of the larger glycans.

Therefore, these results correspond well with known facts about the N -glycan biosynthe-

sis pathway.

We further compared glycan structure stored in UniCarb KB and UniCorn database.

The number of N -glycan in UniCarb KB is 3,224 (2014 data). Within these structures,

659 structures are fully determined N -glycans, and we were able to find the half of these

glycans in UniCorn database. Ten percent of the unmatched glycans were formed by more

than 15 monosaccharides. 50 percent of the unmatched glycans were experimentally

determined in non-human species. 40 percent of the unmatched glycans contained a

specific glycan moieties which were not covered by our glycosyltransferase catalog. For

example, glycan substructures ”Fuc(α1-6)Gal(β1-4)” and ”GlcNAc(β1-4)Man(α1-6)” are

not able to be generated using our catalog. These moieties may become a key role for
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Figure 3.12: A plot of the frequency of glycosyltransferase usage. Glycosyltrans-

ferases are grouped based on their gene types (x-axis). For example, the label

“MGAT4” represents the sum of the frequency of MGAT4A, B and C. Note that

FUT represents the fucosyltransferases other than FUT8. The size (z-axis) repre-

sents the size of the glycan structure generated.

68



understanding unknown regulatory systems.

It is clear that there are many unknown regulatory systems in biological cells that

strictly control protein glycosylation patterns. Our comprehensive glycan pathway anal-

ysis highlights the gaps between glycobiological analysis in vivo and in silico. The avail-

ability of a predicted collection of such glycan structural data may facilitate increased

glycomics knowledge and enable easier adoption by other disciplines. Moreover, the pre-

diction of these “missing” glycans may also provide some light into the enzyme kinetics of

the glycosyltransferases involved. Clearly our theoretical N -glycan database is not fully

supported by the experimentally determined structures at this time. It is not known

how many N -glycan structures actually exist in nature, and we acknowledge that the

structures predicted and stored in our database are more than two orders of magnitude

greater than currently reported structures. As glyco-analysis technologies improve, our

database can be used to validate newly assigned structures with the knowledge that they

are biosynthetically plausible.
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Chapter 4

Conclusion

Calculation models have been developed to aid reducing costs and saving time for the

processes of predicting and synthesizing glycans. In the last decade, these models are

used to predict the industrial relevance of glycan structures. Computing models for gly-

can synthesis will be further extended and sophisticated to affect the detailed analysis of

glycan-omics research. Moreover, it will be one of the valuable resources for the glycan

engineering. Spahn and Lewis was discussed that the development of small glycan syn-

thesis model which is specialized in the synthesis of glycans on the specific recombinant

protein would be of the one of the most interest in a number of approaches [59]. For

instance, Liu et al. have focused on the O-glycan modification of the glycoprotein ligand

I of P-selectin, and have developed the optimization technique to reconstruct the reaction

pathway as the most consistent with the observed glycan abundance [60]. We suggest

that these small-scale models are significant to reduce the complexity of glycan structure

researches, and it is able to develop the lager-scale models for the glyan-omics anlaysis.

This study is a first step to fill the large gap of the glycan science based on develop-
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ment of the first web resource that contains data mining tools and algorithms focusing

on the sugar chain structure. Several useful tools have become available for glycobiol-

ogy analysis. Furthermore, we have developed a comprehensive human-related N -glycan

synthesis pathway based on utilizing the algorithm of Glycan Pathway Predictor tool.

We were able to generate 1.1 million theoretical N -glycans that are mostly not reported.

Hence, we were able to highlight the large gaps between the glycan science in vivo and in

silico, and considered to be an important role studies to fill these gaps.
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[13] René Ranzinger, Stephan Herget, Claus-Wilhelm von der Lieth, and Martin Frank.

Glycomedb - a unified database for carbohydrate structures. Nucleic Acids Research,

39:D373–D376, 2011.

74



[14] Y. Akune, M. Hosoda, S. Kaiya, D. Shinmachi, and K. F. Aoki-Kinoshita. The rings

resource for glycome informatics analysis and data mining on the web. OMICS,

14(4):475–86, 2010.

[15] M. P. Campbell, C. A. Hayes, W. B. Struwe, M. R. Wilkins, K. F. Aoki-Kinoshita,

D. J. Harvey, P. M. Rudd, D. Kolarich, F. Lisacek, N. G. Karlsson, and N. H.

Packer. Unicarbkb: putting the pieces together for glycomics research. Proteomics,

11(21):4117–21, 2011.

[16] M. P. Campbell, R. Peterson, J. Mariethoz, E. Gasteiger, Y. Akune, K. F. Aoki-

Kinoshita, F. Lisacek, and N. H. Packer. Unicarbkb: building a knowledge platform

for glycoproteomics. Nucleic Acids Res, 42(Database issue):D215–21, 2014.

[17] F. J. Krambeck and M. J. Betenbaugh. A mathematical model of n-linked glycosy-

lation. Biotechnol Bioeng, 92(6):711–28, 2005.

[18] F. J. Krambeck, S. V. Bennun, S. Narang, S. Choi, K. J. Yarema, and M. J. Beten-

baugh. A mathematical model to derive n-glycan structures and cellular enzyme

activities from mass spectrometric data. Glycobiology, 19(11):1163–75, 2009.

[19] A.D. McNaught and A. Wilkinson. Compendium of chemical terminology, page 1.

Wiley, 1997.

[20] Ajit Varki, Richard D. Cummings, Jeffrey D. Esko, Hudson H. Freeze, Pamela Stan-

ley, Carolyn R. Bertozzi, Gerald W. Hart, and Marilynn E. Etzler, editors. Essentials

of Glycobiology, chapter 2. Cold Spring Harbor Laboratory Press, second edition,

2009.

75



[21] Brooks S., Dwek M., and Schumacher U. Functional and Molecular Glycobiology,

book 1. Bios Scientific Pub Ltd, 2002.

[22] von der Lieth C.W., Luetteke T., and Frank M. Bioinformatics for Glycobiology and

Glycomics: An Introduction, book 2. Wiley, 2009.

[23] S.B. Agravat, J.H. Saltz, R.D. Cummings, and D.F. Smith. Glycopattern: a web

platform for glycan array mining. Bioinformatics, 30(23):3417–3418, 2014.

[24] F. Li, O. V. Glinskii, and V. V. Glinsky. Glycobioinformatics: current strategies and

tools for data mining in ms-based glycoproteomics. Proteomics, 13(2):341–54, 2013.

[25] H. Lis and N. Sharon. Lectins: Carbohydrate-specific proteins that mediate cellular

recognition. Chem Rev, 98(2):637–674, 1998.

[26] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and
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Appendix A

Source codes

Source codes for each algorithm in this thesis is uploaded in Bitbucket. In the following

sections, each source codes are saved in the listed URL(s) of Bitbucket.

Glycan Score Matrix

Source codes for calculating a glycan score matrix are stored in:

https://yukie_akune@bitbucket.org/appendix_ya/score-matrix-generator.git

“scorematrix index.pl” is used for displaying the input. “score matrix.pl” is a main

program for calculating glycan score matrices, and used for output as well.

Glycan Kernel Tool

Source codes for Glycan Kernel Tool are stored in: https://yukie_akune@bitbucket.

org/appendix_ya/glycankerneltool.git

“kernel Input viewer.pl” is used for displaying the input. “kernel-tool.pl” is used for

i



generating a calculation id, and the calculation process is displayed via “kernel-request.pl”.

“bioweightedq.pl” is a main code, and it uses “run Kernel Comp.sh”, “getqgrams.sh”,

“getqgram file.rb” and “Linkagesimi.mat” for kernel calculation. The result page is dis-

played using “show-results.pl”.

Our kernel calculation is coded in Matlab. Source codes of Matlab are stored in:

https://yukie_akune@bitbucket.org/appendix_ya/matlab-codes.git

IUPACtoKCF

Source codes for IUPACtoKCF are stored in:

https://yukie_akune@bitbucket.org/appendix_ya/iupactokcf.git

“iupactokcf index au.pl” is used for displaying the input. “iupactokcf au.pl” is a main

program for converting input data, and used for output as well.

GlycoCT{condensed}toKCF

Source codes for GlycoCT{condensed}toKCF are stored in:

https://yukie_akune@bitbucket.org/appendix_ya/glycocttokcf.git

“glycoct index au.pl” is used for displaying the input. “glycoct to kcf au.pl” is a main

program for converting input data, and used for output as well. “transNODEs uniq.txt”

is a list of monosaccharides written in GlycoCT format and KCF formats.
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Generating glycosyltransferase candidates

Source codes for generating glycosyltransferase candidates are stored in:

https://yukie_akune@bitbucket.org/appendix_ya/get_enzyme_candidates.git

“get Nenz JSON.pl” is a main program for generating glycosyltransferase candidates.

“transNODEs uniq.txt” is a list of monosaccharides written in GlycoCT format and KCF

formats.

Theoretical N -glycan database

Source codes for generating glycosyltransferase candidates are stored in:

https://yukie_akune@bitbucket.org/appendix_ya/theoretical-db.git

“gp.pl” is a main program for calculating theretical N -glycans using human glycosyl-

transferases which data is stored in “Nenzyme local.txt”. “sqlCodes.txt” saves codes for

generating database using MySQL language.
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Appendix B

Glycosyltransferase Catalog

Table B.1: Glycosyltransferase catalog (reaction patterns)

No. Substrate Donor residue Condition rule

1 ^Man(a1-6) Man(a1-3) On the core M̈an(a1-6)ärm. No Gal/Fuc/Neu5Ac in the

parent glycan

2 ^Man(a1-2)Man(a1-

2)Man(a1-3)

Glc(a1-3) On the core M̈an(a1-3)ärm. No Gal/Fuc/Neu5Ac in the

parent glycan

3 ^Glc(a1-3)Man(a1-

2)Man(a1-2)Man(a1-3)

Glc(a1-3) On the core M̈an(a1-3)ärm. No Gal/Fuc/Neu5Ac in the

parent glycan

4 ^Man(a1-3)Man(a1-6) Man(a1-2) On the core M̈an(a1-6)ärm. No Gal/Fuc/Neu5Ac in the

parent glycan

5 Man(a1-3)[^Man(a1-

6)]Man(a1-6)

Man(a1-2) On the core M̈an(a1-6)ärm. No Gal/Fuc/Neu5Ac in the

parent glycan

6 ^Glc(a1-3)Glc(a1-

3)Man(a1-2)Man(a1-3)

Glc(a1-2) On the core M̈an(a1-3)ärm. No Gal/Fuc/Neu5Ac in the

parent glycan

7 ^Man(a1-3) Man(a1-2) On the core M̈an(a1-3)ärm. No Gal/Fuc/Neu5Ac in the

parent glycan

8 ^Man(a1-2)Man(a1-3) Man(a1-2) On the core M̈an(a1-3)ärm. No Gal/Fuc/Neu5Ac in the

parent glycan

9 Man(a1-3)[^]Man(a1-6) Man(a1-6) On the core M̈an(a1-6)ärm. No Gal/Fuc/Neu5Ac in the

parent glycan

10 ^Gal(b1-4)GlcNAc GlcNAc(b1-3) -

11 ^GalNAc GlcNAc(b1-3) -

iv



Table B.1: Glycosyltransferase catalog (reaction patterns)

No. Substrate Donor residue Condition rule

12 ^GlcNAc(b1- Gal(b1-3) Not on the bisecting GlcNAc

13 ^Glc(a1- Gal(b1-4) -

14 ^GlcNAc Gal(b1-4) Not on the bisecting GlcNAc

15 ^Gal(b1-4) GalNAc(b1-4) -

16 ^GlcNAc GalNAc(b1-4) Not on the bisecting GlcNAc

17 Fuc(a1-2)[^]Gal(b1- GalNAc(a1-3) -

18 Fuc(a1-2)[^]Gal(b1- Gal(b1-3) -

19 ^Gal(b1-4)GlcNAc(b1- Fuc(a1-2) -

20 Gal(b1-3)[^]GlcNAc(b1- Fuc(a1-4) Fuc(a1-2) or Neu5Ac(a2-3) can connect on Gal(b1-3)

21 Gal(b1-4)[^]GlcNAc(b1- Fuc(a1-3) Fuc(a1-2) or Neu5Ac(a2-3) can connect on Gal(b1-3)

22 GlcNAc(b1-4)[^]GlcNAc Fuc(a1-6) On the core GlcNAc (root). No Gal (b1-) in the parent

glycan

23 Gal(b1-4)[^]GlcNAc(b1- Fuc(a1-3) stop the extension

24 Gal(b1-3)[^]GlcNAc(b1- Fuc(a1-3) Fuc(a1-2) can connect on Gal(b1-3)

25 ^Gal(b1-4)GlcNAc GlcNAc(b1-6) -

26 Gal(b1-4)GlcNAc(b1-

3)[^]Gal(b1-

GlcNAc(b1-6) -

27 ^Man(a1-3) GlcNAc(b1-2) On the core Man(a1-3)

28 ^Man(a1-6) GlcNAc(b1-2) On the core Man(a1-6)

29 Man(a1-3)[Man(a1-

6)][^]Man(b1-4)

GlcNAc(b1-4) On the core Man(b1-4). No bisecting GlcNAc and Gal

(b1-) in the parent glycan

30 GlcNAc(b1-

2)[^]Man(a1-3)

GlcNAc(b1-4) On the core Man(a1-3). No bisecting GlcNAc in the

parent glycan

31 GlcNAc(b1-

2)[GlcNAc(b1-

6)][^]Man(a1-3)

GlcNAc(b1-4) On the core Man(a1-3). No bisecting GlcNAc in the

parent glycan

32 GlcNAc(b1-

2)[GlcNAc(b1-

6)][^]Man(a1-6)

GlcNAc(b1-4) On the core Man(a1-6)

33 GlcNAc(b1-

2)[^]Man(a1-6)

GlcNAc(b1-4) On the core Man(a1-6)

34 GlcNAc(b1-

2)[^]Man(a1-6)

GlcNAc(b1-6) On the core Man(a1-6). No bisecting GlcNAc
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Table B.1: Glycosyltransferase catalog (reaction patterns)

No. Substrate Donor residue Condition rule

35 GlcNAc(b1-

2)[GlcNAc(b1-

4)][^]Man(a1-6)

GlcNAc(b1-6) On the core Man(a1-6). No bisecting GlcNAc

36 GlcNAc(b1-

2)[^]Man(a1-3)

GlcNAc(b1-6) On the core Man(a1-3). No bisecting GlcNAc in the

parent glycan

37 GlcNAc(b1-

2)[GlcNAc(b1-

4)][^]Man(a1-3)

GlcNAc(b1-6) On the core Man(a1-3). No bisecting GlcNAc in the

parent glycan

38 ^Gal(b1-3) Neu5Ac(a2-3) -

39 ^Gal(b1-4)GlcNAc Neu5Ac(a2-3) -

40 ^Gal(b1-4)GlcNAc Neu5Ac(a2-6) -

41 ^Neu5Ac(a2-3)Gal(b1- Neu5Ac(a2-8) -

42 ^Neu5Ac(a2-

8)Neu5Ac(a2-3)

Neu5Ac(a2-8) -

43 ^Neu5Ac(a2-6)Gal(b1- Neu5Ac(a2-8) -

44 ^Neu5Ac(a2-

8)Neu5Ac(a2-6)

Neu5Ac(a2-8) -

Table B.2: Glycosyltransferase catalog (protein and gene name)

No. UniProt entry UniProt protein name UniProt gene

name

1 Q92685 Dol-P-Man:Man(5)GlcNAc(2)-PP-Dol alpha-1,3-mannosyltransferase ALG3

2 Q9Y672 Dolichyl pyrophosphate Man9GlcNAc2 alpha-1,3-glucosyltransferase ALG6

3 Q9BVK2 Probable dolichyl pyrophosphate Glc1Man9GlcNAc2 alpha-1,3-

glucosyltransferase

ALG8

4 Q9H6U8 Alpha-1,2-mannosyltransferase ALG9 ALG9

5 Q9H6U8 Alpha-1,2-mannosyltransferase ALG9 ALG9

6 Q5BKT4 Dol-P-Glc:Glc(2)Man(9)GlcNAc(2)-PP-Dol alpha-1,2-glucosyltransferase ALG10

7 Q2TAA5 GDP-Man:Man(3)GlcNAc(2)-PP-Dol alpha-1,2-mannosyltransferase ALG11

8 Q2TAA5 GDP-Man:Man(3)GlcNAc(2)-PP-Dol alpha-1,2-mannosyltransferase ALG11

9 Q9BV10 Dol-P-Man:Man(7)GlcNAc(2)-PP-Dol alpha-1,6-mannosyltransferase ALG12
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Table B.2: Glycosyltransferase catalog (protein and gene name)

No. UniProt entry UniProt protein name UniProt gene

name

10 O43505 Beta-1,4-glucuronyltransferase 1 B4GAT1

11 - - -

12 Q9Y5Z6. O43825 Beta-1,3-galactosyltransferase 1. Beta-1,3-galactosyltransferase 2 B3GALT1.

B3GALT2

13 P15291. O60909 Beta-1,4-galactosyltransferase 1. Beta-1,4-galactosyltransferase 2 B4GALT1.

B4GALT2

14 P15291. O60909.

O60512. O60513

Beta-1,4-galactosyltransferase 1. Beta-1,4-galactosyltransferase 2. Beta-

1,4-galactosyltransferase 3. Beta-1,4-galactosyltransferase 4.

B4GALT1.

B4GALT2.

B4GALT3.

B4GALT4

15 Q00973 Beta-1,4 N-acetylgalactosaminyltransferase 1 B4GALNT1

16 Q6L9W6.

Q76KP1

Beta-1,4-N-acetylgalactosaminyltransferase 3. N-acetyl-beta-

glucosaminyl-glycoprotein 4-beta-N-acetylgalactosaminyltransferase

1

B4GALNT3.

B4GALNT4

17 P16442 Histo-blood group ABO system transferase ABO

18 P16442 Histo-blood group ABO system transferase ABO

19 P19526. Q10981 Galactoside 2-alpha-L-fucosyltransferase 1. Galactoside 2-alpha-L-

fucosyltransferase 2

FUT1. FUT2

20 P21217. Q11128.

P51993

Galactoside 3(4)-L-fucosyltransferase. Alpha-(1,3)-fucosyltransferase 5.

Alpha-(1,3)-fucosyltransferase 6

FUT3. FUT5.

FUT6

21 P21217. Q11128.

P51993. Q11130

Galactoside 3(4)-L-fucosyltransferase. Alpha-(1,3)-fucosyltransferase 5.

Alpha-(1,3)-fucosyltransferase 6. Alpha-(1,3)-fucosyltransferase 7

FUT3. FUT5.

FUT6. FUT7

22 Q9BYC5 Alpha-(1,6)-fucosyltransferase FUT8

23 Q9Y231 Alpha-(1,3)-fucosyltransferase 9 FUT9

24 Q495W5 Alpha-(1,3)-fucosyltransferase 11 FUT11

25 O95395 Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-

acetylglucosaminyltransferase 3

GCNT3

26 O95395 Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-

acetylglucosaminyltransferase 3

GCNT3

27 P26572 Alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase MGAT1

28 Q10469 Alpha-1,6-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase MGAT2

29 Q09327 Beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase MGAT3
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Table B.2: Glycosyltransferase catalog (protein and gene name)

No. UniProt entry UniProt protein name UniProt gene

name

30 Q9UM21.

Q9UQ53.

Q9UBM8

Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase

A. Alpha-1,3-mannosyl-glycoprotein 4-beta-N-

acetylglucosaminyltransferase B. Alpha-1,3-mannosyl-glycoprotein

4-beta-N-acetylglucosaminyltransferase C

MGAT4A.

MGAT4B.

MGAT4C

31 Q9UM21.

Q9UQ53.

Q9UBM8

Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase

A. Alpha-1,3-mannosyl-glycoprotein 4-beta-N-

acetylglucosaminyltransferase B. Alpha-1,3-mannosyl-glycoprotein

4-beta-N-acetylglucosaminyltransferase C.

MGAT4A.

MGAT4B.

MGAT4C

32 Q9UM21.

Q9UQ53.

Q9UBM8

Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase

C

MGAT4C

33 Q9UM21.

Q9UQ53.

Q9UBM8

Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase

C

MGAT4C

34 Q09328 Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase

A

MGAT5

35 Q09328 Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase

A

MGAT5

36 - - -

37 - - -

38 Q11201. Q16842.

Q11206

CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase

1. CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-

sialyltransferase 2. CMP-N-acetylneuraminate-beta-galactosamide-

alpha-2,3-sialyltransferase 4.

ST3GAL1.

ST3GAL2.

ST3GAL4

39 Q11203. Q11206.

Q9Y274

CMP-N-acetylneuraminate-beta-1,4-galactoside alpha-2,3-

sialyltransferase. CMP-N-acetylneuraminate-beta-galactosamide-alpha-

2,3-sialyltransferase 4. Type 2 lactosamine alpha-2,3-sialyltransferase

ST3GAL3.

ST3GAL4.

ST3GAL6

40 P15907. Q96JF0 Beta-galactoside alpha-2,6-sialyltransferase 1. Beta-galactoside alpha-2,6-

sialyltransferase 2

ST6GAL1.

ST6GAL2
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Table B.2: Glycosyltransferase catalog (protein and gene name)

No. UniProt entry UniProt protein name UniProt gene

name

41 Q92185. O43173.

Q92187. O15466.

P61647

Alpha-N-acetylneuraminide alpha-2,8-sialyltransferase. Sia-alpha-

2,3-Gal-beta-1,4-GlcNAc-R:alpha 2,8-sialyltransferase. CMP-N-

acetylneuraminate-poly-alpha-2,8-sialyltransferase. Alpha-2,8-

sialyltransferase 8E. Alpha-2,8-sialyltransferase 8F

ST8SIA1.

ST8SIA3.

ST8SIA4.

ST8SIA5.

ST8SIA6

42 Q92186. O43173.

Q92187. O15466

Alpha-2,8-sialyltransferase 8B. Sia-alpha-2,3-Gal-beta-1,4-GlcNAc-

R:alpha 2,8-sialyltransferase. CMP-N-acetylneuraminate-poly-alpha-2,8-

sialyltransferase. Alpha-2,8-sialyltransferase 8E

ST8SIA2.

ST8SIA3.

ST8SIA4.

ST8SIA5

43 Q92186. O43173.

Q92187. O15466.

P61647

Alpha-2,8-sialyltransferase 8B. Sia-alpha-2,3-Gal-beta-1,4-GlcNAc-

R:alpha 2,8-sialyltransferase. CMP-N-acetylneuraminate-poly-alpha-

2,8-sialyltransferase. Alpha-2,8-sialyltransferase 8E. Alpha-2,8-

sialyltransferase 8F

ST8SIA2.

ST8SIA3.

ST8SIA4.

ST8SIA5.

ST8SIA6

44 Q92186. O43173.

Q92187. O15466

Alpha-2,8-sialyltransferase 8B. Sia-alpha-2,3-Gal-beta-1,4-GlcNAc-

R:alpha 2,8-sialyltransferase. CMP-N-acetylneuraminate-poly-alpha-2,8-

sialyltransferase. Alpha-2,8-sialyltransferase 8E

ST8SIA2.

ST8SIA3.

ST8SIA4.

ST8SIA5

Table B.3: Glycosyltransferase catalog (resource databases (1))

No. EC number KO id GGdb name BRENDA name

1 2.4.1.258 K03845 ALG3 dolichyl-P-Man:Man5GlcNAc2-PP-dolichol alpha-1,3-

mannosyltransferase

2 2.4.1.267 K03848 ALG6 dolichyl-P-Glc:Man9GlcNAc2-PP-dolichol alpha-1,3-

glucosyltransferase

3 2.4.1.265 K03849 ALG8 dolichyl-P-Glc:Glc1Man9GlcNAc2-PP-dolichol alpha-

1,3-glucosyltransferase

4 2.4.1.259 K03846 ALG9 dolichyl-P-Man:Man6GlcNAc2-PP-dolichol alpha-1,2-

mannosyltransferase

5 2.4.1.261 K03846 ALG9 dolichyl-P-Man:Man8GlcNAc2-PP-dolichol alpha-1,2-

mannosyltransferase
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Table B.3: Glycosyltransferase catalog (resource databases (1))

No. EC number KO id GGdb name BRENDA name

6 2.4.1.256 K03850 ALG10 dolichyl-P-Glc:Glc2Man9GlcNAc2-PP-dolichol alpha-

1,2-glucosyltransferase

7 2.4.1.131 K03844 ALG11 GDP-Man:Man3GlcNAc2-PP-dolichol alpha-1,2-

mannosyltransferase

8 2.4.1.131 K03844 ALG11 GDP-Man:Man3GlcNAc2-PP-dolichol alpha-1,2-

mannosyltransferase

9 2.4.1.260 K03847 ALG12 dolichyl-P-Man:Man7GlcNAc2-PP-dolichol alpha-1,6-

mannosyltransferase

10 2.4.1.- K00741 B3GNT1 N-acetyllactosaminide beta-1,3-N-

acetylglucosaminyltransferase

11 - K09664 B3GNT7 -

12 2.4.1.- K07819.

K07820

B3GALT1.

B3GALT2

-

13 2.4.1.- K07966.

K07967

B4GALT1.

B4GALT2

lactose synthase

14 2.4.1.- K07966.

K07967.

K07968.

K07969

B4GALT1.

B4GALT2.

B4GALT3.

B4GALT4

N-acetyllactosamine synthase. beta-N-

acetylglucosaminylglycopeptide beta-1,4-

galactosyltransferase

15 2.4.1.92 - B4GALNT1 (N-acetylneuraminyl)-galactosylglucosylceramide N-

acetylgalactosaminyltransferase

16 2.4.1.244 - B4GALNT3.

B4GALNT4

N-acetyl-beta-glucosaminyl-glycoprotein 4-beta-N-

acetylgalactosaminyltransferase

17 2.4.1.40 K00709 A(ABO) glycoprotein-fucosylgalactoside alpha-N-

acetylgalactosaminyltransferase. fucosylgalactoside

3-alpha-galactosyltransferase

18 2.4.1.37 K00709 A(ABO) glycoprotein-fucosylgalactoside alpha-N-

acetylgalactosaminyltransferase. fucosylgalactoside

3-alpha-galactosyltransferase

19 2.4.1.69 K00718 FUT1.

FUT2

galactoside 2-alpha-L-fucosyltransferase

20 2.4.1.65 K00716.

K07633.

K07634

FUT3.

FUT5.

FUT6

3-galactosyl-N-acetylglucosaminide 4-alpha-L-

fucosyltransferase
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Table B.3: Glycosyltransferase catalog (resource databases (1))

No. EC number KO id GGdb name BRENDA name

21 2.4.1.65 K00716.

K07633.

K07634.

K07635

FUT3.

FUT5.

FUT6.

FUT7

3-galactosyl-N-acetylglucosaminide 4-alpha-L-

fucosyltransferase

22 2.4.1.68 K00717 FUT8 glycoprotein 6-alpha-L-fucosyltransferase

23 2.4.1.- K03663 FUT9 3-galactosyl-N-acetylglucosaminide 4-alpha-L-

fucosyltransferase

24 2.4.1.- K00753 FUT11 4-galactosyl-N-acetylglucosaminide 3-alpha-L-

fucosyltransferase

25 2.4.1.150 K00742.

K09662

GCNT3 N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-

transferase

26 2.4.1.102 K00742.

K09662

GCNT3 beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-

acetylglucosaminyltransferase

27 2.4.1.101 K00726 MGAT1 alpha-1,3-mannosyl-glycoprotein 2-beta-N-

acetylglucosaminyltransferase

28 2.4.1.143 K00736 MGAT2 alpha-1,6-mannosyl-glycoprotein 2-beta-N-

acetylglucosaminyltransferase

29 2.4.1.144 K00737 MGAT3 beta-1,4-mannosyl-glycoprotein 4-beta-N-

acetylglucosaminyltransferase

30 2.4.1.145 K00738 MGAT4A alpha-1,3-mannosyl-glycoprotein 4-beta-N-

acetylglucosaminyltransferase

31 2.4.1.145 K00738 MGAT4B alpha-1,3-mannosyl-glycoprotein 4-beta-N-

acetylglucosaminyltransferase

32 2.4.1.145 - - alpha-1,6-mannosyl-glycoprotein 4-beta-N-

acetylglucosaminyltransferase

33 2.4.1.145 - - alpha-1,6-mannosyl-glycoprotein 4-beta-N-

acetylglucosaminyltransferase

34 2.4.1.155 K00744.

K09661

MGAT5.

MGAT5B

alpha-1,6-mannosyl-glycoprotein 6-beta-N-

acetylglucosaminyltransferase

35 2.4.1.155 K00744.

K09661

MGAT5.

MGAT5B

alpha-1,6-mannosyl-glycoprotein 6-beta-N-

acetylglucosaminyltransferase

36 2.4.1.155 K00744.

K09661

MGAT5.

MGAT5B

alpha-1,6-mannosyl-glycoprotein 6-beta-N-

acetylglucosaminyltransferase
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Table B.3: Glycosyltransferase catalog (resource databases (1))

No. EC number KO id GGdb name BRENDA name

37 2.4.1.155 K00744.

K09661

MGAT5.

MGAT5B

alpha-1,6-mannosyl-glycoprotein 6-beta-N-

acetylglucosaminyltransferase

38 2.4.99.4 K03368 ST3GAL2 beta-galactoside alpha-2,3-sialyltransferase

39 2.4.99.- K00780.

K03368.

K00781.

K03494.

K03370.

K03792

ST3GAL1.

ST3GAL2.

ST3GAL3.

ST3GAL4.

ST3GAL5.

ST3GAL6

neolactotetraosylceramide alpha-2,3-sialyltransferase.

N-acetyllactosaminide alpha-2,3-sialyltransferase

40 2.4.99.1 K00778 ST6GAL1.

ST6GAL2

beta-galactoside alpha-2,6-sialyltransferase

41 2.4.99.8.

2.4.99.-

K03371.

K03369

ST8SIA1.

ST8SIA2.

ST8SIA4.

ST8SIA5.

ST8SIA6

alpha-N-acetylneuraminate alpha-2,8-sialyltransferase

42 2.4.99.- K03371.

K03369

ST8SIA1.

ST8SIA2.

ST8SIA4.

ST8SIA5.

ST8SIA6

alpha-N-acetylneuraminate alpha-2,8-sialyltransferase

43 2.4.99.- K03371.

K03369

ST8SIA1.

ST8SIA2.

ST8SIA4.

ST8SIA5.

ST8SIA6

alpha-N-acetylneuraminate alpha-2,8-sialyltransferase

44 2.4.99.- K03371.

K03369

ST8SIA1.

ST8SIA2.

ST8SIA4.

ST8SIA5.

ST8SIA6

alpha-N-acetylneuraminate alpha-2,8-sialyltransferase
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Table B.4: Glycosyltransferase (GT) catalog (resource databases (2))

No. CAZy class CFG id Krambeck model (2009)

1 GT58 - -

2 GT57 - -

3 GT57 - -

4 GT22 - -

5 GT22 - -

6 GT59 - -

7 GT4 - -

8 GT4 - -

9 GT22 - -

10 GT31 gt hum 536 iGnT

11 GT31 gt hum 562 -

12 GT31 gt hum 429 b3GalT

13 GT7 - -

14 GT7 gt hum 460. gt hum 436 b4GalT

15 GT12 gt hum 482 -

16 - gt hum 475 -

17 GT6 gt hum 450 GalNAcT-A

18 GT6 gt hum 450 GalT-B

19 GT37. GT10. GT11 gt hum 598 FucTH

20 GT37. GT10 gt hum 600 FucTLe

21 GT37. GT10 gt hum 600 FucTLe

22 GT23 gt hum 605 a6FucT

23 GT10 - -

24 GT10 gt hum 601 a3FucT

25 GT14 gt hum 548. gt hum 544 IGnT

26 GT14 gt hum 548. gt hum 544 IGnT

27 GT13 gt hum 535 GnTI

28 GT16 gt hum 534 GnTII

29 GT17 gt hum 540 GnTIII

30 GT54 gt hum 545 GnTIV

31 GT54 gt hum 545 GnTIV

32 - - -

33 - - -

34 GT18 gt hum 553 GnTV
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Table B.4: Glycosyltransferase (GT) catalog (resource databases (2))

No. CAZy class CFG id Krambeck model (2009)

35 GT18 gt hum 553 GnTV

36 GT18 gt hum 553 GnTV

37 GT18 gt hum 553 GnTV

38 GT29 gt hum 625 -

39 GT29 gt hum 627. gt hum 624 a3SiaT

40 GT29 gt hum 629 a6SiaT

41 GT29 gt hum 639 -

42 GT29 gt hum 639 -

43 GT29 gt hum 639 -

44 GT29 gt hum 639 -
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