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was in the evolution and ecology of plant-mediated indirect interactions. I found 

the interplay between plants and insects endlessly fascinating, as I do to this day.

 With the help of Terry Theodose and the rest of my committee, I planned 

an ambitious research project, intent on making an original contribution to this 

exciting and growing field. I was also eager to do my research in a salt marsh, 

the location of my undergraduate research experience and an environment that I 
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project. 
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as a salt marsh. 

v



It was with great disappointment concerning giving up my original thesis 

that I began to look for other research projects. I followed up with several of 

these with the support of the faculty and my committee, however I lacked the 

passion for them that I had for my original research project. The combination of a 

year or more off my feet and the lack of a research direction had taken the wind 

out of my sails. 

As a result, after completing my coursework, I took a hiatus from working 

on a thesis project. I re-entered the work force and discovered a new passion in 

the field of special education. However, giving up on completing my graduate 

studies in biology was never an option for me. With the support of my friends and 

family as well as my adviser, Terry, I eventually went back to my original interest– 

the interplay between insect herbivores and plants– and began to write this 
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provides a synthesis of this diverse and complex topic and that it captures in 

some small part the abiding appreciation that I have for the rich and fascinating 

natural world around us. 
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Abstract
In this review, I will discuss indirect species interactions that occur as a result of 

herbivore-induced trait changes in plants. Species interactions are at the very 

core of the field of ecology. In particular, plant–insect herbivore interactions are of 

central importance as these two groups together consist of over 75% of the 

macroscopic diversity on earth. Historically, research has focused on pair-wise 

direct interactions however, more recently, the importance of indirect interactions 

has been widely acknowledged. Indeed, indirect interactions may be as strong 

and as common as direct interactions. Indirect interactions have been actively 

investigated in plant–insect systems, which are the primary focus of this paper. 

Plants exhibit multiple responses to insect herbivory, including changes in 

chemistry, morphology and physiology. These changes provide the mechanisms 

for trait-mediated indirect interactions between organisms that utilize the same 

host plant, whether for food, shelter or oviposition. Indirect plant-mediated 

interactions include competition and facilitation between insect herbivores as well 

as interactions that involve higher trophic levels, such as natural enemy 

attraction. Recent research has begun to elucidate community-level effects of 

plant responses to insect herbivory, including plant-mediated connections 

between aboveground and belowground communities. 
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Introduction
The interactions between organisms have been actively studied 

throughout the history of ecology from early descriptive ecology through recent 

experimental research. In addition, many other disciplines have contributed to 

this field, including evolutionary biology, biochemistry, and molecular biology. 

Early work focused on direct interactions between two organisms, such as 

predation and interference competition. In recent years, indirect interactions 

resulting from density and trait changes of a mediating species or those involving 

more than three species have been well documented (Miner 2005). Interaction 

theory is being continuously revised to reflect this richer understanding of the 

complex mechanisms of species interactions and the complicated roles they play 

within ecological communities. 

The study of trait-mediated indirect interactions has been a particularly 

active area of research and a large body of work concerning their importance in a 

broad range of ecological communities has accumulated (Bolker et al. 2003, 

Werner and Peacor 2003). Early studies focused on behavior-mediated 

predator–prey interactions but an increasingly important focus is on the dynamic 

interactions between herbivores and plants. Although technically not classified as 

behaviors, the diverse responses of plants to herbivory can impact other species 

in the community. 

Understanding species interactions can be extremely difficult due to 

multiple, complicating factors. First, many disciplines have contributed to this field 

and as a result the terminology is inconsistent and potentially confusing. Different 

13



authors can use the same terminology in different ways and various terms are 

often used to describe the same concept. Second, the interacting organisms are 

themselves highly complex with each having unique variations in biochemistry, 

physiology, morphology, behavior and evolutionary history, the very factors that 

drive interactions. Third, all interactions take place in a larger ecological context 

with other biotic and abiotic factors impacting and being impacted by the 

interactions themselves. Therefore the emergent properties arising from an 

interaction between just two organisms can have ramifications throughout the 

entire ecological community.

Species interactions have been broadly classified as either those that are 

direct or those that are indirect. While definitions of each of these terms vary (see 

Appendix A), direct interactions typically involve two species while indirect 

interactions typically involve three (or more) species. In this paper, I will be using 

the terms direct interactions and indirect interactions as outlined by Abrams 

(1995), who takes a more nuanced approach. A direct indirection is one in which 

a change in one species produces a change in another without any intermediary 

species required (see Fig. 1; Abrams 1995). In contrast, an indirect interaction 

involves an initiating species that produces a change in an intermediate species 

which then produces a change in a receiving species (Fig. 2; Abrams 1995). 

Indirect interactions are likewise separated into two types by most authors 

(but see Appendix A for further discussion), namely trait-mediated indirect 

interactions (TMII) and density-mediated indirect interactions (DMII). Density-

mediated indirect interactions are those that are mediated by changes in 
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abundance of the mediating species while TMII are mediated by trait changes in 

the mediating species, such as those in behavior, chemistry, morphology and 

phenology. 

Here I review research on trait-mediated indirect interactions with a focus 

on plant trait-mediated interactions involving plants and insect herbivores. Plants 

and insects are two of the most diverse and ecologically important macroscopic 

taxa on Earth, so the interactions between them have been extensively 

researched (Strong et al. 1984, Agrawal 2004). I will first discuss direct 

interactions between plants and insect herbivores, which are the building blocks 

of indirect interactions, focusing on the myriad responses of plants to herbivory, 

their various manifestations, and the effects of those responses on the insect 

herbivores. I will then turn to the topic of plant-mediated indirect interactions, 

concentrating on those involving two insect herbivores, above- and belowground 

indirect interactions, and those involving higher trophic levels.  Finally, I will 

discuss the recent research on community level effects of plant-mediated indirect 

interactions and future research in this burgeoning field.
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Initiator Receiver

Mediator

Fig. 2. A model depicting a simple indirect interaction. Solid lines illustrate direct 
interactions and the dashed line illustrating the indirect interaction. Note that 
indirect interactions require at least one intermediary species between the 
initiating and receiving species (Abrams 1995). As in Figure 1, reciprocal effects 
are likely to occur in nature although not shown in this model.

Initiator Receiver

Fig. 1. A model depicting a simple direct interaction. While this model only depicts 
the effect of the initiating species on the receiving species, reciprocal interactions 
generally occur (Abrams 1995). In symmetric interactions, interaction strength is 
equal in both directions while in asymmetric interactions, interaction strength is 
weaker in one direction.



Direct plant–insect herbivore interactions: the 
roles of plant responses

Plants have evolved multiple ways of coping with the challenges of being 

literally rooted in one location. Herbivory represents just one of those challenges 

but it is a particularly complex one. As the foundation for the passage of solar 

energy and carbon flux into food webs, herbivory plays a pivotal role in the 

ecosystem. Thus most plant species have numerous herbivores from a diversity 

of taxa. In the face of this onslaught, plants are not passive targets, but have 

evolved multiple layers of defense. These layers can be classified based on 

permanence in plant tissue, mechanism of defense, and the impact on the 

herbivore. 

Induced plant responses to insect herbivory

Plant defenses can be classified according to how permanent they are in 

plant tissue. Constitutive defenses are those which are present even in the 

absence of herbivory. In contrast, plant defenses may also be induced by 

herbivory. Induced plant responses are broadly defined as changes following any 

kind of damage or stress, including drought, freezing and light damage in 

addition to herbivory (Karban and Myers 1989, Karban and Baldwin 1997, Van 

Zandt and Agrawal 2004a). 

 While many induced plant responses to herbivory may be assumed to be 

defenses, only those that can be shown to increase plant fitness are technically 

considered induced defenses (Karban and Baldwin 1997, Agrawal and Karban 
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1999). Surprisingly, some induced responses increase plant susceptibility to 

subsequent herbivory or otherwise decrease plant fitness (Poelman et al. 2010). 

Herbivore-induced plant changes, whether defensive or not, are the building 

blocks of the trait-mediated indirect interactions that will be discussed later. 

If plants already have constitutive defenses, what additional functions do 

induced responses play? There are multiple hypotheses about the adaptive 

functions of induced responses and they often address the topic of defense costs 

but also the strategic advantage to a plant dealing with multiple consumers. 

Indeed, the earliest and most prevalent ideas about the evolution of induced 

responses centered on cost (Karban and Myers 1989, Agrawal and Karban 

1999).  

Surprisingly, many studies have failed to demonstrate any costs of 

defense (Agrawal and Karban 1999, Arnold 2003) while others were able to 

demonstrate fitness costs particularly under laboratory conditions (Baldwin and 

Hamilton 2000). One weakness of many of these studies is that they were not 

conducted under natural conditions and some did not include an herbivory 

treatment. For instance, in a greenhouse study utilizing transformed wild tobacco 

(Nicotiana attenuata) with reduced expression of trypsin proteinase inhibitors 

(TPIs), Zavala et al. (2004) demonstrated reproductive and growth costs for both 

constitutive and induced TPI expression in the untransformed lines when grown 

under competition. However, these fitness costs may be ameliorated in a natural 

setting that includes herbivory (Zavala et al. 2004). On the other hand, additional 

costs may also be present in the natural setting, such as decreased 
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attractiveness to pollinators and other mutualists or increased susceptibility to 

specialist herbivores (Zavala et al 2004, Agrawal 2011).

 As expected, the relative fitness costs of constitutive and induced plant 

defenses is an active area of research and debate (Cipollini 2003, Agrawal 2011). 

Costs can be either biosynthetic, ecological or both, with ecological costs 

potentially being more common and probably much higher than biosynthetic 

costs (Fatouros 2005, Karban 2011). However, due to relative ease of study, 

biosynthetic costs have been examined in greater detail. Constitutive defenses 

are assumed to be costly in the absence of herbivory due to resources being 

permanently allocated to defense that could otherwise go towards growth and 

reproduction. However, because some constitutive defenses have dual roles in 

the plant, there may be little additional cost in maintaining them. Examples 

include cellulose, lignin and waxes. However other constitutive traits appear to 

serve the sole function of defense, such as thorns, spines and many plant 

chemicals that do not have a known primary metabolic function.  Evolution, then, 

may favor induced defenses because the plant can adjust its defenses during 

periods of herbivore attack rather than defending continuously. This may result in 

lower overall fitness costs to the plant in the long term.

Although the allocation costs of constitutive defensives may be obvious, 

induced responses can also carry costs, such as allocation away from primary 

metabolism. In addition, ecological costs may also accrue, such as changes to 

interactions with other, beneficial, species. For example, plant defenses may be 

toxic to certain pollinators and therefore deter them (Agrawal and Karban 1999, 
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Karban 2011). Positive interactions with microbial symbionts and seed dispersers 

may also decrease (Strauss et al 2002, Agrawal 2011). Likewise, indirect 

mutualists, such as predators and parasitoids of herbivores, may also be 

negatively affected by plant toxins, such as when toxins are sequestered by the 

herbivore and used for its own defense (Agrawal and Karban 1999, Karban 

2011).

If cost reduction does not adequately explain the benefit of induced 

responses over constitutive defense, what other factors may be important? Some 

plant resistance traits, such as putative defense chemicals, attract specialist 

herbivores (Robert et al. 2012). Thus constitutive expression of these traits can 

make the plant conspicuous, favoring the evolution of induced expression. 

Induced defenses may make the plant less apparent to specialist herbivores 

(Agrawal 1998, Agrawal and Karban 1999, Lankau 2007). To illustrate this, 

brassicaceous plants have constitutive glucosinolates that actually attract and 

stimulate feeding and oviposition by specialist herbivores (Feeny 1970, Slansky 

and Feeny 1977, Agrawal and Karban 1999). 

Inducible defenses may also provide a more flexible strategy than 

constitutive defenses in response to the great variety of challenges plants face in 

the larger ecological context. Most plants must defend against a range of 

herbivores and pathogens that can attack simultaneously or sequentially. 

Different biochemical pathways can provide specific defenses against these 

diverse challenges. However, some of these pathways are antagonistic within the 

plant making it unlikely that a single phenotype has the capacity to defend 
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against the full range of potential challengers at all times. Inducible defenses, 

then, allow the plant to tailor a response to the current attack without sacrificing 

its future ability to defend against attack by other organisms (Agrawal and 

Karban 1999, Ruiz et al. 2002). 

Plant variability in herbivore food quality is another factor favoring 

inducible responses. Herbivores, including specialists, can be negatively affected 

by variability in the food source, including variability in chemical defenses 

(Brattsten et al. 1983, Stockhoff 1993, Shelton 2004, Karban 2011). Induced 

defenses increase both the spatial and temporal nutritional variability of plant 

tissue in a way not possible with constitutive defenses (Agrawal and Karban 

1999, Shelton 2005). Variability itself may also be an effective strategy over 

evolutionary time scales as herbivores and pathogens must adjust their 

counterstrategies to cope with a moving target rather than a fixed phenotype 

(Karban and Myers 1989, Adler and Karban 1994, Agrawal and Karban 1999). 

Thus inducibility potentially slows the counter-adaptation of herbivores to plant 

defenses. On the other hand, in an environment with predictable and constant 

levels of herbivory, constitutive defenses may be favored (Karban and Myers 

1989, Ruiz et al. 2002).

Inducibility may also affect herbivore feeding behavior. For instance, 

induced defenses may cause herbivores to relocate following damage, 

dispersing subsequent damage to other parts of the plant or to nearby plants 

(Karban 2011). Dispersed damage may be more favorable to the plant than 

concentrated damage. Increased herbivore movement may also increase 
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parasitism and predation rates providing an indirect benefit to the plant (Agrawal 

and Karban 1999). 

All of the above-mentioned advantages of inducibility may have favored its 

evolution and may explain the prevalence of this strategy in plants. However, 

because of the dynamic environment plants face, employing a combination of 

constitutive and induced defenses may be the most adaptive. In a 2004 meta-

analysis exploring trade-offs between the two kinds of defense, Koricheva et al. 

(2004) found evidence for trade-offs but they also acknowledged that constitutive 

and induced defenses are not mutually exclusive. Indeed, constitutive and 

induced defenses may not be redundant, but together can provide a highly 

effective defense strategy. For instance, constitutive defenses can provide an 

immediate defense during the lag time typical of most induced responses (Ruiz 

et al. 2002).

Mechanisms of induced plant responses to herbivory

Plant defenses are also classified based on whether they are 

morphological (such as thorns, spines or trichomes), chemical (such as alkaloids 

or proteinase inhibitors), or phenological (such as early growth or reproduction to 

escape herbivory). Surprisingly, seemingly permanent aspects of morphology can  

be induced by herbivory. Common induced morphological responses include 

changes in branching, leaf flush, bud burst, floral traits, shoot regrowth, growth of 

spines or thorns and changes in trichome or pigment gland density (Agrawal and 

Karban 2000, Denno and Kaplan 2006). Induced changes in plant morphology 

generally take more time than the relatively rapid changes in plant chemistry.
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Changes in plant defense chemistry are probably the most widely known 

and actively researched induced responses to herbivory. Herbivory can increase 

the concentrations of putative defense chemicals include defensive proteins, 

phenolics, terpenoids, alkaloids and indole glucosinolates through the activation 

of biosynthethic pathways (Denno and Kaplan 2006). Volatile organic compound 

(VOC) composition and quantity may also change as a result of herbivory. While 

not directly defensive, we will see that herbivore induced VOCs are an important 

component of plant responses to herbivory. Preformed defense chemicals may 

be released by herbivore damage although some herbivores may also deactivate 

preformed chemical defenses (Denno and Kaplan 2006). As an example, some 

insects cut latex-bearing veins on plant leaves rendering the downstream tissue 

free of latex (Dussourd and Eisner, Agrawal and Konno 2009). Chemical changes 

frequently occur rapidly after damage, on a time scale of minutes to a few days 

(Karban and Myers 1989, Karban and Baldwin 1997, Underwood 1998, Gomez 

et al. 2010).

Herbivory can also alter plant nutrition and source-sink dynamics (Denno 

and Kaplan 2006). For instance, aphids divert phloem from the plant, acting as a 

nutrient sink. Other herbivores have been shown to increase or decrease plant 

nitrogen, particularly in new plant growth. 

Herbivore induced plant responses do not generally occur in only a single 

trait; rather, multiple plant traits are generally altered at the same time.  The 

concept of plant defense syndromes has been proposed to explain the suites of 

traits that may co-occur most frequently (Kursar and Coley 2003, Agrawal and 
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Fishbein 2006). Kursar and Coley (2003) suggested, based on their work in 

tropical rainforests, that plants fall along an escape/defense continuum. The 

escape syndrome is typified by weak chemical defenses, lower nutrition and 

higher growth rates while the defense syndrome is characterized by higher levels 

of defense and slower growth rates. As plant tissue is most vulnerable to 

herbivory in early developmental stages, faster growth rates provide a means of 

reducing the period of time a plant is vulnerable to herbivory. In contrast, slower 

growth rates increase the period of vulnerability and is often associated with 

highly defended tissue (Kursar and Coley 2003). Agrawal and Fishbein (2006) 

determined that 3 possible defense syndromes occur in 24 species of Asclepias. 

Two of their described syndromes correlate with Kursar and Coley’s (2003) 

defense strategy, in each case involving high defense and high concentrations of 

tissue nitrogen. These two “defense” syndromes differed in that the first involved 

primarily physical defenses such as high trichome densities and latex while the 

second involved high levels of cardenolides (Agrawal and Fishbein 2006). In 

contrast, Agrawal and Fishbein’s (2006) third possible syndrome involved low 

nutritional quality and low digestibility. Agrawal and Fishbein (2006) proposed a 

“defense syndrome triangle” as a model that includes the escape and defense 

syndromes described by Kursar and Coley (2003) and also the low nutritional 

quality syndrome that they described. The low nutritional quality syndrome is 

closely related to the group of traits described by Feeny (1976) for highly 

apparent plants. Further research is merited in this area to determine whether 

these correlations are adaptive and widespread.
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Researchers are increasingly using molecular techniques such as 

microarray analysis and genetically transformed plants to study the mechanisms 

of plant defense (Halitschke and Baldwin 2002, Roda and Baldwin 2003, Zhu-

Salzman et al. 2005). There are multiple, well-studied biosynthetic pathways 

involved in induced plant responses. Induced plant responses are produced by 

mechanical damage in combination with insect-specific elicitors. This elicitation 

triggers cascading pathways that result in up-regulation of defense responses 

(Halitschke and Baldwin 2005). The jasmonic acid (JA) and salicylic acid (SA) 

pathways have been studied in great detail with ongoing research focusing on 

signaling compounds such as ethylene, auxin, abscisic acid and methanol 

(Utsumi 2010). Wounding alone can produce a defense response, however 

insect elicitors typically induce a larger or different response than wounding alone 

(Zhu-Salzman et al. 2005). 

The JA and SA pathways are differentially induced within the same plant. 

Feeding guild seems to be one of the most important factors determining which 

pathway responds. The JA pathway is generally triggered by chewing insects 

while the SA pathway is generally induced by sucking insects or pathogens 

(Thaler et al.1999, Walling 2000, Heidel and Baldwin 2004, Ali and Agrawal 2012, 

Thaler et al. 2012). Heidel and Baldwin (2004) investigated molecular plant 

responses from 5 different herbivores in three feeding guilds using microarray 

analysis.  Lepidopteran leaf-chewers induced a pattern consistent with JA 

induction, while a cell-content puncture feeder elicited an SA-type pattern. Aphids 

induced little responses in contrast to other studies in which phloem feeders elicit 
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the SA pathway. Some phloem feeders may induce the SA pathway while others 

induce the JA pathway (Thaler et al. 2012). In 2000, Walling reviewed induction 

by various feeding guilds and found that phloem feeders like aphids induce a 

response similar to pathogens while induction by chewers and cell content 

feeders most closely resembles the would-signaling response.

Current research supports differential induction by various feeding guilds 

and hints at the mechanistic reasons behind the pattern. In a review of 13 recent 

studies, Ali and Agrawal (2012) found that phloem-feeders induced fewer JA 

genes, suppressed more genes in total and induced weaker overall plant 

responses than chewers. This response is consistent with pathogen-induced 

plant responses and probably occurs because phloem-feeders typically cause 

only minor tissue damage as compared to chewers. In contrast, chewing 

herbivores induced few genes typical of the SA pathway and induced stronger 

overall plant responses than suckers, consistent with the idea that the greater 

tissue damage induces a response similar to the wound-signaling response.  

Both SA and JA can be applied exogenously to plants resulting in induction of 

their respective pathways (Thaler et al.1999) and this technique is frequently 

used to elucidate mechanisms.  

There is evidence that these two response pathways interact 

antagonistically, as demonstrated in laboratory experiments of tomato, tobacco 

and Arabidopsis thaliana (Thaler et al. 2002) and documented in 17 total plant 

species (Thaler et al. 2012). The antagonism between pathways occurs when 

induced with exogenous JA and SA application and has also been demonstrated 
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a few times in plants induced by herbivores (Thaler et al. 2002, Thaler et al. 

2012).  

Specificity of plant responses may be due in part to cross-talk between 

pathways providing plants with mechanisms to tune a specific response to a 

particular attacker (Halitschke and Baldwin 2002). In Arabidopsis, SA is 

prioritized over JA but this can be modified with ethylene which promotes the JA 

pathway (Thaler et al. 2012). In other species, JA tends to suppress the SA 

pathway (Thaler et al. 2012).  Besides ethylene, various other hormones also 

modulate either the JA pathway, SA pathway or both pathways. These hormones 

include abscisic acid, auxin, gibberellins, cytokinins and brassinosteroids (Erb et 

al. 2012, Thaler et al. 2012).

The interaction between the two biochemical pathways may also depend 

on timing and strength of induction and compensation can occur when one 

pathway is disabled (Thaler et al. 2002, Thaler et al. 2012). While cross-talk is 

generally considered adaptive, it may also lead to induced susceptibility in certain 

situations (Thaler et al. 2012). In a test of four different herbivores’ performance 

on plants induced with both an SA analog and JA, there was a positive effect on 

cabbage looper performance due to attenuation of the JA pathway. There was no 

effect of attenuated plant resistance on the performance of thrips, spider mites or  

hornworm caterpillars (Thaler et al. 2002). More research is needed to test the 

hypothesis that the JA–SA antagonism is adaptive (Thaler et al. 2012).
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Variation in plant responses to insect herbivory

The expression of induced plant responses to herbivory can be altered by 

multiple factors, including herbivore density, location of damage, herbivore 

identity and damage type. 

The magnitude of induced plant responses can depend on the density of 

the attacking herbivore. For instance, spider mites feeding on cotton plant 

cotyledons induced changes in the density of pigment glands on cotyledons, first 

and second true leaves in a density-dependent manner. These pigment glands 

contain defense chemicals including gossypol and other terpenoid aldehydes 

(Agrawal and Karban 2000). Density dependence is not necessarily a linear 

effect; in a recent study (Robert et al. 2012), the authors found that medium 

densities of a root herbivore (Diabrotica virgifera virgifera) produced peak 

emissions of several induced VOCs. While herbivore density is an important 

consideration, induced plant responses can and do occur at very low levels of 

herbivory (Kaplan and Denno 2007, Ohgushi 2008).

Herbivore-induced plant responses can either occur locally to the 

damaged tissue or systemically with induction occurring even in distant non-

damaged tissue (Schilmiller and Howe 2005). The vascular architecture of the 

plant is involved with systemic induction, with plant parts that share vascular 

connection more likely to have similar levels of induction (Orians 2005). However, 

induction is not entirely dependent on these connections. Induction can also 

occur in distant plant parts or even neighboring  plants as a result of herbivore-
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induced volatile organic compound (VOC) emission (Baldwin et al. 2006, Heil 

and Karban 2010).

Plants responses depend in part on the type of damage and herbivore 

identity. Some studies have shown that simple mechanical damage can be 

sufficient to induce plant responses. For instance, in an early study Silkstone 

(1987) applied mechanical damage to birch leaves and measured subsequent 

leaf damage by herbivores. Experimental leaves received less overall herbivory 

and had less tissue loss due to herbivory than controls, providing evidence of 

plant response to mechanical damage. However, the earlier observation that 

mechanical damage was not equivalent to herbivore damage (Haukioja and 

Neuvonen 1985) led to research on herbivore-specific plant responses (Agrawal 

2000).

Variation in plant response to different herbivores has been termed 

specificity of elicitation (Viswanathan et al. 2005). Plant traits that vary depending 

on herbivore identity include defensive proteins, nutrient concentrations, latex 

production, trichome density and VOC production and composition (Viswanathan 

2007). For instance, different insect species induce different chemical defense 

responses in tomato plants (Stout et al 1996, Stout et al. 1998). Tomato plants 

induced by the noctuid caterpillar Helicoverpa zea had increased levels of 

polyphenol oxidase and proteinase inhibitors (Stout et al. 1996). In contrast, 

induction by the aphid Macrosiphum euphorbiae increased peroxidase and 

lipoxygenase levels (Stout et al. 1998). 
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Specificity of elicitation is a result of signals from both the type of damage 

inflicted on the plant and herbivore-associated chemical elicitors (Agrawal 2000, 

Kessler and Halitschke 2007, Poelman 2008). Damage type is strongly 

associated with the plant response, with characteristic responses induced by 

different feeding guilds such as leaf chewers, cell content feeders and phloem 

feeders (Walling 2000, Ali and Agrawal 2012). Chemical elicitors have been 

identified from insect regurgitant, saliva and oviposition secretions. Known 

elicitors include β-glucosidase, fatty acid-amino acid conjugates, inceptins, 

bruchins and caeliferins (Doss et al. 2000, Kessler and Baldwin 2002, Kessler 

and Halitschke 2007, Ali and Agrawal 2012).

Specificity of elicitation may also relate to whether the herbivore is a 

specialist or generalist of the host plant. Specialists may induce a more specific 

plant response as compared to generalists. In a 2012 review, Ali and Agrawal 

found few studies that rigorously tested this hypothesis and those found little 

support for it.

Some recent work suggests that plant responses to herbivory can be 

passed down to plant offspring, reducing the lag time for induction (Agrawal et al. 

1999, Agrawal 2001, Agrawal 2002, Holeski et al. 2012). For example, offspring 

of herbivore-induced wild radish (Raphanus spp.) plants had more trichomes per 

leaf than offspring of control plants (Agrawal et al.1999). This was not an 

anomalous finding; in 2012, Holeski reviewed additional studies that demonstrate 

transgenerational induction. While many of these studies examined induction by 

pathogens, transgenerational induction by herbivores has been demonstrated in 
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Arapidopsis, tomato (Solanum lycopersicum) and monkeyflower (Mimulus 

guttatus) in addition to wild radish (Agrawal et al. 1999, Holeski 2012).

Effects of induced plant responses on insect herbivores

Induced plant responses may be considered from the herbivore point of 

view as either induced resistance or induced susceptibility. Induced resistance is 

an induced response that decreases herbivore preference or performance 

(Karban and Baldwin 1997, Agrawal and Karban 1999, Underwood 1999). In 

contrast, induced susceptibility is a plant response that has a positive effect on 

herbivore performance or preference (Karban and Baldwin 1997, Karban and 

Myers 1989). Examples of induced resistance and induced susceptibility occur 

for each of the induced plant response types discussed above.

While many studies have investigated the effect of induced plant 

responses on herbivores, few demonstrate the mechanism of the effect. 

However, general patterns have emerged. For instance, changes in plant 

chemistry may decrease herbivore fitness or preference but also may attract 

specialist herbivores. Changes in morphology may deter herbivores as in the 

case of increased trichome density but may also benefit herbivores as in the 

case of leaves flushed after herbivory that are more tender and nutritious than 

older tissue. New shoot growth is often favorable for oviposition, potentially due 

to being less tough than older shoots. 

In addition, different herbivores may elicit different plant responses. In 

addition, herbivores may respond differently to a given plant response. This 

phenomenon is known as specificity of effect (Karban and Baldwin 1997, Stout et 
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al. 1998, Van Zandt and Agrawal 2004a). Karban and Baldwin (1997) categorize 

specificity of effect based on which herbivores are impacted: whether on the 

inducing herbivore alone (high specificity) or on many different herbivores (low 

specificity). It is predicted that in cases of high specificity of effect, conspecifics of 

the inducing herbivore should be more affected than other herbivores. In 

contrast, some induced plant defenses can have a very broad generality of 

effect, such as the cucurbitacins found in the squash family. These chemicals 

defend against a wide variety of organisms including spider mites, roaches, 

beetles, caterpillars and even mice (Agrawal and Karban 2000). Latex is another 

example; it occurs in approximately 10% of all plant species and negatively 

impacts a range of herbivores due to both its physical and chemical 

characteristics (Agrawal and Konno 2009, Agrawal and Heil 2012). Other 

responses may only impact a subset of the full range of potential herbivores. For 

instance, hypersensitive response, which consists of plant cell death surrounding 

the site of attack, is associated with non-mobile herbivores that are intimately 

associated with plant tissue such as galling insects and leaf miners (Fernandes 

and Negreiros 2001).
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Indirect interactions between insects mediated by 
plant trait change

Indirect interactions are a direct result of herbivore-induced plant 

responses which provide the mechanism to mediate a range of interactions 

between the inducing species and species that are subsequently affected by the 

plant responses. Here we will remain focused on insect herbivore-induced plant 

responses, although it is worth noting that plants may be induced by other 

stressors, including mammalian herbivores, pathogens and mechanical damage. 

Likewise, diverse organisms may be at the receiving end of the interactions, 

including pollinators, pathogens and non-insect herbivores.

Plant-mediated indirect interactions between insect herbivores

Plants mediate interactions ranging from mutualisms to competition, 

although the focus of research has been on the latter. In 1960, Hairston et al. 

published a seminal theoretical paper that altered the conventional view of the 

factors limiting herbivore abundance. Prior to that time, herbivore abundance was 

assumed to be limited primarily by resource availability (bottom-up hypothesis), 

so that competition with other herbivores for resources was considered the most 

important interaction. However, Hairston et al. (1960) argued that herbivore 

abundance is unlikely to be limited by resource competition because plants are 

clearly abundant and rarely consumed entirely. They proposed instead that 

herbivore abundance was dictated by interactions with higher trophic levels, such 

as predation and parasitism. 
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This idea that top-down forces control herbivore populations, known as the 

“Green World” hypothesis, persisted for decades. This view has slowly shifted as 

understanding of plant trait changes induced by herbivory has grown. Induced 

resistance provides a mechanism for competition between herbivores that does 

not depend solely on food quantity but rather on the herbivore-induced changes 

in food quality. In addition, ecologists are beginning to recognize that positive 

indirect interactions are also quite common and may be equally important in 

structuring ecological communities.  Induced susceptibility provides a mechanism 

for positive indirect interactions between insect herbivores, as mediated by the 

plant food source. 

Plant-mediated indirect interactions do not necessarily depend on two 

insect species utilizing the same part of the plant or sharing the same plant 

simultaneously. As induced responses can occur at time scales ranging from 

hours to years, the length of temporal separation can be highly variable. Altered 

plant chemistry generally occurs quite quickly and may relax to constitutive levels 

within days or weeks. Morphological changes including increased trichome 

densities or new growth may occur quite slowly in comparison but they generally 

persist for a much longer time span. 

Interactions between temporally separated herbivores have been reported  

since at least 1986 when Faeth documented asymmetric competition between 

early and late season herbivores of Quercus emoryi. He found that early-season 

leaf chewers negatively impacted late-season leaf miners. This impact occurred 

more frequently on intact leaves rather than damaged leaves because damaged 

34



leaves had higher tannin and lower protein concentrations compared to intact 

leaves. The observed interaction between the two herbivores was strongly 

asymmetric, approaching amensalism. 

Since publication of Faeth’s 1986 paper, many other researchers have 

documented interactions between temporally separated herbivores as mediated 

by plants. There are examples of both negative and positive interactions 

involving a variety of herbivores including aphids, beetles, planthoppers, weevils, 

sawflies, galling insects and thrips (Ohgushi 2005). For instance, a stem-boring 

moth (Archinara geminipuncta) induced narrow side shoots in common reed 

(Phragmites australis) which were then utilized by the gall-making midge 

Giraudiella inclusa which prefers thin shoots. Prior moth damage was correlated 

with increased midge egg survival and abundance, demonstrating induced 

susceptibility (Tscharntke 1988).

More recent work has focused on how sequence of arrival modifies 

interactions. A few studies (Voelkel and Baldwin 2004, Viswanathan et al. 2007) 

have indicated that sequence of arrival may be an important factor in indirect 

interactions, however few have tested this explicitly. A recent meta-analysis of 

aboveground–belowground interactions found that the sequence of arrival 

strongly influenced interactions between aboveground (AG) and belowground 

(BG) herbivores. BG herbivores had a positive effect on AG herbivore 

performance when they arrived simultaneously but not when either arrived first. 

AG herbivores on the other hand had a negative effect on BG herbivore 

performance when AG herbivores arrived first (Johnson 2012).  In a study of the 
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interaction between leaf- and root-feeders on teosinte and cultivated maize, the 

leaf herbivore only negatively impacted colonization and growth by the root-

feeder when the leaf herbivore arrived first.  When the root-feeder arrived first, 

larval performance was not affected although adult emergence was reduced. The 

authors proposed that feeding deterrent or repellent secondary metabolites are 

the cause (Erb et al. 2011). In general, the competitive advantage goes to the 

earliest colonizing herbivores.

Plant mediated interactions frequently occur between insect herbivores 

that do not utilize the same plant part. Like temporal separation, spatial 

separation between interacting species is highly variable as induced plant 

responses may be localized to the damaged tissue or be systemic. The scale of 

variability in plant tissue quality ranges from within a single leaf  to the entirety of 

the plant body (Shelton 2005). Spatially separated herbivores may even be 

mediated by different plants, with plant-plant signaling inducing defense 

responses across individuals. Spatial separation also encompasses interactions 

between members of different feeding guilds that frequently utilize different parts 

of the host plant, such as interactions between phloem-feeders and leaf chewers, 

as well as interactions between herbivores and pollinators, or herbivores and 

ovipositing insects. 

Case study: aboveground–belowground plant-mediated insect interactions

Since by definition herbivory does not kill the plant, interactions are 

temporally and spatially separated insect species are frequent. Abovegound (AG) 

– belowground (BG) herbivore interactions provide an excellent case study of 
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plant-mediation involving both spatial and temporal separation. In addition, since 

most research involving AG–BG interactions is very recent, it provides a 

snapshot of the current work in this field. In this section, I will use AG–BG 

interactions to examine general principles and current understanding of plant-

mediated indirect interactions.

 Early work on potential aboveground–belowground interactions centered 

on the idea that BG herbivores could provoke a plant response similar to that of 

drought stress due to reduction in plant root biomass. The drought stress 

response results in increased concentration of AG nitrogen and carbohydrates. 

Therefore it was predicted that BG herbivores could have a positive impact on 

AG herbivores which would benefit from the improved nutritional quality of plant 

tissue aboveground. Conversely, AG herbivores could negatively impact BG 

herbivores as reduction in AG plant tissue would reduce allocation to 

belowground biomass (Masters 1992, 1993). This hypothesis was tested by 

Masters and Brown (1992) with a study of the interaction between a root chewer 

(Phyllopertha horticola) and a leaf miner (Chromatomyia syngenesiae) on 

common sow thistle (Sonchus oleraceous). They found that root herbivory 

increased pupal weight of the leaf miner while leaf herbivory reduced growth rate 

of the root herbivore, a contramensal interaction. While they did not find a 

difference in total leaf nitrogen, they proposed that the BG herbivore increased 

leaf quality whereas leaf mining decreased root biomass, a likely cause of the 

negative part of the interaction.
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However, further testing of  this “stress response hypothesis” has not been 

as promising. For instance, Hunt-Joshi and Blossey (2005) tested it using purple 

loosestrife (Lythrum salicaria) and its specialist herbivores, a leaf-feeding 

chrysomelid beetle and a root-feeding weevil. They demonstrated negative 

effects of leaf herbivory on the weevil in a potted plant study but not under field 

conditions.  They found no effect on the AG beetle in response to the BG weevil 

in either the potted plant experiment or four-year long field study. The authors 

suggest that the AG herbivore would be most likely to negatively impact the BG 

herbivore in cases of extreme defoliation, which would result in partial or 

complete death of BG tissue (Hunt-Joshi and Blossey 2005).

Also contrary to the expectations of the stress response hypothesis, 

Bezemer et al. (2003) found that root herbivory had a negative effect on an 

aboveground herbivore. They investigated the impact of leaf and root herbivory 

on terpenoid concentrations in cotton (Gossypium herbaceum). Root herbivory 

increased terpenoid levels throughout the plant while foliar herbivory increased 

terpenoids primarily in young leaves. As a result, in the foliar herbivory treatment,  

the AG herbivore shifted its feeding from young to mature leaves. No response 

was seen in the BG herbivory treatment. Thus the consumption and growth rate 

of the AG herbivore was reduced on plants exposed to root herbivory.

In a review of the available literature, Blossey and Hunt-Joshi (2003) 

suggest that the success of the stress response hypothesis may depend on the 

study system. The bulk of studies supporting the hypothesis were short term and 

conducted in early successional communities predominated by annual species. 
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Blossey and Hunt-Joshi argue that as resource availability and root herbivore 

populations increase in maturing communities the hypothesis may no longer 

apply (Blossey and Hunt-Joshi 2003). 

The mechanisms governing these patterns may not be adequately 

predicted by the stress response hypothesis, but some general patterns have 

begun to emerge. BG organisms can increase or decrease concentrations in AG 

tissue of putative defense compounds such as terpenoids, glucosinolates and 

phenolics. For instance, most studies of root-chewing insects show an overall 

increase in plant chemistry (Bezemer and van Dam 2005, Kaplan et al. 2008). 

In contrast to the effect of BG herbivores on AG defenses, the effect of AG 

herbivores on BG defenses appears to be weak (Soler et al. 2007, Kaplan et al. 

2008). There are studies that document either increased or decreased levels of 

defense chemistry in plant roots as a result of AG herbivory. The quality of root 

exudates may also be altered by AG herbivory (Bezemer and Van Dam 2005, 

Soler et al. 2007). These changes may be responsible for changes in 

belowground soil communities. For instance, foliar application of JA and SA have 

been shown to reduce the numbers of root-feeding grape phylloxera and root-

knot nematodes respectively (Bezemer and Van Dam 2005). !

In a recent meta-analysis (Johnson 2012) identified four factors that most 

influenced experimental results of AG–BG interactions: 1) sequence of herbivore 

arrival (discussed previously), 2) performance parameter measured, 3) plant and 

study type, and 4) herbivore type. The performance parameter measured was 

important when examining effects of AG herbivores on BG herbivores. For 
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instance, AG herbivory negatively impacted BG survival but positively affected 

BG population growth rates. In contrast, BG herbivore effects on AG herbivores 

did not depend on which performance parameters were measured. This finding 

indicates that researchers should measure multiple performance parameters in 

order to demonstrate positive or negative interactions  between insect 

herbivores. 

The most consistent results were obtained in lab studies rather than field 

experiments although it did not matter whether the plant was a natural species or 

an agricultural plant. Plant type also affected study results with AG herbivores 

negatively impacting BG herbivores on annuals, but not on perennials. Currently, 

much of the existing research has been done on annual plant systems. Additional 

work is needed to understand perennial plant systems. 

Herbivore taxa also influenced outcome, perhaps through specificity of 

elicitation. BG dipterans negatively affected AG herbivores while BG 

coleopterans had positive impacts on AG homopterans and negative impacts on 

AG hymenopterans. AG herbivore type did not appear to have significant effects 

on BG herbivory. Further research that integrates AG–BG experimental designs 

with work on specificity of elicitation might clarify this complexity.

 Plant-mediated indirect interactions involving natural enemy 

recruitment!

In addition to mediating interactions between two insect herbivores, plants 

may mediate more complex interactions involving additional trophic levels. 

Several mechanisms by which plants can mediate these interactions have been 
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identified. Induced plants may alter the herbivore quality or other traits as 

perceived by predators or parasitoids of herbivores. Plants may also recruit 

natural enemies of herbivores, such as parasitoids or predators, thereby reducing 

herbivore damage or abundance. 

 While natural enemy attraction is generally considered an indirect 

defense, only a few studies actually link natural enemy attraction to improved 

plant fitness (Van Der Meijden and Klinkhamer 2000, Kessler and Baldwin 2002). 

Several studies have demonstrated increased seed production on plants with 

parasitized caterpillars lending credence to the adaptivity of parasitoid attraction 

(Dicke et. al 2003). However, parasitism of insect herbivores may have some 

negative impacts on plant fitness. In particular, koinobont parasitoids (those that 

permit their host to continue development) may slow down herbivore 

development, resulting in longer feeding time on the host plant (Dicke 2000). 

There is some evidence that hosts parasitized by solitary parasitoid species 

consume less plant material than unparasitized herbivores. However, hosts 

parasitized by gregarious parasitoids may consume the same or slightly more 

than unparasitized hosts (Dicke 2000).  

Methods of natural enemy attraction include the release of volatile organic 

compounds (VOCs) and non-volatile contact cues as well as the secretion of 

extrafloral nectar (EFN). Upon damage by herbivores, most plants emit VOCs. 

There is ample evidence that predators and parasitoids use VOCs for host 

location (De Moraes et al. 1998, Dicke 2000, Rutledge 1996). Infochemicals 

(including VOCs and contact cues) may be classified into several types (Dicke 
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and Sabelis 1988, Rutledge 1996). Kairomones, such as plant VOCs used as 

natural enemy attractants, benefit both the emitting and receiving organisms. On 

the other hand, synomones benefit only the receiving organism. For example, 

parasitoids may use herbivore-derived infochemicals for host location. However, 

herbivore-based cues are generally more difficult to detect than plant-based cues  

as there is an evolutionary disadvantage for the herbivore to broadcast its 

location (Vet and Dicke 1992). In contrast, plants potentially benefit from 

releasing host-location cues (Kessler and Heil 2011). Parasitoid search behavior 

has been connected to the composition of VOCs as blends are often specific to 

the initiating herbivore and can be modified by subsequent or simultaneous 

herbivory.  

Natural enemies also use VOCs to discriminate between plants either 

damaged by previously parasitized or unparasitized hosts. Fatouros (2005) 

demonstrated that the parasitoid wasps Cotesia rubecula and C. glomerata land 

preferentially on plants in an unparasitized host treatment rather than the 

parasitized host treatment. Plants produced larger quantities of VOCs in the 

unparasitized host treatment, potentially as an adaptation to reduce induction 

costs once natural enemies have been recruited (Fatouros 2005).

VOC-mediated enemy attraction has most commonly been studied 

aboveground, but research of belowground systems demonstrates that root 

VOCs can also attract natural enemies. In a recent study by Rasmann et al. 

(2011), entomopathogenic nematodes were attracted by VOCs released by plant 

roots damaged by a root-boring beetle. With nematodes present, beetle survival 
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rate was reduced, leading to no change in aboveground biomass relative to 

control plants. Without nematodes, the beetles survived and reduced AG 

biomass by over 40% (Rasmann et al. 2011). Since AG herbivory can affect BG 

root exudates and potentially BG VOCs, it is possible that AG herbivory can 

impact BG indirect defenses. Bezemer and Van Dam (2005) reported that no 

studies had yet been done to address that question, which could be an important 

area of future research. 

 VOCs communicate plant location to insects from a distance. In contrast, 

contact cues assist parasitoids in detecting a suitable host insect once on the 

plant. Shiojiri et al. (2001) found that two species of specialist endoparasitic 

wasps discriminated between plants depending on whether plants had been 

damaged by host or non-host species. Both wasps spent more time searching on 

plant leaves damaged by their hosts than on those damaged by nonhost larvae 

or artificially damaged. Simultaneous damage by their hosts altered both 

chemical cues and parasitoid preference. Cotesia glomerata was more attracted 

to and had higher parasitism rates on plants with simultaneous herbivory than 

control plants. The responses of Cotesia plutellae to simultaneous herbivory 

were the opposite (Shiojiri et al. 2001, Shiojiri et al. 2002). 

The use of VOCs to attract natural enemies does not come without cost to 

the plant. In addition to the physiological costs of VOC induction for the plant, 

there are potential ecological costs as herbivores may also use VOCs to locate 

the plant (Dicke 2000). 
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Recent work shows that plants also recruit natural enemies through the 

secretion of extrafloral nectar (EFN; Kessler and Heil 2011). While studies of this 

are increasingly common, there is far less research on this type of indirect 

defense than on VOC emissions (Heil et al.  2001, Dicke et al. 2003). Extrafloral 

nectar has been documented in at least 104 plant families (Kessler and Heil 

2011) and it has been shown to attract diverse organisms, most commonly ants, 

wasps, mosquitoes and other insects (Kost and Heil 2005). The induction of EFN 

through herbivory has been demonstrated in some plants although others 

express EFN constitutively (Heil et al. 2001). EFN can indirectly reduce herbivory  

through the recruitment of ants and wasps that defend the plant from other 

insects, including herbivores. For example, Kost and Heil (2005) demonstrated 

that the application of artificial nectar (simulating natural levels of EFN 

production) increased the presence of ants, wasps and flies on lima bean plants 

(Phaseolus lunatus). This resulted in a significant reduction in the rate of 

herbivory on plants treated with artificial nectar relative to control plants. 

Surprisingly, induced plant responses may negatively impact natural 

enemies. For instance, in one study (Thaler 2002), fewer adult parasitoids 

emerged from host caterpillars on induced plants than on controls. This decrease 

was attributed to decreased herbivore quality on induced plants. In the same 

study, induced tomato plants decreased the abundance of an aphid predator, 

possibly due to decreased aphid densities. In addition, VOCs occasionally deter 

rather than attract natural enemies although attraction does seem to be more 

prevalent (Dicke 2000). 
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Greater effects of plant-mediated insect 
interactions

Species interactions occur in the greater context of multiple species living 

in diverse ecological communities. Increased knowledge of the dynamic 

responses of plants to herbivory has altered scientific understanding of the 

pivotal role plants can play in community dynamics.  Plant-mediated indirect 

interactions can have diverse and rippling effects on multiple species and 

ultimately the larger ecological community. This very recent field of study reveals 

the full range of positive, negative and neutral interactions mediated by plant 

responses and the impacts these have throughout ecological communities. The 

complexity of these multispecies interactions will only be elucidated through 

further study, as we move beyond the previous paradigm that focused only on 

pair-wise interactions.

Plant-mediated interactions that involve more than two insect species

Compared to the research discussed thus far, there is far less  empirical 

work on more complex multispecies interactions mediated by plants. In the 

natural enemy recruitment scenarios discussed above, an herbivore induced a 

plant response that then attracted a predator or parasitoid of the herbivore. 

Likewise, parasitized and unparasitized hosts elicited specific plant responses, 

ultimately influencing additional enemy recruitment and plant fitness. In an 

example of the complex ripple effects of indirect interactions, Poelman et al. 

(2011) demonstrated an indirect interaction between two parasitoids, ultimately 
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mediated by changes in plant quality. In this study, the endoparasitoid Cotesia 

glomerata had higher mortality on plants fed on by hosts parasitized by Cotesia 

rubecula; C. rubecula  survival was unaffected by prior herbivory of either 

parasitized or unparasitized hosts. The authors propose that differences in level 

of damage by parasitized hosts and differences in caterpillar regurgitate can 

explain the differences in plant quality which cascade up to the parasitoids. This 

interaction is an example of asymmetric competition with C. glomerata as the 

inferior competitor. The authors cite a study which demonstrates that C. 

glomerata in fact avoids plants previously damaged by hosts parasitized by C. 

rubecula. In the same study system, a previous study (Fatouros et al. 2005) 

demonstrated that C. glomerata discriminates between plants previously 

damaged by C. rubecula-parasitized hosts using VOCs and avoids those plants. 

As mentioned previously, some work has illustrated how indirect defenses 

can involve the belowground community. Plants can mediate interactions 

between herbivores that are spatially separated, including root and shoot 

herbivores. Plants can also mediate interactions between these communities at 

upper trophic levels. Most commonly, studies have examined the impact of BG 

herbivory on AG communities. For instance, Masters et al. (2001) used a soil-

insecticide treatment to show that root-feeding insects can increase the 

abundance of both a seed predator and its parasitoids. While both the seed 

predator and the parasitoids were more abundant on plants subject to root 

herbivory, the rate of parasitism did not differ between treatments.
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Indirect plant defenses may be one method by which BG herbivory 

impacts multiple AG species. Bezemer et al. (2005) studied the impacts of BG 

herbivory on higher AG trophic levels. In a greenhouse study, nematodes 

reduced the number of aphid offspring, but the aphids were larger and parasitoid 

survival was higher. Since parasitoid performance and preference have been 

linked to host size, the impact of nematodes on aphid size may have positively 

affected parasitoids in this study. 

Less commonly, researchers are exploring the impact of AG herbivory on 

BG communities. Soler et al. (2007) studied the impact of AG herbivory by Pieris 

brassicae (large cabbage white butterfly, a leaf chewer) on the root-chewing 

herbivore Delia radicum (cabbage root fly) and its endoparasitoid Trybliographa 

rapae. They demonstrated that prior AG herbivory negatively affected the BG 

herbivore and its parasitoid. Survival and performance of both D. radicum and its 

parasitoid decreased when reared on black mustard plants (Brassica nigra) that 

had been previously exposed to P. brassicae larvae for six days. Neither root 

biomass nor root nitrogen was affected by P. brassicae herbivory, however there 

was an increase in indole glucosinolates in the roots, a possible mechanism for 

the interaction.

Effects of plant-mediated interactions on ecological communities

 Increasingly, the importance of indirect interactions has been realized by 

ecologists and research has begun to incorporate the role of indirect interactions 

into community ecology (Utsumi 2011). Some of this work centers around new 

ways to explore interaction webs, including non-trophic and indirect interactions 
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rather than only consumer-resource interactions. This is a very important 

endeavor but will not be explored in greater detail here. Some excellent recent 

reviews of this topic include those by Utsumi and colleagues (2010) and Ohgushi 

(2008). Other community level work focuses on changes to community 

composition and other community level parameters that change as a result of 

indirect interactions. 

Utsumi and Ohgushi (2009) observed that community level impacts rely 

on three factors. First, plant responses to herbivory can alter the performance 

and preference of other herbivores. As we have seen, this can be either induced 

resistance or induced susceptibility, thus having positive or negative effects on 

subsequent herbivores. Second, plant responses can alter abundance, species 

richness and species composition of herbivores. Third, the indirect effects 

between herbivores (mediated by plant responses) can alter interactions 

between other members of the larger community, affecting predator abundance 

or species richness, for instance (Utsumi and Ohgushi 2009). 

Insect herbivores potentially play an important role in structuring 

communities. Because plant responses to herbivory are dependent at least in 

part on herbivore identity and sequence of herbivore arrival, early season 

herbivory can alter the composition of the subsequent community. The initial 

herbivore has been shown to change community level parameters in several 

model systems. The community of herbivores that utilize monarchs varies 

depending on initial herbivory by monarchs, weevils or leaf beetles (Van Zandt 

and Agrawal 2004b). Initial herbivore identity also impacts subsequent 
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colonization of bittersweet nightshade (Solanum dulcamara) while mechanical 

damage does not (Viswanathan et al. 2005). Utsumi and colleagues (Utsumi and 

Ohgushi 2009, Utsumi et al. 2009) investigated the moth-induced regrowth of 

willow shoots and the subsequent structure of herbivore and predator 

communities. Abundance and species richness of herbivores increased on 

regrown shoots, potentially due to increased nitrogen content of the new leaves. 

Predator abundance and richness also increased. Shelter-builders also 

potentially increase abundance and species richness. For instance, the presence 

of leaf rolls increased arthopod species richness and abundance on cottonwoods 

(Martinsen et al. 2000). 

Feeding guild also potentially affects changes in species richness and 

abundance. Removal of an aphid species from cottonwoods reduced species 

richness and abundance while removal of a leaf-feeding beetle increased 

species richness and abundance (Waltz and Whitham 1997). While the 

mechanisms were not investigated, aphids may have increased species richness 

through provision of honeydew, as well as through altered source-sink dynamics. 

In contrast, the beetle consumed large quantities of foliage and may have 

negatively affected plant quality (Waltz and Whitham 1997).  

Mammalian herbivores also impact community structure. For instance, 

Bailey and Whitham (2003) studied the community impacts of elk browsing on 

aspen (Populus tremuloides). Elk browsing reduced gall density of the leaf-edge 

galling sawfly Phyllocolpa bozemanii. Sawfly gall density was associated with 

both increased arthropod species richness and increased bird predation. Thus 
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elks negatively impacted both the arthropod community and avian foraging. In an 

earlier study, Roininen et al. (1997) documented induced susceptibility of two 

members of the Salicaceae to sawflies following browsing by moose and hares. 

Leaf-folding sawfly densities increased after browsing, possibly due to the the 

regrowth of longer shoots.

Because herbivore-induced plant responses have community level 

manifestations, they can potentially impact the success of invasive species. For 

example, Ando et al. (2011) documented the mechanism by which the exotic 

aphid (Uroleucon nigrotuberculatum) affects the late season dominance of native 

insects in Japan. This aphid, found in Japan since about 1990, is a specialist of 

tall goldenrod (Solidago altissima), which was introduced to Japan about 100 

years ago. The aphids feed on tall goldenrod in the spring, which the authors 

found induced increased plant tissue nitrogen levels later in the growing season. 

Thus in the fall, aphid-induced plants were dominated by leaf chewers while non-

induced plants were dominated by sap-suckers. Therefore the induced plant 

response was the mechanism by which aphids impacted other insect species in 

the community, even after the aphids were no longer present. If such interactions 

are widespread, increased knowledge of plant-mediated mechanisms could be 

an important tool for managing exotic insects and the ecosystems in which they 

occur.

The role of herbivore-induced plant responses may be particularly relevant 

to the success and community-level impacts of insect biocontrol agents used on 

invasive plants. Induced plant responses are being actively investigated for the 
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proposed biocontrol of several plants in the United States, including purple 

loosestrife (Lythrum salicaria) and common reed (Phragmites australis) (Hunt-

Joshi and Blossey 2005, Park and Blossey 2008). In the future, the knowledge 

gleaned by these and similar studies may enhance the success of biocontrol and 

mitigate possible negative impacts on native insect communities.
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Conclusion
The study of herbivore induced plant responses and the resulting indirect 

interactions has progressed dramatically since the earliest observations of these 

phenomena. Initially controversial, the idea that plants are able to respond to 

herbivores is now universally accepted and the ripple effects of these responses 

on communities are well-documented. However, there is still a great deal of work 

to do in this field. 

While the biochemical pathways and similar mechanisms behind plant 

responses have been well-researched, there are still many knowledge gaps in  

concerning the cross-talk between pathways and how these pathways are 

modified by other signaling compounds. In addition, most of the molecular work 

has been conducted on just a small number of cultivated species such as tomato, 

Arabidopsis, and tobacco. More research is needed on wild plants that have not 

undergone strong artificial selection and on plants that vary in evolutionary 

history. For example, some taxa utilize unique biochemical pathways for other 

aspects of metabolism such as the synthesis of betalains within the 

Caryophillales and the C4 Carbon fixation pathway found in many members of 

the Poaceae. Because diversity within the plant kingdom is so great, it is  likely 

that biochemical pathways of herbivore-induced response also vary. Thus a wide 

sampling of taxa is needed in order to represent the breadth of plant responses 

to insect herbivores.

Although hundreds of biochemical and molecular studies have informed 

understanding on plant responses to herbivory, most have been conducted in 
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greenhouses or growth chambers. If biochemical and molecular studies were to 

move out of the lab and into natural settings, they could begin to capture the full 

complexity of plant responses and interactions. This movement is already 

occurring with some workers embracing “lab techniques” in field studies, such as 

the use of genetically transformed plants and microarray analysis. However, 

more work is needed on wild plants in their natural habitat to truly grasp the 

evolutionary and ecological significance of plant responses to herbivory.

Studies which seek to bridge the biochemical/molecular literature with the 

ecological literature are necessary for an integrative understanding of plant-

mediated interactions. There are several recent contributions from the field of 

molecular ecology that have particular relevance. The phenomenon known as 

“priming of plant responses”, or increased readiness to defend, is an area of 

molecular research that may modify current understanding of induced plant 

responses, including the timing of induction. This phenomenon has only been 

documented since 2004, however multiple mechanisms have already been 

investigated and the evidence that  priming is widespread among plant families is 

rapidly accumulating (Holeski et al. 2012, Kim and Felton 2012). 

Transgenerational induction is a related field with similar implications for 

understanding the timing and mechanisms of plant responses.  

Research on community level effects of plant-mediated interactions is still 

in its infancy, but this area may have broad ramifications for community ecology 

as a whole. However, only a few sample communities have been explored in 

much detail (e.g. Asclepias syriaca and Phragmites australis). In addition, 
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continued work on the plant-mediated connections between entire aboveground 

and belowground communities will be important as belowground herbivory is an 

important but often overlooked component of both agricultural and natural 

communities. Finding the connections between plant responses and the 

numerous organisms in the surrounding community will be a fruitful endeavor 

towards elucidating the mechanisms of community structure and informing 

management of natural and agricultural systems. 

Useful metrics for measuring and comparing interaction strength within an 

ecological community need to continue to be developed, as discussed in 

Appendix A. Such metrics would help ecologists assess the relative importance 

of interactions in a given community, which could in turn assist with making 

informed policy and conservation decisions. For example, understanding the 

relative strength of top-down and bottom-up forces on an insect herbivore could 

potentially help inform management of invasive species.

Lastly, models of indirect interaction webs should continue to be 

developed and revised as these tools have the potential to convey large amounts 

of sophisticated information for researchers and managers. There are currently a 

multitude of approaches that vary greatly in their depictions, such as whether 

interaction strength is incorporated or how clearly multiple interaction types are 

shown (Figs. 3-6). Although these methods vary in their strengths and 

weaknesses, a standardized approach that optimizes the best of each method 

would go far in enhancing a generalized understanding of indirect interactions in 

communities. Additional discussion and input will be needed from the research 
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community to promote the wider acceptance, development and use of these 

relatively new types of models. 

Overall, it is vital that ecologists continue to move away from the central 

paradigm of pair-wise consumer-resource interactions. Species interactions are 

far more complex and intertwined than a simple assemblage of pair-wise building 

blocks. The emergent properties of interactions mediated by trait-change have 

ramifications throughout ecological communities that we are only beginning to 

understand. By incorporating the tools and knowledge of multiple disciplines and 

emphasizing a role for indirect interactions that rivals that of direct interactions, 

this field will continue to enhance our understanding and appreciation of the 

fascinating interplay between organisms in ecosystems. 
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Fig. 3. Indirect interaction web (from
 O

hgushi 2005), num
bers illustrate sequence and (+ –) sym

bols indicate net positive 
and negative effects on receivers.
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Fig. 4. Indirect interaction web (from
 Utsum

i et al. 2010), m
odel depicts two indirect interactions and the linkage between 

them
.
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Fig. 5. Interaction web (from Bukovinsky et al. 2008), arrow thickness illustrates 
relative interaction strength and effects are categorized as either density or size-
mediated.
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Fig. 6. Q
uantitative food web (from

 Van Veen et al. 2006), the width of each black bar indicates relative density of that 
species and the size of each wedge indicates the relative im

portance of each host. Q
uantitative food webs m

ay be used 
to assess the relative im

portance of indirect interactions between com
m

unities



Appendix A: Classification Schemes
Interactions between organisms have been classified in multiple ways, 

leading to complicated and sometimes conflicting nomenclature schemes. The 

terms used to describe interactions have shifted as the field has matured. It is 

worthwhile to examine the history of classification and the way interactions have 

been defined as this will lead to a richer understanding of the current research. 

There is a large body of work on interactions from many disciplines and spanning 

decades, often with different authors or disciplines using different terms and 

classifications to refer to similar concepts.

Interactions are generally classified as either direct or indirect. Within 

these two categories, more specific types of interactions are defined based on 

either mechanism or effect. For example, interference competition has been 

classified as direct, apparent competition and exploitation competition have been 

classified as indirect while all are classified as (– –) interactions. 

Historically, the delineation between direct and indirect interactions has 

been muddy with little agreement between workers. Wootton (1994) produced an 

apparently simple definition of a direct interaction that specifies a physical 

interaction between two species. In contrast, Abrams (1995) defines direct 

interactions more broadly as those involving two species in which a change in the 

initiating species produces a response in the receiving species without a 

necessary change in any other species. This definition includes interactions such 

as competition for resources that do not depend on physical contact between two 

species. Other authors include interactions like resource competition in their 
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definition of indirect interactions (Strauss 1991). Menge (1995) defines direct 

interactions as those in which changes in abundance of one species result from 

its interaction with another species, while neglecting changes in effects other 

than abundance. Some agreed upon examples of direct interactions (therefore 

involving physical interaction) include consumption and interference competition 

(Wootton 1994).

The generally accepted types of direct interaction are interference 

competition (– –), predation (+ –), herbivory (+ –), parasitism (+ –), mutualism (+ 

+), commensalism (+ 0), amensalism (– 0) and neutralism (0 0). The last four 

types are defined by effect rather than mechanism and can be either direct or 

indirect interactions. Neutralism is strictly speaking not an interaction at all (rather 

the absence of interaction), but is frequently included in classification schemes 

(Arthur and Mitchell 1989). Occasionally, the (+ –) interaction is referred to as 

contramensalism, a term first introduced by Arthur (1986), particularly when the 

mechanism is nontrophic. Some authors prefer this term for any (+ –) interaction 

as it is effect rather than mechanism based (Arthur and Mitchell 1989). Predation 

is a flexible term, sometimes used strictly to talk about the predator/prey 

relationship and sometimes also including herbivory and parasitism. Predator is 

also used in these two senses, sometimes including herbivores and parasites or 

parasitoids. Competition is another term with varying interpretations, but 

frequently used for all (– –) interactions rather than to refer to a specific 

mechanism. Interference competition is clearly a direct interaction, however other 

types (exploitative and apparent competition) are indirect. This distinction 
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between mechanism and effect should be made for clarity when discussing 

competition (Arthur and Mitchell 1989). All of these categories reflect 

combinations of positive, negative and neutral interactions between the two 

interacting species. 

The six possible types of interactions based on the combinations of 

positive (+), negative (–) and neutral (0) interaction signs are frequently 

summarized using an interaction grid (Fig. 7). However, the interaction grid does 

not adequately reflect the dynamic nature of species interactions. Holland and 

DeAngelis (2009) advocate for the use of an interaction compass as an 

alternative (Fig. 8). The interaction compass more accurately depicts the possible 

shifts between interaction types that can occur given different biotic and abiotic 

conditions. For instance, competition (– –) may become strongly asymmetric 

under a give set of conditions and be better described as amensalism (– 0). 
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Fig. 7. Interaction grid of the six possible types of species based on the positive, 
negative or neutral effect on each species. The general term contramensalism 
includes all (+ –) interactions such as  predation, herbivory, and parasitism.
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There is even less consensus on the definitions of indirect interactions but 

most (but not all), definitions include a third species. Wootton (1994) defines 

indirect effects as the impact of one species on another that requires the 

presence of a third; Miller and Kerfoot (1987) define them as “how and to what 

degree pairwise species interactions are influenced by the presence and density 

of other species in the community”, and Abrams’ (1995) definition includes one 

(or more) transmitting species that is (are) intermediate to the initiating and 

receiving species. For Abrams, some property (or properties) of the transmitting 

species must be changed by the initiator and this change in the transmitter then 

alters some property (or properties) of the receiver.

interactions (Cushman & Whitham 1989; Cushman 1991;
Cushman & Addicott 1991; Bronstein 1994).

Now recognized as a key area of study for advancing
population and community ecology (Agrawal et al. 2007),
context dependency (or conditionality) refers to a change
in the outcome of an interspecific interaction through a
shift in the sign (+, 0, )) of one or both species due to
variation in the local biotic or abiotic conditions of the
community. There is a growing body of literature on the
various biotic and abiotic factors that contribute to
variation in the outcomes of many diverse species
interactions, a few of which include the identity, behaviour,
and densities of the interacting species; the age, size and
stage classes of the individuals; the presence, absence, and
densities of other species and exploited resources; and
environmental factors such as rainfall and nutrient avail-
ability (Del-Claro & Oliveira 2000; Offenberg 2001;
Daugherty & Juliano 2002; van Ommeren & Whitham
2002; Schmitt & Holbrook 2003; Westerbergh 2004;
Kersch & Fonseca 2005; Callaway 2007; Heath & Tiffin
2007; Chamberlain & Holland 2008; Goldenheim et al.
2008; Lee et al. 2009). These and other studies show that
species interactions may often rest somewhere between the
six pure forms, and that they may grade into one another

and routinely transition back and forth between different
interaction outcomes.

Important attention is being given to the evolutionary
transitions between interaction outcomes (Herre et al. 1999;
Hochberg et al. 2000; Sachs & Simms 2006), and specific
models have been developed for the ecological transitions of
particular species interactions (Johnstone & Bshary 2002;
Kokko et al. 2003; Neuhauser & Fargione 2004), but basic
theory is largely lacking for the dynamics of ecological
transitions between interaction outcomes. In this study, we
modelled population interactions and tested whether merely
varying parameters of density-dependent consumer–
resource (C–R) interactions can contribute to transitions
between interaction outcomes. Although C–R interactions
are usually assumed to be identical with the (+ )) outcomes
of predator–prey or parasite–host relations, C–R interac-
tions are also central to competitive and mutualistic
interactions (Holland et al. 2005). Indeed, our results suggest
that C–R interactions can provide a broad mechanistic basis
for understanding context- and density-dependent transi-
tions between different outcomes of species interactions.

C O N S U M E R – R E S O U R C E M O D E L S O F S H I F T S I N
I N T E R A C T I O N O U T C O M E S

Originally integrated into the study of species interactions as
a means to describe the mechanism or ways by which
individuals of different species interact (MacArthur 1972),
the C–R interaction has become a central principle for
understanding interspecific interactions (Murdoch et al.
2003; Turchin 2003). Resources are biotic or abiotic factors
that increase population growth of consumers over some
range of the availability or supply of the resource. Resources
can be entire individuals of an exploited species, such as in
predator–prey interactions; a portion of exploited species,
such as leaves in herbivore–plant interactions; or a food
provisioned for a consumer, such as nectar in pollination
mutualisms. Consumers change (and typically deplete)
the availability or supply of the exploited resource. In this
way, species interactions are recognized as bi-directional,
uni-directional, and indirect C–R interactions. Bi-directional
C–R interactions occur when each species functions as both
a consumer and a resource of the other, such as mutual
predation (Polis et al. 1989) and plant-rhizobial mutualisms
(Holland et al. 2005). Uni-directional C–R interactions occur
when one species functions as a consumer and the other as a
resource, but neither functions as both. Indirect C–R
interactions occur when the effects of the two species on
one another are mediated entirely by the density or traits of
a third species that is a consumer or resource of one or both
of them. While indirect C–R interactions are important and
widespread in ecological communities (Wootton 1994;
Werner & Peacor 2003), we do not consider them further

(0 0) 
Neutralism 

Mutualism 
(+ +) 

(– –)
Competition or

Mutual predation

Predation (– +) (+ –) Predation

(+ 0) Commensalism Commensalism (0 +)

Amensalism (– 0) (0 –) Amensalism

Figure 1 The interaction compass for the classification of inter-
specific interactions based on interaction outcomes, for which the
positive (+), neutral (0), or negative ()) signs represent the effect of
one species on the other. The first sign represents the effect
of species i on species j, and the second sign represents the effect
of species j on species i. Unlike the discrete characterization of
interspecific interactions by the interaction grid, the interaction
compass depicts how changes in the sign of species i and ⁄ or j
reflects a continuum of transitions among the six basic forms of
interspecific interaction. Interaction outcomes with (+ )) signs are
termed predation here, but also includes parasitism, herbivory, and
the like.
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Fig. 8. Interaction compass model (from Holland and DeAngelis 2009). The 
compass depicts the same six possible types of interactions as in Fig. 4 but 
emphasizes the continuity between them.



Some authors allow mediation by a chemical or physical variable without 

the presence of an intermediate species (Strauss 1991) while others include 

such interactions in their definition of direct interactions (Abrams 1987, Abrams 

1995). For instance, a plant may alter the soil through allelopathy or reduction in 

nutrients. These changes in the soil can then alter the success of surrounding 

plants without involving a physical interaction between them. Notice that this 

example would fall under Abrams’ definition of a direct interaction. In order to 

separate biotic and abiotic intermediaries some authors refer to the latter as 

indirect effects rather than indirect interactions although this distinction is 

inconsistent in the literature. Strauss (1991) suggests that in fact all interactions 

are indirect with the exceptions of predation (including herbivory and parasitism), 

interference competition and some mutualisms. Wootton (1994) discusses the 

same issue but states that indirect effects include only those mediated by a third 

species. Both Strauss (1991) and Wootton (1994) agree that it is more important 

to account for physical and chemical variables than to assign them firmly as 

either direct or indirect effects.

Indirect interactions are occasionally referred to as higher order 

interactions. This phrase is particularly ambiguous as it is sometimes used to 

refer to non-linear direct interactions and sometimes to refer to interactions of 

three or more species (Wootton 1994, Abrams 1995). Abrams advocates for the 

latter use of the term.

More specific interaction types have been organized by either the 

mechanism of interaction (such as consumption of a shared resource or 
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predation) or the population level effect of the interaction (such as effect on 

population size, population growth rate or individual fitness) (Abrams 1987). 

Abrams refers to these two approaches as mechanism definitions and effect 

definitions respectively (1987). 

While the same interaction can be classified either by mechanism or by 

effect, in practice these two models vary greatly. Classification based on 

mechanism can be arbitrary, as in the distinction between parasitism and 

predation or between parasitism and disease (Abrams 1987). However, 

mechanistic classification has the advantage that interaction mechanisms are 

often readily observable while effects can be difficult to measure. A confounding 

factor of the mechanism approach is that several mechanisms can be involved in 

a given interaction and this complexity may not be taken into account. This is 

especially true with regard to indirect effects. 

In contrast to mechanistic classifications, those classifications based on 

effect are inclusive of all mechanisms involved in an interaction. Categorization is 

also more straightforward as the categories are simply the six possible pair-wise 

combinations of (+, –, 0). For instance, predation would be categorized as a (+ –) 

effect, as would parasitism and herbivory (Abrams 1987). Thus there are multiple 

mechanisms for each effect category. Theoretically, competition is not the only 

mechanism that produces (– –) effects for instance, although other mechanisms 

are frequently overlooked by researchers, including indirect effects such as 

apparent competition (Abrams 1987). 
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Effect classification schemes have the added complication that the 

interaction sign may depend on what effect measurement is chosen (e.g. 

individual fitness, population density or population growth rate). Likewise, the 

sign may vary over different time scales. Abrams (1987) provides an example of 

a predator that consumes both a prey species and a strong competitor of that 

prey species. Over the short term, the predator has a negative impact on the 

prey’s population growth rate but over the longer term may have a positive effect 

if it consumes enough of the strong competitor. 

To complicate matters, indirect interactions can be further classified into 

types. There have been multiple classification systems proposed. The two types 

proposed by Wootton (1993, 1994) are interaction chains and interaction 

modifications. Interaction chains are made up of a series of direct interactions 

between species pairs (Wootton 1993). The direct interactions result in changes 

of abundance that indirectly affect another species. The trophic cascade is a 

classic example: a predator that reduces the abundance of an herbivore 

positively affects the food plant. In contrast to an interaction chain, an interaction 

modification is the impact of a third species on the direct interaction itself that 

occurs between two others without changing the abundance of either. For 

example, a predator may alter the behavior of its prey so that the prey becomes 

more susceptible to predation by another predator. The first predator does not 

alter the abundance of the prey, but rather changes its behavior and the 

interaction between it and the second predator. 
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Wootton (1993) used barnacles, limpets and birds as a study system to 

distinguish between these two types of indirect interactions. The birds consumed 

limpets; limpets and barnacles competed for space, with limpets being the 

superior competitor. Bird consumption of limpets increased barnacle abundance, 

an example of an interaction chain as the indirect effect of birds on barnacles is 

through a series of direct interactions involving abundance. However, limpets and 

barnacles have similar coloration. The presence of barnacles makes limpets 

more difficult for the birds to find. Thus barnacle presence alters the interaction 

between birds and limpets, an example of an interaction modification. In each 

case an indirect effect exists (in both cases between barnacles and birds) 

however the mechanism is different.

Janssen et al. (1998) proposed a different categorization of indirect 

interactions, namely numerical indirect interactions and functional indirect 

interactions. Numerical indirect interactions are consistent with Wootton’s 

interaction chains, involving a series of changes in abundance. Functional 

indirect interactions are the change in function of an interaction between two 

species caused by the presence of a third, as mediated by changes in 

distribution, behavior, morphology or physiology, similar to Wootton’s interaction 

modifications. Janssen et al. point out that their new terms are analogous to the 

terms “numerical response” and “functional response” used in population ecology 

and that the terms are consistent with how interactions can be modeled. They 

also propose that direct interactions be categorized as numerical or functional 

interactions, taking into account direct interactions that are not based on changes 
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in abundance. For instance, the presence of a predator may change the behavior 

of prey without altering its abundance (Janssen 1998). 

Strauss (1991) adapted her classification from that of Miller and Kerfoot 

(1987), defining 4 categories of indirect effects: a) abundance, b) behavioral/

morphological/chemical/physiological, c)environmental and d) response.  The 

environmental subtype includes interactions mediated by a non-living resource 

(also known as a priority effect or historical effect) such as the alteration of water 

quality by one species that subsequently impacts another species (Strauss 

1991). Environmentally-mediated interactions are more typically regarded as 

direct effects as most authors define indirect interactions as those requiring an 

intermediate species (Abrams 1995, Wootton 1994).  The fourth subtype, 

response, is akin to Wootton’s interaction modification in that the presence of a 

third species modifies the interaction between two others (without altering 

abundance, behavior, etc. or the environment (Strauss 1991).

Currently, the most prevalent classification scheme for defining indirect 

interactions divides interactions into two types: density-mediated indirect 

interactions (DMII) and trait-mediated indirect interactions (TMII; Abrams 1995, 

2007, Werner and Peacor 2003). Additional terms that are analogous to DMII 

include trophic linkage, ecological, abundance, population or species interaction 

indirect effects; terms analogous to TMII include behavioral indirect effects and 

higher order interactions (Janssen 1998, Menge 1997, Wootton 1994). DMII and 

TMII are based on Abrams’ definitions of trait and density mediated effects 

(Abrams 1995), although Peacor and Werner (1997) later change the word effect 
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to interaction and introduced the commonly used acronyms (Abrams 2007). In 

2007, Abrams clarified the use of TMII and DMII, advocating these terms to 

describe pathways within an interaction. He notes that TMII when used to refer to 

an entire interaction generally include a DMII component as well. For clarity, the 

term TMII should only be used to refer to the specific pathway within the 

interaction. For instance, the basal member of a three species food chain 

receives both density-mediated and trait-mediated effects from the middle 

member of the chain. The problem arises if the term trait-mediated indirect 

interaction is used to describe the entire interaction between the top member of 

the chain and the basal member. While Abrams makes a sound argument, 

common usage of TMII and DMII referring to interactions rather than pathways 

prevails. 

Abrams (2007) also addresses the use of trait-mediated interaction (TMI) 

and density-mediated interaction (DMI) as terms intended to encompass both 

direct and indirect interactions. Bolker (2003) defines TMIs as interactions “in 

which trophic and competitive interactions depend on individual traits as well as 

on overall population densities” while Bolnick and Preisser (2005) prefer the 

definition “strategic changes in prey behavior, morphology, or physiology, in 

response to the presence of a predator” (Bolnick and Preisser 2005, Preisser et 

al. 2005). DMIs are defined by Preisser et al. (2005) as the reduction in prey 

population densities through direct consumption. 

 Abrams (2007) states that this use of “mediated” is not true to the original 

definitions, where the term was used to refer to the role of the the transmitting 
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(mediating) species in an indirect interaction. Abrams’ definition therefore 

requires a third, mediating, species. To use TMI and DMI in this way is inaccurate 

and a better term would be trait-modified to refer to the role of trait change in 

direct interactions. He also notes that density-modified is not an appropriate 

counterpart to trait-modified as all interactions have a density component. He 

also discusses whether consumptive and non-consumptive effects (CE and NCE) 

are adequate replacements for DMI and TMI in regards to predator effects. 

Janssen’s (1998) definitions of functional and numerical direct interactions seem 

to be equivalent to the intent of other authors use of TMI and DMI without the 

misuse of the term “mediation” or the possible confusion of “modified”. However, 

this language does not appear to have been widely adopted. 

More specific types of indirect interactions include apparent competition, 

exploitation competition, keystone predation, indirect mutualism, indirect 

commensalism, habitat facilitation, trophic cascade, indirect defense, and 

apparent predation (Menge 1995). Like the types of direct interactions, these are 

defined based on mechanism and/or effect.

Apparent competition has often been considered the quintessential 

indirect interaction. This mechanism has been recognized at least as early as 

1957 (Williamson). Defined by Holt (1977), apparent competition is mediated by 

a shared enemy (predator, herbivore or parasite) reducing the equilibrium 

abundance of both prey (in the loose sense, which also includes plants and 

hosts). The initiating species enhances the impact of the shared enemy, with a 

negative effect on the receiving species. The two species may also be direct 
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competitors with each other (Holt 1977). Chaneton (2000) gives 12 examples of 

apparent competition between plants mediated by various herbivores. Most of 

those interactions were non-reciprocal (– 0) interactions (thus amensalism rather 

than competition) or asymmetric competitive interactions. In a manipulative study, 

Rand (2003) demonstrated apparent competition between Salicornia europaea 

and Atriplex patula mediated by a leaf beetle herbivore, Erynephala maritima. 

The presence of S. europaea near individuals of A. patula increased beetle 

herbivory on the latter. In an earlier study, Rand (2002) had shown that beetle 

herbivory on A. patula reduced survival and seed production. 

Refuge-mediated apparent competition is a variant in which a plant 

provides a resource other than food (such as cover from predation) to a shared 

consumer that thereby increases consumption on another plant (Orrock et al. 

2010). There are additional models that are highly similar to classic apparent 

competition, such as a single predator of several victim species in addition to the 

focal species and several predators of the focal species and multiple additional 

victim species (Holt and Lawton 1994). By any definition, apparent competition is 

a consumer-mediated interaction between an initiating resource species and 

other resources.

Exploitation competition has been discussed in the ecological literature for 

decades however it was not until the 1980s and early 1990s that it was 

recognized as an indirect interaction (Menge 1995, Strauss 1991). Exploitation 

competition occurs when the reduction of a consumer results from the reduction 

of a resource by another consumer (Menge 1995). Referring to competitive 
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interactions between herbivores, Kaplan and Denno (2007) state that exploitation 

competition is an indirect interaction in which the quantity of plant tissue removed 

is the mechanism of competition. They refer to competitive interactions mediated 

by changes in plant quality simply as plant-mediated interactions. 

Keystone predation occurs when a predator increases the abundance of 

its prey’s competitor by reducing the abundance of its prey (Menge 1995). There 

has been debate over whether species other than top carnivores, such as 

herbivores, can be considered keystone predators (Davic 2002, Higdon 2002) 

based on the original keystone concept as proposed by Paine (1966, 1969). To 

be a keystone species, the species must exert top-down pressure and reduce 

competition in lower trophic levels, providing a stabilizing effect on community 

diversity (Paine 1969, Davic 2002). As an herbivore has the potential to exert 

both top-down effects and to maintain species diversity through the amelioration 

of competition, Davic (2002) argued that it is plausible for an herbivore to act as 

keystone predator.

Trophic cascades have also commonly been referred to as tritrophic 

interactions. In general, a trophic cascade is an increase in plant abundance 

caused by a decrease in herbivores due to predation (Menge 1995). Trophic 

cascades can be both density- and trait-mediated (Schmitz et al. 2004). The 

presence of a predator may cause the herbivore to choose between feeding and 

predator avoidance, for instance, reducing the impact on plants without altering 

the density of the herbivore. The herbivore may also shift habitats, potentially 

utilizing a less preferred host with lower predation risk. Historically, trophic 

73



cascades have been considered the primary mechanism by which plant species 

diversity and abundance has been maintained (Hairston et al. 1960). This idea 

has commonly been referred to as the green world hypothesis, which states that 

plants are abundant because predators limit herbivores and that competition 

between herbivores is uncommon and of minor importance because plants are 

not a limiting resource (Hairston et al. 1960). 

Indirect mutualism is the positive effect on two species from predation on 

the competitor of each other’s primary prey species (Vandermeer 1980, Menge 

1995). Similar to keystone predation, a consumer releases a resource from 

competition by consumption of its competitor. Reciprocally, another consumer 

reduces the abundance of the competitor, positively impacting the original 

resource and indirectly also benefiting the original consumer. This benefits both 

consumers in the case of indirect mutualism. In order for this to occur, the 

competition between the two resources must be symmetric, otherwise it is likely 

that the interaction is indirect commensalism (Dethier and Duggins 1984).

Indirect commensalism is related to indirect mutualism with one of the 

predators consuming both prey species (Menge 1995). However, Sanders and 

Van Veen (2012) document an indirect commensal relationship between two 

parasitoids of two aphids. Both parasitoids utilize only one aphid species (in 

contrast to Menge’s definition whereby one of the parasitoids should use both 

potential aphid hosts). Sanders and Van Veen were able to demonstrate a 

positive indirect effect on one parasitoid but not on the other, meeting the 

definition of commensalism. In an earlier study, Dethier and Duggins (1984) 
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examined a rocky intertidal system consisting of a chiton, two limpet species, 

macroalgae and diatoms. In this system, chitons consume both macroalgae and 

diatoms while limpets consume diatoms. Using removal and addition of the 

chiton, the authors demonstrated a positive effect of the chiton on the limpets 

due to macroalgae removal, permitting diatom growth. In the removal 

experiments, chiton removal cause limpet populations to fall to near zero while in 

chiton addition experiments, limpet abundance increased. The interaction 

between macroalgae and diatoms is strongly asymmetric; macroalgae cover 

prevents diatom growth, however diatoms have little or no effect on macroalgae. 

Holt (1977) proposed that indirect (+ –) interactions be called apparent 

predation to distinguish them from direct predation. Predation (as discussed 

elsewhere) has been used to describe any (+ –) interaction which leads to 

confusion when used to describe effect rather than a particular mechanism. 

Arthur’s (1986) proposed term contramensalism has the advantage of being non-

mechanistic and consistent with other effect-based terminology.

Habitat facilitation occurs when one organism improves the habitat of a 

second by altering the abundance of a third organism (Fairweather 1990, Menge 

1995). For instance, whelks that kill barnacles create habitat for invertebrate and 

algal species that utilize the empty barnacle tests. When the tests are removed, 

gastropod species graze the newly exposed areas (Fairweather 1990). 

Interactions, whether direct or indirect, are not static and may shift 

between types as biotic and abiotic conditions change (Holland and DeAngelis 

2009). Unlike the interaction grid of the six basic combinations of (–, + 0) which 
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simply summarizes these interactions, an interaction compass has been used to 

describe the possible transitions between interaction types along each axis, 

emphasizing the dynamic nature of interactions and how fluid the types really are 

in nature (Holland and DeAngelis 2009).

  Interaction strength is an important area of research, especially in 

regards to the comparative strength between direct and indirect effects and 

between TMIIs and DMIIs. Interaction strength can be very difficult to quantify, 

partly because the sign of the effects may either be the opposite or the same 

thus either canceling each other out or reinforcing each other. In addition, there 

are multiple ways to define interaction strength, confounding the development of 

a consistent method of measuring interaction strength (Wootton and Emmerson 

2005). Most methods focus on trophic interactions, with few studies including 

non-trophic interactions such as interference competition (Werner and Peacor 

2003, Wootton and Emmerson 2005). 

One common approach for determining direct and indirect interaction 

strength is the combination of press and pulse experiments (Bender 1984, 

Abrams 1995). In pulse experiments, the density of one species is changed but 

not maintained, as for instance in a one-time removal of all individuals of a 

species. The effects are then observed prior to return to the original state. Press 

experiments also alter the density of a species but this change is maintained with 

observations being made after the system reaches equilibrium. In this case, all 

individuals of a species may be removed and maintained over several 
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generations (Strauss 1991). Pulse experiments are intended to measure direct 

effects while press experiments measure net impact of direct and indirect effects. 

There is an underlying assumption that direct effects operate more quickly 

relative to indirect effects. Abrams (1995) states that these experiments are not a 

good basis for comparison because trait changes can be slow or fast in 

ecological time. There are multiple examples in the literature of indirect effects 

that are very rapid. Menge (1997) studied whether indirect effects occur during 

the same observational period as direct effects.  He used press experiments in 

rocky intertidal webs to examine detection of direct vs indirect effects during 

experimental observation over periods ranging from 1.9 to 31 months. Indirect 

effects usually occurred either simultaneously with or shortly after direct effects. 

At least in rocky intertidal systems, it appears that direct and indirect effects are 

observable over similar time scales (Menge 1997). 

In addition, pair-wise species interactions occur in a complex web of 

interactions, direct and indirect, with other members of the ecological community. 

Each of those interactions occurs at different temporal and spatial scales, leading 

to difficulty in assessing the results of a press-pulse or other species deletion 

experiment (Wootton and Emmerson 2005). It is no longer sufficient to assume 

that interaction strength is independent of the community (Werner and Peacor 

2003). 

Trait changes can affect interactions independent of changes in density, 

with consequences beyond the focal species pair (Werner and Peacor 2003). For 

instance, a single predator may have a very strong effect on prey behavior 
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without altering prey density. This large change in behavior may have large 

impacts on other members of the interaction web (Werner and Peacor 2003). 

Various other empirical approaches have been utilized, including field, 

laboratory and observational methods. Wootton (2005) proposed using more 

readily quantifiable properties to estimate interaction strength. For instance, body  

size potentially scales with interaction strength (Wootton 2005). Berlow et al. 

(2009) incorporated metabolic body mass and biomass into a predictive model of 

food webs from 10-30 species with good success, although this model only 

incorporates consumer-resource interactions, neglecting non-trophic interactions. 

Rall et al. (2011) used size but also included taxonomy in a model that addressed 

non-linear interaction strength. This study attempted to incorporate the strengths 

of size-based approaches frequently used in marine ecology with the taxonomy-

based approach used in terrestrial systems (Rall et al. 2011). Research continues 

to address more refined ways to assess interaction strength in complex webs. 

Much of the work has focused on predator-prey interactions and often neglects 

non-trophic interactions (Berlow et al. 2004) and indirect effects (Gorman 2010). 

Although methods are inconsistent and problems exist with accurately 

quantifying interaction strength, a general pattern has begun to emerge. In 

general, per capita interaction strength distribution is skewed, with many weak 

interactions and few strong interactions (Wootton 2005, Gorman 2010). This 

pattern appears to contribute to community stability (Gorman 2010). More work is 

needed in this area to further generalize patterns of interaction strength and to 

arrive at methods that are comparable between studies. Indeed, a 2006 panel 
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convened by the National Science Foundation identified the investigation of 

interaction strengths in multiple contexts as one of three important areas in great 

need of ecological research over the next decade (Agrawal et al. 2007).
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