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Abstract. This paper is a survey study on discriminant functions
and their misclassification errors. Here we consider three groups of
discriminant functions, namely discriminant functions for respec-
tively multivariate normal variables, multivariate binary variables,
and a mixture of multivariate binary and normal variables. Finally
we derive their misclassification errors.
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1. Introduction

This paper is concerned with discriminant functions and their mis-
classification errors. This field of study is known as discriminant anal-
ysis, one of the important techniques in multivariate analysis.

In discriminant analysis, given the existence of various groups of in-
dividuals, we want to find (i) the best way of exhibiting the difference
between groups (discrimination problem), and (ii) a rule for allocating
new individuals (observations) into one of the existing groups (classifi-
cation problem). In our research work, the interest is in the classifica-
tion problem. To solve this problem, a classification rule needs to be
constructed. A number of classification rules have been established in
the literature. The choice of the most appropriate rule depends on the
type of variables in the data; and the best classification rule is the one
that leads to the smallest probability of misclassification.

Based on the type of explanatory variables, the field of discrimi-
nant analysis can be grouped into three main categories, namely, (i)
discriminant analysis with continuous explanatory variables only, (ii)
discriminant analysis with discrete explanatory variables only, and (iii)
discriminant analysis with a mixture of discrete and continuous ex-
planatory variables. In this paper, we consider the special cases of the
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above three categories, namely (a) discriminant analysis with multi-
variate normal variables only as a special case of (i); (b) discriminant
analysis with multivariate binary variables only as a special case of (ii);
and (c) discriminant analysis with a mixture of multivariate binary and
normal variables as a special case of (iii).

In this paper, we restrict our study to discriminant analysis problems
involving only two groups or populations. These groups are denoted
by Π1 and Π2. Suppose X = (X1, X2, . . . , Xp)

T is a p-dimensional
vector of random variables associated with any individual. We assume
that X has different probability distributions in Π1 and Π2. Let x

be the observed value of X (for an arbitrary individual), f1(x) be the
probability density of X in Π1, and f2(x) be the probability density of
X in Π2. Then the simplest intuitive classification decision is: classify
x into Π1 if it has greater probability of coming from Π1, or classify x

into Π2 if it has greater probability of coming from Π2, or classify x

arbitrarily into Π1 or Π2 if these probabilities are equal.
In real situations it is reasonable to consider some important factors

such as prior probabilities of observing individuals from the two popu-
lations and the cost due to misclassifications. Let q1 and q2 be the prior
probabilities that x comes from Π1 and Π2 respectively (q1 + q2 = 1).
Also let c(2|1) be the cost due to misclassifying x into Π2 when it ac-
tually belongs to Π1, and c(1|2) be the cost due to the misclassification
of x into Π1 when it belongs to Π2. Here, the decision is: classify x

into Π1 if f1(x)/f2(x) > q2c(1|2)/(q1c(2|1)), or classify x into Π2 if
f1(x)/f2(x) < q2c(1|2)/(q1c(2|1)), or classify x arbitrarily into Π1 or
Π2 if f1(x)/f2(x) = q2c(1|2)/(q1c(2|1)).

In our study we only consider the case with equal prior probabilities
and equal cost due to misclassifications (ie. q1 = q2 and c(1|2) =
c(2|1)). In other words the decision is as follows: classify x into Π1 if
f1(x)/f2(x) > 1, classify x into Π2 if f1(x)/f2(x) < 1, and classify x

arbitrarily into Π1 or Π2 if f1(x)/f2(x) = 1.

2. Discriminant functions for multivariate normal

variables

A variety of classification rules has been established in the literature.
The earliest and most well-known rule is Fisher’s (1936) Linear Discri-
minant Function (LDF). Let µ

i
= (µi1, µi2, . . . , µip)

T , be the means and

Σi be the covariance matrices of X in Πi (i = 1, 2). It is often assumed
that Σ1 = Σ2 = Σ. Let x̄

1
, x̄

2
,S1,S2, and S be the sample estimates

of µ
1
, µ

2
, Σ1, Σ2 and Σ respectively, using independent random samples

of size n1 and n2 from Π1 and Π2. Denote these random samples (also
called training samples) by t

1
and t

2
respectively, and let t = {t

1
, t

2
}

be the entire set of training data of n = n1 + n2 observations. Also let
Np(µ, Σ) denotes the p-variate normal distribution with mean µ and
covariance matrix Σ. The estimated Fisher’s LDF is then given by

L(x) = xTS−1(x̄
1
− x̄

2
). (2.1)
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This LDF was adopted later by Anderson (1951) to obtain a classifica-
tion statistics W (x), given by

W (x) = (x −
1

2
(x̄

1
+ x̄

2
))TS−1(x̄

1
− x̄

2
). (2.2)

Using this rule, a new individual x will be allocated into Π1 if W (x) ≥
0, otherwise into Π2.

Anderson’s classification rule above is at its best performance when
the two populations are multivariate normal with common covariance
matrices. However, when the populations are multivariate normal, but
with different covariance matrices, the ideal choice is QDF (Quadratic
Discriminant Function). The estimated (sample) QDF is defined as:

Q(x) =
1

2
ln

[

|S2|

|S1|

]

−
1

2

(

(x − x̄
1
)TS−1

1
(x − x̄

1
) − (x − x̄

2
)TS−1

2
(x − x̄

2
)
)

,(2.3)

and a new individual x will be allocated into Π1 if Q(x) ≥ 0, other-
wise into Π2 (see Gilbert (1969), Marks and Dunn (1974), Wald and
Kronmal (1977), Randles et al. (1978), Lachenbruch (1979), and Van
Ness (1979)). For this situation, the QDF is optimal as it minimizes
the overall probability of misclassification (Marks and Dunn, 1974).
However, the efficiency of the sample QDF has been shown to decrease
with decrease in sample size and the difference between the covariance
matrices (Choi, 1986). Friedman (1989) introduced regularized discri-
minant analysis which can substantially improve the misclassification
risk when the population covariance matrices are not close to being
equal.

Ashikaga and Chang (1981) evaluated the robustness of the LDF
when the distribution of the two populations are characterized by two-
component mixed normal distributions with known parameters. They
found that similarity in shape is more important than normality for the
robustness of the LDF. Their conclusion was that the LDF is rather
robust when the two distributions do not markedly deviate from nor-
mality and are moderately distant, particularly if they are similar in
shape.

Some further investigations and adjustments of the LDF for vari-
ous different situations when the explanatory variables are continuous,
also have been studied by Gessaman and Gessaman (1972), Ander-
son (1973), Goldstein (1975), McLachlan (1977), Ganesalinggam and
McLachlan (1978), Chhikara and McKeon (1984), Critchley and Ford
(1984, 1985), Ambergen (1985), Critchley (1985), Murphy and Moran
(1986), Davis (1987), Raveh (1989), and Wakaki (1990).

From all the above information, it is clear that the best classification
rule for the case where both populations are multivariate normal with
common covariance matrices, is the Anderson’s statistics W (x).

3. Discriminant functions for multivariate binary

variables

Now consider the discriminant analysis when the explanatory vari-
ables are multivariate binary only. For this case, some authors have pro-
posed special classification rules, including the full multinomial model,
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the first and the second-order of Bahadur models, loglinear and logit
models, Martin-Bradley models, and some others besides the LDF
(Hills (1967), Gilbert (1968), Glick (1973), Moore (1973), Aitchison
and Aitken (1976), Goldstein and Dillon (1978), Hall (1981), and Hand
(1983)). Because of the large number of procedures available, it be-
comes considerable interest to determine the relative effectiveness of
these competing classification rules. Some comparative studies in this
area have been conducted by Gilbert (1968), Moore (1973), Dillon and
Goldstein (1978), and Hand (1983).

Next, we consider the classification rule LDF for multivariate bi-
nary variables. Let X = (X1, X2, . . . , Xp)

T be a p-dimensional vec-
tor of Bernoulli variables, each of which can take the value 0 or 1.
A particular observed value of X, denoted by x = (x1, x2, . . . , xp)

T ,
is called a response pattern. Let βi(x) be the probability of observ-
ing a response pattern x (of 0’s and 1’s) in Πi (i=1,2) and Zij =
(Xj − pij)/(pij(1 − pij))

1/2. Here, pij = Ei(Xj), denote the probabi-
lity that the j-th variable takes value 1 in Πi, and ri(jk) = E(ZijZik),
denote the correlation between the j-th and k-th variables in Πi. Fol-
lowing Bahadur (1961), the second-order approximation to the multi-
nomial cell probabilities is given by

βi(x) =

p
∏

j=1

p
xj

ij (1 − pij)
1−xj







1 +
∑

j

∑

j<k

ri(jk)ZijZik







. (3.1)

This re-parameterization enables the multinomial cell probabilities to
be described in terms of the population means pij and the correlations
ri(jk). Then, in the case of multivariate binary data, the classification
rule W (x) in equation (2.2) can be re-written as

W (x) =

p
∑

j=1

p
∑

k=1

(p̂1j − p̂2j) Skjxk −
1

2

p
∑

j=1

p
∑

k=1

(p̂1j − p̂2j) Skj (p̂1k + p̂2k)

=

p
∑

j=1

p
∑

k=1

[(

xk −
1

2
(p̂1k + p̂2k)

)

Skj (p̂1j − p̂2j)

]

, (3.2)

where xk is the k-th element of the new individual x, p̂ij is the estimate
of the j-th element pij of the population mean vector µ

i
, and Skj is the

(k, j)-th element of the inverse of the pooled covariance matrix derived
from the training data. Note that equation (3.2) is equivalent to the
usual expression of W (x) given in equation (2.2).

Gilbert (1968) compared the performance of the LDF with three
other discriminant functions for the data which consist of dichotomous
(binary) variables only. Two of these three discriminant functions used
were based on a logistic model and the third one based upon the as-
sumption of mutual independent variables. She concluded that the loss
involved from using the LDF as the classification rule as opposed to
any one of the other procedures is too small to be of any practical im-
portance. Hence she argued that the simplicity and familiarity of the
LDF make its use seem desirable. She also added that as the number
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of variables increases, the LDF should remain fairly stable and behave
superior to any of the other techniques.

Moore (1973) evaluated the performances of five discrimination pro-
cedures for binary data. These procedures were: the LDF, the QDF,
the full multinomial procedure, and the procedures based on the first
order and the second order of the Bahadur models. For these compar-
isons, he considered three different cases: (a) uncorrelated variables in
both populations, (b) correlated variables only in one population (c)
positively correlated variables in both populations. The results indi-
cated that the LDF and the first order of the Bahadur model behave
superior to the others for cases (a) and (b). He recommended the sec-
ond order of the Bahadur model for case (c). It was also shown that
if the true log likelihood ratio (l.l.r) for the two populations is plotted
against the number of variables having value 1, then in some popu-
lations this l.l.r does not increase monotonically. For this case it was
said to undergo a ”reversal”. He noted that the LDF gives good results
for the populations without reversals. But, for the populations with
reversals, the LDF led to a significantly greater actual error rate than
a classification procedure based on the full multinomial model.

Dillon and Goldstein (1978) compared the performance of the LDF,
the Martin-Bradley models, and the Bahadur models. In their conclu-
sions, they recommended to use the LDF or the first-order of the Ba-
hadur model when the correlations between the variables are moderate,
or when large difference exists between the mean vectors of the two po-
pulations. For the cases with small difference between the mean vectors
of the two populations or with large absolute correlations between the
variables, the first-order of Martin Bradley model was recommended.

Hand (1983) compared the performance of the LDF and the kernel
method using several real data sets with multivariate binary variables.
This kernel method is a nonparametric technique which is ideally suited
to binary data. He found that the apparent error rates of the kernel
methods are consistently less than those of the LDF. However, it is
already known that the apparent error rate is an unreliable estimate of
the future classification performance. When the true error rates were
estimated using the leave-one-out method, no significant difference was
noted between the two classification rules.

Based on the information so far, some authors have attested the
robustness of the LDF for data with binary explanatory variables only,
especially for the cases with weakly correlated variables or with highly
separated mean vectors of the two populations or for the populations
without reversals.

4. Discriminant functions for a mixture of multivariate

binary and normal variables

Now consider the discriminant analysis when the data consist of a
mixture of multivariate binary and normal variables. In many real
situations, multivariate data contain a mixture of discrete and conti-
nuous variables. For instance, in soil science one may have continuous
laboratory measurements of soil pH, mixed with such categorical at-
tributes as soil colour or texture. In medical research, one may have
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continuous measurements of patient temperatures or blood pressures,
mixed with binary observations like sex, presence or absence of a cer-
tain symptom for each patient. So, multivariate techniques to handle
data with mixtures of variables are important. For discriminant anal-
ysis in particular, a classification rule using mixtures of explanatory
variables needs to be constructed.

Chang and Afifi (1974) used a point-biserial model to obtain a dou-
ble discriminant function which can be used to classify an observation
consists of one dichotomous (binary) and some continuous variables. A
comparison of this classification procedure with two other procedures
called ”the x-continuous procedure” and ”the x-out procedure”, was
conducted by Tu and Han (1982). This double discriminant function
was then extended for more general case of a mixture of multivariate
binary and continuous variables by Krzanowski (1975). He proposed a
likelihood ratio method based on a model called Location Model.

Let ZT = (XT ,YT ) be a partitioned vector of random variables,
where X consists of q binary variables (say, X1, X2, . . . , Xq) and Y
consists of p normal variables (say, Y1, Y2, . . . , Yp). Associated with the
q binary variables are 2q multinomial cells and each cell represents a
unique response pattern x. Let xm denote the unique response pattern
correspond to the multinomial cell m such that

m = 1 +

q
∑

j=1

xj2
j−1

for m = 1, 2, . . . , 2q where xj is the observed value of Xj. Under the
location model, it is assumed that the continuous variables have a mul-
tivariate normal distribution within each cell of the binary variables.
Let us assume that the variables vector Y (given X = xm ) has a
multivariate normal distribution with mean vector µ

im
and covariance

matrix Σim in cell m and population Πi ( m = 1, 2, . . . , 2q, i=1,2). It
is usually assumed that Σim = Σ for all m = 1, 2, . . . , 2q and i = 1, 2,
for simplification. In other words,

(Y|X = xm) ∼ Np(µim
, Σ) (4.1)

in Πi. Let zT = (xT ,yT ) be the observed value of ZT and also let βim

be the probability of observing an observation z in cell m for popula-
tion Πi. When all the population parameters are known, the optimal
classification rule (assuming equal costs and equal prior probabilities)
is: given x = xm, allocate z into Π1 if

(

y −
1

2
(µ

1m
+ µ

2m
)

)T

Σ−1

(

µ
1m

− µ
2m

)

> log

(

β2m

β1m

)

, (4.2)

otherwise to Π2. This classification rule leads effectively to a different
linear discriminant function for each of the multinomial cells, with cut-
off points determined in each cell by the discrete component of the
model. Here, we use log(β2m/β1m) instead of using 0 as the cut-off
point for each classification rule corresponding to each multinomial
cell m.

In practice, the population parameters are generally unknown, and
we have to estimate these parameters using the information from the
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training samples. If µ̂
1m

, µ̂
2m

,S, β̂1m and β̂2m are the estimates of re-
spectively µ

1m
, µ

2m
, Σ, β1m and β2m, then the estimate of the classifica-

tion rule in (4.2) is then given by the following. Given x = xm, allocate
z into Π1 if

(

y −
1

2
(µ̂

1m
+ µ̂

2m
)

)T

S−1

(

µ̂
1m

− µ̂
2m

)

> log

(

β̂2m

β̂1m

)

, (4.3)

otherwise to Π2.
Later, in 1980 Krzanowski generalized his method to incorporate

mixtures of continuous and categorical variables. Krzanowski (1977)
compared the performance of the LDF and the location model for the
case of a mixture of multivariate binary and normal variables, when
the assumptions for the location model hold. He found that in some
conditions the location model behaves superior to the LDF. In our
study, we considered to use the location model for the case with a
mixture of multivariate binary and normal variables.

Some further studies in this area have been carried out by Krzanowski
(1976,..., 1986), Knoke (1982), Vlachonikolis and Marriot (1982), Wo-
jciechowski (1985), and Vlachonikolis (1990).

5. Misclassification errors

One of the important and interesting problem in discriminant anal-
ysis is the evaluation of the performance of a classification rule. This
evaluation may focus on either the estimation of the error rate (pro-
bability of misclassification) conditional on the correct population as-
signment, or on the goodness of fit of the estimated posterior (inverse)
probabilities to the achieved outcomes conditional on the observed fea-
ture vector (Knoke, 1986). In our research, we are interested in the
former, the error rate estimation. A bibliography by Toussaint (1974)
which was updated recently by McLachlan (1986), shows that interest
in techniques of error rate estimation is still strong and that research
should be continued.

In fact, there are three types error rates that have been frequently
considered for study. They are: (i) the optimum error rate, which de-
scribes the performance of a classification rule based on known param-
eters, (ii) the conditional error rate, which describes the performance
of a classification rule based on parameters estimated by the statistics
computed from the training samples, and (iii) the expected error rate,
which describes the expected performance of a classification rule based
on parameters estimated by a randomly chosen training sample.

In practice, the parameters are rarely known, and the expected (or
unconditional) error rates depend heavily on the distribution of the dis-
criminant function (in our case, W (x)) which is very complicated (see
for example, Wald (1944), Anderson (1951), Okamoto (1963) and Hills
(1966)). Consequently most work associated with error rate have as-
sumed that the sample estimates x̄

1
, x̄

2
,S1,S2,S etc. are fixed, leading

to the exploration of the conditional error rate. Here the word ’con-
ditional’ refers to the conditioning of the training samples (and fixing
the above sample estimates) from which W (x) is constructed. We may
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also think of this as either the error rate which would be observed if
W (x) is applied to an infinite test data, or the probability that the
given classifier W (x) would incorrectly classify a future observation. It
should also be noted that the conditional error rate is the error rate
that is important to an experimentor who has already determined the
classification rule. This conditional error rate is also referred to as the
actual error rate or the true error rate by many authors. Hence, in our
project we concentrate only on the actual error rate and its estimation.

Recall that, only the two-group discriminant analysis problems with
equal prior probabilities and equal cost due to misclassifications are
considered in our study. Suppose that our classification rule is W (x)
given by (2.2). Then the actual error rates are given by

P1 = P(W (x) < 0 when x is from Π1|t fixed),

P2 = P(W (x) ≥ 0 when x is from Π2|t fixed). (5.1)

The overall actual error rate is then defined by

AC =
n1

n1 + n2

P1 +
n2

n1 + n2

P2. (5.2)

Under the assumptions that X ∼ Np(µ
1
, Σ) on population Π1 and

X ∼ Np(µ
2
, Σ) on population Π2, it can easily be shown that

P1 = Φ







−
(

µ
1
− 1

2
(x̄

1
+ x̄

2
)
)T

S−1(x̄
1
− x̄

2
)

((x̄
1
− x̄

2
)TS−1ΣS−1(x̄

1
− x̄

2
))1/2






(5.3)

and

P2 = Φ







(

µ
2
− 1

2
(x̄

1
+ x̄

2
)
)T

S−1(x̄
1
− x̄

2
)

((x̄
1
− x̄

2
)TS−1ΣS−1(x̄

1
− x̄

2
))1/2






(5.4)

where Φ is the distribution function of a standard normal variate.
When the discriminant function consists of multivariate binary vari-

ables, the actual error rates can be derived as follows. Let xm denote
a particular response pattern corresponding to the multinomial cell m,
and βim(xm) denote the probability of observing a response pattern xm

in population Πi, i=1,2. Now let αm(xm) = 0, 1/2, or 1 according as
W (xm) is >, =, or < 0. The actual error rates P1 and P2 are then
given by

P1 =

2
p

∑

m=1

αm(xm)β1m(xm) and P2 =

2
p

∑

m=1

(1 − αm(xm)) β2m(xm), (5.5)

and the overall actual error rate is given by (5.2).
Next we derive the expression of the actual error rate for the case

with mixture of multivariate banary and multivariate normal variables.
Following the assumption in (4.1), that (Y|X = xm) ∼ Np(µ

1m
, Σ) in

Π1 and (Y|X = xm) ∼ Np(µ
2m

, Σ) in Π2, the actual error rate can
be easily derived as follows. Given a fixed training sample, it can be
shown that the distribution of Wm(y|x = xm), when zT = (xT ,yT )
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belongs to Π1, is a univariate normal distribution with mean

(

µ
1m

−
1

2
(µ̂

1m
+ µ̂

2m
)

)T

S−1

(

µ̂
1m

− µ̂
2m

)

− log

(

β̂2m

β̂1m

)

,

and variance
(

µ̂
1m

− µ̂
2m

)T
S−1ΣS−1

(

µ̂
1m

− µ̂
2m

)

.

As before, µ̂
im

, β̂im, for i = 1, 2 and S are respectively the estimate of
µ

im
, βim, for i = 1, 2 and Σ, using the training sample t. Then,

P1 = P
(

Wm(y|x = xm) < 0 when zT = (xT ,yT ) is from Π1|t fixed
)

= P











Z <
0 −

(

µ
1m

− 1

2
(µ̂

1m
+ µ̂

2m
)
)T

S−1

(

µ̂
1m

− µ̂
2m

)

− log
(

β̂2m

β̂1m

)

{

(

µ̂
1m

− µ̂
2m

)T
S−1ΣS−1

(

µ̂
1m

− µ̂
2m

)

}

1/2











= Φ











−

(

µ
1m

− 1

2
(µ̂

1m
+ µ̂

2m
)
)T

S−1

(

µ̂
1m

− µ̂
2m

)

− log
(

β̂2m

β̂1m

)

{

(

µ̂
1m

− µ̂
2m

)T
S−1ΣS−1

(

µ̂
1m

− µ̂
2m

)

}

1/2











, (5.6)

where Z ∼ N(0, 1). Similarly, we can show that

P2 = P
(

Wm(y|x = xm) ≥ 0 when zT = (xT ,yT ) is from Π2|t fixed
)

= Φ











−

(

µ
2m

− 1

2
(µ̂

1m
+ µ̂

2m
)
)T

S−1

(

µ̂
1m

− µ̂
2m

)

− log
(

β̂2m

β̂1m

)

{

(

µ̂
1m

− µ̂
2m

)T
S−1ΣS−1

(

µ̂
1m

− µ̂
2m

)

}

1/2











.(5.7)

As usual, Φ(.) denotes the standard normal distribution function. The
overall probability of misclassification from Πi is the sum of Pim’s,
the probabilities of misclassification for each multinomial cell m of Πi,
weighted by the probability of the occurrence of the cell. Hence, the
actual error rates P1 and P2 are given respectively by

P1 =
2

q
∑

m=1

β1mP1m and P2 =
2

q
∑

m=1

β2mP2m, (5.8)

and the overall actual error rate can be computed using the formula
given by (5.2).

From the expressions above, we can see that the arguments in the
definition of the actual error rates are still functions of unknown pa-
rameters, so these error rates can not be computed directly from the
given training data alone. Consequently a procedure for estimating
these error rates is needed. A large number of works on estimation of
the error rates in discriminant analysis have been reported in literature.
For the details we refer to Mangku (1992).
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