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1. Introduction

This paper is a survey study on applications of bootstrap methods
for estimating the probability of misclassifications in two-groups discri-
minant analysis when the Linear Discriminant Function (LDF) is used
as the classification rule.

1.1. Formulation of the problems. A typical problem in two-groups
discriminant analysis is as follows. Given the existence of two groups
of individuals, we want to find a classification rule for allocating new
individuals (observations) into one of the existing two groups. Corre-
sponding to each classification rule, there is a probability of misclas-
sification if we use that classification rule to classify new individuals
(observations) into one of the two groups. The best classification rule
is the one that leads to the smallest probability of misclassification,
which also called error rates.

In this paper we consider three types of error rates, namely: (i) the
optimum error rate, which describes the performance of a classification
rule based on known parameters, (ii) the conditional error rate, which
describes the performance of a classification rule based on parameters
estimated by the statistics computed from the training samples, and
(iii) the expected error rate, which describes the expected performance
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of a classification rule based on parameters estimated by a randomly
chosen training sample.

In real situation, the parameters are rarely known, and the expected
(or unconditional) error rates depend heavily on the distribution of the
discriminant function, which is very complicated (see for example, Wald
(1944), Anderson (1951), Okamoto (1963) and Hills (1966)). Conse-
quently most works associated with error rates have assumed that the
samples, which are used to construct the estimated classification rule,
are fixed. This leads to the exploration of the conditional error rate.
Here the word ’conditional’ refers to the conditioning of the training
samples from which the classification rule is constructed. We may also
think of this as the probability that the given classification rule would
incorrectly classify a future observation. It should also be noted that
the conditional error rate is the error rate that is important to an ex-
perimenter who has already determined the classification rule. This
conditional error rate is also referred to the actual error rate or the
true error rate by many authors. Hence, in this paper we concentrate
only on the actual error rate and its estimation.

1.2. Classification rule. The classification rule which is used in the
current study can be described as follows. Recall that we restrict
our study to discriminant analysis problems involving only two groups
or populations. These groups are denoted by Π1 and Π2. Suppose
X = (X1, X2, . . . , Xp)

T is a p-dimensional vector of random variables
associated with any individual. We assume that X has different pro-
bability distributions in Π1 and Π2. Let x be the observed value of
X (for an arbitrary individual), f1(x) be the probability density of X
in Π1, and f2(x) be the probability density of X in Π2. Then the
simplest intuitive classification decision is: classify x into Π1 if it has
greater probability of coming from Π1, that is if f1(x)/f2(x) > 1; or
classify x into Π2 if it has greater probability of coming from Π2, that
is if f1(x)/f2(x) < 1; or classify x arbitrarily into Π1 or Π2 if these
probabilities are equal or if f1(x)/f2(x) = 1.

In practice it is reasonable to consider some important factors such
as prior probabilities of observing individuals from the two populations
and the cost due to misclassifications. However, in this paper, we only
consider the case with equal prior probabilities and equal cost due to
misclassifications.

Various classification rules has been established in the literature. The
earliest and most well-known rule is Fisher’s (1936) Linear Discriminant
Function (LDF). Let µ

i
= (µi1, µi2, . . . , µip)

T , be the means and Σi be

the covariance matrices of X in Πi (i = 1, 2). It is often assumed that
Σ1 = Σ2 = Σ. Let x̄

1
, x̄

2
,S1,S2, and S be the sample estimates of

µ
1
, µ

2
, Σ1, Σ2 and Σ respectively, using independent random samples

of size n1 and n2 from Π1 and Π2. Denote these random samples (also
called training samples) by t

1
and t

2
respectively, and let t = {t

1
, t

2
}
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be the entire set of training data of n = n1 + n2 observations. Also let
Np(µ, Σ) denotes the p-variate normal distribution with mean µ and
covariance matrix Σ. The estimated Fisher’s LDF is then given by

L(x) = x
T
S
−1(x̄1 − x̄2). (1.1)

This LDF was adopted later by Anderson (1951) to obtain a classifica-
tion statistics W (x), given by

W (x) = W (x, t) =

(

x −
1

2
(x̄1 + x̄2)

)T

S
−1 (x̄1 − x̄2) . (1.2)

Using this rule, a new individual x will be allocated into Π1 if W (x) ≥
0, otherwise into Π2. In this paper we consider (1.2) as our classifica-
tion rule, and sometime we will use the notation W (x, t), to give an
emphasize that this classification rule is constructed using the training
sample t, to classify the new individual x.

1.3. The probability of misclassifications. What we mean by the
probability of misclassifications in this paper is the actual error rates
of the linear discriminant function W (x, t). The actual error rates are
given by

P1 = P(W (x, t) < 0 when x is from Π1|t fixed),

P2 = P(W (x, t) ≥ 0 when x is from Π2|t fixed). (1.3)

Here, P1 represents the probability of classifying the new individual x in
to Π2 when it is actually belong to Pi1 and P2 represents the probability
of classifying the new individual x in to Π1 when it is actually belong
to Pi2. The overall actual error rate is then defined by

AC =
n1

n1 + n2

P1 +
n2

n1 + n2

P2. (1.4)

Under the assumptions that X ∼ Np(µ
1
, Σ) on population Π1 and

X ∼ Np(µ
2
, Σ) on population Π2, it can easily be shown that

P1 = Φ







−
(

µ
1
− 1

2
(x̄1 + x̄2)

)T
S
−1(x̄1 − x̄2)

((x̄1 − x̄2)
TS−1ΣS−1(x̄1 − x̄2))

1/2






(1.5)

and

P2 = Φ







(

µ
2
− 1

2
(x̄1 + x̄2)

)T
S
−1(x̄1 − x̄2)

((x̄1 − x̄2)
TS−1ΣS−1(x̄1 − x̄2))

1/2






(1.6)

where Φ is the distribution function of a standard normal variate.
We can see from the expressions above that the arguments are still

functions of unknown parameters, so these error rates can not be com-
puted directly from the given training data alone. Consequently a
procedure for estimating these error rates is needed.

The literature on estimation of error rates in discriminant analysis
using LDF given by (1.2) is enormous. Extensive bibliographies can
be found in Toussaint (1974), and see also McLachlan (1986). How-
ever, this paper only deals with bootstrap error rate estimators. The
estimates of the actual error rates P1 and P2 are denoted respectively
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by P̂1(e) and P̂2(e), and the estimate of the overall actual error rate

is given by P̂ (e) = (n1P̂1(e) + n2P̂2(e))/n, where e refers to the corre-
sponding estimators.

2. The bootstrap error rates estimators

Bootstrap technique is a computer-based methodology introduced by
Efron (1979) for assessing the variability of an estimator on the basis
of the data at hand. The underlying idea of bootstrapping is that the
sampling behaviour can often be studied by randomly resampling a
given set of data and calculating the statistics of interest. Here, by
resampling the original observations in a way such that the stochastic
nature of the data is preserved, pseudodata (bootstrap samples) are
generated on which the estimator of interest is assessed.

Because the use of computators have become very cheap and easy,
the bootstrap methodology has become very popular in such a sort
time. This technique has been widely modified and applied to solve
various statistical estimation problems, especially when the parametric
procedures are complicated or when the parametric assumptions are
questioned. Plenty of works on bootstrap methods and their applica-
tions have been reported in literature.

In this section, we focus only on the applications of bootstrap tech-
niques for estimating the probability of misclassification in discrimi-
nant analysis. Efron (1979) suggested an application of the bootstrap
method in estimating the actual error rate as a bias correction pro-
cedure to the resubstitution error rate. Later, he developed more so-
phisticated estimators, in particular the 0.632 estimator which was
shown to outperform some other estimators based on cross-validation
and jackknife techniques in his simulation studies. So we chose to fo-
cus more on this 0.632 estimator, in our present study. Since bootstrap
samples can be obtained in two different ways namely mixture sampling
and separate sampling, we shall consider both ’mixture and separate
sampling versions’ of the 0.632 estimator.

The procedures to compute Efron’s 0.632 estimators can be summa-
rized as follows:

Step 1: First, consider the case of mixture sampling. Let F̂ be the
empirical or sample probability distribution with mass 1/n for each xj

in the original training data t, (j = 1, 2, . . . , n). A new training sample
t∗ = {x∗

1
,x∗

2
, . . . ,x∗

n}, called the bootstrap training sample, is gener-
ated by resampling the original training observations with replacement.
This resampling is performed according to the above empirical proba-
bility distribution F̂ . Notice here that, we may relabel x∗

1
,x∗

2
, . . . ,x∗

n so
that x∗

1j (j = 1, 2, . . . , n∗

1
) denote those x∗

j observations, n∗

1
in number,

which have been selected into the bootstrap sample from the training
set t

1
, and x∗

2j (j = 1, 2, . . . , n∗

2
) denote those x∗

j observations, n2 in
number, which have been selected into the bootstrap sample from the
training set t

2
. Note also that n∗

i may not be equal to ni (i = 1, 2),
but n∗

1
+ n∗

2
= n.
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Now, consider the case of separate samplings. Let F̂1 be the empir-
ical or sample probability distribution with mass 1/n1 for each obser-
vation x

1j in the first original training data t
1

(j = 1, 2, . . . , n1). A
new bootstrap training sample t∗

1
= {x∗

11
,x∗

12
, . . . ,x∗

1n1
}, is generated

by resampling t
1

with replacement. This resampling is performed ac-

cording to the empirical probability distribution F̂1. Also let F̂2 be the
empirical or sample probability distribution with mass 1/n2 for each ob-
servation x

2j in the second original training data t
2

(j = 1, 2, . . . , n2).
Another bootstrap training sample t∗

2
= {x∗

21
,x∗

22
, . . . ,x∗

2n2
}, is also

generated by resampling the second original training sample t
2

with
replacement. This resampling is performed according to the empirical
probability distribution F̂2. Then the entire bootstrap sample obtained
is t∗ = {t∗

1
, t∗

2
}.

Step 2: Based on the bootstrap sample t∗, a new classification rule
W (x, t∗) is constructed in precisely the same manner as W (x, t∗) is
from the original t.

Step 3: Compute α and β; where β is the number of individuals in t
that are not drawn into t∗, and α is the number of individuals in t that
are not drawn into t∗ and are misclassified by the rule W (x, t∗).

Suppose that steps 1, 2, and 3 are repeated b times so that we have
b bootstrap training samples t∗

1
, t∗

2
, . . . , t∗b and b corresponding classi-

fication rules

W1(x, t∗
1
),W2(x, t∗

2
), . . . ,Wb(x, t∗b).

The bootstrap estimator of the overall actual error rate is then given
by

P̂ (bst) = (1 − ν)P̂ (R) + νξ, (2.1)

where, P̂ (R) is the overall apparent (resubstitution) error rate, and

ξ =

(

b
∑

m=1

αm

)

/

(

b
∑

m=1

βm

)

or

ξ =
b

∑

m=1

n
∑

j=1

δmjQ[yj,Wm(x∗

ij, t
∗

m)]/
b

∑

m=1

n
∑

j=1

δmj, (2.2)

where yj = 1 or 2 according as x∗

ij ∈ Π1 or Π2, and δmj = 1 if x∗

ij 6∈ t∗m
and 0 otherwise. The coefficient ν is a constant defined as below.

Efron (1983) developed this estimator by considering the probability
distribution of the (Mahalanobis type) distance between the observation
at which the classification rule is applied and the nearest observation
in the training data. This probability distribution is equivalent to
the probability that the observation at which the rule is applied is
included in the bootstrap samples. In the mixture sampling situation,
this probability denoted by ν can be expressed as

(

1 −
(

1 − n−1
)n)

(2.3)
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which tends to 0.632 as n → ∞. For separate sampling case, this
probability is given by

{

1 −

[

n1

n1 + n2

(

1 − n−1

1

)n1 +
n2

n1 + n2

(

1 − n−1

2

)n2

]}

(2.4)

which also approaches 0.632 as both n1 and n2 → ∞. Efron (1983)
considered the limiting cases and defined the 0.632 estimator as in (2.1)
with ν = 0.632.

Chatterjee and Chatterjee (1983) introduced a slightly different pro-
cedure to compute the ’0.632 estimator’ using separate sampling boot-
strapping. Instead of using ξ as in (2.2), they used

ξ =

(

1

b

) b
∑

m=1

αm

βm

, (2.5)

in (2.1).

3. Comparative studies on error rates estimations

As mentioned previously, the literature on estimation of the error
rates in discrimination and classification problems is enormous. How-
ever, in this section we focus only on some of those studies which deal
with extensive comparisons of bootstrap estimators. The comparative
studies considered here are by Efron (1983), Snapinn and Knoke (1985),
and Ganeshanandam and Krzanowski (1990).

3.1. The study by Efron (1983). Efron (1983), proposed three new
bootstrap-based estimators, namely, the randomized bootstrap, the dou-
ble bootstrap and the 0.632 estimator, as improvements to the ordinary
bootstrap estimator of Efron (1979). Furthermore, he compared these
estimators with the ordinary bootstrap estimator and the U estimator
(which he called the cross-validation estimator), using a criterion called
mean squared error (MSE).

These comparisons were carried out on multivariate normal situa-
tions with fixed separation between the two populations. The experi-
mental factors which he considered were the number of variables in the
data and the sample sizes. He considered two levels for the number of
variables: p = 2 and p = 5, and also two levels for the sample sizes:
n = 14 and n = 20.

He found the cross-validation technique (U estimator) to give a
nearly unbiased estimate for the actual error rate, but often to have
high variability, especially when n was small. The ordinary bootstrap
gave an estimate of the actual error rate with low variability, but with a
possibly large downward bias. The double bootstrap automatically cor-
rected the bias of the ordinary bootstrap without increasing the MSE of
estimation. The randomized bootstrap, on average, performed second
best in the sampling experiments. The best method for estimating the
actual error rate was the 0.632 estimator.
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3.2. The study by Snapinn and Knoke (1985). Snapinn and
Knoke (1985) proposed the NS estimator and compared it with R,
U , and IB (ideal bootstrap) estimators in a variety of situations. Here
the IB estimator uses a resampling plan which reduces the bias of the
R estimator and adds no variance. This estimator (for i = 1, 2) is
defined as

P̂i(IB) = P̂i(R) − [E(P̂i(R)) − E(Pi)],

where P̂i(R) is the R estimator, Pi is the actual error rate, and the
expectation is taken overall sampling experiments. In this study also
they used the criterion UMSE, calculated by numerical integration
and Monte Carlo samplings.

They concluded that the IB and U methods have lower UMSE
than NS method when ∆ is small, but the NS method has the lowest
UMSE when ∆ is large. As usual, here ∆ denotes the true Mahalanobis
distance between the two populations. They also found the R, U , IB
and NS methods to be robust to departures from normality. Finally,
they suggested that the NS method should be chosen over the U and
IB estimators if the ratio of the sample size to the number of variables
is large (ie. when n/p > 5, i = 1, 2).

3.3. The study by Ganeshanandam and Krzanowski (1990).
The most recent and wide spread comparative study on estimation of
the actual error rate in discriminant analysis is due to Ganeshanandam
and Krzanowski (1990). In this study, they compared the performance
of the R, D, OS, L, M , NS, U , Ū , JK, 0.632 and FK estimators.
Here JK refers to the jackknife estimator and FK refers to the leave-
one-out based estimator when the technique is applied to the Quadratic
Discriminant Function (see Fukunaga and Kessel (1971)).

Regarding the parent populations, they considered both ideal and
non-ideal conditions. The ideal condition refers to the case where both
parent populations are multivariate normal with common covariance
matrix. For non-ideal conditions, they considered the case where both
populations consist of multivariate binary variables, a case which is far
from normality assumption. Besides the mean square error (MSE) cri-
terion, they also used another criterion called optimism (OPT). This
OPT criterion indicates whether an estimator is overoptimistic or un-
deroptimistic in estimating the actual error rate.

In their study, they worked with standardized variables, so that the
covariance matrix Σ was in fact a correlation matrix. The mean vectors
of the populations were µ

1
= 0 and the elements of µ

2
were determined

by some of the experimental factors given below. For the multivariate
normal situation, five experimental factors were considered. Two levels
for the number of variables (p = 10, 20), two levels for sample sizes rela-
tive to the number of variables (small and large), and two levels for the
Mahalanobis distances ∆, ∆ = 1.01 (close populations) and ∆ = 2.53
(well-separated populations) were chosen for their study. The fourth
factor was ν which represents the interdependency of the variables and
the fifth one denoted by d represents the variation in the elements of
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µ
2
. They considered two levels for factor ν as ν = 0.4 (highly depen-

dent variables) and ν = 0.8 (almost independent variables), and also
two levels for factor d: d = 0.5 (large differences among the elements
of µ

2
) and d = 0.75 (small differences among the elements of µ

2
).

For multivariate binary case, they considered 5 and 10 variables with
three levels of sample sizes relative to the number of variables (small,
medium, and large). The other factors were pi,j which represents the
probability that the jth variable takes value 1 in the ith population
(j = 1, 2, ..., p and i = 1, 2), and ri(jk) which represents the correlation
between the jth and kth variables in the ith population. The values of
pi,j’s considered were as below,

Table 1: The values of pij’s considered.

Level
Π1

X1 X2 X3 X4 X5

Π2

X1 X2 X3 X4 X5

1 0.20 0.20 0.20 0.20 0.20 0.80 0.80 0.80 0.80 0.80

2 0.25 0.30 0.35 0.40 0.45 0.75 0.70 0.65 0.60 0.55

3 0.40 0.45 0.50 0.55 0.60 0.60 0.55 0.50 0.45 0.40

4 0.25 0.30 0.35 0.40 0.45 0.45 0.40 0.35 0.30 0.25

5 0.30 0.40 0.50 0.60 0.70 0.30 0.40 0.50 0.60 0.70

Here, the levels 1 to 4 represent progressively decreasing difference
between Π1 and Π2, with level 5 being the limiting case of identical
populations. For the case p = 10, they worked with two independent
blocks of five binary variables in each block. When p = 5, they consi-
dered two situations for ri(jk): all ri(jk) equal to zero and all ri(jk)
equal to 0.25. When p = 10, they set all ri(jk) equal to zero in the
first block of 5 binaries and all ri(jk) equal to 0.25 in the second block.
See Ganeshanandam and Krzanowski (1990) for exact details of the
generation of simulated data.

Their conclusions were as follows. On average, the U (leave-one-out),
JK (jackknife), L (Lachenbruch’s), M (McLachlan’s), and Ū (Lachen-
bruch and Mickey’s) estimators form the best cluster of estimators
for estimating the actual error rate, for both multivariate normal and
multivariate binary parent populations. The OS estimator can also be
recommended with a caution that it may produce very large overopti-
mistic bias. The NS (Smoothed), R (resubstitution), and D (plug-in)
estimators perform poorly in general. They also reported that the 0.632
estimator is highly sensitive to the changes of the Mahalanobis distance
∆ (for the multivariate normal case), and performs the best for small
∆ and the worst for large ∆. It was also noted that the 0.632 estimator
always estimated the actual error rate in the vicinity of (0.3−0.4). We
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refer to Mangku (1992) for the details explanations of the estimators
considered in this comparative study.

4. Discussion

As mentioned in the previous section, the major problem in estima-
ting the error rate in discriminant analysis arises when there are no
data available beyond those used to define and estimate the classifica-
tion rule. The resubstitution method has been reported optimistically
biased because of using the same data to construct as well as to evaluate
the classification rule.

One other alternative is using parametric estimators. When the pa-
rent populations are multivariate normal, on average, the OS, L, and
M estimators are the best for estimating the actual error rate. How-
ever, the performance of these estimators deteriorate when the parent
populations are not normal. So, when the normality assumption is
questioned, we still need a better estimator.

Another alternative is using the empirical estimators such as the
ones based on cross-validation, jackknife, and bootstrap. The best es-
timators among these empirical techniques, as reported by some com-
parative studies discussed in the previous section, are the U , Ū , JK,
and 0.632 estimators. These U , Ū , and JK estimators are basically
based on the leave-one-out technique. Since this procedure holds out
one observation at a time, in turn, until each observation has been held
once, the maximum number of pseudo data created here is the same
as the original sample size. Because of this fact, the performance of
these estimators deteriorate when the sample sizes become small. In
other words, when the sample sizes are small, we still need a better
estimator.

In the case of small samples, we expect the bootstrap based tech-
nique (0.632 estimator) to behave better, since the number of pseudo
data that can be generated here is almost independent of the sample
sizes. The number of bootstrap samples that can be re-sampled (with
replacement) from a sample of size n is nn . Here, we can notice that
the number of pseudo data sets, namely nn, is much larger than the
size of the original sample, n, even for small values of n.
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