
MIXED FINITE ELEMENT FORMULATION OF THE
BIHARMONIC EQUATION

AGAH D. GARNADI

Department of Mathematics,
Faculty of Mathematics and Natural Sciences,

Bogor Agricultural University
Jl. Meranti, Kampus IPB Darmaga, Bogor, 16680 Indonesia

Abstract. We will provide an abstract setting for mixed finite el-
ement method for biharmonic equation. The abstract setting casts
mixed finite element method for first biharmonic equation and sec-
ond biharmonic equation into a single framework altogether. We
provide error estimates for both type biharmonic equation, and for
the first time an error estimate for the second biharmonic equation.

In this note we will discuss the mixed finite element method for
Biharmonic problem. The result of which depend heavily on the results
of Brezzi and Raviart [2]. It should mentioned that the approach taken
by them could accommodate the first and second Biharmonic problem
nicely. They developed their abstract methods initially aimed at a
unified frameworks of several mixed finite element method for plate
equation into a single setting. The presentation of this note is arranged
as follow. In the first section we will take a look at two variational
formulations of the first Biharmonic problem. The first formulation
is a direct variational formulation of the plate problem, and second is
mixed variational formulation formulation due to Ciarle and Raviart
[4], it can be shown that their formulation is a special case of Brezzi and
Raviart abstract setting. In the second section, we present an abstract
result due to Brezzi and Raviart [2]. This result is applied to the first
and second Biharmonic problems in section 3 and 4 respectively, where
also included some error estimate for both equations.
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1. Variational Problem

1.1. Direct Variational. Let f ∈ L2(Ω) be given, consider the prob-
lem (Pb) :
Find u ∈ V = H2

0 which satisfies:

a(u, v) = f(v),∀v ∈ V

where the bilinear form on V defined as :

a(u, v) =

∫
Ω

{σ∆u∆v+(1−σ)(
∂2u

∂x2

∂2v

∂x2
+
∂2u

∂y2

∂2v

∂y2
+2(

∂2u

∂x∂y

∂2v

∂x∂y
))}, ∀v inV,

and linear form f on V defined as:

f(v) =

∫
Ω

fv, ∀v ∈ V.

From discussion on thin plate deformation, this problem is related
to minimization of quadratic functional energy:

J(v) = a(u, v)− f(v).

Since :

a(v, v) = σ|∆v|0 + (1− σ)|v|0,∀v ∈ H2
0 (Ω),

then obviously a(v, v) is V−elliptic and continuous over V, hence prob-
lem (Pb) is uniquely solvable for every f ∈ L2(Ω), by virtues of Lax-
Milgram Lemma [Jo90]

If the solution u ∈ H4 ∩ H2
0 , i.e. smooth enough, then this is a

solution of the plate equation :

∆2u = f

u|∂Ω = 0,
∂u

∂n
|∂Ω = 0

Now, we have to choose the finite element space Vh,0 ⊂ V = H2
0 within

which we have to solve the following discrete problem:
Find uh ∈ Vh,0 which satisfies:

a(uh, vh) = f(vh),∀vh ∈ Vh,0.

The inclusion Vh,0 ⊂ V = H2
0 in turn implies that Vh,0 ⊂ C1(Ω̄) which

in itself implies requirement of the degree of freedom to generate basis
function. For example, we may choose as a basis over triangles is
Argyris basis which is a complete polynomial of order 5.

1.2. Mixed Variational. Another approach to solve the first bihar-
monic equation was proposed by Ciarlet and Raviart [CR74] in the
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following way. Introduce a new variable ψ = ∆v. Then the mini-
mization of energy functional of plate equation becomes:

min J(v) = min{
∫

Ω

(|ψ|2 − f · v)},

subject to : ψ = ∆v.

In order to solve this formulation, let us introduce the following
space :
X = H1

0 × L2. Define on X the bilinear form: ã : X ×X 7→ R by

ã(x, y) =

∫
Ω

φ ψ, ∀(x, y) = ((u, phi), (v, ψ)) ∈ X ×X.

This bilinear form is obviously symmetric and continuous by introduc-
ing on X the product norms:

‖x‖X = |u|1 + |φ|0, x = (u, φ).

Likewise, the linear form f(−) defined on X by:

f(y) =

∫
Ω

fψ, y = (v, ψ)

is continuous.
Next, let M = H1, defined on X ×M a bilinear form by:

b(y, µ) =

∫
Ω

∇u∇µ−
∫

Ω

ψµ, ∀((v, ψ), µ) ∈ X ×M,

which is clearly continuous. Finally, let X̃ = {x = (v, ψ) ∈ X; ∀µ ∈
M, b(x, µ) = 0}. Clearly X̃ is a Hilbert space since it is a closed sub-
space of X. Moreover, if y = (v, ψ) ∈ X satisfy; b(y, µ) = 0,∀µ ∈ M,
then we have in particular:∫

Ω

∇u∇v dx =

∫
Ω

ψµ dx, ∀µ ∈ H1
0 ,

hence v appears as a solution for Laplace’s equation with homogeneous
Dirichlet conditions on Ω. Assuming Ω is a convex domain, implies
v ∈ H2 by regularity of solutions of second order problem. Using
Green’s formula :∫

Ω

∇v∇µ dx = −
∫

Ω

∆v µ dx+

∫
∂Ω

∂νvµ.

We deduce that −∆v = ψ. Observe that since the product norms is
equivalent to the norm defined by : |v| : y 7→ |ψ|0, y = (v, ψ) ∈ X̃, by
Theorem 7.1.1. of Ciarlet [?], so we can show that the bilinear form ã
is V−elliptic in the space X̃.



4 AGAH D. GARNADI

Theorem 1.1. Let u ∈ H2
0 (Ω) denote the minimizer of energy func-

tional of plates. Then we also have:

J(u,−∆u) = inf
(u,ψ)∈X̃

J(u, ψ).

Additionally, the pair (u,−∆u) ∈ X̃ is the unique solution of the above
minimization problem.

2. Abstract Result

Let V abd W be two (real) Hilbert spaces with norms ‖ − ‖V and
‖−V ertW respectively. Let V ′ and W ′ be the dual spaces of V and W
respectively. Denote by [., .] the pairing between V ′ and V or W ′ and
W.

Let a(., .) and b(., .) be two continuous bilinear forms on V × V and
V ×W. Set:

(A.1) ‖a‖ = supv∈V
|a(u,v)|

‖u‖V ‖v‖V

Assume that the bilinear form a(., .) is V−elliptic, in a sense that there
exist a constant α > 0 such that:

(A.1) ∀v ∈ V, a(v, v) ≥ α‖v‖2
V

In addition assume that there exists a constant β > 0 such that:

(A.3) ∀w ∈ W, supv∈V
|b(v,w)|
‖v‖V

≥ β‖w‖W
Consider the following problem (P): Given f ∈ V ′ and g ∈ W ′, find

a pair (u, p) ∈ V ×W which satisfies:

∀v ∈ V, a(u, v) + b(v, p) = [f, v] (2.1)

∀w ∈ W, b(u,w) = [g, w] (2.2)

we recall the following results due to Brezzi [3]:

Theorem 2.1. Assume that the hypothesis (A.2) and (A.3) hold. Then
problem (P) has unique solution (u, p) ∈ V ×W.

See [6].
Next we shall give another characterization of the problem (P) well

suited for mixed finite element methods. We are given two other (real)
Hilbert spaces Ṽ and W̃ , with norms ‖ − ‖Ṽ and ‖ − ‖W̃ respectively,

such that Ṽ ⊂ V and W ⊂ W̃ with continuous imbedding, and W
is dense in W̃ . Again let [., .] denote the pairing between W̃ and its

dual W̃ ′. Assume that there exists a continuous bilinear form b̃(., .) on
Ṽ × W̃ . With the following properties:

(A.4) ∀v ∈ V, ∀w ∈ W̃ , b̃(v, w) = b(v, w)∀w ∈ W̃

(A.5) ∀w ∈ W̃ , sup
v∈Ṽ

|b̃(v, w)|
‖v‖Ṽ

≥ β̃‖w‖W
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for some constant β̃ > 0. Set:

‖b̃‖ = sup
v∈Ṽ ,w∈W̃

|b̃(v, w)|
‖wV ertW̃‖v‖Ṽ

.

Assume that g ∈ W̃ ′ and consider the following problem (P̃ ):
Find (u, p) ∈ Ṽ × W̃ such that:

∀v ∈ Ṽ , a(u, v) + b̃(v, p) = [f, v] (2.3)

∀w ∈ W̃ , b̃(u,w) = [g, w] (2.4)

Observe that a(., .) is not a-priori Ṽ−elliptic. However we have:

Theorem 2.2. Assume conditions (A.4) and (A.5) hold and that the
first argument u of the solution (u, p) of problem (P) belongs to Ṽ .
Then (u, p) is the unique solution of problem (P̃ ).

Please consult [6] for proof.
In the sequel, assume hat the conclusion of Theorem 2 holds. Let us

now consider some general results of approximations of the solutions
(u, p) of problem (P̃ ). Given Vh and Wh two finite dimensional spaces
such that:

Vh ⊂ Ṽ ,Wh ⊂ tildeW

Consider the following approximate problem (P̃h):
Find (uh, ph) ∈ Vh ×Wh such that:

∀vh ∈ Vh, a(uh, vh) + b̃(vh, ph) = [f, vh] (2.5)

∀wh ∈ Wh, b̃(u,w) = [g, wh] (2.6)

As corollary of the previous theorem, we have the following.

Theorem 2.3. Assume that

∀wh ∈ W̃h, sup
vh∈Ṽh

|b̃(vh, wh)|
‖vh‖Ṽh

≥ γ‖wh‖W̃ · · · (A.6)

Then problem (Ph) has unique solution (uh, ph) ∈ Vh ×Wh.

Now we will derive some abstract bounds on the errors e1 = (u −
uh) and e2 = (p − ph). The approach is as follows. Since Vh is finite
dimensional, there exists S(h) > 0, which depends on Vh such that :

∀vh ∈ Vh, ‖vh‖Ṽ ≤ S(h)‖vh‖V
Let us set:

Z = {v ∈ Ṽ ;∀w ∈ W, b̃(v, w) = 0},
and for any φ ∈ W ′,

Zh = {vh ∈ Vh;∀wh ∈ Wh, b̃(vh, wh) = [φ,wh]}.
It is clear that the subspace Zh of Vh may be regarded as a finite dimen-
sional approximation for Z, even though in general it is not contained
in Z.
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Theorem 2.4. Assume hypothesis (A.2) and (A.6) hold. Then there

exists a constant K = K(α, γ, ‖a‖, ‖b̃‖) such that:

‖e1‖V + ‖e2‖W̃ ≤ K{ inf
vh∈Vh

‖e1‖Ṽ + (1 + S(h)) inf
wh∈Wh

‖e2‖Wh
}

For the proof, see [6].
Brezzi and Raviart noted that the error bound in the above theorem

is not optimal for the following reasons. The estimates involve the error
of approximation infVh

‖u − vh‖Ṽ in Ṽ instead of the corresponding
error infVh

‖u− vh‖V in V. At the same time the constant S(h) is never
bounded independently of the finite dimensional space Vh but tends
to infinity as dim(Vh) increases. By adding supplementary hypothesis,
however, the error bound can be improved.

Theorem 2.5. Assume the hypothesis in the previous theorem are
holds. Additionally, assume the inclusion Zh ⊂ Z holds. Then there
exist a constant K = K(α, γ, ‖a‖, ‖b̃‖) such that:

‖e1‖V + ‖e2‖W̃ ≤ K{ inf
vh∈Zh(φ)

‖e1‖V + inf
wh∈Wh

‖e2‖W̃},

where Zh(φ) is defined as above.

Instead of the above theorem, we shall use the following conse-
quences.

Corollary 2.6. Assume (A.1), (A.5), and inclusion Zh ⊂ Z hold.
Assume that there exists an operator πh : Ṽ −→ Vh and a constant
c > 0 such that

∀wh ∈ Wh, b̃(v − πhv, wh) = 0

∀v ∈ Ṽ , ‖πhv‖Ṽ ≤ c‖v‖Ṽ .

Then the problem (P̃h) has unique solution (uh, ph) ∈ Vh ×Wh and we
have:

‖e1‖V + ‖e2‖W̃ ≤ K{‖u− πhu‖V + inf
wh∈Wh

‖e2‖W̃},

for a constant K = K(α, β̃, c, ‖a‖, ‖b̃‖).

For complete proof, see the thesisi of Garnadi [6].
Let Λ be a Hilbert space with inner product < ., . >Λ and its induced

norms ‖.‖Λ such that W̃ ⊂ Λ with continuous imbedding.
Assume that problem (P) is regular in the following sense.
Given ψ ∈ Λ, let (y,Ξ) ∈ V × Λ be the solutions of:

∀v ∈ V, a(v, y) + b̃(v,Ξ) = 0 (2.7)

∀w ∈ W̃ , b̃(y, w) = < ψ,w >Λ . (2.8)

Then y belongs to the space Ṽ .
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Theorem 2.7. Assume the problem (P) is regular as in the previous

sense. Then we have a constant K = K(‖a‖, ‖b̃‖) > 0,

‖p− wh‖Λ ≤ sup
ψ∈Λ

{ 1

‖ψ‖
inf

yh∈Zh(φ),wh∈Wh,Ξh∈Wh

[‖e1‖V ‖y − yh‖V + ‖e1‖Ṽ ‖Ξ− Ξh‖V + ‖e2‖W̃ ]},

where, for any given ψ ∈ Λ, (y,Ξ) is the regular solution in the previous
sense.

3. Application to First Biharmonic Equation

We consider the first biharmonic equation:

∆2u = g, in Ω

u|∂Ω =
∂u

∂n
|∂Ω = 0.

Rewriting the problem as a coupled system as follow:

w −∆u = 0, in Ω

∆w = g, in Ω

u|∂Ω =
∂u

∂n
|∂Ω = 0.

Set:
V = L2(Ω) W = H2

0 (Ω)
a(u, v) =

∫
uv dx b(v, w) =

∫
v∆ dx

f = 0 [φ, µ] = −
∫
φµ dx.

We will check whether the hypothesis are satisfied. Since a(u, v) in V is
an inner product in L2(Ω), by taking α = 1, then a(u, v) is V−elliptic.
Clearly that the first hypothesis is satisfied. And we can verify that
there exist β ≥ 0 such that

∀w,W, sup
v∈V

b(v, w)

‖v‖V
≥ β‖w‖W .

We associated the problem (B.2) with a problem (B̃.2) by setting

Ṽ = H1(Ω) ; W̃ = H1
0 (Ω) ; b̃(v, w) = −

∫
∇v∇w dx.

The conditions (A.1) and (A.2) hold trivially and by Theorem 2, there
exists a pair of functions (u, p) ∈ H1(Ω) ×H1

0 (Ω) which is the unique
solution of: ∫

vu dx +

∫
∇v∇p dx = 0,∀v ∈ H1(Ω)∫

∇p∇u dx +

∫
gw dx = 0,∀w ∈ H1

0 (Ω).
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Let us assume that the solution be an element in H2
0 ∩ H3. Suppose

that Ω is triangulated by triangulation Th with triangles K whose sides
are less than h. Define finite dimensional space :

Vh = {vh ∈ C0(Ω);K ∈ Th, vh|K ∈ P1(K)}
Vh,0 = Vh ∩H1

0 Wh = Vh,0.

So we take the piecewise linear basis. In order to apply Theorem 3, we
need to check the hypothesis (A.6).

Lemma 3.1. Let there be given spaces Vh and Wh as above. Then
there exist a constant γ > 0 independent ofh such that consequences in
Theorem 3 holds.

See [6] for proof.
Let us define Ritz operators Rh : H1 → Vh and Rh,0 : H1

0 → Vh,0 as
follows

b̃(v −Rhv, η) = 0,∀η ∈ Vh∫
(v −Rhv) dx = 0,

and
b̃(v −Rh,0v, ξ) = 0,∀ξ ∈ Vh,0,

respecively.
The following lemma is important to the proof of estimates for piece-

wise linear basis. The proof uses L∞−error estimates for the Ritz ap-
proximation of second order problem.

Lemma 3.2. For all u ∈ H1
0 ∩W 2,∞ and for all η ∈ Vh we have

b̃(v −Rh,0v, η) = ch1/2| lnh|‖∆u‖∞‖η‖0

with c is independent of u, η, and h.

See [6] for proof.
Let (uh, ph) ∈ Vh,0 × Vh be the solution of discrete problem. With

e1 = (u − uh) and e2 = (p − ph), we can rewrite equations in (B̃.1 h)
in the following form:

b̃(e1, η) = (e2, η),∀η ∈ Vh
b̃(e2, ξ) = 0,∀ξ ∈ Vh,0.

We obtain the following estimates in the L2−norm.

Theorem 3.3. The differences of e1 and e2 between the exact solution
of the first biharmonic problem and the mixed finite element formula-
tion can be estimated by :

‖e1‖0 + h1/2| lnh| ‖e2‖0 ≤ c h| ln(h)|2‖u‖4

where c is independent of (u, p) and h.

Consult [6] for proof.
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Corollary 3.4. As a consequence of estimates in the above theorem
and combination of the first part of previous equation we get for e1in
the H2−norm

‖e1‖2 ≤ c h3/4| ln(h)|3/2‖u‖4.

Observe that Scholz result need a higher regularity, i.e. u ∈ H4 ∩
H1

0 to show error estimates in L2 for piecewise linear basis, while for
approximation using Pk, k ≥ 2, error estimates in O(hk−1) is achieved,
with weaker regularity, u ∈ H3 ∩H1

0 [Mo87]. Furthermore, Glowinski
[Gl73] showed that for a particular triangulation of a square estimates
in O(h) is achieved.

4. Application to Second Biharmonic Equation

We consider the second biharmonic equation:

∆2u = g, in Ω

u|∂Ω = ∆u|∂Ω = 0.

Rewriting the problem as a coupled system as follow:

w −∆u = 0, in Ω

∆w = g, in Ω

u|∂Ω = w|∂Ω = 0.

Set:
V = L2(Ω) W = H2

0 (Ω)
a(u, v) =

∫
uv dx b(v, w) =

∫
v∆ dx

f = 0 [φ, µ] = −
∫
φµ dx.

We need to check whether the hypothesis are satisfied. The arguments
are follows verbatimly as in the case of the first biharmonic equation
in the previous section, however as the space and functional forms are
slightly different, it is necessary to follows the arguments step by step.
Since a(u, v) in V is an inner product in L2(Ω), by taking α = 1, then
a(u, b) is V−elliptic. It is clear that the first hypothesis is satisfied.
And we can verify that there exist β ≥ 0 such that

∀w,W, sup
v∈V

b(v, w)

‖v‖V
≥ β‖w‖W .

We associated the problem (B.2) with a problem (B̃.2) by set

Ṽ = H1
0 (Ω) ; W̃ = H1

0 (Ω) ; b̃(v, w) = −
∫
∇v∇w dx.

The conditions (A.1) and (A.2) hold trivially and by Theorem 2, there
exists a pair of functions (u, h) ∈ H1

0 (Ω)×H1
0 (Ω) which is the unique
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solution of: ∫
vu dx +

∫
∇v∇p dx = 0,∀v ∈ H1

0 (Ω)∫
∇p∇u dx +

∫
gw dx = 0,∀w ∈ H1

0 (Ω).

Let us assume that the solution be an element in H2
0 ∩ H3. Suppose

that Ω is triangulated by triangulation Th with triangles K whose sides
are less than h. Define finite dimensional space :

Vh = {vh ∈ C0(Ω);K ∈ Th, vh|K ∈ P1(K)}
Vh,0Vh ∩H1

0 Wh = Vh,0.

So we take the piecewise linear basis. In order to apply Theorem 3,
we need to check the hypothesis (A.6). This is obviously clear, since
H1

0 ⊂ H1.
The error bounds for first biharmonic problems can be extended

to the second biharmonic problems with only minor changes in the
proof. Furthermore, error bounds for Poisson equation can be easily
extended to the second biharmonic problems by treating the splitting
of Biharmonic equation as a coupled set of Poisson equations. Then
we have the following theorems as consequences.

Theorem 4.1. i. If u ∈ H4(Ω), then

‖u− Phu‖0 ≤ c1h
2|u|2

‖p− Php‖0 ≤ c1h
2|p|2,

Then,

‖u− Phu‖0 + ‖p− Php‖0 ≤ h2(c1|u|2 + c2|p|2)
ii. If u ∈ H4(Ω), then

‖u−Rhu‖0 ≤ c1h
2|u|2

‖p−Rhp‖0 ≤ c1h
2|p|2,

Then,

‖u−Rhu‖0 + ‖p−Rhp‖0 ≤ h2(c1|u|2 + c2|p|2)

Similarly, from L2−estimates for Poisson equation, we have directly
the following results on L2−estimates of second biharmonic problems.

Theorem 4.2.

i.

‖u−Rhu‖0 ≤ c1h
2|u|2 ≤ c1h

2‖p‖0

ii.

‖p−Rhp‖0 ≤ c1h
2|p|2 ≤ ‖f‖0.
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Note that both previous theorems is one of the results in this works,
which to the author knowledge has not appeared elsewhere, albeit it is
seemingly light exercises.

5. Conclusion

We demonstrate the abstract setting encompassed not only several
mixed finite element methods for the first biharmonic equation, but also
accommodate the second biharmonic equation. One important thing
in this work is an error estimate for the second biharmonic equation
which has not appeared elsewhere. Furthermore, the error estimates
provided in this work will be of useful to extend of adaptivity for works
on thin plate finite element interpolation for sparse data [12, 8, 9],
which its variational form has a close resemblance with mixed finite
element formulation of biharmonic equation. We are looking forward
for extension of this work to thin plate finite element interpolation in
the future.
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