CONSISTENCY OF A UNIFORM KERNEL ESTIMATOR FOR INTENSITY OF A PERIODIC POISSON PROCESS WITH UNKNOWN PERIOD

I WAYAN MANGKU
Department of Mathematics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University Jl. Meranti, Kampus IPB Darmaga, Bogor, 16680 Indonesia

Abstract

A uniform kernel estimator for intensity of a periodic Poisson process with unknowm period is presented and a proof of its consistency is discussed. The result presented in this paper is a special case of that in [3]. The aim of discussing a uniform kernel estimator is in order to be able to present a relatively simpler proof of consistency compared to that in [3]. This is a joint work with R. Helmers and R. Zitikis.

1991 Mathematics Subject Classification: 60G55, 62G05, 62G20.
Keywords and Phrases: periodic Poisson process, intensity function, uniform kernel estimator, consistency.

1. Introduction and main result

In this paper, a uniform kernel estimator for intensity of a periodic Poisson process with unknowm period is presented and a proof of its consistency is discussed. The result presented here is a special case of that in [3] and chapter 3 of [5].

Let X be a Poisson process on $[0, \infty$) with (unknown) locally integrable intensity function λ. We assume that λ is a periodic function with unknown period τ. We do not assume any parametric form of λ, except that it is periodic. That is, for each point $s \in[0, \infty)$ and all $k \in \mathbf{Z}$, with \mathbf{Z} denotes the set of integers, we have

$$
\begin{equation*}
\lambda(s+k \tau)=\lambda(s) . \tag{1.1}
\end{equation*}
$$

Suppose that, for some $\omega \in \Omega$, a single realization $X(\omega)$ of the Poisson process X defined on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ with intensity function λ is observed, though only within a bounded interval $[0, n]$. Our goal in this paper is: (a) To study construction of a uniform kernel estimator for λ at a given point $s \in[0, n]$ using only a single realization $X(\omega)$ of the Poisson process X observed in interval $[0, n]$. (The
requirement $s \in[0, n]$ can be dropped if we know the period τ.) (b) To determine the minimal conditions for having weak convergence of this estimator.

Note that, since λ is a periodic function with period τ, the problem of estimating λ at a given point $s \in[0, n]$ can be reduced into a problem of estimating λ at a given point $s \in[0, \tau)$. Hence, for the rest of this paper, we assume that $s \in[0, \tau)$.

Note also that, the meaning of the asymptotic $n \rightarrow \infty$ in this paper is somewhat different from the classical one. Here n does not denote our sample size, but it denotes the length of the interval of observations. The size of our samples is a random variable denoted by $X([0, n])$.

Let $\hat{\tau}_{n}$ be any consistent estimator of the period τ, that is, $\hat{\tau}_{n} \xrightarrow{p} \tau$, as $n \rightarrow \infty$. For example, one may use the estimators constructed in [2] or perhaps the estimator investigated by [6] and [1]. Let also h_{n} be a sequence of positive real numbers converging to 0 , that is,

$$
\begin{equation*}
h_{n} \downarrow 0 \tag{1.2}
\end{equation*}
$$

as $n \rightarrow \infty$. With these notations, we now define an estimator of $\lambda(s)$ as

$$
\begin{equation*}
\hat{\lambda}_{n}(s):=\frac{\hat{\tau}_{n}}{n} \sum_{k=-\infty}^{\infty} \frac{1}{2 h_{n}} X\left(\left[s+k \hat{\tau}_{n}-h_{n}, s+k \hat{\tau}_{n}-h_{n}\right] \cap[0, n]\right) . \tag{1.3}
\end{equation*}
$$

Let us now describe the idea behind the construction of the estimator $\hat{\lambda}_{n}(s)$. Note that, since there is only one realization of the Poisson process X available, we have to combine information about the (unknown) value of $\lambda(s)$ from different places of the window $[0, n]$. For this reason, the periodicity of λ, that is assumption (1.1), plays a crucial role and leads to the following string of (approximate) equations

$$
\begin{align*}
\lambda(s) & =\frac{1}{N_{n}} \sum_{k=-\infty}^{\infty} \lambda(s+k \tau) \mathbf{I}\{s+k \tau \in[0, n]\} \\
& \approx \frac{1}{N_{n}} \sum_{k=-\infty}^{\infty} \frac{1}{2 h_{n}} \int_{\left[s+k \tau-h_{n}, s+k \tau+h_{n}\right] \cap[0, n]} \lambda(x) d x \\
& =\frac{1}{N_{n}} \sum_{k=-\infty}^{\infty} \frac{1}{2 h_{n}} \mathbf{E} X\left(\left[s+k \tau-h_{n}, s+k \tau+h_{n}\right] \cap[0, n]\right) \\
& \approx \frac{1}{N_{n}} \sum_{k=-\infty}^{\infty} \frac{1}{2 h_{n}} X\left(\left[s+k \tau-h_{n}, s+k \tau+h_{n}\right] \cap[0, n]\right) \\
& \approx \frac{\tau}{n} \sum_{k=-\infty}^{\infty} \frac{1}{2 h_{n}} X\left(\left[s+k \tau-h_{n}, s+k \tau+h_{n}\right] \cap[0, n]\right), \tag{1.4}
\end{align*}
$$

where

$$
N_{n}=\#\{k: s+k \tau \in[0, n]\} .
$$

We note that, in order to make the first \approx in (1.4) works, we require the assumptions that s is a Lebesgue point of λ and (1.2) holds true. We say s is a Lebesgue point of λ, if we have

$$
\begin{equation*}
\lim _{h \downarrow 0} \frac{1}{2 h} \int_{-h}^{h}|\lambda(s+x)-\lambda(s)| d x=0 \tag{1.5}
\end{equation*}
$$

(eg. see [7], p.107-108). Thus, from (1.4) we conclude that the quantity

$$
\begin{equation*}
\lambda_{n}(s):=\frac{\tau}{n} \sum_{k=-\infty}^{\infty} \frac{1}{2 h_{n}} X\left(\left[s+k \tau-h_{n}, s+k \tau+h_{n}\right] \cap[0, n]\right), \tag{1.6}
\end{equation*}
$$

can be viewed as an estimator of $\lambda(s)$, provided that the period τ is known. The estimator (1.3) is obtained by replacing τ in (1.6) by $\hat{\tau}_{n}$.

The idea described in (1.4) and (1.6) of constructing an estimator for $\lambda(s)$ resembles that of [4] where in a similar fashion a non-parametric estimator for an intensity function which, in addition to the periodic trend, also has a polynomial trend. In [4], just like when constructing the estimator $\lambda_{n}(s)$ in (1.6), the period τ is supposed to be known.

Theorem 1.1. Let the intensity function λ be periodic and locally integrable. Furthermore, let the bandwidth h_{n} be such that (1.2) holds true, and

$$
\begin{equation*}
n h_{n} \rightarrow \infty \tag{1.7}
\end{equation*}
$$

as $n \rightarrow \infty$. If

$$
\begin{equation*}
n\left|\hat{\tau}_{n}-\tau\right| / h_{n} \xrightarrow{p} 0 \tag{1.8}
\end{equation*}
$$

as $n \rightarrow \infty$, then

$$
\begin{equation*}
\hat{\lambda}_{n}(s) \xrightarrow{p} \lambda(s) \tag{1.9}
\end{equation*}
$$

as $n \rightarrow \infty$, provided s is a Lebesgue point of λ. In other words, $\hat{\lambda}_{n}(s)$ is a consistent estimator of $\lambda(s)$.

2. Proofs of Theorem 1.1

Let $B_{h}(x)$ denotes the interval $[x-h, x+h]$. To establish Theorem 1.1, first we prove

$$
\begin{equation*}
\frac{1}{N_{n}} \sum_{k=-\infty}^{\infty} \frac{1}{2 h_{n}} X\left(B_{h_{n}}\left(s+k \hat{\tau}_{n}\right) \cap[0, n]\right) \xrightarrow{p} \lambda(s), \tag{2.1}
\end{equation*}
$$

as $n \rightarrow \infty$, where $N_{n}=\#\{k: s+k \tau \in[0, n]\}$. By Lemma 2.1, Lemma 2.2, and Lemma 2.3, we obtain that the quantity on the l.h.s. of (2.1) is equal to $\lambda(s)+o_{p}(1)$, as $n \rightarrow \infty$, which of course implies (2.1). Then, to prove (1.9), it remains to check that $\hat{\lambda}_{n}(s)$ can be replaced by the quantity on the l.h.s. of (2.1), i.e. we must show that the difference between $\hat{\lambda}_{n}(s)$ and the quantity on the l.h.s. of (2.1)
converges in probability to zero, as $n \rightarrow \infty$. To show this, first we write this difference as

$$
\begin{equation*}
\left(\frac{\hat{\tau}_{n} N_{n}}{n}-1\right) \frac{1}{N_{n}} \sum_{k=-\infty}^{\infty} \frac{1}{2 h_{n}} X\left(B_{h_{n}}\left(s+k \hat{\tau}_{n}\right) \cap[0, n]\right), \tag{2.2}
\end{equation*}
$$

that is, the quantity on the l.h.s. of (2.1) multiplied by $\left(\hat{\tau}_{n} N_{n} n^{-1}-1\right)$. Since $\lambda(s)$ is finite, by (2.1), we have that the quantity on the l.h.s. of (2.1) is $\mathcal{O}_{p}(1)$, as $n \rightarrow \infty$. Hence, it remains to check that

$$
\begin{equation*}
\left|\frac{\hat{\tau}_{n} N_{n}}{n}-1\right|=o_{p}(1) \tag{2.3}
\end{equation*}
$$

as $n \rightarrow \infty$. By the triangle inequality, the quantity on the l.h.s. of (2.3) does not exceed

$$
\begin{equation*}
\left|\frac{\hat{\tau}_{n} N_{n}}{n}-\frac{\hat{\tau}_{n}}{\tau}\right|+\left|\frac{\hat{\tau}_{n}}{\tau}-1\right| \leq \frac{\hat{\tau}_{n}}{n}\left|N_{n}-\frac{n}{\tau}\right|+\frac{1}{\tau}\left|\hat{\tau}_{n}-\tau\right| \tag{2.4}
\end{equation*}
$$

Note that $\left|n / \tau-N_{n}\right| \leq 1$, and $\hat{\tau}_{n}=\mathcal{O}_{p}(1)$, as $n \rightarrow \infty$ (by (1.8)). Hence, the first term on the r.h.s. of (2.4) is $\mathcal{O}_{p}\left(n^{-1}\right)$, as $n \rightarrow \infty$. By (1.8), we have that its second term is $o_{p}\left(n^{-1}\right)$, as $n \rightarrow \infty$. Therefore we have (2.3). This completes the proof of Theorem 1.1.

In the following lemma we shall show that we may replace the random centre $s+k \hat{\tau}_{n}$ of the interval $B_{h_{n}}\left(s+k \hat{\tau}_{n}\right)$ in (2.1) by its deterministic limit $s+k \tau$.

Lemma 2.1. Suppose λ is periodic (with period τ) and locally integrable. If, in addition, (1.2) and (1.8) are satisfied, then

$$
\begin{align*}
& \frac{1}{N_{n}} \sum_{k=-\infty}^{\infty} \frac{1}{2 h_{n}}\left|\left\{X\left(B_{h_{n}}\left(s+k \hat{\tau}_{n}\right) \cap[0, n]\right)-X\left(B_{h_{n}}(s+k \tau) \cap[0, n]\right)\right\}\right| \\
& =o_{p}(1) \tag{2.5}
\end{align*}
$$

as $n \rightarrow \infty$, provided s is a Lebesgue point of λ.
Proof: First note that the difference within curly brackets on the l.h.s. of (2.5) does not exceed

$$
\begin{equation*}
X\left(B_{h_{n}}\left(s+k \hat{\tau}_{n}\right) \Delta B_{h_{n}}(s+k \tau) \cap[0, n]\right) . \tag{2.6}
\end{equation*}
$$

Now we notice that

$$
\begin{equation*}
B_{h_{n}-\left|k\left(\hat{\tau}_{n}-\tau\right)\right|}(s+k \tau) \subseteq B_{h_{n}}\left(s+k \hat{\tau}_{n}\right) \subseteq B_{h_{n}+\left|k\left(\hat{\tau}_{n}-\tau\right)\right|}(s+k \tau) \tag{2.7}
\end{equation*}
$$

By (2.6) and (2.7) we have

$$
\begin{align*}
& \left|\left\{X\left(B_{h_{n}}\left(s+k \hat{\tau}_{n}\right) \cap[0, n]\right)-X\left(B_{h_{n}}(s+k \tau) \cap[0, n]\right)\right\}\right| \\
& \leq 2 X\left(B_{h_{n}+\left|k\left(\hat{\tau}_{n}-\tau\right)\right|}(s+k \tau) \backslash B_{h_{n}-\left|k\left(\hat{\tau}_{n}-\tau\right)\right|}(s+k \tau) \cap[0, n]\right) . \tag{2.8}
\end{align*}
$$

Hence, to prove (2.5), it suffices to show that

$$
\begin{align*}
& \frac{1}{N_{n}} \sum_{k=-\infty}^{\infty} \frac{1}{h_{n}} X\left(B_{h_{n}+\left|k\left(\hat{\tau}_{n}-\tau\right)\right|}(s+k \tau) \backslash B_{h_{n}-\left|k\left(\hat{\tau}_{n}-\tau\right)\right|}(s+k \tau) \cap[0, n]\right) \\
& =o_{p}(1) \tag{2.9}
\end{align*}
$$

as $n \rightarrow \infty$. To prove (2.9) we argue as follows. Let Λ_{n} denotes the l.h.s. of (2.9), and let also $\epsilon>0$ be any fixed real number. Then, for any fixed $\delta>0$, we have that

$$
\begin{align*}
\mathbf{P}\left(\left|\Lambda_{n}\right| \geq \epsilon\right) \leq & \mathbf{P}\left(\left\{\left|\Lambda_{n}\right| \geq \epsilon\right\} \cap\left\{n\left|\hat{\tau}_{n}-\tau\right| \leq \delta h_{n}\right\}\right) \\
& +\mathbf{P}\left(n\left|\hat{\tau}_{n}-\tau\right|>\delta h_{n}\right) . \tag{2.10}
\end{align*}
$$

By (1.8), the second term on the r.h.s. of (2.10) is $o(1)$, as $n \rightarrow \infty$. While the first term on the r.h.s. of (2.10), does not exceed $\mathbf{P}\left(\left|\bar{\Lambda}_{n}\right| \geq \epsilon\right)$, where

$$
\begin{equation*}
\bar{\Lambda}_{n}=\frac{1}{N_{n}} \sum_{k=-\infty}^{\infty} \frac{1}{h_{n}} X\left(B_{h_{n}+\delta h_{n}}(s+k \tau) \backslash B_{h_{n}-\delta h_{n}}(s+k \tau) \cap[0, n]\right) . \tag{2.11}
\end{equation*}
$$

Next, by Markov inequality for the first moment, we have that

$$
\mathbf{P}\left(\left|\bar{\Lambda}_{n}\right| \geq \epsilon\right) \leq \epsilon^{-1} \mathbf{E}\left|\bar{\Lambda}_{n}\right|,
$$

and $\epsilon^{-1} \mathbf{E}\left|\bar{\Lambda}_{n}\right|$ can also be written as

$$
\begin{align*}
& \frac{1}{\epsilon N_{n}} \sum_{k=-\infty}^{\infty} \frac{1}{h_{n}} \int_{B_{(1+\delta) h_{n}}(0) \backslash B_{(1-\delta) h_{n}}(0)} \lambda(s+k \tau+x) \mathbf{I}(s+k \tau+x \in[0, n]) d x \\
& \quad=\frac{1}{\epsilon N_{n}} \frac{1}{h_{n}} \int_{B_{(1+\delta) h_{n}}(0) \backslash B_{(1-\delta) h_{n}}(0)} \lambda(s+x) \sum_{k=-\infty}^{\infty} \mathbf{I}(s+k \tau+x \in[0, n]) d x . \tag{2.12}
\end{align*}
$$

Now we can easily see that

$$
\sum_{k=-\infty}^{\infty} \mathbf{I}(s+k \tau+x \in[0, n]) \leq N_{n}+1
$$

Then, the r.h.s. of (2.12) does not exceed

$$
\begin{equation*}
\frac{1}{\epsilon h_{n}}\left(\frac{1}{N_{n}}+1\right) \int_{B_{(1+\delta) h_{n}}(0) \backslash B_{(1-\delta) h_{n}}(0)} \lambda(s+x) d x . \tag{2.13}
\end{equation*}
$$

We also can see that $N_{n}^{-1}+1 \leq 2$. Furthermore, the quantity in (2.13) can be bounded above by

$$
\begin{align*}
& \frac{2}{\epsilon h_{n}} \int_{B_{(1+\delta) h_{n}}(0)}|\lambda(s+x)-\lambda(s)| d x \\
& +\frac{2}{\epsilon h_{n}}\left|B_{(1+\delta) h_{n}}(0) \backslash B_{(1-\delta) h_{n}}(0)\right| \lambda(s) . \tag{2.14}
\end{align*}
$$

Since s is a Lebesgue point of λ, the first term of (2.14) converges to zero as $n \rightarrow \infty$. While the second term of (2.14) does not exceed
$8 \epsilon^{-1} \delta \lambda(s)$. By taking $\delta=\delta_{n} \downarrow 0$ as $n \rightarrow \infty$, we also have that this term converges to zero as $n \rightarrow \infty$. Then we get that $\mathbf{P}\left(\left|\Lambda_{n}\right| \geq \epsilon\right) \rightarrow 0$ as $n \rightarrow \infty$, which is equivalent to (2.9). This completes the proof of Lemma 2.1.

To complete our proof of Theorem 1.1 we also need the following lemma.

Lemma 2.2. Suppose λ is periodic (with period τ) and locally integrable. If, in addition, (1.2) and (1.7) are satisfied, then

$$
\begin{align*}
& \frac{1}{N_{n}} \sum_{k=-\infty}^{\infty} \frac{1}{2 h_{n}}\left|X\left(B_{h_{n}}(s+k \tau) \cap[0, n]\right)-\mathbf{E} X\left(B_{h_{n}}(s+k \tau) \cap[0, n]\right)\right| \\
& =o_{p}(1), \tag{2.15}
\end{align*}
$$

as $n \rightarrow \infty$, provided s is a Lebesgue point of λ.
Proof: First note that, for large n, the random variables

$$
X\left(B_{h_{n}}(s+k \tau) \cap[0, n]\right),
$$

for all $k \in \mathbb{Z}$, are independent. Then, by Chebyshev's inequality, to prove (2.15) its suffices to check that

$$
\begin{equation*}
\left(\frac{1}{2 N_{n} h_{n}}\right)^{2} \sum_{k=-\infty}^{\infty} \operatorname{Var}\left\{X\left(B_{h_{n}}(s+k \tau) \cap[0, n]\right)\right\}=o(1), \tag{2.16}
\end{equation*}
$$

as $n \rightarrow \infty$. Since X is a Poisson random variable, $\operatorname{Var}(X)=\mathbf{E} X$, and for each k, we can write

$$
\begin{align*}
& \mathbf{E} X\left(B_{h_{n}}(s+k \tau) \cap[0, n]\right) \\
& =\int_{B_{h_{n}}(0)} \lambda(s+k \tau+x) \mathbf{I}(s+k \tau+x \in[0, n]) d x . \tag{2.17}
\end{align*}
$$

Because λ is periodic (with period τ), we have that $\lambda(s+k \tau+x)=$ $\lambda(s+x)$, and we also have that $\sum_{k=-\infty}^{\infty} \mathbf{I}(s+k \tau+x \in[0, n]) \leq N_{n}+1$. Then, to prove (2.16), its suffices to show

$$
\begin{equation*}
\frac{1}{2}\left(\frac{N_{n}+1}{N_{n}}\right)\left(\frac{1}{N_{n} h_{n}}\right)\left(\frac{1}{2 h_{n}} \int_{B_{h_{n}}(0)} \lambda(s+x) d x\right)=o(1) \tag{2.18}
\end{equation*}
$$

as $n \rightarrow \infty$. Because s is a Lebesgue point of λ, we have

$$
\left(2 h_{n}\right)^{-1} \int_{B_{h_{n}}(0)} \lambda(s+x) d x=\lambda(s)+o(1)
$$

as $n \rightarrow \infty$, which is finite. Because $N_{n} h_{n} \rightarrow \infty$ as $n \rightarrow \infty$, (by (1.7)), then we get (2.18). This completes the proof of Lemma 2.2.

It remains to evaluate a non-random sum.

Lemma 2.3. Suppose λ is periodic (with period τ) and locally integrable. If, in addition, (1.2) is satisfied, then

$$
\begin{equation*}
\frac{1}{N_{n}} \sum_{k=-\infty}^{\infty} \frac{1}{2 h_{n}} \mathbf{E} X\left(B_{h_{n}}(s+k \tau) \cap[0, n]\right)=\lambda(s)+o(1), \tag{2.19}
\end{equation*}
$$

as $n \rightarrow \infty$, provided s is a Lebesgue point of λ.
Proof: Using the fact that X is Poisson, the l.h.s. of (2.19) can be written as

$$
\begin{align*}
& \frac{1}{N_{n}} \sum_{k=-\infty}^{\infty} \frac{1}{2 h_{n}} \int_{-h_{n}}^{h_{n}} \lambda(s+k \tau+x) \mathbf{I}(s+k \tau+x \in[0, n]) d x \\
& =\frac{1}{2 N_{n} h_{n}} \int_{-h_{n}}^{h_{n}} \lambda(s+x) \sum_{k=-\infty}^{\infty} \mathbf{I}(s+k \tau+x \in[0, n]) d x \tag{2.20}
\end{align*}
$$

Now note that

$$
\left(N_{n}-1\right) \leq \sum_{k=-\infty}^{\infty} \mathbf{I}(s+k \tau+x \in[0, n]) \leq\left(N_{n}+1\right),
$$

which implies $N_{n}^{-1} \sum_{k=-\infty}^{\infty} \mathbf{I}(s+k \tau+x \in[0, n])$ can be written as $\left(1+\mathcal{O}\left(n^{-1}\right)\right)$, as $n \rightarrow \infty$, uniformly in x. Then, the quantity on the r.h.s. of (2.20) can be written as

$$
\begin{equation*}
\left(1+\mathcal{O}\left(\frac{1}{n}\right)\right) \frac{1}{2 h_{n}} \int_{-h_{n}}^{h_{n}} \lambda(s+x) d x \tag{2.21}
\end{equation*}
$$

By (1.2) together with the assumption that s is a Lebesgue point of λ, we have that $\left(2 h_{n}\right)^{-1} \int_{-h_{n}}^{h_{n}} \lambda(s+x) d x=\lambda(s)+o(1)$, as $n \rightarrow \infty$. Then we get this lemma. This completes the proof of Lemma 2.3.

References

[1] M. Bebbington and R. Zitikis (2004). A robust heuristic estimator for the period of a Poisson intensity function. Methodology and Computing in Applied Probability, 6, 441-462.
[2] R. Helmers and I W. Mangku (2003), On estimating the period of a cyclic Poisson process. Mathematical Statistics and Applications: Festschrift in honor of Constance van Eeden. (Editors: Marc Moore, Sorana Froda and Christian Leger), IMS Lecture Notes Series - Monograph Series, Volume 42.
[3] R. Helmers, I W. Mangku, and R. Zitikis (2003), Consistent estimation of the intensity function of a cyclic Poisson process. J. Multivariate Anal. 84, 19-39.
[4] R. Helmers and R. Zitikis (1999). On estimation of Poisson intensity functions, Ann. Inst. Stat. Math, 51, 2, 265-280.
[5] Mangku, I W. (2001). Estimating the Intensity of a Cyclic Poisson Process, Ph.D Thesis, University of Amsterdam, The Netherlands.
[6] D. Vere-Jones (1982). On the estimation of frequency in point-process data. J. Appl. Probab. 19A, 383-394.
[7] R. L. Wheeden and A. Zygmund (1977), Measure and Integral: An Introduction to Real Analysis. Marcel Dekker, Inc., New York.

