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Abstract. The problem considered in this paper is estimation of the
error rate in two-group discriminant analysis. Here, performance of 19
existing error rate estimators are compared and contrasted by mean of
Monte Carlo simulations under the ideal condition that both parent po-
pulations are multivariate normal with common covariance matrix. The
criterion used for comparing those error rate estimators is optimism.
Five experimental factors are considered for the simulation, they are
the number of variables, the sample size relative to the number of vari-
ables, the Mahalanobis squared distance between the two populations,
dependency factor among variables, and the degree of variation among
the elements of the mean vector of the populations. The result of the
simulation shows that there is no estimator performing the best for all
situations. However, in general, the estimator ¹U proposed by Lachen-
bruch and Mickey (1968) is the best.

Key words: Discriminant analysis, classi¯cation rule, probability of mis-
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1. Introduction

The problem in two-groups discriminant analysis considered in this paper
is as follows. Given the existence of two groups of individuals, one want to
¯nd a classi¯cation rule for allocating new individuals (observations) into
one of the existing two groups. Corresponding to each classi¯cation rule,
there is a probability of misclassi¯cations if that classi¯cation rule is used
to classify new individuals (observations) into one of the two groups. The
best classi¯cation rule is the one that leads to the smallest probability of
misclassi¯cations, which also called error rates.
The error rates that have been frequently considered for study are: (i) the

optimum error rate, which describes the performance of a classi¯cation rule
based on known parameters, (ii) the conditional error rate, which describes
the performance of a classi¯cation rule based on parameters estimated by
the statistics computed from the training samples, and (iii) the expected
error rate, which describes the expected performance of a classi¯cation rule
based on parameters estimated by a randomly chosen training sample.
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However, in practice, the parameters are rarely known, and the expected
(or unconditional) error rates depend heavily on the distribution of the dis-
criminant function, which is very complicated. Consequently most work
associated with error rate have assumed that the samples, which are used
to construct the estimated classi¯cation rule, are ¯xed. This leads to the
exploration of the conditional error rate. Here the word conditional refers
to the conditioning of the training samples from which the classi¯cation rule
is constructed. One may also think of this as the probability that the given
classi¯cation rule would incorrectly classify a future observation. It should
also be noted that the conditional error rate is the error rate that is impor-
tant to an experimentor who has already determined the classi¯cation rule.
This conditional error rate is also referred to as the actual error rate or the
true error rate by many authors. Hence, in this paper we concentrate only
on the actual error rate and its estimation.

2. Classification rule

The classi¯cation rule used in the current study can be described as fol-
lows. Recall that we restrict our study to discriminant analysis problems
involving only two groups or populations. These groups are denoted by ¦1
and ¦2. Suppose that X = (X1;X2; : : : ;Xp)

T is a p-dimensional vector
of random variables associated with any individual. We assume that X has
di®erent probability distributions in ¦1 and ¦2. Let x be the observed value
of X (for an arbitrary individual), f1(x) be the probability density of X in
¦1, and f2(x) be the probability density of X in ¦2. Then the simplest
intuitive classi¯cation decision is: classify x into ¦1 if it has greater proba-
bility of coming from ¦1, that is if f1(x)=f2(x) > 1; or classify x into ¦2
if it has greater probability of coming from ¦2, that is if f1(x)=f2(x) < 1;
or classify x arbitrarily into ¦1 or ¦2 if these probabilities are equal or if
f1(x)=f2(x) = 1.
In real situations it is reasonable to consider some important factors such

as prior probabilities of observing individuals from the two populations and
the cost due to misclassi¯cations. However, in this paper, only the case
with equal prior probabilities and equal cost due to misclassi¯cations is
considered.

A variety of classi¯cation rules has been established in the literature. The

earliest and most well-known rule is Fisher's (1936) Linear Discriminant

Function (LDF). Let ¹
i
= (¹i1; ¹i2; : : : ; ¹ip)

T , be the means and §i be the

covariance matrices ofX in ¦i (i = 1; 2). It is often assumed that §1 = §2 =

§. Let ¹x1; ¹x2;S1;S2; and S be the sample estimates of ¹1; ¹2;§1;§2 and §

respectively, using independent random samples of size n1 and n2 from ¦1
and ¦2. Denote these random samples (also called training samples) by t1
and t2 respectively, and let t = ft1; t2g be the entire set of training data of
n = n1 + n2 observations. Also let Np(¹;§) denotes the p-variate normal

distribution with mean ¹ and covariance matrix §. The estimated Fisher's

LDF is then given by

L(x) = xTS¡1(¹x1 ¡ ¹x2): (2.1)
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This LDF was adopted later by Anderson (1951) to obtain a classi¯cation

statistics W (x), given by

W (x) =W (x; t) =

µ
x¡ 1

2
(¹x1 + ¹x2)

¶T
S¡1 (¹x1 ¡ ¹x2) : (2.2)

Using this rule, a new individual x will be allocated into ¦1 if W (x) ¸ 0,

otherwise into ¦2. In this paper (2.2) is considered as our classi¯cation rule,

and sometime the notation W (x; t) is used, to give an emphasize that this

classi¯cation rule is constructed using the training sample t, to classify the

new individual x.

3. Simulation Study Plan

In this comparative study, some existing estimators are compared and

contrasted using Monte Carlo simulations. The usefulness of a Monte Carlo

assessment is that the population parameters and the true distribution from

which the training data are obtained are known, thus the true error rates

(in our case the actual error rate) can always be computed. Hence, the esti-

mated error rates can be compared with the true error rate for choosing the

best estimator. In this comparative study, behaviour of the 19 estimators

are compared and contrasted under ideal conditions that both parent popu-

lations are multivariate normal with common covariance matrix. Those 19

estimators are: Resubstitution (R) (Smith, 1947), OS (Okamoto, 1963), M

(McLachlan, 1974), NS (Glick, 1978), U (Lachenbruch, 1967), ¹U (Lachen-

bruch and Mickey, 1968), Jackknife (JK) (Efron, 1982), In¯nite Seperate

Efron (ISE) (Efron, 1983), In¯nite Mixture Efron (IME) (Efron, 1983), In-

¯nite Seperate Chatterjee (ISC) (Chatterjee and Chatterjee, 1983), In¯nite

Mixture Chatterjee (IMC) (Chatterjee and Chatterjee, 1983), Finite Seper-

ate Efron (FSE) (Efron, 1983), Finite Mixture Efron (FME) (Efron, 1983),

Finite Seperate Chatterjee (FSC) (Chatterjee and Chatterjee, 1983), Fi-

nite Mixture Chatterjee (FMC) (Chatterjee and Chatterjee, 1983), In¯nite

Seperate Balanced (ISB) (Mangku, 2007), Finite Seperate Balanced (FSB)

(Mangku, 2007), In¯nite Mixture Balanced (IMB) (Mangku, 2007) and Fi-

nite Mixture Balanced (FMB) (Mangku, 2007).

The overall error rates (estimated and actual) from these Monte Carlo

simulations are used for comparisons. Computer programs written in GAUSS

are used in these simulation studies. The criterion used in this compara-

tive study is optimism. This criterion is aimed at quantifying the amount

of optimism associated with each estimator in estimating the actual error

rate. This optimism criterion, denoted by OPT, is the percentage of the

number of simulated data sets in which the estimated error rate is less than

the corresponding actual error rate. Thus, an estimator with a small value
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of OPT is underoptimistic, while a large value indicates that the estimator

is overoptimistic. Hence, a good estimator should have a value for OPT in

the neighbourhood of 50%.

Without loss generality, it is assumed that mean vectors ¹
1
= O, ¹

2
= ¹

and covariance matrices §1 = §2 = §. We further assume that all vari-

ables are standardized so that the common covariance matrix § is in fact

a correlation matrix. The simulation plan used here is similar to that of

Ganeshanandam and Krzanowski (1990).

Five experimental factors are considered for the simulation of ideal mul-

tivariate normal data:

(a) p : the number of variables, considered at 2 levels: p = 5, 10.

(b) f : the sample size relative to p , considered at 2 levels: f = small ,

large. Equal sample sizes used, i.e. n1 = n2 = n¤ (say), thus for p =

5, n¤ = 10 or 20 and for p = 10, n¤ = 20 or 40.

(c) ¢2 : the true Mahalanobis squared distance between ¦1 and ¦2, con-

sidered at 3 levels: ¢2 = 1.098 ( closed populations ), 2.836 ( medium

separation ), and 6.574 ( well separated populations ).

(d) º : the dependency factor, considered at 2 levels: º = 0.4, 0.8 (depen-

dence among variables increases as º decreases from 1, 0 < º · 1).
(e) d : the factor to determine the elements ¹k of ¹, considered at 2 levels:

d = 0.4 (large di®erences among ¹k), 0.8 (small di®erences among ¹k)

and 0 < d · 1.
Hence, the simulation plan is a 2x2x3x2x2 factorial experiment consisting

of 48 di®erent combinations. This simulation study plan attempts to gener-

ate more realistic data to resemble real life data, and to cover a wide variety

of ideal conditions.

4. Generation of the Training Data

Once the values of p and f are ¯xed, the factor º determines the eigenval-

ues ¸i of § as ¸i = aº
i¡1+0:1 for i = 1; 2; : : : ; p with a = 0:9p(1¡º)=(1¡ºp)

if 0 < º < 1 or a = 0:9 if º = 1. If E is the matrix of eigenvectors of § and

¤ is the diagonal matrix of eigenvalues ¸i, then as we can write § = E¤E
T ,

we only need a random orthogonal matrix E generated to compute §. Hav-

ing determined the eigenvalues, Lin and Bendel's (1985) algorithm can be

used to generate random population correlation matrices with these speci¯ed

eigenvalues. Factor d is used as an attempt to generate more realistic values

for the elements ¹k in the mean vector ¹, than just the simple case of having

zeros in all positions except the ¯rst. Then we compute ¹¤i =
p
−di¡1 for

i = 1; 2; : : : ; p and 0 < d · 1, where − = ¢2(1¡ d)=(1¡ dp) if 0 < d < 1 or
− = ¢2=p if d = 1. The elements ¹i are then obtained from ¹ = R¹¤ where
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§ = RRT is given by the Cholesky's decomposition and ¹¤ = (¹¤1; : : : ; ¹
¤
p)
T .

Finally, the desired p-variate observation vector x is obtained by, ¯rst gen-

erating a vector y of p independent N(0; 1) values and then transforming it

into x = ¹+Ry.

5. Calculation of The Actual Error Rate

The actual error rates of the linear discriminant function W (x; t) are

given by

P1 = P(W (x; t) < 0 when x is from ¦1jt ¯xed);
P2 = P(W (x; t) ¸ 0 when x is from ¦2jt ¯xed): (5.1)

Here, P1 represents the probability of classifying the new individual x in

to ¦2 when it is actually belong to ¦1 and P2 represents the probability of

classifying the new individual x in to ¦1 when it is actually belong to ¦2.

The overall actual error rate is then de¯ned by

AC =
n1

n1 + n2
P1 +

n2
n1 + n2

P2: (5.2)

Under the assumptions that X » Np(¹1;§) on population ¦1 and X »
Np(¹2;§) on population ¦2, it can easily be shown that

P1 = ©

264¡
³
¹
1
¡ 1

2(¹x1 + ¹x2)
´T
S¡1(¹x1 ¡ ¹x2)

((¹x1 ¡ ¹x2)TS¡1§S¡1(¹x1 ¡ ¹x2))
1=2

375 (5.3)

and

P2 = ©

264
³
¹
2
¡ 1

2(¹x1 + ¹x2)
´T
S¡1(¹x1 ¡ ¹x2)

((¹x1 ¡ ¹x2)TS¡1§S¡1(¹x1 ¡ ¹x2))
1=2

375 (5.4)

where © is the distribution function of a standard normal variate.

From the expressions above, we can see that the arguments are still func-

tions of unknown parameters, so these error rates can not be computed

directly from the given training data alone. Consequently a procedure for

estimating these error rates is needed.

We generated 50 replicates for each of the 48 sampling situations. The

actual error rate AC and the overall error rate estimate from each of R, OS,

M, NS, U, ¹U , JK, ISE, IME, ISC, IMC, FSE, FME, FSC, FMC, ISB, FSB,

IMB and FMB, estimators were computed for each replicate. The OPT

criterion was then computed as

OPT = 2
50X
i=1

ªi;

where ª = 1 if P̂i < ACi and 0 otherwise, P̂i and ACi are the estimates and

the actual of the overall error rates computed from the i-th replicate of a

given Monte Carlo sampling situation.
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6. Monte Carlo Results and Discussions

First, the e®ects of the experimental factors p , f , ¢2, º and d on the error

rate estimators are examined. Recall that the Monte Carlo study plan is a

balanced factorial experimental design. Since all of the error rate estimators

are applied to the same set of simulated training samples, the 19 values of P̂i

are correlated in each of the 50 replicates. Hence, the values of the criterion

OPT are correlated. In such a situation, a Repeated Measures Analysis

of Variance (Hand and Taylor, 1987) is appropriate, where the error rate

estimators can be treated as the repeated measures. Performance of the

various error rate estimators are then examined using means of the error

rates and the OPT with respect to the signi¯cant experimental treatment

e®ects. The statistical computing software SAS was used to carry out the

above analysis.

The results of the repeated measures analysis is presented in Table 1. Here

the levels of the factor error rate estimation methods, denoted by METH,

are the nineteen error rate estimators explained in section 3. In this table,

the ANOVA of the experimental factors and their interactions are given in

the main plot stratum, whereas the repeated factor METH together with its

interactions with all experimental factors are given in the split plot stratum.

For ease of interpretations and to avoid complexity, the order of interactions

were kept to 1 among the main plots and to 2 in the split plot stratum.

Because of the large number of replicates in the experiment, the F -ratios

are also treated as guides to the relative importance of the corresponding

treatment e®ects besides the absolute tests of signi¯cance.

The main plot stratum of Table 1 shows that the main and interaction

e®ects p, º, p x º, and p x d are important. On the other hand, the split

plot stratum shows that the e®ects of METH factor and its interaction with

p, f , ¢2, p x ¢2, f x ¢2, º, p x º, f x º and º x d are all signi¯cant. This

not only indicates the fact that there are some estimators with signi¯cantly

di®erent optimism in estimating the actual error rates, but also suggests

that any comparison of the estimators must be quali¯ed by the above main

and interaction e®ects of the experimental factors. Here, the in°uence of

the factor º (dependency of the variables) on optimism of the error rate

estimators is much higher than that of the factors ¢2 , f , and p, as the

corresponding F -ratios being 20.13, 11.38, 8.02, and 5.80.

Note that the above results from the repeated measures analysis show

the e®ects of the Monte Carlo experimental factors when averaged over the

di®erent estimators. However, SAS was also subjected to perform individual

ANOVA's separately for each of the estimators, in order to highlight any

deviations from the average behaviour of our experimental factors.
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Table 1: Main plot and Split plot stratum of the Repeated measures
ANOVA for the e®ects of the experimental factors on all methods.

SOURCE DF SS MS F -ratio p-value
Main Plot

p 1 20862.9868 20862.9868 15.01 0.0006
f 1 13.2675 13.2675 0.01 0.9229

p * f 1 2022.1096 2022.1096 1.45 0.2383
¢2 2 3782.1140 1891.1140 1.36 0.2737

p * ¢2 2 8799.8158 4399.9079 3.16 0.0583
f * ¢2 2 2668.6404 1334.3202 0.96 0.3957
º 1 67706.3202 67706.3202 48.70 0.0001

p * º 1 9568.1096 9568.1096 6.88 0.0141
f * º 1 7981.5833 7981.5833 5.74 0.0238
¢2 * º 2 7775.9562 3887.9761 2.80 0.0788
d 1 1813.3728 1813.3728 1.30 0.2635

p * d 1 9490.5307 9490.5307 6.83 0.0145
f * d 1 603.6886 603.6886 0.43 0.5155
¢2 * d 2 2168.7982 1084.3991 0.78 0.4685
º * d 1 4500.7412 4500.7412 3.24 0.0832

ERROR 27 37540.8026 1390.4001

Split plot

METH 18 80185.5965 4454.7554 335.01 0.0001
METH * p 18 1388.9299 77.1628 5.80 0.0001
METH * f 18 1920.6491 106.7027 8.02 0.0001

METH * p * f 18 187.1404 10.3967 0.78 0.7225
METH * ¢2 36 5446.7193 151.2978 11.38 0.0001

METH * p * ¢2 36 1012.0175 28.1116 2.11 0.0002
METH * f * ¢2 36 739.1930 20.5331 1.54 0.0250
METH * º 18 4817.5965 267.6443 20.13 0.0001

METH * p * º 18 1507.8070 83.7671 6.30 0.0001
METH * f * º 18 693.6667 38.5370 2.90 0.0001
METH * ¢2 * º 36 383.8772 10.6633 0.80 0.7892
METH * d 18 161.8772 8.9932 0.68 0.8357

METH * p * d 18 230.7193 12.8177 0.96 0.5008
METH * f * d 18 196.2281 10.9016 0.82 0.6774
METH * ¢2 * d 36 437.7018 12.1584 0.91 0.5168
METH * º * d 18 636.5088 35.3616 2.66 0.0003

ERROR 1486 6462.6140 13.2976

These ANOVA's are summarized in Table 2. F -ratios associated with sig-
ni¯cant level ¸ 0:05 have been omitted.
From Table 2 we can see that the e®ect of factor º is highly signi¯cant

for all methods; factor p is important for all estimators except M and JK;
and the e®ect due to the interaction p x º is signi¯cant for all methods
except OS, NS, and R. The interaction f x º has signi¯cant e®ect only for
the bootstrap estimators, though the e®ect due to the interaction p x ¢2 is
signi¯cant for OS and all the bootstrap error rates except IME, IMC, and
FMC. While ¢2 is important only for OS, NS, R, ISC, and FSC, the sample
size factor f seems important only for the interpretation of the R estimator.
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Table 2: The F -ratiosa and their p-valuesb of the e®ects of the experimental
factors on each estimator (cases with p-values > 0.0500 are omitted).

METH p f ¢2 p x ¢2 º p x º f x º
OS 24.53a 4.46 3.57 37.06

0.0001b 0.0212 0.0421 0.0001

M 52.81 10.14
0.0001 0.0036

NS 6.88 10.15 6.88
0.0142 0.0005 0.0142

R 11.31 9.75 5.22 4.67
0.0023 0.0042 0.0121 0.0396

U 6.36 53.48 8.78
0.0179 0.0001 0.0063

¹U 16.43 47.41 8.87
0.0004 0.0001 0.0061

JK 46.09 7.47
0.0001 0.0109

ISE 13.40 4.13 49.96 8.07 6.70
0.0011 0.0273 0.0001 0.0085 0.0154

IME 15.04 43.35 6.23 5.36
0.0006 0.0001 0.0190 0.0284

ISC 14.92 3.37 4.79 51.85 6.19 6.86
0.0006 0.0493 0.0166 0.0001 0.0193 0.0143

IMC 13.10 41.18 5.77 5.77
0.0012 0.0001 0.0234 0.0234

ISB 13.23 3.99 47.09 7.57 8.65
0.0011 0.0303 0.0001 0.0105 0.0066

IMB 18.94 3.46 45.09 7.15 8.18
0.0002 0.0461 0.0001 0.0126 0.0081

FSE 16.34 4.98 49.47 9.53 8.02
0.0004 0.0144 0.0001 0.0046 0.0086

FME 15.90 3.38 44.96 5.84 5.00
0.0005 0.0489 0.0001 0.0227 0.0339

FSC 15.83 3.42 4.65 51.87 6.41 7.45
0.0005 0.0474 0.0183 0.0001 0.0175 0.0110

FMC 14.06 40.82 5.33 5.33
0.0009 0.0001 0.0288 0.0288

FSB 14.62 3.95 47 88 7.91 8.27
0.0007 0.0314 0.0001 0.0091 0.0078

FMB 19.57 3.76 47.21 7.45 8.15
0.0001 0.0363 0.0001 0.0110 0.0082
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Table 3: Meana of error rate and OPTb for the main e®ects of the experi-
mental factors p, f , ¢2 and º.

METH
p

5 10
f

small large
¢2

1:098 2:836 6:574
º

0:4 0:8

AC 0.255a 0.277 0.282 0.250 0.371 0.269 0.158 0.287 0.244

OS 0.230a 0.224 0.237 0.216 0.322 0.231 0.126 0.226 0.227
62.17b 75.25 67.75 69.671 74.25 66.50 65.38 76.75 60.67

M 0.247 0.254 0.269 0.232 0.322 0.231 0.126 0.250 0.251
54.08 60.33 54.58 59.831 53.25 56.00 62.38 68.33 46.08

NS 0.183 0.176 0.175 0.184 0.260 0.184 0.095 0.179 0.180
84.58 91.08 90.17 85.50 95.50 85.63 82.38 91.08 84.58

R 0.148 0.149 0.131 0.165 0.229 0.151 0.065 0.149 0.148
90.75 95.42 95.25 90.92 96.25 91.38 91.63 94.58 91.58

U 0.248 0.251 0.266 0.232 0.359 0.252 0.136 0.248 0.250
54.58 61.25 56.08 59.75 55.00 57.50 61.25 67.58 48.25

¹U 0.273 0.262 0.292 0.243 0.382 0.271 0.151 0.267 0.268
42.83 56.67 46.25 53.25 46.38 50.13 52.75 61.50 38.00

JK 0.241 0.248 0.259 0.230 0.354 0.247 0.132 0.244 0.245
56.83 62.25 58.58 60.50 57.75 58.50 62.38 68.75 50.33

ISE 0.230 0.231 0.239 0.222 0.328 0.235 0.129 0.231 0.230
61.25 70.92 67.25 64.92 70.00 64.25 64.00 75.42 56.75

IME 0.232 0.232 0.241 0.223 0.329 0.237 0.130 0.232 0.232
59.83 70.58 65.75 64.67 69.13 63.88 62.63 74.33 56.08

ISC 0.227 0.229 0.236 0.220 0.325 0.233 0.127 0.228 0.228
62.17 72.00 68.00 66.17 71.75 65.00 64.50 76.25 57.92

IMC 0.229 0.230 0.238 0.221 0.326 0.234 0.128 0.229 0.229
61.50 71.42 67.17 65.75 70.75 65.13 63.50 75.25 57.67

ISB 0.232 0.233 0.242 0.224 0.330 0.237 0.131 0.233 0.233
60.58 70.17 65.83 64.92 69.50 63.50 63.13 74.42 56.33

IMB 0.234 0.234 0.244 0.225 0.331 0.239 0.133 0.234 0.234
59.08 70.75 65.67 64.17 69.25 63.38 62.13 73.92 55.92

FSE 0.232 0.232 0.242 0.223 0.330 0.237 0.130 0.232 0.232
60.17 70.75 66.17 64.75 69.13 63.75 63.50 74.67 56.25

FME 0.233 0.233 0.243 0.223 0.330 0.238 0.131 0.233 0.233
59.58 70.58 65.50 64.67 69.00 63.75 62.50 74.33 55.83

FSC 0.229 0.230 0.238 0.221 0.326 0.234 0.128 0.230 0.229
61.92 72.00 67.83 66.08 71.63 65.00 64.25 76.08 57.83
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Table 3: Continued.

METH
p

5 10
f

small large
¢2

1:098 2:836 6:574
º

0:4 0:8

FMC 0.230 0.231 0.239 0.221 0.327 0.235 0.129 0.230 0.230
61.00 71.42 66.67 65.75 70.50 64.88 63.25 75.08 57.33

FSB 0.235 0.235 0.245 0.225 0.332 0.239 0.133 0.235 0.235
59.92 70.00 65.00 64.92 69.38 62.88 62.63 74.08 55.83

FMB 0.235 0.235 0.245 0.225 0.332 0.240 0.133 0.235 0.235
58.83 70.58 65.33 64.08 68.88 63.25 62.00 73.83 55.58

We may conclude from the analysis so far, that the experimental factor d has very
little or no e®ect on the estimation of error rates, while p, f , ¢2 and º signi¯cantly
in°uence the optimism of the error rate estimators. Hence, further interpretation
of the results will be restricted to the above four factors. The means of error rate
estimates and the means of criterion OPT for the main e®ects of these four factors
are presented in Table 3.
From Table 3, it is very prominent that R and NS are the worst estimators

which heavily overoptimistic (about 90%). Hence, these two estimators have been
omitted from further analysis. We shall interpret the ¯ndings in two folds: among
bootstrap estimators only and over all estimators.
Table 3 also shows that, although the balanced bootstrap estimators (IMB and

FMB) outperform the other bootstrap estimators, they all seem to su®er consider-
ably from overoptimism (about 60% for p = 5, and about 70% for p = 10). For small
p, all estimator are overoptimistic except ¹U . Here, M and U seem to estimate the
actual error rate with little overoptimism (about 54.1% and 54.6% respectively),
while ¹U is slightly (about 42.8%) underoptimistic. For large p, however, ¹U be-
comes the best estimator with the smallest optimism (only about 56.7% of the
time), though the estimators M, U and JK also behave better than the bootstrap
ones. It also found that all the estimators have evidently larger OPT values all
being overoptimistic for large p than that of small p, with a similar behavioural
pattern in each case.
As far as the in°uence of the sample size factor f on the estimators is concerned,

Table 3 shows that the di®erence between means of criterion OPT from the two
sample sizes is small, though a clear pattern emerges among the estimators. That
is, while all the non bootstrap estimators have larger overoptimism for large samples
than for small ones, the bootstrap estimators behave the opposite way except for
FSB (has the same OPT for both cases). All the estimators are overoptimistic,
irrespectives of the sample size, except for ¹U . ¹U is the overall best estimator with
the smallest OPTimism (about 46.3% and 53.3% respectively) for both cases with
small and large sizes of training samples. This is followed by the M estimator for
small samples (about 54.6%), and U for large samples (about 56.1%). Among the
bootstrap estimators, FMB outperforms the rest in all cases except for small sample
sizes for which FSB becomes the best.
Now consider the behaviour of the estimation methods on the levels of the dis-

tance (separation) factor ¢2. Table 3 shows that the behaviour of the estimators
among the di®erent values of ¢2 is similar to those on the levels of factors p and
f . The OS estimator together with all the bootstrap ones are all overoptimistic
(above 60%), while the best choice is M for ¢2 = 1.098 (with OPT = 53.3%) and
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¹U , for ¢2 = 2.836 (with OPT = 50.1%) and for ¢2 = 6.574 (with OPT = 52.8%).
However, the second best choice goes to ¹U ,M and U respectively for the above cases
with corresponding optimism values 46.4%, 56% and 61.3%. Among the bootstrap
methods, FMB again outperforms the others except when ¢2 = 2.836 for which
FSB is the best. Once again all the estimators are overoptimistic in all cases except
for ¹U for close populations.
Finally, from Table 3 we can easily deduce that all the estimators are overopti-

mistic when the variables are highly interdependent, though ¹U with about 61.5%
becomes the best for this case. However, when the variables are almost indepen-
dent, the JK method becomes the best with almost no optimism (OPT = 50.3%)
in estimating the actual error rate. Note also in this case that the bootstrap esti-
mators become less overoptimistic (with < 60%) than the other situations. Once
again, FMB is the best choice among the bootstrap methods. It is also evident
here that the optimism involved in estimating the actual error rates is signi¯cantly
reduced for each estimator when the variables become almost independent from
high interdependence.
There are some interesting and peculiar behaviours to be noted from Table 3.

The estimator OS is the worst with the largest overoptimism in almost every sim-
ulated case. The optimism of ¹U is peculiar such that it is underoptimistic for
data with small number of variables, small sample sizes relative to the number of
variables, small separation between populations and almost independent variables;
while it is overoptimistic for data with large number of variables, large sample sizes
relative to the number of variables, moderate to large separation between popula-
tions and highly interdependent variables. An interesting behaviour that we may
notice among the bootstrap estimators is that the di®erence between ¯nite and in-
¯nite versions of the estimators due to criterion OPT is negligible; while, although
the di®erence between separate and mixture sampling versions also small, estima-
tors based on mixture sampling procedure seem preferable. We also notice that
Efron's estimators are slightly superior to Chatterjee's methods.
The presentation of the signi¯cant interaction e®ects of the experimental factors

for all estimators is quite cumbersome. Hence, we chose only the estimators, U,
¹U , OS, M, FME, FMC and FMB for this purpose. The choice here was based on
the fact that some of these estimators (eg. ¹U) outperform the others in particular
circumstances with main e®ects of factors, and the others (eg. FMC ) are to
represent special forms of estimators.
Since only 7 estimators are considered for further interpretation, the choice of

the interaction e®ects to be interpreted also restricted to those interactions which
have signi¯cant in°uence on these estimators. From the F -ratios of the repeated
measures ANOVA's for the OPT values, show that the in°uence of the interaction
METH x p x º is much higher than those of the other interactions. Thus we
may choose to interpret only the e®ect of p x º on the 7 estimators considered.
However, the individual ANOVA's suggests that the interaction p x º has signi¯cant
in°uence only on the M, U, ¹U , FME, FMC and FMB estimators. Hence, it would
be appropriate to interpret the e®ect of p x º only on these 6 estimators.
Result of the analysis shows that all the 6 estimators have similar behaviour.

They have smaller OPT means when the variables are independent than when they
are interdependent, for both levels of p. These di®erences are greater when p =
10 than those when p = 5. It was also found that all the 6 estimators are heavily
overoptimistic when the data consist of 10 interdependent variables, hence this sit-
uation becomes the worst. In general, all the 6 estimators behave less-optimistically
when the variables are independent than when they are interdependent.
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7. Conclusion

Based on the results of the comparative study under the ideal conditions of mul-
tivariate normality with equal covariance matrix, we may deduce some important
points as follows. The balanced bootstrap estimators outperform their counter
parts and become the best for all situations. The Finite Separate Balanced (FSB)
estimator becomes the best estimator for cases with large number of variables or
with small samples or with medium separation of the populations. For all the other
situations, the Finite Mixture Balanced (FMB) estimator is the best.
If we compare all estimators together, the best estimator is M for cases with

small number of variables or close populations and JK for independent variables
case. For cases either with large number of variables or with small or large samples,
or with medium or well separated populations, or with interdependent variables,
the best choice is the ¹U estimator.
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