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Valence-band electronic structure of MoS2 and Cs/MoS2„0002… studied
by angle-resolved x-ray photoemission spectroscopy

Ken T. Park, Michelle Richards-Babb,* James S. Hess, Jeff Weiss, and Kamil Klier
Zettlemoyer Center for Surface Studies and Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015

~Received 26 February 1996!

The angle dependence of the valence-band photoemission from the trigonal prismatic layered MoS2 shows
both the forward-scattering features normally observed in core-level photoelectron diffraction and, in addition,
the initial-state orbital character associated with partially occupied, nonbonding MoIV(4dz214dx22y2

14dxy) orbitals near the top of the valence band.The difference in forward scattering between the Mo and S
emitters is also used to assess relative contributions from the Mo and S atomic orbitals at specific binding
energies within the valence band. Deposition of cesium~0.23 ML Cs with 1 ML equal to the Cs saturation
coverage! onto the basal plane of MoS2 introduces a density of states at 1.25 eV above the top of the
valence-band maximum. The intensity anisotropy for this Cs-induced valence level is interpreted via the angle
dependence of the electric dipole matrix element as due to the initial-state orbital character at the bottom of the
conduction band of the Cs/MoS2 heterostructure.@S0163-1829~96!06632-5#

I. INTRODUCTION

Since the early observation of angular anisotropy of
valence-band~VB! photoelectrons reported by Siegbahnet
al. in 1970,1 electron spectroscopy was recognized to encom-
pass information on both electronic and structural properties
of solids and their surfaces. The photoemission process has
been analyzed in terms of models, some of which divide this
process into a sequence of individual events. The most
widely adopted ‘‘three-step’’ model considers photoioniza-
tion, propagation of photoelectrons in solids, and the trans-
mission through the vacuum-solid interface as separate and
independent processes. In this model, the photoelectron in-
tensity is expressed as2

I ~E,k!}(
f i

E
BZ
d3k̂i uM fiu2d~k2k i2G2kph!

3d~E2Ei2\v!DT. ~1!

The electric dipole matrix elementM fi can be written as
^ f u«̂• r̂ u i & between the initial stateu i & of energyEi and mo-
mentum\k i , and the final stateu f & of energyE and momen-
tum \k, where«̂ is the photon polarization vector andr̂ is
the position operator.kph is the wave vector of an impinging
x-ray photon. The firstd function in Eq.~1! is the momen-
tum conservation term, the secondd function the energy
conservation term,G is a reciprocal-lattice vector, andD and
T are the second and third steps of the three-step photoemis-
sion. When the VB is probed by x-ray photoelectron spec-
troscopy~XPS!, the kinetic energy of the photoelectrons is
large ('1480 eV using AlKa radiation! such that even high
angular resolution of state-of-the-art analyzers,Du<4°
gives rise to relatively large uncertainty in momentumDk.3

In this case, the entire Brillouin zone~BZ! is sampled, and
Eq. ~1! upon integration over all values ofk i reduces to

I ~E,k!}N~Ei !N~E!uM fiu2DT, ~2!

whereN(Ei) andN(E) are the densities of the initial and
final states, respectively. Depending upon the model and the
definition of the wave functions, it is always possible to in-
clude parts of the initial- or final-state wave functions into
the matrix element or the density of states. In thematrix
element model,4,5 the angular dependence originates from the
combination of the initial and final states inM fi . Assum-
ing that the final state is a plane wave, it was shown
that the squared matrix elementuM fiu2 can be reduced to
the probability density of the initial state orbital
u(mcmYlm(uk ,wk)u2, wherecm are the coefficients that form
real orbitals, anduk andwk are the spherical polar coordi-
nates of the photoelectron momentum vector.6 However, the
plane-wave approximation was later turned aside because of
concerns about its validity. Gadzuk7 and Goldberg, Fadley,
and Kono8 derived theoretical expressions for angle depen-
dence ofM fi using a more accurate form of the final states. In
the direct transition model, on the other hand, only those
states connected by the wave vector and energy conservation
contribute to the intensity. To explore the angular variation
due to the wave vector and energy conservation, one version
of the direct transition model assumed that the matrix ele-
mentsM fi are independent of the emission angle.

9,10Thus the
anisotropy in this model arises from the fact that different
parts of the BZ are sampled along different directions, but
not from angular variations of the transition matrix element.

In addition to the intensity anisotropy due to the photoex-
citation process, an anisotropy of the VB photoelectron in-
tensity may also arise from electron transport through the
crystal lattice via termD in Eq. ~1!. It was not until a few
years ago that intensity anisotropy of the VB photoelectrons
due to scattering process was observed using angular resolu-
tion of Du<3°, where the highly delocalized VB photoelec-
trons in Al~001! exhibited a forward-scattering x-ray photo-
electron diffraction~XPD! pattern very similar to that of a
well-localized level.11 This study naturally raised a question
where the similarity between the core level and VB XPD’s
ends. Although Hermanet al.12 recently showed that fine
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differences in XPD between the VB and core levels could
occur depending on the degree to which the direct transition
effect contributed, no such differences between the core level
and VB XPD due to the contribution from the matrix ele-
ment have been reported, to our knowledge.

In this work, we examine relative contributions to VB
photoelectron intensity anisotropy due to the diffraction and
shape of the initial-state valence orbitals in the layered trigo-
nal prismatic 2-H molybdenum disulfide. Subsequently we
investigate the VB electronic structure after Cs adsorption on
the MoS2~0002! surface. This study is motivated by the fol-
lowing: ~i! the MoS2 VB structure is relatively well
understood,13,14stemming from the filled S 3s and S 3p and
partially filled Mo 4d orbitals;~ii ! the dispersion in MoS2 is
large (.1 eV at the top of the VB and up to 1.3 eV in the
middle and the bottom of the VB!,13,14which affords a test of
whether VB XPS samples the entire BZ, in which case VB
peak positions will be independent of the emission angleu,
or portions of BZ such that the peak positions will change
with u over the dispersion range;~iii ! the MoS2 crystals are
stoichiometric and structurally robust as well as anisotropic,
and do not undergo surface reconstruction or relaxation;~iv!
the use of photoemission from two elements~Mo and S! as
well as their VB and core levels permits comparisons be-
tween emitters at different locations and between spherically
symmetric, filled shells and nonspherically symmetric, par-
tially filled shells; and~v! the cesium adsorption on clean
MoS2 is of fundamental interest in surface science as well as
of technological importance in catalysis.14

II. EXPERIMENTAL PART

All MoS 2~0002! single crystals investigated in this study
were in the form of the natural mineral molybdenite, ob-
tained from Ward’s Natural Science Establishment. For all
samples studied in this experiment, a clean, well-ordered sur-
face of MoS2~0002! was obtained by peeling off the top
surface layers inside a glove bag, filled with N2. The glove
bag was attached to the fast entry chamber of the SCIENTA
ESCA ~electron spectroscopy for chemical analysis!
ultrahigh-vacuum~UHV! chamber, so that the freshly peeled
samples were immediately transferred to the UHV system
without exposing them to atmosphere. The surface order of
MoS2~0002! was verified with low-energy electron diffrac-
tion by observing sharpp(131) LEED spots. The survey
XPS spectrum showed carbon as a minor surface impurity,
and from the XPS measurements the ratio of sulfur to carbon
atoms was found to be approximately 3.0, higher than what
one would expect from the near-perfect low-energy electron-
diffraction ~LEED! pattern. However, further analysis by
atomic resolution scanning tunneling microscopy images re-
vealed that carbon impurity was in clustered form, leaving
most of the basal plane atomically flat.15 In the second set of
experiments, cesium was evaporated onto the basal plane of
the MoS2 at room temperature using a commercially avail-
able SAES getter source. The total Cs exposure time was
gradually incremented by 3 min, until no further increase in
the Cs 3d5/2 core-level intensity was observed after 24 min
of the total Cs exposure time. During the study, the base
pressure of the analysis chamber remained in low 10210

mbar, and no significant increase in the contamination level
was observed.

The XPD data were obtained using the SCIENTA ESCA-
300 spectrometer, which employs a rotating anode to gener-
ate a high power monochromatized and unpolarized AlKa
line. The excited photoelectrons were detected by a 300-mm
mean radius hemispherical electron energy analyzer fixed at
45 ° from the x-ray source.15,16The combination of the high
power, monochromatized x-ray radiation and the hemispheri-
cal energy analyzer provides experimental energy resolution
;0.24 eV, judging from the width of the Au Fermi level.
The sample was mounted on a manipulator which allows
three degrees of translational and two degrees of rotational
motion of the sample. The polar angle XPS scans were ob-
tained at 1 ° intervals from210 ° to 70 ° measured from the
surface normal alonĝ112̄0& ~hereafterf590 °) with an
angular resolution of'4 ° mainly estimated by the accep-
tance angle of the detector. Both the VB and the Mo 3d5/2
spectra were recorded at each polar angleu in order that the
XPD of the Mo 3d5/2 core level could be used as reference
for the VB XPD. Detailed information about the spectrom-
eter and angle resolved x-ray photoemission spectroscopy
~ARXPS! geometry can be found elsewhere.15,16

III. RESULTS

The polar angle scan of raw VB spectra of the
MoS2~0002! crystal alongf590 ° is presented in Fig. 1~a!.
Each VB spectrum showed inner VB S 3s and five distinct
outer VB components which are labeled asA–E. The peak
positions werestrictly independent of the polar angleu, and
their binding energies~BE’s! were A, 2.5 eV; B, 3.8 eV;
C, 5.1 eV;D; 5.9 eV; andE, 7.1 eV. In sharp contrast with
the present results, the recent angle-resolved ultraviolet pho-
toemission spectroscopy~ARUPS! experiment with the MoS
2~0002! surface along the same crystallographic direction
and over similar range of polar angles13 showed that the
dispersion is large ('1 eV! in MoS2, as demonstrated by
the strong angle dependence of all bands. The general XPD
patterns of the outer VB peaks were similar to those of the
Mo 3d core and S 3s levels, regardless of the VB peak
positions, and all VB XPD’s exhibited strong forward focus-
ing maxima atu50° and 49 ° corresponding to the internu-
clear axes of the nearest and next-nearest neighbors.15,17

The intensity variations of the outre VB peaks are further
compared with those of the Mo 3d5/2 core and S 3s levels in
order to examine the VB XPD features in greater detail@Fig.
1~b!#. The intensities of all VB’s as well as the core-level
peaks were obtained by integrating the area under the peaks
after the background was subtracted.18 Although all VB
XPD’s exhibited forward focusing maxima similar to the
core levels, they revealed the following fine differences
among the VB components: first, peakA showed strong at-
tenuation at higher exit anglesu, while all other VB peaks
displayed relatively flat background; in addition, the forward
focusing maxima atu549 ° for peaksB andC were larger
than those at 0 ° in the XPD pattern observed in the Mo
3d5/2 core level, while VB peakE and S 3s showed less
intense maxima atu549 °.

The first 3 min of Cs evaporation on a clean
MoS2~0002! surface produced the Cs 5p3/2 level at BE
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511.94 eV, partly overlapped with the S 3s level of the
substrate@Fig. 2~a!#. In addition, another Cs-induced density
of states appeared at 2.15 eV above the VB peakA ~or ap-
proximately 1.25 eV above the top of the valence band!. The
position of this peak was near that of the Cs 6s valence level
reported for Cs metal using UPS,19 thus we initially assigned
this peak as the Cs 6s valence level. The steady increase in
the Cs exposure time resulted in an increase in photoemis-
sion intensity from various Cs electronic levels including the
Cs 5p and Cs 3d levels up to 24 min of the total Cs exposure
time @Fig. 2~b!#. When Cs was evaporated for a total of 24

min, both the Cs 5p3/2 and Cs 5p1/2 peaks were well resolved
with a spin-orbit splitting ofDE51.60 eV, and the Cs
5p3/2 peak was shifted by about 0.2 eV toward the Fermi
level. Similarly, the peak position for the Cs 3d5/2 core level
was measured at 726.02 eV after 3 min of Cs exposure, and
shifted toward the Fermi level by;0.3 eV as the Cs expo-
sure time increased. The peak positions of the Cs 3d5/2 core
level were found well within the range of the reported peak
positions of the Cs 3d5/2 core level from cesium metal.20

From a comparison between the intensity of the Cs 3d5/2
peak after 3 and 24 min of exposure, the coverage of the

FIG. 1. ~a! Polar angle scan of 81 VB spectra from MoS2~0002! along f590 °(^112̄0& azimuth! from u5210 °–70 ° at room
temperature. Also shown is the trigonal prismatic structure of MoS2 ~top!. ~b! Detailed XPD patterns of each outer VB peaksA–E are
compared to those of the Mo 3d5/2 core and the S 3s level ~line plots 1 and 2, respectively!.

FIG. 2. ~a! The changes in the VB spectrum
taken atu560 ° during the formation of the Cs
overlayer on the MoS2~0002! surface after vari-
ous Cs exposure times: 0~clean!, 3, 9, and 24
min. ~b! The intensity of the Cs 3d5/2 core level
was plotted against the Cs exposure time.
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adsorbed Cs after 3-min Cs evaporation was determined to
be 0.23 ML, where 1 ML is defined to be the Cs saturation
coverage.

The u dependence of the x-ray photoelectron intensity
from the Cs 6s level is presented in Fig. 3~a! ~open squares!.
The intensities at each angle were obtained as peak areas
after subtracting background intensities before Cs evapora-
tion @the bottom curve in Fig. 2~a!#. Theu dependence of the
Cs 6s level showed a striking intensity anisotropy: a broad
intensity maximum along the surface normal, slowly de-
creasing toward higher polar angles. A similar experiment
after 0.22-ML Cs deposition on the MoS2~0002! using a
wider polar angle range fromu5222 °–70 ° successfully
reproduced the observed polar angle dependence of the Cs
6s photoemission more clearly, depicting a broad maximum
at u50 ° @filled circles in Fig. 3~a!#. In contrast to the Cs
6s level, the angle dependence of the Cs 4d core electron
intensity exhibited a smoothly increasing intensity profile
@Fig. 3~b!#.

IV. DISCUSSION

A. Valence-band structure, photoelectron diffraction,
and effects of matrix elements in ARXPS of bare MoS2

The intensity variation at the top of the valence band
~peakA) with the angleu is in sharp contrast to that of other
peaks, displaying a substantial decrease in background inten-
sity nearu550 ° @Fig. 1~b!#. To examine the angle depen-
dence of the background intensity for peak. A more care-
fully, the instrument response function and intensity
modulation due to forward focusing were removed by divid-
ing the VB ARXPS data of peakA by the XPD of the Mo
3d5/2 core level@Fig. 4~a!#. The resulting background inten-
sity profile for peakA clearly exhibits a maximum at
u50° and a minimum nearu550 °, roughly similar to the
shape of the initial-state atomic orbitaldz2}(3 cos

2u21). A
similar intensity minimum nearu550 ° for peakA was pre-
viously reported by Williams, Kemeny, and Ley,5 who quali-
tatively assigned the intensity anisotropy to the initial-state
characteristic of the Modz2 orbital. However, the study did
not report the core-electron-like XPD as well as the maxi-
mum at 0°, perhaps due to are relatively large angular step
(Du.3 °) incorporated in the polar angle scan from
u520 ° to 78 °. In contrast, the accuracy in the polar angle
scan in the present study was better than 1 °, judging from
the positions of the forward focusing maxima of the core
levels. Therefore, the fact that the observed minimum for
peak A neither reached zero nor occurred exactly at

FIG. 3. ~a! VB ARXPS of the Cs 6s level at 0.23-ML Cs cov-
erage~equivalent to 3-min Cs exposure, open squares!. A separate
experiment with 0.22-ML Cs coverage on MoS2~0002! using a
wider range of polar angles (u5222 °–70 °) reproduced the in-
tensity anisotropy of the Cs 6s level ~full circles!. ~b! ARXPS of
the Cs 4d core level at 0.22-ML Cs coverage~full squares!. The
solid line in ~a! and the dashed line in~b! represent theoretical
accounts for the observed ARXPS data~see Sec. IV!.

FIG. 4. ~a! The VB ARXPS data forA is divided by the experi-
mental XPD of the Mo 3d5/2 core level to show the distinctive
behavior in the background intensity of peakA. The background
intensity anisotropy is compared with the calculated angle depen-
dence of the matrix elements. Comparison between the experimen-
tal VB ARXPS and the simulated VB XPS after multiplying the
intensity anisotropy due to the matrix elements by the Mo 3d5/2
core-level XPD patterns for~b! peakA and ~c! peakE.
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u554 °, the nodal angle of thedz2 orbital, suggested addi-
tional contributions from orbitals other thandz2. Indeed, us-
ing the solid-state extended Hu¨ckel theory~SSEHT!, a recent
theoretical analysis of the VB structure of MoS2 in terms of
the modified atomic orbital population~MAOPOP! ~Ref. 21!
showed that peakA was mainly composed of Mo 4d atomic
orbitals ~Fig. 5! and further predicted the ratio of
dz2:dxy :dx22y250.52: 0.26: 0.22 for the relative atomic-
orbital population.22 More recently,ab initio Hartree-Fock
calculation using Hay-Wadt’s effective core pseudopotential
for a Mo atom and the all-electron basis set for a S atom also
confirmed such a dominance of the Modz2 orbital character
at peakA, successfully reproducing the band structure calcu-
lated by the earlier SSEHT.23 An accurate measurement of
the background intensity variation in this study and the cal-
culation of the VB structure of MoS2 enabled us to make a
quantitative assessment of the contributions from various
atomic orbitals, and compare the result with theory.

If the initial Bloch wave function is expressed as a linear
combination of atomic orbitals, the electric dipole matrix el-
ement in Eq.~1! can be rewritten as a triple product of

spherical harmonics using the initial atomic orbital
fnl(r ,u,w)5Rnl(r )(mcmYlm(u,w) and the final-state
wavefunction7,8

fE,k~r ,u,w!

54p (
l 8m8

i l 8e2 id lYl8m8
* ~uk ,wk!Ylm~u,w!RE,l8

~r !

whereR(r ) and Y(u,w) are the radial part and spherical
harmonics for the wave functions andd l is the phase shift for
the l th partial wave due to the hole potential. Goldberg, Fa-
dley, and Kono8 have shown that the squared matrix element
uM fiu2 can be reduced to a calculation-ready expression con-
taining geometric parameters of the experiment. This method
was used in the present analysis of intensity variation of peak
A initial-state orbitals dz2( l52,ml50), and dxy ,
dx22y2( l52,ml562) to the final states of thep and f chan-
nels subject to the dipole selection rulesD l561 and
dml561, 0. The experimental anisotropy of peakA was
fitted with a linear combination of the squared matrix ele-
ments for each initial orbital to yield the ratio ofdz2: dxy :
dx22y250.51: 0.24: 0.25@a solid line in Fig. 4~a!#, in excel-
lent agreement with the theoretical values. As the ratio of
dz2: dxy : dx22y2 changes from 0.56: 0.21: 0.22~lower dotted
line! to 0.45: 0.27: 0.28~upper dotted line!, the characteristic
minimum shifts from 53 ° to 48 °, clearly demonstrating the
dependence of the position of the minimum on the composi-
tion of the initial atomic orbitals. The theoreticalu depen-
dence due to the matrix element was further multiplied with
the XPD of the Mo 3d5/2 core level to simulate the XPD part
of the experimental VB ARXPS result for peakA. The cal-
culated VB ARXPS for peakA @Fig. 4~b!#. On the other
hand, the MAOPOP for peakE obtained from the same VB
calculation predicted a relatively flat behavior due to more or
less evenly populated S 3p atomic orbitals with only minor
contributions from the Mo 4d orbitals. Theu dependence of
the matrix element was similarly multiplied by the intensity
modulation of the XPD peaks of the Mo 3d5/2 core level, and
an excellent agreement between the experiment and simu-
lated VB ARXPS for peakE was also obtained@Fig. 4~c!#.

In the foregoing analysis of the matrix elements, 171k
points were selected within the triangular net of the surface
BZ of MoS2~0002! to mimic complete BZ averaging during
the VB x-ray photoexcitation process. Although the observed
independence of the VB XPS peak positions on the polar
angle provides experimental evidence that the peak energies
and intensities represent averages over the entire BZ, it is
important to examine the possible contribution from the in-
complete BZ averaging to VB ARXPS. In the direct transi-
tion model, the wave vectors parallel to the surface between
the initial k i ,i and the finalk f ,i states are conserved via
k i ,i5k f ,i2kph , i 2Gi , wherekph , i is the parallel compo-
nent of the x-ray photon wave vector andGi is a surface
reciprocal-lattice vector. Then the experimentally measured
final-state wave vectork f ,i at each polar angle can lead di-
rectly to the corresponding initial-state wave vector. In
the actual ARXPS experiment, a finite acceptance angle
of the photoelectron energy analyzer detects the photo-
electrons with their wave vectors equal tok f ,i6Dk f ,i ,

where3 uDk f ,iu is equal to @A2mE/\2cosuDu

FIG. 5. The comparison in the density of states among~a! the
experimental VB XPS atu50 °, ~b! the solid-state extended
Hückel theory, and the~c! ab initio Hartree-Fock calculation using
the linear combination of atomic orbitals.
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11/2A2m/E\2sinuDE] ~in our case, Du54 ° and
DE50.554 eV for a pass energy of 300 eV!. Therefore, in
simulating the partial BZ averaging due to the finite instru-
ment resolution, only thek points within the radius
uk i ,i6Dk i ,iu aroundk i ,i at each polar angleu were included
for the calculation of the density of states in the VB. The
effect of the incomplete BZ averaging in the calculation of
the total density of states~including all five Mo 4d and three
S 3p orbitals! is shown in Fig. 6. Atu50 °, all thek points
within the triangular net~bounded within the dashed area!
are included, effectively averaging over the whole BZ. On
the other hand, atu53 °, a substantial part of the BZ near
theG point ~the BZ center! is not sampled. Consequently, the
calculation predicts a large-intensity anisotropy, and further
that the intensity decreases rapidly as one moves from the
BZ center~e.g.,u50 °) to the BZ boundary~e.g.,u53 °)
@Fig. 6~a!#. The calculated rapid oscillation is the direct con-
sequence of the fact that a small change in the angleu can
cause a sizable change in the initial wave vector due to a
large magnitude for the final-state wave vector
uk f ,iu5A2mE/\2sinu (>19.7sinu Å 21 for E51480 eV!.
Despite the large-intensity anisotropy expected from the in-
complete BZ averaging in our ARXPS, the VB ARXPS data
show no discernible intensity anisotropy from the direct tran-
sition effect. The comparison between the experiment and
calculation therefore strongly indicates that the direct transi-
tion effect was absent in our VB ARXPS.

The absence of the direct transition effect suggests the
importance of the phonon-assisted nondirect transition. In

the Debye model of isotropic, thermal vibration, the Debye-
Waller attenuation factor can be written as
W(T)exp(23\2g2T/mkBuD

2 ), whereg is the magnitude of the
momentum transfer in the direct transition, andT, m, kB ,
anduD are the temperature, the mass of the atom, the Bolt-
zmann constant, and the Debye temperature, respectively.
The Debye-Waller factorW(T) weighs the direct transition
effect relative to the nondirect transition part such that it
represents the fraction of transitions which are direct.12 The
Debye temperature of MoS2 was estimated from specific-
heat measurements24 to be in the range ofuD5260–320 K.
Based on these values ofuD , a conservative estimate for
W(T) ranges from 0.21 to 0.35 with the massm being equal
to the mass of one unit of MoS2. These values are indeed
significantly smaller than 0.55 for tungsten and 0.59 for Ir, in
which the direct transition effect was observed to be
substantial.25

Additional information can be extracted from the VB
spectra after recognizing a difference in the XPD’s of the Mo
3d5/2 core and S 3s inner VB levels. For the Mo 3d5/2 core
level, the strong forward focusing maximum atu549 ° is
the dominant peak, but the S 3s level shows a much smaller
peak intensity for the same 46 ° direction@Fig. 1~b!#. There-
fore, the subsequent intensity ratioIMo 3d8 /I S 3s8 displays a
slowly rising trend as the polar angle increases toward
u549 ° ~top panel in Fig. 7!. The difference in the XPD’s of
the Mo 3d5/2 core and S 3s inner VB levels is not due to the
effect of different angular momentum involved in the final
states, since a similar result is also obtained when comparing

FIG. 6. ~a! The ranges ofk points for simulating finite-k resolution of the instrument projected on the surface Brillouin zone of
MoS2~0002!—the shaded circle foru50 ° and the dashed circle foru53 °. Note that the centers of thek-point circles are displaced from
the line joining theG point ~or the BZ center! and theM point because of a relatively large value ofukphu. ~b! The calculated direct transition
effect on the VB ARXPS for peakA due to the finite-k resolution in our ARXPS.
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the Mo 3d5/2 and S 2p core levels,15 but is rather due to the
geometric inequivalence of the Mo and S emitter positions.26

The distance to the nearest neighbor alongu50 ° is much
larger than that alongu549 ° for the Mo emitter~4.57 Å vs
2.41 Å!, while both distances to the nearest scatterers along
the two directions are comparable for the S emitter~3.16 Å
vs 2.41 Å!. Using this difference between the core-level
XPD’s, the VB and the Mo 3d5/2 XPD maxima are divided
by those of the S 3s orbital, and the ratios ofI VB8 /IS 3s8 and
I Mo 3d8 /IS 3s8 ~Ref. 27! are presented in Fig. 7. Intensities vary
isotropically, as shown by constant ratio ofI VB8 /IS 3s8 at bind-
ing energies corresponding to peaks in the lower portion of
the VB, including the region of peakE, where the S 3p
orbitals contribute most~cf. Fig. 5!. In the middle portion of
the VB (BE'4.8 eV!, the intensity ratioI VB8 /IS 3s8 shows a
small upward deviation from unity for a peak centered at
BE54.8 eV and 49 °, similar to the observed ratio
I Mo 3d8 /IS 3s8 indicating a substantial contribution from a Mo
emitter. Near the top of the VB, however, the intensity varia-
tion shows a pronounced dip despite the fact that the photo-
emission from the region mainly originates from the Mo
emitters~cf. Fig. 5!. This is caused by nonspherically sym-
metric Mo 4d partially filled orbitals. Therefore, unlike in
the previous study of the VB XPD from Au/Cu by Stuck
et al.,28 we find that the angle dependence of the VB cross
sections due to the symmetry of thed orbitals cannot be
neglected, particularly when thed shell is partially filled.

B. Valence-band structure and locus
of Cs 6s electrons in Cs/MoS2

The observed broad maximum atu50 ° in the VB
ARXPS data for the peak designated as the Cs 6s level @Fig.

3~a!# is indeed remarkable because such intensity anisotropy
from the Cs 6s valence level is not expected for the follow-
ing reasons. First, LEED studies in the literature29 and our
recent investigation of atomic structures at the Cs/MoS2
interface15 indicated that Cs adsorption on MoS2~0002! re-
sults in neither a long-range nor a short-range-ordered Cs
overlayer. Thus any contribution to the VB ARXPS within
the Cs overlayer by a scattering process is unlikely. In fact,
the ARXPS of the Cs 4d core level also shows no XPD
features, supporting the disordered Cs overlayer model@Fig.
3~b!#. In addition, no intensity anisotropy from the electric
dipole matrix elements is expected from the Cs 6s valence
level since thes emission only produces an isotropic inten-
sity profile.7,8 The fact that the experimental intensity anisot-
ropy cannot be adequately described by the expected angu-
larly uniform emission from the Cs 6s level forces us to
abandon the initial assignment of the Cs-induced valence
peak as the Cs 6s electrons in a thin overlayer. In fact, our
calculation using the SSEHT for Cs/MoS2 ~one Cs atom per
each unit cell of MoS2) indicates a large degree of delocal-
ization of the Cs 6s electrons into the MoS2 substrate, and
about 90 % charge transfer from the Cs atom to the substrate.
The band-structure calculation~Fig. 8! and the atomic-orbital
population analysis predict that the interaction between the
Cs 6s atomic orbital and the MoS2 conduction band is sub-
stantial near the bottom of the conduction band, whereas the
interaction is minimal in the valence-band region
including the S 3s inner band. At the bottom of
the conduction band (;2 eV above peakA), the
atomic-orbital population mainly consists of empty
Mo 4d and S 3p atomic orbitals with the ratio
4dz2: 4dxy: 4dx22y2: 3px: 3py: 3pz50.29:0.24:0.23: 0.056:
0.066:0.016 similar to that in clean MoS2,

14 with a minor
contribution from other atomic orbitals including the Cs 6s
level ~0.035! and the total Mo 5p level ~0.056!. From the
obtained ratio of the atomic-orbital population, the angle de-
pendence on the matrix element was calculated. Since the
Scofield cross sections for the Cs 6s, S 3p, and Mo 5p
levels are much smaller than that for the Mo 4d atomic
orbital,30 the calculated angle dependence on the matrix ele-
ment largely reflects the relative atomic orbital population

FIG. 7. The VB spectra presented in Fig. 1~a! are divided by the
S 3s level XPD @Fig. 1~b!#. The result is then compared with the
intensity ratio of the Mo 3d5/2 core level to the S 3s level ~in the top
panel!. The deviation of the ratioIVB8 (u)/IS 3s8 (u) from the unity
results from either intensity anisotropy from the matrix elements or
the difference in the XPD patterns from the S and Mo emitters~see
the top panel!.

FIG. 8. The VB structure of Cs/MoS2~0002! calculated with the
solid-state extended Hu¨ckel theory. One Cs atom was placed above
the Mo in each unit cell.
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ratio of the Mo 4d atomic orbitals. The theoretical intensity
anisotropy from the matrix element was subsequently multi-
plied by the experimental instrument response function31 to
produce the experimentally observed intensity anisotropy for
the Cs 6s level, and a satisfactory agreement between experi-
ment and theory is observed@solid line, Fig. 3~a!#. In calcu-
lating theu variation of the Cs 4d core level, conversely,
there is no matrix element contribution from a closed shell.
Consequently, the calculated angle dependence of the Cs
4d core-level intensities exhibits only a smoothly rising in-
tensity anisotropy, characteristic of electrons localized at a
thin Cs overlayer,32 as observed in experiment@dashed line,
Fig. 3~b!#.

V. CONCLUSIONS

In this investigation, we found that the VB intensity an-
isotropy from a clean MoS2~0002! mainly arises fromboth
(1) core-electron-like strong forward focusing XPD; and (2)
the matrix element contribution due to non-spherically sym-
metric, partially filled shells.The contribution from the ma-
trix element can be large enough to alter the total VB inten-
sity anisotropy significantly, and thus must be included to

correctly account for the observed angle dependence of the
VB intensity. In addition, the observed difference in the
core-level XPS’s between the Mo and S emitters further pro-
vides experimental means to decompose the VB to contribu-
tions from the Mo and S atoms at specific energies in the
valence band. The Cs adsorption on the basal plane of clean
MoS2 ~with a Cs coverage of 0.23 ML! introduces a Cs-
induced peak at 1.25 eV above the VB maximum. A com-
parison between the experimental intensity anisotropy of the
Cs-induced valence level and the theory indicates that the
observed angle dependence of the valence level results from
the intensity variation due to the electric dipole matrix ele-
ment at the bottom of the conduction band in the MoS2
substrate,suggesting delocalization of the Cs 6s electrons
into the Mo S2 substrate.
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