

[Faculty Scholarship](https://researchrepository.wvu.edu/faculty_publications?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages)

1987

Martin's Axiom and a Regular Topological Space with Uncountable Net Weight Whose Countable Product is Hereditarily Separable and Hereditarily Lindelöf

Krzysztof Ciesielski *West Virginia University*, krzysztof.ciesielski@mail.wvu.edu

Follow this and additional works at: [https://researchrepository.wvu.edu/faculty_publications](https://researchrepository.wvu.edu/faculty_publications?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages) Part of the [Mathematics Commons](http://network.bepress.com/hgg/discipline/174?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages)

Digital Commons Citation

Ciesielski, Krzysztof, "Martin's Axiom and a Regular Topological Space with Uncountable Net Weight Whose Countable Product is Hereditarily Separable and Hereditarily Lindelöf" (1987). *Faculty Scholarship*. 819. [https://researchrepository.wvu.edu/faculty_publications/819](https://researchrepository.wvu.edu/faculty_publications/819?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact [ian.harmon@mail.wvu.edu.](mailto:ian.harmon@mail.wvu.edu)

MARTIN'S AXIOM AND A REGULAR TOPOLOGICAL SPACE WITH UNCOUNTABLE NET WEIGHT WHOSE COUNTABLE PRODUCT IS HEREDITARILY SEPARABLE AND HEREDITARILY LINDELÖF

KRZYSZTOF CIESIELSKI¹

In [1, p. 51] A.V. Arhangel'skii, in connection with the problems of L-spaces and S-spaces, examined further the notions of hereditary separability and hereditary Lindelöfness. In particular he considered the following property P: "Every regular topological space has a countable net weight provided its countable product is hereditarily Lindelöf and hereditarily separable." He noticed that the continuum hypothesis implies negation of the property P and posed a question: "Do Martin's Axiom and the negation of the continuum hypothesis imply P?" The purpose of this paper is to give a negative answer to this question.

The set-theoretical and topological notation that we use is standard and can be found in $\lceil 6 \rceil$ and $\lceil 5 \rceil$ respectively.

Throughout the paper we will use the notation $H(X, Y)$ to denote the set of all finite functions from a set X to Y .

THEOREM. Con(ZFC) \rightarrow Con(ZFC + MA + \neg CH + there exists a 0-dimensional Hausdorff space X such that $nw(X) = c$ and $nw(Y) = \omega$ for any $Y \in [X]^{<\epsilon}$.

PROOF. Let M be a model of ZFC satisfying CH and let F be an M-generic filter over the Cohen forcing $(H(\omega_2 \times \omega_2, 2), \supset)$. Then $f = \bigcup F$ is a function and $f: \omega_2$ $\times \omega_2 \rightarrow 2$.

In M[f], define the functions f_ζ : $\omega_2 \to 2$ by $f_\zeta(\eta) = f(\eta, \zeta)(\zeta, \eta < \omega_2)$ and consider $X = \{f_{\mathcal{C}}: \zeta < \omega_2\}$ as a topological subspace of 2^{ω_2} .

For $\varepsilon \in H(\omega_2, 2)$, let $\lceil \varepsilon \rceil$ be the element of the standard basis of 2^{ω_2} (i.e. $\lceil \varepsilon \rceil$ = ${g \in 2^{\omega_2}: \varepsilon \subset g}$. For $\alpha < \omega_2$, let

$$
Q_{\alpha} = \{ \langle A, \varepsilon \rangle : \varepsilon \in H(\omega_2, 2) \text{ and } A \subset (\lbrack \varepsilon \rbrack \cap \{ f_{\zeta}: \zeta < \alpha \}) \text{ and } |A| < \omega \}
$$

with ordering $\langle A, \varepsilon \rangle \le \langle B, \delta \rangle$ if and only if $A \supset B$ and $\varepsilon \supset \delta$.

© 1987, Association for Symbolic Logic 0022-4812/87/5202-0006/\$01.40

Received April 15, 1986.

¹The following results are part of the author's Ph.D. thesis written at the University of Warsaw under Professor Pawel Zbierski. I am most grateful to him and Wojciech Guzicki for their kind help. I also wish to thank my colleagues at Bowling Green State University for their hospitality in 1985/86.

It is easy to see that $Q_{\alpha} \in M[f \restriction \omega_2 \times \alpha]$ for $\alpha < \omega_2$. Moreover let Q be a direct product of the forcings Q_{α} , i.e.

 $Q = \prod \{Q_{\alpha}: \alpha < \omega_2\} = \{h: \text{dom}(h) \in [\omega_2]^{<\omega} \& h(\alpha) \in Q_{\alpha} \text{ for every } \alpha \in \text{dom}(h)\},$

ordered by

 $h \leq h'$ if and only if $dom(h) \supset dom(h')$ and $h(\alpha) \leq h'(\alpha)$ for every $\alpha \in dom(h')$.

Let G be an $M[f]$ -generic filter over Q.

In [4, §5] (compare also [3, Theorems 2 and 4]) we proved that the forcing Q satisfies the ccc property in the model $M[f]$ and the model $M[f][G]$ satisfies

 $nw(X) = c = \omega_2$ and $nw(Y) = \omega$ for any $Y \in [X]^{*c*}.$ $(*)$

(The second part of (*) follows immediately from the fact that if $Y \subset \{f_{\xi} : \zeta < \alpha\}$ for some $\alpha < \omega_2$ and $N_k = \{f \in Y : f \in A \text{ for some element } \{\langle \alpha + k, \langle A, \varepsilon \rangle \rangle\} \in G\}$, then the family $\{N_k: k < \omega\}$ forms a countable network for Y.) We now give a generic extension of $M[f][G]$ which preserves the property (*) and satisfies Martin's Axiom.

In $M[f][G]$ let R be an iteration with finite supports of ccc forcings of the form $T_{\alpha} = \langle \omega_1, \le_{\alpha} \rangle$ such that $R \Vdash M$ A + (c = ω_2) (compare for example [2, §6, pp. 444– 451]). Hence $R = H(\omega_2, \omega_1)$ and, for $g, g' \in R$, $g \le g'$ if and only if dom(g) \supset dom(g') and $g \upharpoonright \alpha \Vdash g(\alpha) \leq_{\alpha} g'(\alpha)$ for every $\alpha \in \text{dom}(g')$.

Let H be an $M[f][G]$ -generic filter over R. Clearly

$$
M[f][G][H] \vDash MA + (\mathfrak{c} = \omega_2).
$$

Moreover for every $Y \subset 2^{\omega_1}$ the sentence "N is a network of Y" is absolute; by the ccc property of R, for every $Z \in [X]^{\omega_1}$ from $M[f][G][H]$ there exists $Y \in [X]^{\omega_1}$ from $M[f][G]$ such that $Z \subset Y$. Hence

$$
M[f][G][H] \models nw(Y) = \omega \text{ for every } Y \in [X]^{<\mathfrak{c}}.
$$

Note that since $hL(Y) \leq nw(Y)$ we have (in M[f][G][H]) $hL(Y) = \omega$ for every $Y \in [X]^{<\mathfrak{c}}$. This implies $M[f][G][H] \models hL(X) = \omega$ (cf. [5] or [4]).

To complete the proof it suffices to show that $nw(X) = c$ holds in $M[f][G][H]$. The original idea of the proof is that, for $M[f][G]$, $\models nw(X) = \omega$ (see [4] or [3]).

By way of contradiction assume that there exists a family $\mathscr{F} = \{F_{\zeta} : \zeta < \omega_1\}$ in $M[f][G][H]$ such that

 $M[f][G][H] \models "F$ is a network for X".

By the regularity of X the family $\{cl_x F_c: \zeta < \omega_1\}$ is also a network for X, so we can assume that the sets F_k are closed in X. Hence, by hereditary Lindelöfness of X, there exists in M[f][G][H] a sequence $\mathscr{E} = \langle \varepsilon_n^{\zeta} \in H(\omega_2, 2) : \zeta < \omega_1 \& n < \omega \rangle$ such that

$$
X\setminus F_{\zeta}=X\cap\bigcup\{[\varepsilon_n^{\zeta}]:n<\omega\}\quad\text{for all }\zeta<\omega_1.
$$

Let R_{α} be an iteration of length α of the forcings T_{β} for $\beta < \alpha$ (i.e. $R_{\alpha} = \{g \mid \alpha :$ $g \in R$). Then $H_{\alpha} = R_{\alpha} \cap H$ is an $M[f][G]$ -generic filter over R_{α} .

Since the forcing R is ccc and $|\mathscr{E}| \leq \omega_1$, there exists $\alpha < \omega_2$ such that $\mathscr{E} \in$ $M[f][G][H_{\sigma}].$

For $\beta < \omega_1$ put $\overline{Q}^{\beta} = \prod \{Q_{\gamma} : \beta \leq \gamma < \omega_2\}$, $G^{\beta} = G \cap \overline{Q}^{\beta}$ and $G_{\beta} = G \cap \prod \{Q_{\gamma} :$ $\gamma < \beta$. We know that Q is ccc in M[f] and $|R_{\alpha}| \leq \omega_1$; thus there exists $\beta < \omega_2$ such that $R_a \in M[f][G_\beta]$.

Hence, by the product lemma,

$$
M[f][G][H_{\alpha}] = M[f][G_{\beta}][G^{\beta}][H_{\alpha}] = M[f][G_{\beta}][H_{\alpha}][G^{\beta}],
$$

$$
\mathscr{E} \in M[f][G_{\beta}][H_{\alpha}][G^{\beta}].
$$

But in $M[f][G_{\beta}]$ we have $\overline{Q}^{\beta} \Vdash R_{\alpha}$ is ccc; consequently $\overline{Q}^{\beta} \times R_{\alpha}$ is ccc and $R_{\alpha} \Vdash \overline{Q}^{\beta}$ is ccc. Hence in $M[f][G_{\beta}][H_{\alpha}]$, the forcing \overline{Q}^{β} is ccc and $|\mathscr{E}| \leq \omega_1$.

Therefore there exists $\gamma < \omega_2$ such that $\beta < \gamma$ and

$$
\mathscr{E} \in M[f][G_{\beta}][H_{\alpha}][G_{\gamma}^{\beta}] = M[f][G_{\gamma}][H_{\alpha}]
$$

where $G_{\gamma}^{\beta} = G^{\beta} \cap \prod \{Q_{\delta} : \beta \leq \delta < \gamma\}$. Moreover $\prod \{Q_{\delta} : \delta < \gamma\} \in M[f \upharpoonright \omega_2 \times \gamma]$, i.e.

$$
M[f][G_{\gamma}] = M[f \upharpoonright \omega_2 \times \gamma][G_{\gamma}][f \upharpoonright \omega_2 \times (\omega_2 \setminus \gamma)].
$$

Hence there exists $\delta < \omega_2$, $\delta > \gamma$, such that

$$
R_{\alpha} \in M[f \upharpoonright \omega_2 \times \gamma][G_{\gamma}][f \upharpoonright \omega_2 \times (\delta \setminus \gamma)] = M[f \upharpoonright \omega_2 \times \delta][G_{\gamma}].
$$

In particular we have

$$
\mathscr{E} \in M[f \upharpoonright \omega_2 \times \delta][G_y][H_{\alpha}][f \upharpoonright \omega_2 \times (\omega_2 \backslash \delta)].
$$

Let $N = M[f \restriction \omega_2 \times \delta][G_y][H_\alpha], \quad a \in \omega_2 \setminus \bigcup \{dom(\varepsilon'_n): \zeta < \omega_1 \& n < \omega\}$ and $f_{\delta}(a) = i$, and put

$$
\phi \equiv \text{``}(\forall \zeta < \omega_1)(f_\delta \notin F_\zeta \text{ or } F_\zeta \notin [\langle a, i \rangle \}])\text{''}.
$$

We next prove

 $(*$

$$
\ast) \qquad \qquad N[f \upharpoonright \omega_2 \times (\omega_2 \setminus \delta)]
$$

Fix $\zeta < \omega_1$ and assume that $f_\delta \in F_\zeta$. Then there exists $s \in H(\omega_2 \times (\omega_2 \setminus \delta), 2)$ such that

 $\models \phi.$

$$
N \vDash s \mid \mid (f_{\delta} \in F_{\zeta} = X \setminus \bigcup \{ \lfloor \varepsilon_n^{\zeta} \rfloor : n < \omega \}).
$$

But $\langle \varepsilon_n^{\zeta}: n < \omega \rangle \in N$, i.e. the last statement is equivalent to

$$
X\cap\llbracket \varepsilon\rrbracket\subset X\backslash\big(\bigcup\{\llbracket \varepsilon_n^\zeta\rrbracket=F_\zeta,
$$

where $\varepsilon = \{ \langle \xi, i \rangle : \langle \xi, \delta, i \rangle \in s \}.$ Hence, for $\varepsilon' = \varepsilon \upharpoonright \bigcup \{ \text{dom}(\varepsilon_n^{\xi}) : n < \omega \}, X \cap [\varepsilon']$ $\subset F_{\zeta}$. Put $\varepsilon'' = \varepsilon' \cup \{\langle a, 1 - i \rangle\}$. Then

$$
\varnothing \neq [\varepsilon''] \cap X \subset [\varepsilon'] \cap X \subset F_{\zeta} \quad \text{and} \quad [\varepsilon''] \cap X \cap [\{\langle a,i \rangle\}] = \varnothing;
$$

i.e. $F_{\zeta} \neq [\langle \langle a, i \rangle \rangle]$. This completes the proof of (**).

To finish the proof of the theorem first observe that the sentence ϕ is absolute, hence $M[f][G][H] = " \phi"$ (i.e. $M[f][G][H] \models \mathscr{F}$ is not a network for X). This contradicts our assumption.

i.e.

COROLLARY. Con(ZFC) \rightarrow Con(ZFC + MA + \neg CH + there exists a regular space X such that $nw(X) = c$ but $hL(X^{\omega}) = hd(X^{\omega}) = \omega$).

PROOF. It is enough to show that the condition " $nw(Y) = \omega$ for every $Y \in [X]^{\omega_1}$ " implies $hL(X^{\omega}) = hd(X^{\omega}) = \omega$. So let us assume that $nw(Y) = \omega$ for every $Y \in$ $\lceil X \rceil^{\omega_1}$. Then for every $n < \omega$ and $Y \in \lceil X \rceil^{\omega_1}$ we have $hL(Y^n)$ hd $(Y^n) \leq nw(Y^n) = \omega$. Therefore $hL(X^n) = hd(X^n) = \omega$ and hence (see for example [1, p. 51]) $hL(X^{\omega})$ $= hd(X^{\omega}) = \omega.$

REFERENCES

[1] A. V. ARHANGEL'SKII, The structure and the classification of topological spaces and cardinal invariants, Uspehi Matematičeskih Nauk, vol. 33 (1978), no. 6 (204), pp. 29-83 (Russian); English translation, Russian Mathematical Surveys, vol. 33 (1978), no. 6, pp. 33-96.

[2] J. P. BURGESS, Forcing, Handbook of mathematical logic (J. Barwise, editor), North-Holland, Amsterdam, 1977, pp. 403-453.

[3] K. CIESIELSKI, On the netweight of subspaces, *Fundamenta Mathematicae*, vol. 117 (1983), pp. 37-46.

 $[4]$ — -, The topologies generated by graphs, Proceedings of the Jadwisin conference 1981, University of Leeds Press, Leeds, 1983, pp. 67-92.

[5] I. JUHÁSZ, Cardinal functions in topology-ten years later, Mathematisch Centrum, Amsterdam, 1980.

[6] K. KUNEN, Set theory, North-Holland, Amsterdam, 1980,

DEPARTMENT OF MATHEMATICS WARSAW UNIVERSITY WARSAW, POLAND

DEPARTMENT OF MATHEMATICS **BOWLING GREEN STATE UNIVERSITY** BOWLING GREEN, OHIO 43403

The Warsaw address is the permanent one.