

University of Southern Maine USM Digital Commons

Maine Collection

7-1979

The Economics of Solar Water Heaters : A Guide for Evaluating the Cost-Effectiveness of Active Solar Water Heating Systems in Maine

Maine Office of Energy Resources

Follow this and additional works at: https://digitalcommons.usm.maine.edu/me_collection Part of the Energy Systems Commons, Environmental Design Commons, Environmental Engineering Commons, Natural Resource Economics Commons, Oil, Gas, and Energy Commons, Power and Energy Commons, and the Sustainability Commons

Recommended Citation

Maine Office of Energy Resources, "The Economics of Solar Water Heaters : A Guide for Evaluating the Cost-Effectiveness of Active Solar Water Heating Systems in Maine" (1979). *Maine Collection*. 155. https://digitalcommons.usm.maine.edu/me_collection/155

This Book is brought to you for free and open access by USM Digital Commons. It has been accepted for inclusion in Maine Collection by an authorized administrator of USM Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.

THE ECONOMICS OF SOLAR WATER HEATERS

A GUIDE FOR EVALUATING THE COST-EFFECTIVENESS OF ACTIVE SOLAR WATER HEATING SYSTEM'S IN

MAINE

State of Maine Executive Department OFFICE OF ENERGY RESOURCES 55 Capitol Street Augusta, Maine 04330 (207) 289-2196

TH 6561.7 M3 1979

JULY, 1979

TH 6561.1 M3 1949

TABLE OF CONTENTS

Section I:	Introduction	••p•	1
Section II:	Economic Method: The Life Cycle Cost Analysis	••P•	2,3
Section III:	Factors Affecting the Decision to Buy		
	A. Price	p.	4
	B. Quality and Durability	_ p.	4
	C. Utility Rates	_ p.	4
	D. Federal Solar Legislation	_ p.	5
	E. Maine Solar Legislation	_ p.	5
	F. Resale Value	_ p.	6
	G. Fuel Price Increases	_ p.	6
	H. Financing the System	_ p.	7
	I. The Solar Investment vs the Non Solar Investment	_ p.	7
Section IV:	Explanation of the Tables		
	A. Procedure Used to Produce the Tables	p.	9
	B. Explanation of Table I	_ p.	9
	C. Explanation of Tables II, A, B, C	p.	9
	D. Explanation of Tables III, A, B, C	_ p.	10
Table I		_ p.	11
Table IIA - S	System Financed With Cash	_ p.	12
Table IIB - S	System Financed With A Home Improvement Loan	_ p.	13
Table IIC - S	System Financed In the Mortgage	_ p.	13
Summary of F	Chart Variables	_ p.	14
Table IIIA -	Yearly Cash Flow for 4 Panel System Financed With Cash	p .	15

Table IIIB - Yearly Cash Flow for 4 Panel System Financed With a Home Improvement Loan	p. 16
Table IIIC - Yearly Cash Flow for 4 Panel System Financed In the Original Mortgage	p. 1
Appendix	p. 18
Solar Information Request Sheet	p. 19

ft

SECTION I INTRODUCTION

The time has passed when solar water heating could be considered a novelty or a luxury. The technology and economics of solar water heaters have made them practical for families in Maine today. The reasons are several. One is the fact that it is possible to save much more money during the lifetime of the solar system than was spent on it originally. A second is that it works. A solar water heater system can provide at least 50% of your domestic hot water needs. And a third is that solar water heaters add to the resale value of the homes in which they are installed.

Other reasons for installing solar water heating NOW include the current economic climate and the tax incentives available at this time. The cost of electricity and fossil fuels is soaring and thus placing a burden on family budgets already strained by inflation. At the same time, families seeking to meet these increased costs through increased incomes face higher tax obligations. Installing solar water heaters can be a way out of this economic trap, since it allows families to control at least a portion of their energy costs.

However, while many families are convinced of the benefit of solar water heaters, they understandably want to know more about the economics of installing such a system in their home before making a commitment. It is for this reason that this guide was prepared. By using this guide, it is hoped that each family considering the installation of a solar water heater can determine its economic benefit and/or feasibility for themselves.

Section II of this guide explains how to perform a life-cycle cost analysis which balances the benefits against the initial cost of a solar system. Three methods of rating such a system are explained: the discounted payback period, the internal rate of return and a yearly cash flow method.

Price, quality, durability, utility rates, tax credits, etc. are among the many factors one should consider in purchasing a solar system. A detailed explanation of these considerations is given in Section III.

Section III introduces and explains the tables which have been developed and included at the end of this guide in order to help you determine the economic benefits of a solar water heating system for you and your family.

SECTION II ECONOMIC METHOD: THE LIFE CYCLE COST ANALYSIS

Most consumer goods, such as food, yield an immediate satisfaction or else enduring satisfaction which is impossible to measure, as in the case of a TV. It is usually fairly easy, when considering a purchase, to weigh the cost against the expected satisfaction.

A solar water heater, like an electric or gas water heater, delivers hot water. Yet, the solar water heater is far more expensive than the other two. How can an expensive solar water heater be a better deal than a cheap oil or electric model? The benefits you get from a solar water heater are measurable, yearly amounts of "free" energy from the sun for as long as the equipment lasts. This translates into yearly dollar savings. In order to measure the benefits, it is necessary to add up the expected solar energy contribution for the entire lifetime of the solar water heater and compare this to the initial cost. Economists call this type of analysis LIFE-CYCLE ANALYSIS (LCC). By considering what the equipment will produce over its life-cycle, one can discover if the overall benefits exceed the costs, and if so, by how much. By performing life-cycle analyses for various types of water heaters, it is possible to meaningfully compare conventional and solar water heaters and also various solar water heaters among themselves. Though a conventional gas or electric water heater is cheaper to buy initially, it may prove very expensive to run over its lifetime due to rising fuel costs.

To make use of the life-cycle cost analysis, one should examine at least three methods of rating the value of an investment such as a solar water heater. No one method gives the complete picture, but two or three methods together can be used for comparison purposes. These rating methods are:

- 1. The payback period
- 2. The internal rate of return
- 3. A yearly cash flow table

If you are intending to buy a solar energy system with cash, the first two methods--the discounted payback period and the rate of return--give the most useful indication of its value. If your purchase is to be financed with a loan, a yearly cash flow analysis will be useful as well.

The PAYBACK PERIOD tells you how many years it will take for the accumulated savings from the solar water heater to equal its purchase price. To give a clear picture of the actual cost the initial purchase price has been adjusted in Table I to account for tax credits and refunds, and the interest in the case of the system financed with a loan.

Unlike the payback period, the INTERNAL RATE OF RETURN takes into account the fuel savings expected over the system's entire lifetime. If you are in a position to purchase the system with cash then the INTERNAL RATE OF RETURN enables you to compare the savings from the solar investment with an alternative investment, such as putting the money in the bank, or buying stocks or bonds.

When comparing a solar investment with any other investment, it is important to remember that there is a tax advantage to the solar investment. Increasing your spending power by saving money, as with a solar system, is more advantageous than making money in an alternative investment. You maintain the

same income level when you save money, so your tax liability will also remain the same. However when you put your money in a savings account or buy stocks the money you earn from these investments will increase your income, and subsequently your tax liability may also increase. So when comparing the savings from the solar system with potential income from an alternative investment it is important to adjust the earnings from alternative investments to reflect any increased tax liability.

If you will need to finance the system with a loan it is unnecessary to compare the solar investment with any alternative investment. The economic motivation for purchasing a solar system is different in this case. Individuals having the means to pay for a solar system with cash are looking for an investment which compares favorably with alternative investments. Financing a system with a loan implies a need to minimize monthly expenditures for energy. If you live on a limited budget spreading out the payment is your primary concern.

For equipment financed with a loan, a YEARLY CASH FLOW TABLE will show you how much your yearly loan payment will be offset by savings on your fuel bill. Since savings increase year by year due to rising fuel costs, each year a larger portion of the yearly loan payment is offset by the savings. For this reason, solar water heaters financed with a loan are about as cost-effective as those paid for in cash.

The cash flow changes according to the type of financing. On a yearly cash flow basis it is better to finance a solar system with a first or second mortgage than with a home improvement loan. The actual cost of the system will be greater when it is financed with the original mortgage. But you will realize larger savings sooner than with any other method of financing.

SECTION III FACTORS AFFECTING THE DECISION TO BUY

A. Price

This is one of the most important factors. Information from those who have purchased solar water heating systems shows that very similar systems may vary widely in price, yet the efficiency and durability of some of the higher priced systems may not yield sufficient fuel savings to justify their added cost. Purchase price is an item worth examining with care.

B. Quality and Durability

Generally, better quality equipment will last longer; and the longer a system lasts, the more money it will save, because yearly savings will increase at a greater rate as time goes on, due to fuel cost escalation. Examine the hardware, and, if possible, the installations previously done by your installer. If you have questions about what you should look for in purchasing a solar water heater, complete the Information Request Sheet found at the end of this pamphlet. The Office of Energy Resources (OER) will provide you with the Sunshine Handbook, a consumer's buying guide designed to help you avoid possible problems with purchasing solar energy equipment.

C. Utility Rates

Your own utility rates are another prime consideration. Needless to say, you will save more with a solar water heater if you are paying relatively high utility rates.

In order to make use of the charts in this guide, it is important that you determine, with accuracy, the rates you are paying for fuel. To do this, you will need to look carefully at your recent utility bills. A utility bill commonly has four components: 'a service charge,'the flat rate for power, a cost for fuel adjustment and various taxes. The service charge applies to all customers regardless of consumption. The flat rate is the base cost per kilowatt hour (Kwh), and generally remains the same over a long period of time.* The fuel adjustment charge is added on to the flat rate to account for the costs the utility incurs when using fuels of varying expense. For instance, currently it is more expensive to generate electricity with oil than hydro power. So if the utility uses more oil than usual during a given period the fuel adjustment charge is generally higher for that time. The various taxes are also based on consumption and hence will rise as an individuals electrical usage increases.

Since electricity is often used for a variety of tasks other than heating water all households using it would be billed for the service charge each month. So when determining how much you are paying for each Kwh subtract the service charge from your most recent bill. Then divide the remaining amount by the total number of kilowatt hours and the sum will be the applicable electricity cost for you.

^{*} Some Maine utility companies are experimenting with different rate structures in an attempt to reduce peak loads and encourage conservation. They are now experimenting on a limited basis with "time of use rates" which charge the highest prices during the periods of greatest demand. These rates may be available to the general public in the near future.

The formula is:

total cost per kilowatt hour = flat rate/Kwh + cost for fuel adjustment/Kwh + taxes the number of kilowatt hours

If you need help with this step contact your local utility and they will be glad to explain your bill.

Currently it costs less to heat the same amount of water with oil than with electricity. However the fuel savings are still sufficient to recoup the initial investment within the life of the solar system. Oil prices of about 80¢ per gallon approximately corresponds with electricity at 3¢ per Kwh, taking oil burner efficiencies into account. If you currently heat your water by a tankless system with a heating coil in the boiler used for heating your home, savings through solar energy will still be significant since the furnace will not need to operate at all during the summer months and will operate less during the winter--especially if you keep your thermostat low.

Supply is another factor to consider when comparing oil against solar. It has become apparent during the 1970's that international politics can have a distinct effect on the availability of home heating oil. During February, 1979 the fuel oil supply in Maine became extremely tight. Fortunately the weather warmed up and hence the demand decreased, staving off the possibility of homes having to go without oil. In future years it will be a continual struggle to bring fuel oil reserves up to adequate levels before the heating season. Self sufficiency is just one of the many non economic benefits of solar energy.

D. Federal Solar Legislation

Cost-effectiveness of solar energy systems has improved substantially with the passage of the National Energy Act (NEA) which provides a tax credit of 30% for the first \$2,000 and 20% on the next \$8,000 invested in solar energy equipment for residential use. For most people, this is equal to a price reduction of \$600 on a \$2,000 solar energy system.

Business Investment Tax Credits (ITC) are also available, whereby a business installing a solar water heating unit may claim a 10% refundable ITC in addition to the currently existing 10% ITC.

Future legislation recently proposed by the Carter Administration includes a \$450 million Solar Development Bank to provide loan assistance to persons installing solar equipment in their homes.

E. Maine Solar Legislation

By an Act of the 108th Maine Legislature the following two tax incentives have been provided to residents installing solar equipment:

1. Your property tax assessment cannot be increased because you have installed solar heating, cooling or hot water equipment on your house. Any person wishing this exemption should file with their local tax assessor or Board of Assessors.

2. Any Maine Sales Tax paid on a solar heating, cooling or hot water system, which has been certified by OER, will be refunded. To receive the tax refund, buyers should contact OER and request the proper forms.

The 109th Maine Legislature recently passed several important pieces of solar legislation:

1. A law calling for a voluntary certification program for solar installers. All installers carrying this certificate will have taken a state certified course on proper solar installation and passed a certification test. When purchasing your solar system contact the OER and find out if this program is in place yet. If so be sure the installer you choose has received the proper certification.

2. A Maine taxpayer installing a renewable energy system will receive credit on his or her state income tax of 20% of the purchase price or \$100 whichever is less. The credit applies only to new installations and is allowable only for the year in which the installation is completed. Renewable energy systems include both active and passive solar systems. Therefore all of the domestic hot water systems ' currently available in Maine would be eligible for the credit.

NOTE: The tables and costs in this pamphlet were developed prior to the passage of this law. Hence they do not reflect the additional \$100 savings.

3. An Act establishing a minimum warranty of five years against defects in the materials or manufacture of solar collectors and a one year warranty against failure of the solar system as a result of improper installation.

F. Resale Value

Increasing fuel costs make solar equipment on a house a valuable feature if you want to sell the home in the future. Solar hot water has only come to the fore in recent years. Hence there is little real information on the resale values of a solar water heater since few existing systems have been resold. However, based on comparisons with items of similar original value (that have no monetary return), it would appear that after an initial depreciation of 20% the annual depreciation would be between 4-5%, assuming the system is properly maintained. So the resale value of a \$2000 10 year old solar water heater, with an overall life expectance of 25 years, would be \$960. It is conceivable that the resale value would be even higher because of the potential for the next owner to recoup his investment.

In the economic analysis it was assumed that the system would have no resale value after 25 years. This does not mean that the system will have completely degenerated by that time. Certain durable components such as the tank, collector bracket, and parts of the collector would still be functional. Metallic surfaces exposed to fluid will have corroded to some extent and would necessitate replacement.

G. Fuel Price Increases

The economic performance of a solar water heater and any solar energy system is highly dependent on the price of fuel it saves. Since many economists are predicting a 10% per year cost escalation for fossil fuels and electricity, we chose this number in order to perform the economic analysis presented in this guide. In 1973 and 1974, prices for imported oil jumped about 400%. This was soon reflected in an near doubling of electric rates in New England which uses oil-fired plants to generate most of its electricity. The savings projected in this guide should thus be considered conservative. In fact the price of heating oil

has risen over 35% during the past year, and with additional OPEC price increases on the horizon it is difficult to estimate just how high the price of oil will go. When you install a solar system however the price you pay for that energy will remain the same for as long as you own the system. And if fuel costs jump dramatically once again, so will the savings realized from a solar system.

H. Financing the System

Once you have decided that a solar water heater would be feasible in your home, the final step is determining the best method of payment. Some of the factors governing this decision were discussed in Section II. The three typical situations encountered when purchasing a solar system are, 1) the individual who can afford to buy the system outright with cash; 2) borrowing the money for a retrofit installation on an existing home; and finally, 3) a financed system installed in a new or newly purchased home.

The individual with the financial resources to buy the system with cash is in the most opportune position from an investment standpoint. The ratio of actual cost to final savings is the highest in this case, as you will see in the Tables in Section IV. Unfortunately many people cannot afford to buy the system outright.

A primary concern of many middle income families is the minimization of monthly expenses, not the total savings realized over the lifetime of the investment. Middle income homes comprise the broadest solar hot water market. The current mode for financing a solar system with a loan is a Home Improvement Loan. Based on a survey of Maine banks, 2 year loans of under \$2000 are available at 16-18% simple annual interest. A 5 year term at 13% may be obtained on a loan of over \$2000. Generally if you have to take a 2 year loan, the cash flow advantage of spreading out the payment is negated by the short term and the high interest rate. Anyone who can afford to make two \$800 payments for a typical 2 panel system can probably afford to make one initial payment of \$1300. Spreading the payments out over 5 years is worthwhile. It does raise the actual cost of the system but it improves the annual cash flow.

Adding the cost of the solar system on to the purchase price of a new or newly purchased home allows you to include it in the original mortgage. Currently this is the most advantageous financing method. In fact the rate of return is higher than that of a system paid for with cash.

Spreading the payment over the length of the mortgage, 25 to 30 years, optimizes the cash flow by minimizing the difference between the annual mortgage payment and the annual savings. This allows the owner to realize larger savings right from the start, although it does reduce the total savings over the lifetime of the system. For example, after 25 years the total savings from a 3 panel system (compared against electricity) would be \$8392 if the system were fully paid for at the start. Comparatively, the savings over the same period on a system included in the original mortgage would be \$6332. The difference simply being the interest paid on the mortgaged system.

I. The Solar Investment vs. the Non Solar Investment

Using example #7 from Table I as the base case, the following account demonstrates the advantages of the solar investment.

EXAMPLE:

Mr. E installs an electric hot water heater for \$400 for his family of four. Ms. S decided to install a solar hot water heater with electric backup for \$1900 for her family of four. The solar system is designed to provide 65-70% of her family's hot water needs.

NOTE: If Ms. S were choosing a system for a new home the cost difference would be less because when evaluating the alternative she could effectively subtract the cost of a conventional system. Every home must have some means of heating water so it is the additional cost of solar that we are concerned with. Since a solar system is entirely self contained there is no need for a conventional electric or oil hot water heater in a new home. In the case described here Ms S already had a conventional hot water heating so her additional cost is \$1900, however, if she were comparing systems for a new home the additional cost for solar would only be \$1500.

Although the initial cost of Ms S's solar water heater is high, her fuel costs over the years will be less than a third of those of Mr. E. As electricity prices grow, the cost difference turns out to be important.

Assuming the average cost of electricity is now 4¢ per kilowatt hour and grows at the rate of 10% per year. Mr. E will pay about \$6,200 for electricity over a 15 year period. Ms. S will pay one third that amount. Furthermore Ms. S's system will have paid for itself in 7 years; that is; in the 7th year, her total electricity savings will exceed \$1500, or more than the difference between her system and the conventional heater of Mr. E. From then on except for minimal maintenance costs Ms. S's solar system provides her with essentially free energy for two-thirds of her hot water needs.

Another way of looking at the economics of Ms. S's solar system is to compare the two systems from a savings point of view. Suppose Mr. E takes the \$1500 he saves by not purchasing a solar system and puts it in the bank at 6%. Suppose also that Ms. S takes the money she saves in fuel bills from her solar system every year and puts it in the bank at 6%. If you compare the two investments after a 15 year period, it turns out that Ms. S has over 40% more money in the bank than Mr. E (\$1500 at 6% compounded for 15 years is \$3590; the value of the solar savings for the same period is \$6040). Furthermore, Mr. E has to contend with \$6200 in electric bills over that 15 year period. If you subtract all the solar costs of \$4400 for Ms. S's system (purchase price, backup fuel cost and the cost of insurance and maintenance) from her savings of \$6040 she is left with \$1640. On the other hand, if you subtract Mr. E's electric bill for 15 years from his total savings he is left with a deficit of \$2610.

SECTION IV EXPLANATION OF THE TABLES

A. Procedure Used to Produce the Tables

A mathematical computer program called FCHART has been in use for a number of years to predict the performance of various solar energy systems. OER used this computer program, a variety of utility rates, solar equipment prices and solar system performance data to arrive at the payback period, internal rate of return, and other performance results for a solar water heater in the Portland area.

The results apply to the majority of the state. System performance would improve slightly south of Portland, and decrease as you move further to the north. Overall the variation of performance results between Portland and the northern region of the state, Caribou for example, would range between 10-15%. The variation is not of sufficient consequence to disqualify the information in the Tables.

Details on the type of solar water heater which was analyzed, and the assumptions made when doing the analysis, can be found in the Appendix.

B. Table I

Table I identifies the primary physical and financial parameters assumed for each case. Each example is identified by a number. All subsequent references to specific systems will be referred to by those numbers. The number of collector panels, storage tank size and number of persons all reflect the current standard practice in the solar industry.

Deriving the actual cost from the initial cost paid to the solar dealer assumes that individuals take advantage of all the available incentives, such as tax credits. Another key factor in the actual cost estimate is the financing mechanism chosen by the buyer. Financing a loan or mortgage results in interest charges which are deductible from your federal income taxes. This expense is reflected in the actual cost figures for each example.

If you are borrowing money to pay for the system you will be borrowing the amount shown as the initial cost. It is assumed that the owner will then use his sales tax refund and the money he saves on his Income Tax, to make extra payments on the loan, thereby eliminating financing charges on that portion of the loan. This reduction of interest charges is reflected in the actual cost figure. Because the amount of the income tax credit may not exceed one's tax liability for that year, it may take two or more years to realize the full benefits of the tax credit.

Further economic and system performance assumptions are discussed in the Appendix.

C. Tables II, A, B, C

Table II is central to this guide and can be used by homeowners to calculate whether a solar system would be financially practical under varying conditions. The system is assumed to have a lifetime of 25 years.

To use these Tables, first ascertain the method you will use to finance the system, this will determine which table you should use. Then determine the price

you are currently paying for gas or electricity. (See Section III, Item C.) On the left side of the tables, find the price nearest to what you are paying (if you are unable to determine the price, current average energy costs in June 1979 are 4.0¢ per kilowatt hour for electricity and 57¢ per gallon for oil). Then look across to the system which correlates with the number of persons in your family and read off the four economic performance figures. An explanation of these appears under Table II A.

D. Tables III A, B, C

These tables are an example of the yearly cash flows experienced with each financing mechanism. Because there will be no financing charges on the money realized from the tax credit, the figure shown as the initial cost is that which the owne will pay interest on. Column 10 probably holds the most significance for the home owner. This column indicates when the savings from the solar system exceed either the purchase price (in the case of a system financed with cash or a short term loan) or the annual mortgage payment (the amount of the annual mortgage payment can be found in Table I). A discussion of the individual variables precedes Table III A.

We hope that you have found this guide useful. Any comments or suggestions on how to make it more useful to the consumer will be welcomed by our office. Good luck with your decision!

LOCKEF)				
Yoctusi Cost	\$1279 \$1530 \$3200	\$1581 \$2115 \$3925	\$1901 \$2540 \$4725	\$2202 \$2942 \$5475
eqperies	 \$765 \$128	\$423 \$157	 \$508 \$189	\$588 \$219
Interest Roy	 16% 10.5%	 13% 10.5%	 13% 10.5%	 13% 10,5%
Term of Louisi	2 years 25 years	5 years 25 years	5 years 25 years	5 years 25 years
Me chant	Cash H.I.L.* Mortgage	Cash H.I.L* Mortgage	Cash H.I.L * Mortgage	Cash H.I.L [*] Mortgage
Examp 1	п с с	4 N Q	N 8 6	10 11 12
Punter of Feder	\$548 ,	\$645	\$725	797\$
JSOS SALE	16\$	\$111	\$131	\$150
Hot Total Initial	\$1827	\$2226	\$2625	\$3000
Anel 286 Tank	73%	71%	%02	20%
SIZE OF	65 gal.	80 gal.	80 gal.	120 gal.
SIN-	7	εŋ	4	μ
Jo JequinN	2	m	4	L.

* H.I.L. / Home Improvement Loan

ł

TABLE IIA-SYSTEM FINANCED WITH CASH

UTII RAT	LITY TES OIL	EX 2 PA INIT ACTU	XAMPLE NEL SY MAL COS	#1 (STEM)ST=\$1 5T=\$12	827 79	E2 3 PA INIT ACT	KAMPLE ANEL S FIAL C JAL CO	#4 YSTEM OST=\$2 ST=\$15	226 81	E 4 P INI ACT	XAMPLE ANEL S TIAL C UAL CO	#7 YSTEM OST=\$2 ST=\$19	2625 901	5 P INI ACT	EXAMPL ANEL S TIAL C UAL CO	E #10 YSTEM OST=\$3 ST=\$22	8000 202
Kwh	Gal	AANS	SVGS	РҮВК	IRR	AANS	SVGS	РҮВК	IRR	AANS	SVGS	PYBK	IRR	AANS	SVGS	РҮВК	IRR
7.0	1.95	410	10267	8 a .	17.1	629	15748	7	19.6	823	20585	7	20.6	1061	26530	6	22.1
6.7	1.86	389	9739	8	16.6	598	1-1964	٦	19.0	783	19572	7	20.0	1009	25238	6	21.4
6.4	1.78	368	921Z	8	16.0	567	14181	7	18.4	742	18559	7	19.4	958	Z3950	7	20.7
6.1	1.70	347	7684	9	155	535	13398	8	17.7	701	17546	٦	18.7	906	22661	7	20.0
5.8	1.62	326	8156	9	14.9	504	12614	8	17.1	661	16533	8	18.0	854	21373	7	19.3
5.5	1:53	305	7629	٩	14.3	473	11831	8	16.4	621	15521	8	17.3	803	20085	7	18.6
5.Z	1.45	284	7101	10	13.6	442	11047	9	15.7	580	14.508	8	16.6	75z	18797	8	17.8
4.9	1.36	263	6579	10	13.0	411	10273	9	15.0	540	13507	8	15.9	700	17502	3	17.0
4.6	1.28	Z46	6158	10	12.5	379	9489	9	14.3	500	12494	9	15.1	649	16235	8	16.3
4.3	1.20	221	5524	11	11.6	348	8706	10	13.6	459	11481	9	14.4	598	14947	9	15.5
4.0	1.11	200	4996	//	10.9	317	7922	10	12.8	419	10468	10	13.6	543	13658	9	14.6
3.7	1.0Z	179	4468	1	10.1	285	7139	11	1Z.D	378	9456	10	12.7	·495	12370	10	13.7
3.4	.94	157	3941	IZ	9.3	254	6355	11	11.1	337	8443		11.8	443	11082	10	12.8
3.1	.86	136	3413	13	85	223	5572	12	10.Z	2,97	7430	11	10.9	392	9794	11	11.8
2.8	.75	115	2885	14	7.6	191	4788	12	9.2	256	6417	IZ	9.9	340	8505	11	10.
2.5	.69	94	2358	15	6.5	160	4005	13	8.Z	246	5405	13	8.8	288	7217	12	9.7

AANS: Average Annual Net Savings

This figure represents the average yearly fuel savings from the solar water heater, after maintenance and operating costs. Actual annual savings would be less than this during the first 10-15 years of operation and would then escalate as the cost of electricity or oil rises. This is demonstrated in Tables III A, III B, and III C in column 10, Savings with Solar. Table III A shows the Yearly Cash flow for a 4 panel solar system compared with electricity at 4c/Kwh. The AANS of that system is \$419. In Table III A you can see that the actual savings do not actually reach that level until after the 14th year.

SVGS: Savings

The total savings possible, after payback, over the lifetime (25 years) of the system.

PYBK: Payback Period

The number of years it takes for the yearly savings, after maintenance and operating costs, to equal the purchase price. The payback was determined using actual savings for each year.

IRR: Internal Rate of Return

This enables one to compare the returns on the purchase of the solar water heating equipment with other investments.

TABLE IIB-FINANCED WITH A HOME IMPROVEMENT LOAN

UTII RAI EL	,ITY ES OIL	E 2 PA INIT ACTU	XAMPLE NEL SY IAL CO	E #2 (STEM)ST=\$1; ST=\$15	827 30	E 3 PA INIJ ACTU	EXAMPLI ANEL SY FIAL CO JAL COS	E #5. YSTEM OST=\$2 ST=\$25	226 40	H 4 PA INIJ ACTU	EXAMPLI ANEL SI TIAL CO JAL COS	E #8 YSTEM OST=\$2 ST=\$25	625 40	5 P. INI ACT	EXAMPLI ANEL S TIAL CO UAL CO	E #11 YSTEM OST=\$3 ST=\$29	000 42
¢/ Kwh	¢/ Cal	AANS	SVGS	PYBK	IRR	AANS	SVGS	РҮВК	IRR	AANS	SVGS	PYBK	IRR	AANS	SVGS	PYBK	IRR
7.0	\$1.95	400	10016	8	17.9	608	15215	7	24.4	798	19943	7	26.6	1031	25784	6	29.8
6.7	1.86	379	9488	8	17.3	577	14431	7	23.3	757	18931	7	25.Z	980	24495	6	28.2
6.4	1.78	358	8960	8	16.6	546	13648	7	22.1	717	17918	7	Z4.0	928	23207	7	26.7
6.1	1.70	337	8432	8	15.9	514	12864	8	21.0	676	16905	8	22.7	877	299	7	25.2
5.8	1.62	316	7905	9	15.2	483	12081	8	19.9	635	15895	8	21.5	825	20631		23.9
5.5	1:53	295	7377	9	M.5	452	11297	B	18.9	595	14880	8	20.4	773	M342	7	22.5
5.2	1.45	2.74	6849	10	13.8	420	10514	9	17.8	554	13867	8	19.2	740	18054	8	21.2
4.9	1.36	253 -	6328	10	13.0	389	9739	9	16.8	514	12866	8	18.1	670	16766	8	19.9
4.6	1.28	232	5800	10	12.3	358	8956	9	15.7	474	11853	9	16.9	621	15533	8	18.7
4.3	1.20	211	5272	11	11.5	327	8172	10	14.6	433	10840	9	15.8	568	14204	9	17.4
4.0	1.11	190	4744	11	10.7	295	7389	10	13.5	393	9827	10	14.6	516	12916	9	16.1
3.7	1.02	168	4217	12	9.8	264	6605		12.4	352	8815	10	13.5	- 465	11627	10	14.9
3.4	.94	147	3689	12	8.9	233	5822	11	11.3	312	7802	11	12.3	413	10339	10	13.6
3.1	.86	126	3161	13	8.0	201	5038	12	10.1	2.71	6789		11.1	362	9051	11	12.3
28	.75	105	2634	14	7.0	170	4255	12	8.9	231	5776	12	9.8	310	7763		10.9
2.5	.69	84	2106	15	5.9	139	3471	13	7.6	190	4764	13	8.4	259	6474	12	9.5
				· .	•												
							TAB	LE IIC	-MORT(GAGED							
UTII RA1 ELEC	,ITY ES OIL	EX 2 PA INIT ACTU	AMPLE NEL SY IAL CO	#3 (STEM)ST=\$1 3T=\$32	·、 827 00	3 E INJ ACT	TAB EXAMP PANEL ITIAL (TUAL C	LE IIC LE #6 SYSTEM COST=\$ OST=\$3	-MORT 2226 925	FAGED I 4 PA INIT ACTI	EXAMPLI ANEL S FIAL CO JAL CO	E #9 YSTEM OST=\$2 ST=\$47	2625 225	5 P INI ACT	EXAMPL ANEL S TIAL C UAL CO	E #12 YSTEM OST=\$3 ST=\$54	000 75
UTII RAT ELEC ¢/ Kwh	JITY ES OIL ¢/ Gal	EX 2 PA INIT ACTU AANS	AMPLE NEL SY IAL CO AL COS	#3 (STEM)ST=\$1 3T=\$32 PYBK	827 00 IRR	3 E INI ACI AANS	TAB EXAMP PANEL S ITIAL C UAL C SVGS	LE IIC LE #6 SYSTEM COST=\$ OST=\$3 PYBK	MORT 2226 925 IRR	FAGED I 4 PA INIT ACTU AANS	EXAMPLI ANEL S FIAL CO JAL CO SVGS	E #9 YSTEM OST=\$2 ST=\$47 PYBK	625 25 IRR	5 P INI ACT AANS	EXAMPL ANEL S TIAL C UAL CO SVGS	E #12 YSTEM OST=\$3 ST=\$54 PYBK	000 75 IRR
UTII RAT ELEC ¢/ Kwh	ITY ES OIL ¢/ Gal	EX 2 PA INII ACTU AANS 334	AMPLE NEL SY 'IAL CO AL COS SVGS 8363	#3 7 STEM 2 ST=\$ 1 3 T=\$ 32 9 YBK 8	827 00 IRR 100	3 F INJ ACT AANS 535	TAB EXAMP PANEL TIAL C TUAL C SVGS 1334	LE IIC LE #6 SYSTEM COST=\$ OST=\$3 PYBK	-MORTO 2226 925 IRR 100	AGED I 4 PA INIT ACTU AANS 710	EXAMPLI ANEL S FIAL CO JAL CO SVGS	E #9 YSTEM OST=\$2 ST=\$47 PYBK	625 25 IRR	5 P INI ACT AANS 130	EXAMPL ANEL S TIAL C UAL CO SVGS 23428	E #12 YSTEM OST=\$3 ST=\$54 PYBK 6	000 75 IRR 100
UTII RAT ELEC ¢/ Kwh 7.0 6.7	,ITY ES 0IL ¢/ Ga1 % .95 1.% 6	EX 2 PA INIT ACTU AANS 334 313	AMPLE NEL SY IAL CO AL COS SVGS 8363 7836	#3 YSTEM DST=\$1 3T=\$32 PYBK 8 8	827 00 IRR 100 90.0	3 F INI ACT AANS 535 504	TAB EXAMP PANEL TIAL C UAL CO SVGS 1334 12611	LE IIC LE #6 SYSTEM COST=\$ OST=\$3 PYBK 7 7	MORT(2226 925 IRR 100 100	FAGED 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	EXAMPLI ANEL S FIAL CO JAL CO SVGS ITISS ILTISS	E #9 YSTEM OST=\$2 ST=\$47 PYBK 7 7	625 25 IRR 100 100	5 P INI ACT AANS 130 870	EXAMPL ANEL S TIAL CO UAL CO SVGS 2.3428 2.1960	E #12 YSTEM OST=\$3 ST=\$54 PYBK 6 6	000 75 IRR 100 105
UTII RAT ELEC ¢/ Kwh 7.0 6.7 6.4	,ITY ES 0IL - ¢/ Ga1 1.95 1.86	EX 2 PA INIT ACTU AANS 334 313 292	AMPLE NEL SY IAL CO AL CO SVGS 8363 7836 7836	#3 YSTEM DST=\$1 ST=\$32 PYBK 8 8 8 8	827 00 IRR 100 90.0 70.0	3 H INJ ACT AANS 535 504 473	TAB EXAMP PANEL TIAL C SVGS 133% 12611 12611	LE 11C LE #6 SYSTEM COST=\$ OST=\$3 PYBK 7 7 7	-MORTY 2226 925 IRR 100 100	FAGED I 4 PA INIT ACTU AANS 710 670 629	EXAMPLI ANEL S FIAL CO JAL CO JA JA CO JA JA CO JA JA CO JA C	E #9 YSTEM OST=\$2 ST=\$47 PYBK 7 7 7	625 25 IRR 100 100 100	5 P INI ACT AANS 130 878 827	EXAMPL ANEL S TIAL CO UAL CO SVGS Z3428 Z1960 Z0672	E #12 YSTEM OST=\$3 ST=\$54 PYBK 6 7	000 75 IRR 100 100
UTII RA1 ELEC ¢/ Kwh 7.0 6.7 6.4 6.4	.ITY ES OIL ¢/ Ga1 1.36 1.78 1.78	EX 2 PA INIT ACTU AANS 334 313 292 271	AMPLE NEL SY IAL CO SVGS 8363 7836 7836 7836 6780	#3 YSTEM DST=\$1 ST=\$32 PYBK 8 8 8 8 8 7	827 00 IRR 100 90.0 70.0 53.1	3 H INJ ACT AANS 535 504 473 442	TAB EXAMP PANEL S TIAL C SVGS 133% 12411 11827 11044	LE 11C LE #6 SYSTEM COST=\$ OST=\$3 PYBK 7 7 7 7 7	-MORTY 2226 925 IRR 100 100 100	FAGED H 4 PA INIT ACTU AANS 710 670 629 588	EXAMPLI ANEL S FIAL CO JAL TO JAL CO JAL CO JAL TO JAL TO	E #9 YSTEM OST=\$2 ST=\$47 PYBK 7 7 7 7 7	625 25 IRR 100 100 100	5 P INI ACT AANS 930 870 827 775	EXAMPL ANEL S TIAL CO UAL CO SVGS 2.3428 2.1960 20672 11383	E #12 YSTEM OST=\$3 ST=\$54 PYBK 6 6 7 7 7	000 75 IRR 100 100 100
UTII RA1 ELEC ¢/ Kwh 7.0 6.7 6.4 6.4 6.1 5.8	.ITY ES 0IL ¢/ Ga1 4.95 1.86 1.78 1.78 1.70	EX 2 PA INIT ACTU AANS 334 313 292 271 250	AMPLE NEL SY IAL CO AL CO SVGS 8363 7836 7305 6780 6253	#3 YSTEM DST=\$1 ST=\$32 PYBK 8 8 8 8 8 9 9 9	827 00 IRR 100 90.0 70.0 53.1 42.5	3 F INJ ACT AANS 535 504 473 442 410	TAB EXAMP PANEL TIAL C SVGS 13384 12411 11021 11044 10240	LE 11C LE #6 SYSTEM COST=\$3 OST=\$3 PYBK 7 7 7 7 8	-MORT? 2226 925 IRR 100 100 100 100	FAGED I 4 PA INIT ACTI AANS 710 670 629 588 548	EXAMPLI ANEL S FIAL CO JAL CO SVGS 17755 16743 15730 14717 13704	E #9 YSTEM OST=\$2 ST=\$47 PYBK 7 7 7 7 8	625 25 IRR 100 100 100 100	5 P INI ACT AANS 930 870 827 775 156	EXAMPL ANEL S TIAL CO VAL CO SVGS 2.3428 2.1960 20672 11383 18015	E #12 YSTEM OST=\$3 ST=\$54 PYBK 6 7 7 7 7	000 75 IRR 100 100 100
UTII RAT ELEC ¢/ Kwh 7.0 6.7 6.7 6.4 6.1 5.8 5.5	LITY ES OIL • ¢/ Ga1 1.36 1.78 1.78 1.70 1.62	EX 2 PA 1N11 ACTU AANS 334 313 292 271 250 229	AMPLE NEL SY IAL CO SVGS 8363 7836 7836 7305 6730 6253 5725	#3 YSTEM DST=\$1 ST=\$32 PYBK 8 8 8 8 8 9 9 9 9	827 00 IRR 100 90.0 70.0 53.1 42.5 35.6	3 F INI ACT AANS 535 504 473 442 410 379	TAB EXAMP PANEL TIAL C SVGS 13374 12611 11827 11044 10260 9480	LE 11C LE #6 SYSTEM COST=\$3 PYBK 7 7 7 7 8 7	-MORT? 2226 925 IRR 100 100 100 100 90.0	FAGED H 4 PA INIT ACTU AANS 710 670 629 588 548 507	EXAMPLI ANEL S FIAL CO JAL CO JAL CO JAL CO JAL CO I SVGS I 17755 I 17755 I 17755 I 17755 I 15730 I 14717 I 3704 I 2692	E #9 YSTEM OST=\$2 ST=\$47 PYBK 7 7 7 7 7 8 8	625 25 IRR 100 100 100 100 100	5 P INI ACT AANS 930 870 827 775 756 672	EXAMPL ANEL S TIAL CO VAL CO SVGS Z3428 Z1960 20672 11383 15015 16807	E #12 YSTEM OST=\$3 ST=\$54 PYBK 6 7 7 7 7 7	0000 75 IRR 100 100 100 100
UTII RAT ELEC ¢/ Kwh 7.0 6.7 6.7 6.4 6.1 5.8 5.5 5.5	.ITY ES OIL ¢/ Ga1 1.95 1.86 1.78 1.78 1.42 1.53 1.45	EX 2 PA INIT ACTU AANS 334 313 292 271 250 229 208	AMPLE NEL SY IAL CO SVGS 8363 7836 7836 7305 6730 6253 5725 5197	#3 YSTEM DST=\$1 ST=\$32 PYBK 8 8 8 8 9 9 9 9 10	827 00 IRR 100 90.0 70.0 53.1 42.5 35.6 30.4	3 H INJ ACT AANS 535 504 473 442 410 379 347	TAB EXAMP PANEL TIAL C SVGS 133% 12611 11044 10260 9480 8693	LE 11C LE #6 SYSTEM COST=\$3 PYBK 7 7 7 8 9	-MORTY 2226 925 IRR 100 100 100 100 100 90.0 60.0	FAGED I 4 PA INIT ACTU AANS 710 670 670 629 588 548 507 467	EXAMPLI ANEL S FIAL CO JAL CO	E #9 YSTEM OST=\$2 ST=\$47 PYBK 7 7 7 7 8 8 8	625 25 1RR 100 100 100 100 100 100	5 P INI ACT AANS 130 878 827 775 775 756 672 621	EXAMPL ANEL S TIAL CO SVGS 2.3428 2.1960 20672 11383 18015 16807 15519	E #12 YSTEM OST=\$3 ST=\$54 PYBK 6 7 7 7 7 8	000 75 IRR 100 100 100 100 100
UTII RAI ELEC ¢/ Kwh 7.0 6.7 6.4 6.1 5.8 5.5 5.5 5.2 4.9	LITY ES OIL ¢/ Ga1 1.95 1.86 1.78 1.78 1.45 1.45 1.36	EX 2 PA INII ACTU AANS 334 313 292 292 292 292 208 187	AMPLE NEL SY IAL CO AL CO SVGS 8363 7836 7305 6730 6253 5725 5197 4675	#3 YSTEM DST=\$1 ST=\$32 PYBK 8 8 8 8 9 9 9 9 9 10 10	827 00 IRR 100 90.0 70.0 53.1 42.5 35.6 30.4 26.2	3 F INJ ACT AANS 535 504 473 4473 4473 4473 4473 4473 4473 447	TAB EXAMP PANEL TIAL C SVGS 13394 12411 11044 10240 9480 8693 7906	LE 11C LE #6 SYSTEM COST=\$3 PYBK 7 7 7 7 8 9 9	-MORT 2226 925 IRR 100 100 100 100 100 100 60.0 45.0	FAGED I 4 PA INIT ACTI AANS 710 670 629 588 548 507 467 427	EXAMPLI ANEL S FIAL CO JAL CO SVGS 17755 16743 15730 14717 13704 12692 11679 10678	E #9 YSTEM OST=\$2 ST=\$47 PYBK 7 7 7 7 8 8 8 8	625 25 IRR 100 100 100 100 100 64.3	5 P INI ACT AANS 930 870 827 775 756 672 672 621 569	EXAMPL ANEL S TIAL CO SVGS 2.3428 2.1960 20672 113333 18015 16807 15517 14224	E #12 YSTEM OST=\$3 ST=\$54 PYBK 6 7 7 7 7 8 8	000 75 IRR 100 100 100 100 100
UTII RAI ELEC ¢/ Kwh 7.0 6.7 6.4 6.1 5.8 5.5 5.5 5.2 4.9 4.6	LITY ES OIL • ¢/ Ga1 \$9.95 1.86 1.78 1.78 1.70 1.62 1.53 1.45 1.36 1.36 1.28	EX 2 PA INIT ACTU AANS 334 313 292 271 250 229 271 250 229 208 187 166	AMPLE NEL SY IAL CO SVGS 8363 7836 7305 6780 6253 5725 5197 4675 4148	#3 YSTEM DST=\$1 ST=\$32 PYBK 8 8 8 9 9 9 9 9 10 10 10	827 00 IRR 100 90.0 70.0 53.1 42.5 35.6 30.4 26.2 22.6	3 F INI ACT AANS 535 504 473 442 410 379 347 347 346 285	TAB EXAMP PANEL TIAL C SVGS 133M 12611 11044 10260 9480 8693 7196 7135	LE IIC LE #6 SYSTEM COST=\$3 PYBK 7 7 7 7 7 7 9 9 9	-MORT 2226 925 IRR 100 100 100 100 100 90.0 60.0 45.0 36.2	FAGED H 4 PA INIT ACTI AANS 710 670 629 588 548 507 467 427 386	EXAMPLI ANEL S FIAL CO JAL CO SVGS 17755 16743 15730 14717 13704 12692 11679 10678 9665	E #9 YSTEM OST=\$2 ST=\$47 PYBK 7 7 7 7 7 8 8 8 8 9	625 25 IRR 100 100 100 100 100 100 64.3 46.9	5 P INI ACT AANS 930 878 827 775 756 672 621 569 518	EXAMPL ANEL S TIAL CO SVGS 2.3428 2.1960 20672 11383 18015 16807 15519 14224 12957	E #12 YSTEM OST=\$3 ST=\$54 PYBK 6 7 7 7 7 8 8 8 8 8	0000 75 IRR 100 100 100 100 100 30.0
UTII RAT ELEC ¢/ Kwh 7.0 6.7 6.4 6.1 5.8 5.5 5.5 5.2 4.9 4.6 4.3	LITY ES OIL • ¢/ Ga1 (1.95 1.86 1.78 1.78 1.78 1.45 1.45 1.36 1.28 1.20	EX 2 PA INIT ACTU AANS 334 313 292 271 250 229 208 187 166 145	AMPLE NEL SY IAL CO SVGS 8363 7836 7836 7305 6780 6253 5725 5197 4675 4148 3620	#3 YSTEM DST=\$1 ST=\$32 PYBK 8 8 8 8 8 9 9 9 10 10 10 11	827 00 IRR 100 90.0 70.0 53.1 42.5 35.6 30.4 26.2 22.6 19.4	3 H INI ACT AANS 535 504 473 442 410 379 347 347 347 346 285 254	TAB EXAMP PANEL TIAL CO SVGS 13314 12411 11044 10240 9480 8693 7106 7135 6352	LE IIC LE #6 SYSTEM COST=\$3 PYBK 7 7 7 7 7 9 9 10	-MORTY 2226 925 IRR 100 100 100 100 100 90.0 60.0 45.0 36.2 29.9	FAGED I 4 PA INIT ACTU AANS 710 670 670 629 588 548 507 467 427 386 346	EXAMPLI ANEL S FIAL CO JAL CO JAL CO JAL CO SVGS 17755 16743 15730 14717 13704 12692 11679 12692 11679 10678 9665 3652	E #9 YSTEM OST=\$2 ST=\$47 PYBK 7 7 7 7 7 8 8 8 9 9 9	625 25 IRR 100 100 100 100 100 100 64.3 46.9 36.8	5 P INI ACT AANS 930 878 827 775 756 672 621 569 518 467	EXAMPL ANEL S TIAL CO SVGS 2.3428 2.1960 20672 17383 18075 16807 15519 14224 12957 11569	E #12 YSTEM OST=\$3 ST=\$54 PYBK 6 7 7 7 7 7 8 8 8 8 8 9	000 75 IRR 100 100 100 100 100 100 80.0 53.0
UTII RAI ELEC ¢/ Kwh 7.0 6.7 6.4 6.1 5.8 5.5 5.5 5.5 5.2 4.9 4.6 4.6 4.3 4.0	J.TTY ES OIL ¢/ Ga1 49.95 1.86 1.78 1.86 1.78 1.62 1.53 1.45 1.36 1.28 1.20 1.11	EX 2 PA INII ACTU AANS 334 313 292 292 297 208 187 166 145 123	AMPLE INEL SY IAL CO AL COS SVGS 8363 7836 7305 6730 62253 5725 5725 5197 4675 4148 3620 3072	#3 YSTEM DST=\$1 ST=\$32 PYBK 8 8 8 8 9 9 9 9 10 10 10 11 11	827 00 IRR 100 90.0 70.0 53.1 42.5 35.6 30.4 26.2 22.6 19.4 16.5	3 F INJ ACT AANS 535 504 473 4473 4473 4473 4473 4473 4473 447	TAB EXAMP PANEL TIAL C SVGS 13394 12611 110241 10240 9480 9480 9480 9480 9480 9480 9480 94	LE IIC LE $\#6$ SYSTEM COST= $$3$ PYBK 7 7 7 7 8 9 9 9 10 10	-MORTY 2226 925 IRR 100 100 100 100 100 100 100 100 100 1	FAGED I 4 P4 INIT ACTI AANS 710 670 670 629 588 548 507 467 427 386 346 305	EXAMPLI ANEL S FIAL CO JAL CO SVGS 17755 16743 15730 14717 13704 12692 11679 10678 9665 3652 7639	E #9 YSTEM OST=\$2 ST=\$47 PYBK 7 7 7 7 7 8 8 8 8 9 9 9 10	625 25 IRR 100 100 100 100 100 100 64.3 46.9 36.8 29.9	5 P INI ACT AANS 930 878 827 736 672 672 672 621 569 518 467 415	EXAMPL ANEL S TIAL CO SVGS 2.3428 2.1960 20672 113333 18015 16807 15517 14224 12957 11669 10380	E #12 YSTEM OST=\$3 ST=\$54 PYBK 6 7 7 7 7 7 8 8 8 8 8 9 9	0000 75 IRR 100 100 100 100 100 100 53.0 39.6
UTII RAI ELEC ¢/ Kwh 7.0 6.7 6.4 6.1 5.8 5.5 5.2 4.9 4.6 4.3 4.0 3.7	LITY ES OIL • ¢/ Ga1 \$1.95 1.86 1.78 1.70 1.62 1.53 1.45 1.28 1.28 1.20 1.11 1.02	EX 2 PA 1N11 ACTU AANS 334 313 292 271 250 229 208 187 166 145 123 102	AMPLE NEL SY IAL CO SVGS 8363 7836 7305 6780 6253 5725 5725 5197 4675 4148 3620 3072 2565	#3 YSTEM DST=\$1 ST=\$32 PYBK 8 8 8 8 9 9 9 10 10 10 11 11 12	827 00 IRR 100 90.0 70.0 53.1 42.5 35.6 30.4 26.2 22.6 19.4 16.5 13.9	3 F INI ACT AANS 535 504 473 442 410 379 347 347 347 347 347 347 225 254 2254 2254 223 190	TAB EXAMP PANEL TIAL C SVGS 133M 12611 11044 10260 9480 9480 9480 9480 9480 9480 9480 948	LE IIC LE $\#6$ SYSTEM COST= $$3$ PYBK 7 7 7 7 7 7 9 9 9 10 11	-MORTY 2226 925 IRR 100 100 100 100 100 100 100 100 100 1	FAGED H 4 PA INIT ACTI AANS 710 670 670 629 588 548 507 467 427 386 346 346 346 305 245	EXAMPLI ANEL S FIAL CO JAL CO SVGS 17755 16743 15730 14717 13704 12692 11673 16478 9665 3652 7637 6627	E #9 YSTEM OST=\$2 ST=\$47 PYBK 7 7 7 7 7 8 8 8 8 8 9 9 9 10 10	625 25 IRR 100 100 100 100 100 100 64.3 46.9 36.8 29.9 24.6	5 P INI ACT AANS 930 878 827 775 756 672 621 569 518 467 415 363	EXAMPL ANEL S TIAL CO SVGS 2.3428 2.1960 20672 11333 18015 16807 15517 15517 14224 12957 11669 10380 9092	E #12 YSTEM OST=\$3 ST=\$54 PYBK 6 7 7 7 7 7 8 8 8 8 8 9 9 10	0000 75 IRR 100 100 100 100 100 100 100 30.0 53.0 39.6 31.0
UTII RAT ELEC ¢/ Kwh 7.0 6.7 6.4 6.1 5.8 5.5 5.2 4.9 4.0 4.3 4.0 3.7 3	J.TTY ES OIL • ¢/ Ga1 [395 [.36 [.78 [.78 [.70 [.62 [.36 [.28 [.28 [.20 [.1]] [.02 [.94]	EX 2 PA 1N11 ACTU AANS 334 313 292 271 250 271 250 229 208 187 166 145 123 102 81	AMPLE NEL SY IAL CO SVGS 8363 7836 7836 7836 7836 7836 7836 7836	#3 YSTEM DST=\$1 ST=\$32 PYBK 8 8 8 9 9 9 9 10 10 10 10 11 11 12 12	827 00 IRR 100 90.0 70.0 53.1 42.5 35.6 30.4 26.2 22.6 19.4 16.5 13.9 11.2	3 F INI ACT AANS 535 504 473 442 410 379 347 347 347 347 225 254 2254 2254 223 190 160	TAB EXAMP ANEL TIAL CO SVGS 13394 12611 11044 10260 9480 9480 9480 9480 9480 9480 9480 948	LE IIC LE $\#6$ SYSTEM COST= $\$3$ PYBK 7 7 7 7 7 7 7 9 9 9 10 10 11 11 11	-MORT 2226 925 IRR 100 100 100 100 100 100 100 100 100 1	FAGED H 4 PA INIT ACTI AANS 710 670 629 588 548 507 467 427 386 346 346 346 346 346 346	EXAMPLI ANEL S FIAL CO JAL CO JAL CO SVGS 17755 16743 15730 14717 13704 12,692 11677 13704 12,692 11677 13642 16678 9665 3652 7637 6627 5614	E #9 YSTEM OST=\$2 ST=\$47 PYBK 7 7 7 7 7 8 8 8 8 9 9 9 10 10 11	625 25 IRR 100 100 100 100 100 100 100 64.3 46.9 36.8 29.9 24.6 20.3	5 P INI ACT AANS 930 870 827 775 756 672 621 569 518 467 415 ·363 312	EXAMPL ANEL S TIAL CO SVGS 2.3428 2.1960 20672 17383 18015 16807 15519 14224 12957 11669 10380 9092 7804	E #12 YSTEM OST=\$3 ST=\$54 PYBK 6 7 7 7 7 8 8 8 8 8 8 9 9 10 10	0000 75 IRR 100 100 100 100 100 100 100 30.0 31.0 31
UTII RAI ELEC ¢/ Kwh 7.0 6.7 6.4 6.1 5.8 5.5 5.5 5.5 5.5 8.2 4.9 4.6 4.3 4.0 3.7 3.1	J.TTY ES OIL . ¢/ Ga1 M.95 I.86 I.78 J.70 I.86 I.78 I.86 I.78 I.86 I.78 I.86 I.78 I.20 I.11 I.02 .94 .86	EX 2 PA INIT ACTU AANS 334 313 292 271 250 229 208 187 166 145 123 102 81 60	AMPLE INEL SY TAL CO AL COS SVGS 8363 7836 7836 7305 6253 5725 5725 5725 5197 4675 4148 3620 3072 2565 2037 1509	#3 YSTEM DST=\$1 ST=\$32 PYBK 8 8 8 9 9 9 9 10 10 10 10 10 10 11 11 12 12 13	827 00 IRR 100 90.0 70.0 53.1 42.5 35.6 30.4 26.2 22.6 19.4 16.5 13.9 11.2 8.6	3 F INJ ACT AANS 535 504 473 4473 4473 4473 4473 4473 4473 447	TAB EXAMP PANEL SVGS 13394 12611 11024 10260 9480 9480 9480 9480 9480 9480 9480 948	LE IIC LE #6 SYSTEM COST=\$3 PYBK 7 7 7 7 8 9 9 9 10 10 11 11 12	-MORTY 2226 925 IRR 100 100 100 100 100 100 100 100 100 1	Image: Arrow of the second	EXAMPLI ANEL S FIAL CO JAL CO SVGS 17755 16743 15730 14717 13704 12692 11679 12692 11679 10678 9665 3652 7639 6627 5614 4601	E #9 YSTEM OST=\$2 ST=\$47 PYBK 7 7 7 7 7 8 8 8 8 8 9 9 10 10 11 11 11 11	625 25 IRR 100 100 100 100 100 100 100 100 64.3 46.9 36.8 29.9 24.6 20.3 16.6	5 P INI ACT AANS 930 877 827 736 672 621 569 518 467 415 -363 312 260	EXAMPL ANEL S TIAL CO SVGS 2.3428 2.1960 20672 17383 18015 16807 15517 14224 12957 11669 10380 9092 7804 6516	E #12 YSTEM OST=\$3 ST=\$54 PYBK 6 7 7 7 7 7 8 8 8 8 8 8 9 9 10 11	0000 75 IRR 100 100 100 100 100 100 100 100 100 30.0 39.6 31.0 25.1 20.3
UTII RAI ELEC ¢/ Kwh 7.0 6.7 6.4 6.1 5.8 5.5 5.5 5.5 5.5 5.2 4.9 4.6 4.3 4.0 3.7 3.1 3.1 2.8	LITY ES OIL • ¢/ Ga1 49.95 1.76 1.78 1.78 1.70 1.62 1.53 1.45 1.28 1.28 1.28 1.20 1.11 1.02 1.11 1.02 .94 • .86 • .75	EX 2 PA INIT ACTU AANS 334 313 292 271 250 229 208 187 166 145 123 102 81 60 39	AMPLE NEL SY TAL CO AL COS SVGS 8363 7836 7305 6253 5725 5725 5725 5725 5197 4675 4148 3620 3072 2565 2037 1509 981	#3 YSTEM DST=\$1 ST=\$32 PYBK 8 8 8 8 9 9 9 9 10 10 10 10 11 11 12 12 12 13 14	827 00 IRR 100 90.0 70.0 53.1 42.5 35.6 30.4 26.2 22.6 19.4 16.5 13.9 11.2 8.6 5.9	3 F INJ ACT AANS 535 504 473 4473 4473 4473 4473 4473 4473 447	TAB EXAMP PANEL SVGS 133M 12411 11044 10240 9480 9480 9480 9480 9480 9480 9480 94	LE IIC LE #6 SYSTEM COST=\$3 PYBK 7 7 7 7 8 9 9 9 10 10 11 11 11 12 12	-MORTY 2226 925 IRR 100 100 100 100 100 100 90.0 60.0 45.0 36.2 29.9 24.9 20.8 17.3 14.0 10.9	Image: Arrow of the second	EXAMPLI ANEL S FIAL CO JAL CO SVGS 17755 16743 15730 14717 13704 12692 11677 13704 12692 11677 13704 12692 11677 13655 7637 6627 5614 4601 3588	E #9 YSTEM OST=\$2 ST=\$47 PYBK 7 7 7 7 8 8 8 8 8 9 9 9 10 10 11 11 12	625 25 IRR 100 100 100 100 100 100 100 64.3 46.9 36.8 29.9 24.6 20.3 16.6 13.1	5 P INI ACT AANS 930 870 827 775 756 672 621 569 518 467 415 -363 312 260 209	EXAMPL ANEL S TIAL CO SVGS 2.3428 2.1960 20672 11333 18015 16807 15517 14224 12957 11567 14224 12957 11669 10380 9092 7864 6516 5227	E #12 YSTEM OST=\$3 ST=\$54 PYBK 6 7 7 7 7 7 8 8 8 8 8 8 9 9 10 10 11 11	000 75 IRR 100 100 100 100 100 100 100 100 100 30.0 53.0 39.6 31.0 25.1 20.3 16.2

SUMMARY OF FCHART VARIABLES

- Column 8: Cost With Solar. The sum of the yearly cost for back up fuel, insurance and maintenance. These costs rise at the current rate of inflation, 6.5%.
- Column 9: Savings With Solar. This represents the difference between solar water heating and conventional water heating with electricity or oil.
- Column 10: Power of the Solar Savings: The solar savings from Column 9 are adjusted to account for inflation. So this figure represents the solar savings in 1979 dollars.

The Rate of Return on the Solar Investment: See IRR in Section V

Year Until Undiscounted Fuel Savings = Investment: See PYBK in Section V. The year in which the savings in Column 9 add up to the purchase price.

Years Until Undiscounted Fuel Savings = Mortgage Principal: The only situation in which this is a significant factor is Table III C. This means that the annual solar savings have exceeded the remaining mortgage liability, at which time the mortgage could conceivably be paid off in full.

Undiscounted Cumulative Solar Savings: The sum of all the savings in Column 9.

Present Worth of Yearly Total Costs With Solar: Represents the total cost of heating your water with solar energy over the 25 year lifetime of the system, including the purchase price, back up fuel cost, maintenance and operating expenses.

Present Worth of Yearly Total Cost Without Solar: This represents what it would have cost to heat your water with either oil or electricity during the same 25 year period.

Present Worth of Cumulative Solar Savings. The sum of the savings in Column 10. The only situation in which this figure is significant is when the system is paid for in cash. If the system is paid for all in one year the savings should be measured in dollars of the same value. If the system is paid for with a loan, particularly a mortgage, the interest paid reflects the conversion to dollars of current value. Thus the savings should be judged on the same terms. TABLE IIIA

,

1

Yearly Cash Flow for a 4 Panel System Financed With Cash

PORT	TLAND	ì	ME 43	* 65						
**** 11 T	KTHERMAL 4E PERCE SOL4	ANALY ENT ING AR (YSIS*** CIDENT SOLAR MMBTU)	* HEATIN LOAI (MMBTI	IG WATE) LOA D(MMRT)	R DEGREN D DAYS H) (F-D)	E AMBIEN TEMI AY) (F)	V.T D		
YR	70.1	l.	41.08	0.00	16.6	9 7951	*			
**** SPEC INI THE	KECONOM) CIFIED (FIAL COS ANNUAL	EC ANAL COLLEC ST OF S MORTG	LYSIS** Tor Are Solar S Age Pay	** A ≕ YSTEM MENT F		75. F 1901. Years :	T2 = \$		0.	
	T T	ENT		PROP	TMC	BACKHP	TNSHR®	COST	SAVNGS	éw OF
	TNTRGT	ne ve	neppe	TAX	TAX	FHEL	MAINT	LITTH	MTTH	SOLAR
$\sqrt{2}$	PATT	PRTNC	THE THE C	PATD	SAUED	COST	COST	SOLAR	SOLAR	SAVNOS
0	- Π.L.Ο 	Δ	0	ά Δ	() ()	0001	0007	1900	-1900	-1900
1	ö	ŏ	ŏ	ŏ	ŏ	58	19	77	118	115
2	ŏ	ő	ŏ	Ő	Ő	64	20	84	130	124
3	ŏ	ŏ	ŏ.	ö	Ö	20	21	92	144	134
4	Ö	Ő	ō	Ö	Ő	77	22	100	159	144
5	0	0	0	0	0	85	24	110	176	155
6	0	0	0	Ö	0	94	26	120	194	1.68
7	0	0	0	0	0	103	27	131	215	181
8	0	0	0	0	0	113	29	143	237	195
9	Ó	Ó	Ő	Ö	0	125	31	156	262	210
10	0	0	0	Ö	0	137	33	171	289	226
1. 1.	Ö	0	Ó	0	Ó	151	35	187	320	243
12	0	Ő	0	Ö	0	166	37	204	353	262
13	0	Ó	0	Ö	0	183	40	223	389	282
14	Ö	0	0	Ö	Ó	201	43	244	430	304
15	0	0	Ó	0	0	222	45	267	474	327
16	0	0	0	0	0	244	48	293	524	352
17	0	0	0	Ö	Ó	268	52	320	578	379
18	0	0	0	0	0	295	55	351	637	408
19	Ö	0	0	0	$\langle \rangle$	325	59.	384	703	44()
20	Ö	Ó	Ö	0	0	357	62	420	775	473
21	0	Ó	0	0	0	393	66	460	855	509
22	0	Ö	0	0	0	432	71	504	943	548
23	0	0	0	0	\diamond	476	75	551	1040	589
24	0	Ó	0	0	0	523	80	604	1147	634
25	Ó	0	Ŏ	0	0	575	86	662	1264	682
THE	RATE OF	- RETU	RN ON TI	HE SOL	AR INV.	ESTMENT	(%)=		13.6	
YRS	UNTIL U	JNDISC.	. FUEL :	SAVING)S ≕ IN	VESTMEN	Γ		1 O *	
YRS	UNTIL U	JNDISC.	, SOLAR	SAVIN	!GS ⇔ M	ORTGAGE	PRINCI	°AL	1. •	
UNDI	SCOUNTE	ED CUMI	JLATIVE	SOLAF	SAVIN	GS == \$			10468.	
PRES	SENT WOR	₹TH OF	YEARLY	TOTAL	. COSTS	WITH SO	OLAR = ·	\$	6439.	
PRES	SENT WOR	ATH OF	YEARLY	TOTAL	. COSTS	WZ0 S04	AR 🖙 '	\$	12635.	
PRES	BENT WOR	ATH OF	CUMULA	TIVE S	OLAR S	AVINGS -			6195	

TABLE IIIB

Yearly Cash Flow for a 4 Panel System Financed With a Home Improvement Loan

PORTLAND

ME

****THERMAL ANALYSIS****

43.65

TIME PERCENT INCIDENT HEATING WATER DEGREE AMBIENT

SOLAR SOLAR LUAD LOAD DAYS TEMP (MMBTU) (MMBTU)(MMBTU) (F-DAY) (F)YR 70.1 41.08 0.400 16.69 7951. ****ECONOMIC ANALYSIS**** SPECIFIED COLLECTOR AREA == 75, FT2 INITIAL COST OF SOLAR SYSTEM = \$ 1901. THE ANNUAL MORTGAGE PAYMENT FOR 5 YEARS = \$ 540. ENÜ PROP INC BACKUP INSUR, COST SAVNGS PW OF INTRST OF YR DEPRC TAX ТАХ FUEL MAINT WITH WITH SOLAR PAID PRINC DEDUCT PAID SAVED COST COST ΥŔ SOLAR SOLAR SAVNGS () 1900 Ô Ö Ö 0 0 Ô Ö Ö 0 1 247 1607 0 0 49 58 1.9568 ~372 -372 2 208 1275()Ö 41 64 20 583 ~367 -367 3 599 1.65 901 0 Ö 33 70 21 -362 -362 Д Ô 77 117 478 0 23 22 617 ~357 -357 5 Ô 1.285 -35162 Ô Ö 24 637 -3516 Ö Ö Ö Ö 0 94 26120 194 194 7 Ö 0 Ø 0 103 2150 27 131 215 8 Ö 0 0 Ö 0 113 29 143 237 237 Q Ô Ö Ö 0 Ö 125156 262 31 262 10 Ó Ô Ö Ö () 137 33 171 289 289 Ö 0 0 11 Ö Ő 15135 187 320 320 1.2Ô Ő \bigcirc () Ö 166 37 204353 353 Ö 13 Ö Ö Ö Ö 183 40 223389 389 1.4 Ô 0 Ô Ö 0 20143 244 430 430 15Ö Ö 0 Ö () 222 45 267 474 474 1.60 0 Ö Ö (244 48 293 524524 17 Ö Ö Ö 0 Ö 268 52320 578 578 (1.8Ö Ö Ö Q 29555 351637 637 19 Ö Ö 0 Ö 703 0 325 59 384 703 20Ö Ô Ö 0 0 357 62 420 775775 210 Ô Ö Ö 0 393 66 460 855 855 22 Ö 0 Ö Ö Ö 432 71 504943 943 23Ö (Ö 0 750 476 551 1040 1040 24Ö (Ö 0 0 523 604 1147 80 1147 250 0 Ö. Ö 0 57588 662 12641264THE RATE OF RETURN ON THE SOLAR INVESTMENT(%)= 14.6 YRS UNTIL UNDISC. FUEL SAVINGS = INVESTMENT 10. CUMULATIVE SAVINGS NEVER EXCEEDED THE 'MORTGAGE PRINCIPAL UNDISCOUNTED CUMULATIVE SOLAR SAVINGS == \$ 9827. PRESENT WORTH OF YEARLY TOTAL COSTS WITH SOLAR = \$ 9412. PRESENT WORTH OF YEARLY TOTAL COSTS W/O SOLAR :::: \$\$ 19239* PRESENT WORTH OF CUMULATIVE SOLAR SAVINGS = \$ 9827.

Yearly Cash Flow for a 4 Panel System Financed In the Original Mortgage

POR	rland	ſ	ME 43	×65						
de de de d	E Y LUC DA A F	AMALY	verestate	b						
ጥጥጥላ ምግኑ	A FEHLESPIEN ACT - COTOPE	РНУРЦ ТАГТ ТАЙ	101000000	ኮ .ሀሮ ሌጥ ተእከ	0. 114 (02)	o - YOC 72 IO IO I	- AMDTEN	J 'Y'		
1 .1.1	2011-11-11-11-11-11-11-11-11-11-11-11-11-	2.13.1 J.133 A.15 7	DUULINEE E DYNEAD	1711 - 111 - 111 111 - 111 - 111 - 111	U WHIEL LOAD	N DEUNEE D DAVC	1. MULDICH MCMI	N 1 D		
	3 U I P	911% - 3 2 X	DULLPHY SMYDYTHN	LUPPLU LUPPLU LUPPLU	L. UPD	U DEFED UN ZELLEY	16.111 VVV 761V			
VD	··· / ··· ·	1	100107		7 Y FATLO I U 4 Z - Z (07 (r~10) 07 7084	417 (177			
1 K	/0+3	l. ,	91.000	0.00	1.0 + 0.	γ /γ.J.L.·	¢			
***>	KECONOM:	IC ANAI	YSIS**	**						
SPE	CIFIED (COLLEC	TOR ARE	ሳ 🚥		25. F	ľ2			
INT	TIAL COS	ST OF S	SOLAR S	YSTEM	== \$	1901.				
тне	ANNUAL.	MORTG	AGE PAY	MENT F	OR 25	YEARS :	= \$		217.	
		CAT		ppap	TMC	RAPRHP	TNCHR	cost	SAUNGS	PW OF
	TAPTEC	DE VO	YEED DO CO	Ϋ́ΛΥ	T'AV	ETHET	MATNY	ытты	HTTH	SOLAR
$\sim \infty$		DETAIN	TETHOY	0ATN	CAHEN	roen roer	COGT	SUL AB	SOLAR	SAUNAS
	1" PH L D	4000	000001	6 m.a. 10 ()	A THE	0001		ά. Δ	0.000	0.11110.0
	100	1000		~ ~	20	*:0	4.0	oss.		
л. С	177	1002	V 0	V	37 780	00 64	1.2	200 200		
л 	1.77	LOOK	0	V	37	0 M	20 A	2002 2012 A	···· · · · · · · · · · · · · · · · · ·	
ം പ	1.70	1.1340	V	0	37 70	Z ()	×.1		·	
4	193	1816	0	0	38	17	st. st. CD-A	<u>%/%</u>		
D .	190	1789	O n	0	38	80	a. 44	207	····	···· » 4. 4
<u>ó</u>	187	1760	O U	O .	37	94	28	000	J. *}	1. ^^
7	184	1727	O Ö	0	36	103		511	34	-0.44 ET Z
8	181	1691	O Ü	O .	36	11.5	29	\3 x≤ 4	00	00
9	1.77	1651	Q	O v	35	125	31	338	08	80
:10	1.73	1.607	Q	0	34	13/	<u>33</u>	304	1. O Z	1.07
11	168	1559	O Ü	O Ű	33	1.55.1	35	3/1	1.56	1.30
12	163	1505	0	0	32	166	37	387	1.68	168
13	1.58	1446	0	0	31	183	40	409	204	204
14	151	1380	O 	O U	30	201	43	4.52	243	x14-0 000-0
1.5	1.44	1308	0	0	28	ali, ali ali	45	406	286	280
16	1.37	1227	0	0	27	244	48	483	334	334
:1.7	128	1139	. O	0	25	268	52	012	386	386
18	119	1041	0	0	23	295	55	544	444	444
19	109	933	0	0	21	325	52	579	507	50Z
20	98	813	0	0	1.9	352	62	618	578	578
21	85	681	0	Ó	1.7	393	66	660	655	655
22	71	536	Ô	Ö	14	432	71	707	740	740
23	56	374	Ö	Ó	1. 1.	476	25	758	834	834
24	39	196	0	0	7	523	80	814	937	937
25	20	()	0	Ö	4	575	88	875	1051 -	1051
THE	RATE OF	RETU	RN ON TI	HE SOL	AR INV	ESTMENT	(%)።		29,9	
YRS	UNTIL U	JNDISC	, FUEL :	SAVING	S = IN	VESTMEN	Ĩ.		10,	
YRS	UNTIL (JND1SC	. SOLAR	SAVIN	GS ≕ M	ORTGAGE	PRINCI	°AL	16.	
UNDI	SCOUNTE	ED CUM	JLATIVE	SOLAR	SAVIN	GS ≕ \$			7639.	
PRES	SENT WOF	RTH OF	YEARLY	TOTAL	COSTS	WITH SO	JLAR = ∶	\$	11600.	
PRES	SENT WOF	RTH OF	YEARLY	TOTAL.	COSTS	WZO SOI	_AR = 1	\$	19239.	
PRES	SENT WOR	RTH OF	CUMULA	TIVE S	OLAR S	AVINGS -	≕ \$		7639,	

APPENDIX

The solar water heater used in our analysis for the tables is an active system, using water or anti-freeze for the heat transfer medium. Sunshine and other pertinent weather data are from the National Bureau of Standards and the National Weather Service for Portland, Maine. It is assumed that the collectors face due south and are tilted at 43 degrees, the approximate latitude of Portland. The systems supply an average of eighteen gallons of 130° water per person per day.

The period of economic analysis (the life cycle cost of the system) was chosen to be 25 years. Yearly maintenance, pump operation, insurance and anti-freeze replacement are calculated at 1% of the system cost (after tax credits) plus \$15 (1979 dollars). Monetary values are discounted at the rate of 6.5% per year where appropriate. The fuel escalation rate is 10% per year. Utility rates, system costs, and financing terms were derived from a wide range of the best available sources.

on Solar. Please send me the	ar legislation.	iding: 1) manufacturers, dealers, if acturer's representatives, 2) ar- (Circle the lists that you want.)	detailed Information on products	ow me how to shop for solar and Industrial applications of solar energy	to give me ideas about passive Concentrating collectors interfectors in booklet you want.) Consumers, 2)	olaining the fundamentals and Office Office I comprehensive bibliography for children and young adults	obtain more Information on solar I Solar Greenhouse bibliography and list of plans	y basics.	buildings in Maine using all types	Passive solar energy as It is ap-	sources:	n solar related courses by State. NAME	/courses-solar related.	references on: (Street) (City) (State) (Zip)	aphy Mail this name to: The Maine Office of Energy Resources	55 Capitol Street	and systems	
n increased in turner mountanon on solar. F	A booklet on Federal and State solar legislation.	A list of solar energy firms including: 1) man distributors, installers, and manufacturer's rej chitects and engineers, 3) builders. (Circle the li	A solar industry director, giving detailed infor available from Maine solar dealers.	A solar consumer handbook to show me how travoid consumer mistakes.	A Passive Solar Energy Booklet, to give me is solar energy and the economic benefits for elth builders, and 3) architects. (Circle the booklet yo	A solar hot water booklet explaining the economics of solar water heating.	A pamphlet explaining where to obtain more li energy.	A pamphlet explaining solar energy basics.	A book detailing 50 selected solar buildings in N of solar energy systems.	A book on the state-of-the-art in Passive solar plicable to Maine.	source sheets for the following resources:	Colleges and Universities with solar related	Vocational/Technical schools/courses-sole	A solar energy bibliography listing references o	Comprehensive solar bibliography	Solar retrofitting	Passive solar energy designs and systems	

INFORMATION REJUST SHEET

í

ATE DHE

TH 6561.7 M3 1979

