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1. Introduction

In this paper we consider a non-autonomous evolution problem which appears
in the investigation of the model of concentrated suspensions (proposed by Heb-
raud and Lequex [12]) with non-autonomous coe�cients. More precisely, the
unknown function p(x, t), representing probability density, satis�es the following
equation:

∂p

∂t
= −b(t)∂p

∂x
+D(p)

∂2p

∂x2
− χR\[−1,1](x)p+

D(p)

α
δ0(x), (1.1)

where α > 0 is a parameter, χR\[−1,1] is the characteristic function of the open
set R \ [−1, 1], δ0 is the Dirac delta function with support at the origin,

D(f) = α

ˆ

|x|>1

f(x)dx,
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and the function b(t) is assumed to be non-autonomous. Moreover, mechanical
background of the model requires boundedness with respect to the time of the
average stress function

τ(t) =

ˆ

R

xp(t, x)dx.

Existence and uniqueness results for such model were proved in [4]. The theory
of global attractors was applied �rst for (1.1) in Amig�o et al. [1], where the
existence of global unbounded attractors with respect to the weak topology was
proved for the case b(t) ≡ 0. Numerical aspects were investigated in [2,13]. The key
point in [4,13] was the analysis of the so-called vanishing viscosity approximation
system, where the di�usion coe�cient was everywhere positive. In [3, 5�10, 14�
22] the existence of global attractor in the strong topology of the phase space
for m-semi�ow generated by vanishing viscosity approximation was proved. Only
autonomous (i.e. b(t) ≡ const) case was considered. In the present paper we
extend results from [14] to much more general non-autonomous case, using the
uniform global attractor approach [11,23�26].

2. Setting of the problem and preliminaries

Let α > 0 be a positive constant, 0 ≤ ε � 1 be a small parameter, and
b : R+ → R be a measurable function. Consider the following evolution problem
with non-degenerate di�usion:

∂p

∂t
= −b(t)∂p

∂x
+ (D(p) + ε)

∂2p

∂x2
− χR\[−1,1](x)p+

D(p)

α
δ0(x), a.e. in R× R+;

(2.1)

p(x, t) ≥ 0, a.e. in R× R+; (2.2)ˆ
R
p(x, t)dx = 1, a.e. in R+; (2.3)

ˆ
R
|x|p(x, t)dx <∞, a.e. in R. (2.4)

Suppose that b is an essentially bounded function, that is, there exists a constant
B > 0 such that

|b(t)| ≤ B for a.e. t > 0. (2.5)

Further we will use the following notation:

Lp = Lp(R), H1 = H1(R), H−1 = (H1)∗,

for each 1 ≤ p ≤ ∞. Let 〈· , · 〉 be the pairing on H−1×H1 (on Lq×Lp respectively
with p ≥ 1 and 1 < q ≤ ∞ such that 1

p + 1
q = 1) that coincides with the inner

product on L2, that is,

〈f, u〉 =

ˆ
R
f(x)u(x)dx,
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for each f ∈ L2 and u ∈ H1 (for each f ∈ Lq and u ∈ Lp, respectively).
Let 0 ≤ τ < T <∞ be arbitrary �xed. A solution of equation (2.1) on a �nite

time interval [τ, T ] is de�ned as follows.

De�nition 2.1. Let 0 < ε� 1. A function p ∈ L∞(τ, T ;L1 ∩ L2) ∩ L2(τ, T ;H1)
with ∂p

∂t ∈ L
2(τ, T ;H−1) is called a (weak) solution of equation (2.1) on [τ, T ], if

the equality

ˆ T

τ

(
〈∂p
∂t
, η〉+ b(t)〈∂p

∂x
, η〉+ (D(p( · , t)) + ε)〈∂p

∂x
,
∂η

∂x
〉+

ˆ
|x|>1

p · η dx

)
dt

=

ˆ T

τ

D(p( · , t))
α

〈δ0, η〉dt,

(2.6)
holds for each η ∈ L2(τ, T ;H1).

Remark 2.1. We note that the right hand-side of equality (2.6) is equal to

ˆ T

τ

D(p(t))

α
η(0, t)dt.

Remark 2.2. Let 0 < ε� 1, and p be a solution of equation (2.1) on [τ, T ]. Since
p ∈ L2(τ, T ;H1) and ∂p

∂t ∈ L
2(τ, T ;H−1), then p ∈ C([τ, T ];L2), and, therefore,

the following initial condition

p|t=τ = pτ (x), a.e. in R, (2.7)

makes sense for pτ ∈ L1 ∩ L2.

Let

X := {p ∈ L2(R) :

ˆ
R
|x| |p(x)| dx <∞},

which is a Banach space with the norm

‖p‖X := ‖p‖L2 +

ˆ
R
|x| |p(x)| dx, p ∈ X.

Remark 2.3. The embedding X ⊂ L1 ∩L2 is continuous. Moreover, X = L
1 ∩L2,

where

L
1

:= {p ∈ L1 :

ˆ
R
|x| |p| dx <∞}

is a Banach space with the following norm:

‖p‖
L

1 :=

ˆ
R

(1 + |x|) |p| dx, p ∈ L1
.

We understand condition (2.4) in the sense of the following de�nition.
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De�nition 2.2. The solution p of equation (2.1) on [τ, T ] satis�es condition (2.4)
on [τ, T ] if xp ∈ L∞(τ, T ;L1).

Remark 2.4. Let p be a solution of equation (2.1) on [τ, T ]. Then xp ∈ L∞(τ, T ;L1)
if and only if p ∈ L∞(τ, T ;X).Moreover, since p ∈ L∞(0, T ;X), p ∈ C([0, T ];L2),
and X ⊂ L2, we have that p ∈ C([0, T ];Xw).

Let 0 < ε � 1 be arbitrary �xed. Canc�es et al. [4, Proposition 2.1] proved
that for each pτ such that

pτ ∈ L1 ∩ L∞, pτ ≥ 0,

ˆ
R
pτ (x)dx = 1,

ˆ
R
|x|pτ (x)dx <∞, (2.8)

problem (2.1)�(2.4), (2.7) on [τ, T ] has a unique solution p. Moreover,

p ∈ L∞(R× (τ, T )), σp ∈ L∞
(
0, T ;L1

)
,

p ∈ C([τ, T ];L2 ∩ L1), D(p) ∈ C([τ, T ]),

and ˆ
R
p (t, σ) dσ = 1, p (t) ≥ 0 for all t ≥ 0. (2.9)

Therefore, the phase space for this problem can be de�ned as follows:

H := clXE, E := {p ∈ X : p ∈ L∞, p ≥ 0,

ˆ
R
p(x)dx = 1},

where clX is the closure in the space X (see Amig�o et al. [1]). The convexity of
E implies the equality H = clXwE.

Remark 2.5. For 0 < ε � 1 it is easy to show that for every pτ ∈ E p ∈
C([τ, T ]; (L1 ∩ L∞)w). In particular, we have that p(t) ∈ E for each t ∈ [τ, T ].
Therefore, for each p ∈ H the following two conditions hold: (a) p(x) ≥ 0 for
a.e. x ∈ R, and (b)

´
R p(x)dx = 1 [1, p. 212]. Moreover, for each 0 < ε � 1,

0 ≤ τ < T <∞, and pτ ∈ H there exists no more than one solution p of problem
(2.1)-(2.3), (2.7) on [τ, T ].

The main goal of the present paper is to show the existence of uniform
global attractors in the strong topology of the phase space H for the m-semi�ow
generated by the non-autonomous problem (2.1)�(2.4).

3. Existence and properties of solutions

In this section we provide results from [14] about existence and topological
properties of (2.1)-(2.4).

Let K+
τ,ε (D+

τ,ε) denotes the family of all globally de�ned solutions of problem
(2.1)-(2.3) ((2.1)-(2.4)) on [τ,∞) with p (τ) ∈ H. By de�nition, D+

τ,ε ⊆ K+
τ,ε
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Lemma 3.1. [14, Lemma 3.1] There exists a constant C > 0 such that, if

0 ≤ ε� 1, τ ≥ 0 and p ∈ K+
τ,ε with p(τ) ∈ H,

then p ∈ D+
τ,ε and the following inequality holds:

‖p(t)‖
L

1 ≤ ‖p(τ)‖
L

1e−
1
2

(t−τ) + C, (3.1)

for each t ≥ τ. Moreover, for each δ > 0 and a bounded set (in L
1
) K ⊂ H

there exist constants T = T (δ,K) > 0 and k̄ = k̄(δ,K) > 0 such that for each
0 ≤ ε� 1, τ ≥ 0, and p ∈ K+

τ,ε with p(τ) ∈ K the following inequality holds:
ˆ
|x|>2k

p(x, t)|x|dx ≤ δ, (3.2)

for each t ≥ τ + T and k ≥ k̄.

Remark 3.1. According to Lemma 3.1, each globally de�ned solution p of problem

(2.1)�(2.3) on [τ,∞) with τ ≥ 0, 0 ≤ ε� 1, and p(τ) ∈ H, belongs to L∞(τ,∞;L
1
).

In particular, the following equality holds:

D+
τ,ε = {p ∈ K+

τ,ε : p(τ) ∈ H}.

The following result guaranties existence and dissipativity for the problem
(2.1)-(2.4).

Theorem 3.1. Let 0 < ε� 1. Then for every pτ ∈ H problem (2.1)�(2.4), (2.7)
on [τ, T ] has a unique solution p. Moreover, p ∈ C([τ, T ];H). Moreover, there
exists R0 > 0 such that for an arbitrary bounded (in L2) set K ⊂ H and for
arbitrary ε ∈ (0, 1) there exists a moment of time T = T (K, ε) such that for every
τ ≥ 0 and p ∈ D+

τ,ε satisfying p(τ) ∈ K the following inequality holds:

‖p(t)‖L2 ≤ R0, (3.3)

for each t ≥ τ + T.

The next result guaranties the continuous properties of solutions of (2.1)-(2.4).

Theorem 3.2. [14, Lemma 3.3] Let 0 ≤ τ < T < ∞, pnτ ∈ H, bn ∈ L∞(τ, T ),
and 0 < εn � 1 for each n = 0, 1, . . . . Suppose that |bn(t)| ≤ B for a.e. t ∈ (τ, T )
and pn ∈ C([τ, T ];Hw) be a solution of problem (2.1)�(2.4), (2.7) on [τ, T ] with
parameters pnτ , εn, bn, for each n ≥ 1. If

pnτ → p0
τ in Hw, εn → ε0 > 0, bn → b0 weakly-star in L∞(τ, T ),

then there exists a solution p ∈ C([τ, T ];Hw) of problem (2.1)�(2.4), (2.7) on
[τ, T ] with parameters p0

τ , ε0, b0, such that up to a subsequence the following con-
vergence holds:

pn → p in C([τ, T ];Hw). (3.4)

Moreover, if pnτ → p0
τ in H, then the following statements hold:
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(a) p, pn ∈ C([τ, T ];H) for each n ≥ 1;

(b) the following convergence holds for the entire sequence:

pn → p in L2(τ, T ;H1), (3.5)

pn → p in C([τ, T ];H). (3.6)

If, additionally, bn → b0 in the Lebesgue measure on [τ, T ], then

∂pn

∂t
→ ∂p

∂t
in L2(τ, T ;H−1). (3.7)

4. Existence and properties of uniform global attractors in the
non-autonomous case

To characterize the uniform long-time behavior of solutions for non-autonomous
dissipative dynamical system consider the united trajectory space K+

ε,∪ for the
family of solutions {K+

ε,τ}τ≥0 shifted to zero:

K+
ε,∪ :=

⋃
τ≥0

{
T (h)y( ·+ τ ) : y( · ) ∈ K+

ε,τ , h ≥ 0
}
, (4.1)

and the extended united trajectory space for the family {K+
ε,τ}τ≥0:

K+
ε := clCloc(R+;H)

[
K+
ε,∪
]
, (4.2)

where clCloc(R+;H)[ · ] is the closure in C loc(R+;H). Since T (h)K+
ε,∪ ⊆ K+

ε,∪ for
each h ≥ 0, then

T (h)K+
ε ⊆ K+

ε for each h ≥ 0, (4.3)

due to

ρCloc(R+;H)(T (h)u, T (h)v) ≤ ρCloc(R+;H)(u, v) for each u, v ∈ C loc(R+;H),

where ρCloc(R+;H) is the standard metric on Fréchet space C loc(R+;H). Therefore
the set

X := {y(0) : y ∈ K+
ε } (4.4)

is closed in H. We endow this set X with metric

ρX(x1, x2) = ‖x1 − x2‖X , x1, x2 ∈ X.

Then we obtain that (X,ρ) is a Polish space (complete separable metric space).
Let us de�ne the multivalued semi�ow (m-semi�ow) Vε : R+ × X→ 2X:

Vε(t, y0) := {y(t) : y(·) ∈ K+
ε and y(0) = y0}, t ≥ 0, y0 ∈ X. (4.5)

According to (4.3) and (4.4) for each t ≥ 0 and y0 ∈ X the set Vε(t, y0) is
nonempty. Moreover, the following two conditions hold:
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(i) Vε (0, ·) = I is the identity map;

(ii) Vε (t1 + t2, y0) ⊆ Vε (t1, Vε (t2, y0)) , ∀t1, t2 ∈ R+, ∀y0 ∈ X,

where Vε (t,D) = ∪
y∈D

Vε (t, y) , D ⊆ X.

We denote by distX(C,D) = supc∈C infd∈D ρX(c, d) the Hausdor� semidistance
between nonempty subsets C andD of the Polish space X. Recall that the compact
set Θε ⊂ X is a global attractor of the m-semi�ow Vε if it satis�es the following
conditions:

(i) Θε attracts each bounded subset B ⊂ X, i.e.

distX(Vε(t, B),Θε)→ 0, t→ +∞; (4.6)

(ii) Θε is negatively semi-invariant set, that is, Θε ⊆ Vε (t,Θε) for each t ≥ 0.

In this paper we examine the uniform long-time behavior of solution sets
{K+

τ,ε}τ≥0 in the strong topology of the natural phase space H (as time t→ +∞
for a �xed ε > 0) in the sense of the existence of a compact global attractor for
m-semi�ow Vε generated by the family of solution sets {K+

τ,ε}τ≥0 and their shifts.

Theorem 4.1. For each ε > 0 the m-semi�ow (4.5) has the connected stable
global attractor Θε in the phase space X. Moreover, Θε is bounded in H uniformly
in ε.

Proof. Due to Theorems 3.1, 3.2 and classical results about existence of global
attractors (see [21]) it is su�cient to prove that Vε is asymptotically compact,
that is,

every sequence {ξ̄n ∈ Vε(tn, pn0 )} is precompact in H,

where tn ↗ +∞, ‖pn0‖X ≤ r .
Let ξ̄n ∈ Vε(tn, p

n
0 ). Then ∃ξn : ‖ξn − ξ̄n‖X < 1

n and ξn = pn(tn), pn is a
solution of (2.1)�(2.4) with pn(0) = pn0 and bn( · ) := b( · + τn), τn ≥ 0. Therefore,
from Theorem 3.1

‖pn(t)‖X ≤ R0 + r, ∀ n ≥ 1, t ≥ 0. (4.7)

So we can claim that {ξn} is precompact in Hw. Indeed, since ‖ξn‖L2 ≤ R0 + r
then up to subsequence ξn → ξ in L2

w. Let us prove that up to a subsequence

ξn → ξ in L
1
w. Since ξn = pn(tn), then (3.2) yields that for each δ > 0 there exist

k(δ) ≥ 1, n(δ) ≥ 1 such that

ˆ
|x|>k

ξn(x)|x|dx < δ

3
, ∀ k ≥ k(δ), n ≥ n(δ).

According to Amig�o et al. [1, Lemma 6.1]

(L1)∗ = {ϕ = (1 + |x|)u : u ∈ L∞}.
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Thus, we set dn(x) = (1 + |x|)ξn(x) and prove that {dn} is a Cauchy sequence in
L1
w, because∣∣∣∣ˆ

R
(dn(x)− dm(x))u(x)dx

∣∣∣∣ ≤
∣∣∣∣∣
ˆ
|x|≤k

(1 + |x|)(ξn(x)− ξm(x))u(x)dx

∣∣∣∣∣
+ 2‖u‖L∞

(ˆ
|x|>k

ξn(x)|x|dx+

ˆ
|x|>k

ξm(x)|x|dx

)
< δ,

for each u ∈ L∞ and n,m ≥ N = N(δ, k). Since the space L1 is weakly complete,
then up to a subsequence dn → d in L1

w for some d ∈ L1. Thus

ξn → ξ̄ =
d

1 + |x|
in L

1
w.

If we consider the restriction of ξn to each interval [−k, k], then we deduce that
ξ̄ = ξ and up to a subsequence ξn → ξ in Hw.

Now let us prove this convergence in the strong topology of H. Consider a
smooth real function θ that satis�es the following three conditions:

(a) θ(s) = 0, |s| ≤ 1;
(b) 0 ≤ θ(s) ≤ 1, |s| ∈ [1, 2];
(c) θ(s) = 1, |s| ≥ 2,

(4.8)

and de�ne for k > 1
ρk(x) = θ(

x

k
).

According to Amig�o et al. [1, pp. 215�216] after multiplying (2.1) by ρk(x)pn we
obtain

1

2

d

dt

ˆ
R
ρk(x)p2

ndx+ bn(t)

ˆ
R
ρk(x)pn

∂pn
∂x

dx

+(D(pn(·, t)) + εn)
(ˆ

R
ρk(x)

(
∂pn
∂x

)2

dx

+
1

k

ˆ
R
θ′(
x

k
)pn

∂pn
∂x

dx
)

+

ˆ
R
ρk(x)p2

ndx = 0.

(4.9)

Integrating by parts we deduce

bn(t)

ˆ
R

(ρk(x)pn
∂pn
∂x

dx = −bn(t)

2k

ˆ
R
θ′(
x

k
)p2
ndx,

1

k

ˆ
R
θ′(
x

k
)pn

∂pn
∂x

dx = − 1

2k2

ˆ
R
θ′′(

x

k
)p2
ndx.

Then from (4.9) we have

1

2

d

dt

ˆ
R
ρk(x)p2

ndx+

ˆ
R
ρk(x)p2

ndx ≤
(
Bβ

2k
+

(α+ 1)β

2k2

)ˆ
R
p2
ndx, (4.10)
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where β := max
|s|∈[1,2]

{|θ′(s)|+ |θ′′(s)|}.

Combining (4.7) and (4.10) we deduce from Gronwall's Lemma that for some
positive constant C = C(r)
ˆ
|x|>2k

p2
n(x, t)dx ≤ e−2tr2 +

C(r)

k
, ∀ t ≥ 0, n ≥ 1, k > 1. (4.11)

On the other hand, for every solution of (2.1)�(2.4) we have the following
energy equality (for details see the proof of Lemma 3.2):

1

2

d

dt

ˆ
R

(p(x, t))2dx+ (D(p( · , t)) + ε)

ˆ
R

(
∂p(x, t)

∂x

)2

dx+

ˆ
|x|>1

(p(x, t))2dx

=
D(p( · , t))

α
〈δ0, p( · , t)〉.

(4.12)
Let us consider the functions

p̄n(t) = pn(t+ (tn − 1)), t ≥ 0.

Then p̄n is a solution of (2.1)�(2.4) with b̄n( · ) := bn( ·+tn−1) = b( ·+tn−1+τn),
p̄n(0) = pn(tn − 1), p̄n(1) = ξn and p̄n satis�es (4.7), (4.9), (4.12). Moreover,
similarly to the previous arguments we deduce that up to subsequence

p̄n(0) = pn(tn − 1)→ p̄0 in Hw.

Hence, from Lemma 3.2 we obtain for every T > 1 that

p̄n → p̄ in C([0, T ];Hw), (4.13)

where p̄ is a solution of (2.1)�(2.4) with p̄(0) = p̄0 and some b̄ ∈ L∞(0,+∞) such
that b̄n → b weakly star in L∞(0, T ) for each T > 0. In particular, |b̄(t)| ≤ B for
a.e. t > 0.

Since ε > 0 is �xed, we can derive from (4.7), (4.12) and the Aubin-Lions
theorem [16] that for every k > 1 up to subsequence

p̄n → p̄ in L2(0, T ;L2(−k, k)).

In particular,

p̄n(t)→ p̄(t) in L2(−k, k) for a.a. t ∈ (0, T ).

By a diagonal procedure we obtain that up to a subsequence and for some
τ ∈ (0, 1),

p̄n(τ)→ p̄(τ) in L2(−k, k), ∀ k ≥ 1. (4.14)

From (4.11) we get
ˆ
|x|>2k

p̄2
n(x, τ)dx ≤ e−2(τ+tn−1)r2 +

C(r)

k
, ∀ n ≥ 1, k > 1. (4.15)
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Combining (3.2), (4.14), (4.15) we have

p̄n(τ)→ p̄(τ) in X.

Then the second part of Theorem 3.2 guarantees the convergence

p̄n → p̄ in C([τ, T ];H).

In particular,

ξn = p̄n(1)→ p̄(1) in H.

Thus we obtain the required precompactness of {ξn} and, therefore, the existence
of the connected, stable global attractor Θε.
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