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RESEARCH ARTICLE

SOX9 inhibits b-TrCP-mediated protein degradation to promote
nuclear GLI1 expression and cancer stem cell properties

Wentao Deng1,2,*, Daniel B. Vanderbilt3,*, Chen-Chung Lin1,2, Karen H. Martin2, Kathleen M. Brundage2 and
J. Michael Ruppert1,2,3,`

ABSTRACT

The high mobility group box protein SOX9 and the GLI1

transcription factor play protumorigenic roles in pancreatic ductal

adenocarcinoma (PDA). In Kras transgenic mice, each of these

factors are crucial for the development of PDA precursor lesions.

SOX9 transcription is directly regulated by GLI1, but how SOX9

functions downstream of GLI1 is unclear. We observed positive

feedback, such that SOX9-deficient PDA cells have severely

repressed levels of endogenous GLI1, attributed to loss of GLI1

protein stability. SOX9 associated with the F-box domain of the

SKP1/CUL1/F-box (SCF) E3 ubiquitin ligase component, b-TrCP

(also known as F-box/WD repeat-containing protein 1A), and

suppressed its association with SKP1 and GLI1, a substrate of

SCF-b-TrCP. SOX9 also tethered b-TrCP within the nucleus and

promoted its degradation. SOX9 bound to b-TrCP through the

SOX9 C-terminal PQA/S domain that mediates transcriptional

activation. Suppression of b-TrCP in SOX9-deficient PDA cells

restored GLI1 levels and promoted SOX9-dependent cancer stem

cell properties. These studies identify SOX9–GLI1 positive

feedback as a major determinant of GLI1 protein stability and

implicate b-TrCP as a latent SOX9-bound tumor suppressor with the

potential to degrade oncogenic proteins in tumor cells.

KEY WORDS: Pancreatic ductal adenocarcinoma, SOX9, GLI1,

b-TrCP

INTRODUCTION
The evolution of metazoans required new strategies for proper

regulation of cell fate, including intercellular signaling, signal

reception and signal transduction, processes in which

transcription factors play crucial roles (Nusse, 2003; Weinberg,

2007). Central to cancer etiology is the dysregulation of cell fate,

often through genetic changes that impinge on transcription factor

signaling (Taipale and Beachy, 2001; Kalderon, 2002). GLI1, a

member of the GLI family of zinc finger transcription factors, is a

central regulator of cell fate that is deregulated in diverse tumor

types (Lauth and Toftgård, 2007; Ruiz i Altaba et al., 2007;

Stecca and Ruiz i Altaba, 2010; Morris et al., 2010; Hui and

Angers, 2011). Increased levels of GLI1 mRNA and protein can

result from genetic inactivation of tumor suppressors, such as the

Hedgehog pathway receptor Patched1 (PTCH1), or mutational

activation of factors such as Smoothened (SMO). GLI1 signaling

impacts on multiple cancer-relevant cellular processes, promoting

dedifferentiation, the generation of cancer stem cells (CSCs),

tumor progression and metastasis. In addition, GLI1 can directly

induce the transcription of its own mRNA through a well-

characterized autoregulatory feedback, and therefore GLI1

mRNA levels often reflect the overall GLI transactivation

capacity (Dai et al., 1999; Vokes et al., 2007).

Pancreatic ductal adenocarcinoma (PDA) is an aggressively

metastatic tumor type that is often diagnosed at a later clinical

stage (Koorstra et al., 2008; Feig et al., 2012). Although GLI1 is

expressed in both epithelial PDA cells and stromal cells, a cell

autonomous role within carcinoma cells appears central to the

pathogenesis of this disease (Feldmann et al., 2007; Nolan-

Stevaux et al., 2009; Tian et al., 2009; Lauth et al., 2010). Indeed,

suppression of GLI1 in human PDA cells leads to loss of

malignant properties (Ji et al., 2007; Feldmann et al., 2007;

Nolan-Stevaux et al., 2009). In a Kras-dependent mouse model

of PDA, either Cre-mediated excision of Gli1 or expression of

a dominant-negative GLI factor suppresses tumorigenesis,

including the outgrowth of precursor lesions termed pancreatic

intraepithelial neoplasia (PanIN) (Rajurkar et al., 2012; Mills

et al., 2013). Conversely, enforced expression of an active GLI

factor in pancreatic epithelial cells promotes tumorigenesis in

mice (Pasca di Magliano et al., 2006). In the canonical

Hedgehog–GLI pathway, GLI activity is dependent upon

signaling by Hedgehog through PTCH1 and SMO, whereas in

PDA cells GLI1 is instead maintained by activated KRAS

(Hingorani et al., 2005; Pasca di Magliano et al., 2006; Ji et al.,

2007; Nolan-Stevaux et al., 2009; Tian et al., 2009; Lauth et al.,

2010).

The protein stability of GLI1 is regulated by two E3 ubiquitin

ligases, the Skp/Cul/F-box complex SCFb-TrCP and the E3 ligase

ITCH in conjunction with the adaptor protein NUMB (Huntzicker

et al., 2006; Di Marcotullio et al., 2006). Similar to slmb

regulation of the Drosophila GLI homolog cubitus interruptus,

the mammalian SCFb-TrCP is a major regulator of the protein

stability and/or proteolytic cleavage of mammalian GLI1 and its

paralogs GLI2 and GLI3 (Jiang, 2006; Huntzicker and Oro,

2008). SCFb-TrCP is comprised of the bridging protein SKP1, the

scaffolding protein CUL1, the substrate-recognizing F-box

protein b-TrCP (also known as F-box/WD repeat-containing

protein 1A) and the RING finger protein RBX1. This complex

catalyzes the transfer of ubiquitin from E2 ligase to the substrate,

leading to degradation by the ubiquitin proteasome system (UPS)

(Skaar et al., 2013). In cultured human keratinocytes, GLI1
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Fig. 1. See next page for legend.
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stability is dependent upon epidermal growth factor (EGF)

signaling through the MEK1/2–ERK1/2 pathway (Kasper et al.,
2006). Similarly, in cultured human PDA cells, activated KRAS can
stabilize the GLI1 protein through ERK1/2 (also known as MAPK3/

1) signaling (Ji et al., 2007). These results suggest a broader role of
RAS, MEK1/2 and ERK1/2 in stabilization of GLI1.

GLI1 directly induces the transcription of SOX9, an Sry-like

high mobility group (HMG) box transcription factor that plays
key roles in sex determination, chondrogenesis and cell
differentiation (de Crombrugghe et al., 2001; Kashimada and
Koopman, 2010; Barrionuevo and Scherer, 2010). SOX9

responds to Hedgehog–Gli signaling in multiple contexts,
including chondrocytes, retinal progenitor cells and developing
hair follicles (Tavella et al., 2004; Vidal et al., 2005; McNeill

et al., 2012; Eberl et al., 2012). Consistent with these results, the
SOX9 promoter and upstream flanking region contains consensus
GLI-binding sites that, when linked to a transcriptional reporter,

can be regulated by GLI1 in cultured cells (Bien-Willner et al.,
2007; Eberl et al., 2012).

In the developing pancreas, SOX9 is expressed in stem- or
progenitor-like cells and is required for normal organogenesis

(Seymour et al., 2007; Lynn et al., 2007). In the adult pancreas,
SOX9 is expressed in ductal and centroacinar cells, but is

normally expressed at low levels in or absent from acinar cells.
Two types of studies have documented a protumorigenic role for
SOX9 in PDA. First, xenograft experiments utilizing human PDA
cells such as Panc-1 cells indicate that SOX9 promotes the

maintenance of tumor-initiating cells (Eberl et al., 2012; Sun
et al., 2013). Second, the induction of PanIN lesions in the
conditional KrasG12D mouse model of PDA involves the early

induction of SOX9 in acinar cells, followed by acinar-ductal
metaplasia and tumor progression (Kopp et al., 2012).
Conditional gene knockout or enforced expression reveals that

SOX9 is critical for the occurrence of PanIN lesions. Similarly
SOX9 is protumorigenic in other contexts, including colorectal
cancer and mammary cancer, promoting the induction of cancer

stem cell (CSC) factors such as BMI1 and/or cooperating with
mesenchyme-inducing factors such as Snail or Slug (Guo et al.,
2012; Matheu et al., 2012).

In the current study, we found that SOX9 is important for

efficient in vitro transformation by GLI1, a feature attributed to
its stabilization of GLI1. Like other SCFb-TrCP substrates, GLI1
interacted with the C-terminal WD domain of b-TrCP. SOX9

instead interacted with the N-terminal F-box domain, and yet
inhibited the association of GLI1 and b-TrCP. Consistent with a
crucial role of the SOX9–b-TrCP interaction for stabilization of

GLI1, suppression of b-TrCP in SOX9-deficient PDA cells led to
restoration of GLI1 and promoted malignant properties. Because
SCFb-TrCP can promote the ubiquitylation of functionally diverse

proteins, its ultimate role as pro- versus anti-tumorigenic might be
context dependent (Frescas and Pagano, 2008; Lau et al., 2012;
Shaik et al., 2012; Skaar et al., 2013). Our data suggest that b-
TrCP-associated proteins such as SOX9 could be a crucial aspect

of this context, capable of suppressing SCF activity against
multiple pro-tumorigenic substrates such as GLI1, b-catenin and
the anti-apoptotic factor MCL1. These results identify

reactivation of latent b-TrCP as a strategy for the disruption of
KRAS-mediated protumorigenic signaling.

RESULTS
A role for SOX9 in GLI1-mediated epithelial transformation
in vitro
RK3E cells, derived from rat kidney cells by immortalization

with adenovirus E1A, undergo malignant transformation in
response to GLI1 and provide an epithelial context for
functional studies (Foster et al., 1999; Li et al., 2006). Utilizing

this model, we identified increased levels of Sox9 mRNA and the
corresponding protein as early responses to exogenous human
GLI1 (HsGli1, Fig. 1A; supplementary material Fig. S1A). In

RK3E cells engineered to induce GLI1 when exposed to
tetracycline (RK3E-TO GLI1 cells), the Sox9 mRNA was
induced between 1 and 3 h after drug treatment. Kinetics were

similar to those of other well-established GLI1-regulated genes,
including Ptch1 and Bcl2. Consistent with a direct interaction,
ChIP analyses and luciferase reporter studies identified a
candidate enhancer element containing a GLI1 consensus site,

located downstream of the rat Sox9 coding region and ,1.0 kb
downstream of exon 3 (supplementary material Fig. S1B–D).

To analyze SOX9, we generated shRNA expression vectors

(shSox9-1 and -2) that stably suppressed the Sox9 mRNA in RK3E
cells (Fig. 1B, upper panel). As compared to a non-targeting control
(Ctrl), plasmid co-transfection of GLI1 vector with either shRNA

construct efficiently inhibited the outgrowth of transformed foci

Fig. 1. SOX9 stabilizes GLI1 in the rat RK3E epithelial model and in
human PDA cells. (A) Rapid induction of SOX9 by GLI1. RK3E-derived, tet-
on (TO) GLI1 cells were induced with tet or with vehicle control, and gene
expression was analyzed by qRT-PCR (n54). exog., exogenous; endog.,
endogenous. (B) Role of SOX9 for GLI1-mediated in vitro transformation.
Upper panel, Sox9 shRNA constructs were transfected into RK3E cells. Sox9
mRNA was analyzed by qRT-PCR following drug selection. Lower panel,
GLI1-mediated in vitro transformation was assayed in RK3E cells by counting
morphologically transformed foci. Dishes are representative of three
independent experiments. Background was determined using empty vector
and was ,1 focus per dish (not shown). (C) Dependence of GLI1 protein
expression on SOX9. GLI1-transformed RK3E cells were transfected with the
indicated siRNA. Protein expression was analyzed at 48 h post-transfection.
The arrow shows the position of SOX9. The asterisk shows a nonspecific
band. (D) Proteasome inhibition restores GLI1 in SOX9-deficient cells. GLI1-
transformed RK3E cells were transfected with Sox9 siRNA. Cells were treated
with vehicle (DMSO, 1 h) or with proteasome inhibitor (CLbL) for the indicated
interval. Cell extracts for protein analysis were prepared at 48 h post-
transfection. (E) SOX9 and GLI1 were analyzed in human PDA cell lines.
mRNA levels were normalized to those of immortalized pancreatic ductal
epithelial cells (HPDE). (F) Dependence of GLI1 protein expression on SOX9.
Panc-1 cells were treated with control or SOX9 siRNA, and endogenous GLI1
protein levels were determined by immunoprecipitation (IP)-immunoblot
analysis. (G) Dependence of GLI1 mRNA expression on SOX9. Panc-1 cells
were treated with siRNA and SOX9 and GLI1 mRNA levels were assessed at
the indicated post-transfection interval. (H) SOX9 can regulate GLI1 protein
levels independently of themRNA. To circumvent theGLI1 autoregulation of its
own transcription, a GLI1 retroviral vector was transduced into Panc-1 cells
such that the preponderance of GLI1 mRNA was transcribed under control of
the LTR promoter (Panc-1-GLI1) versus the endogenous GLI1 promoter
(Panc-1-pBabe). The impact of SOX9 deficiency on the GLI1 protein level in
Panc-1-GLI1 cells was then analyzed by immunoblotting (left panel). Following
normalization to b-actin, the GLI1 protein level in control and SOX9-deficient
cells was quantified in three independent assays (middle panel). Similarly,
mRNA levels were analyzed by qRT-PCR (right panel). All quantitative data
show the mean6s.d. *P,0.05; **P,0.01; ***P,0.001; ns, not significant.
Data were analyzed using the unpaired Student’s t-test (two-tailed) or one-way
analysis of variance (ANOVA) followed by Tukey’s multiple comparison ad hoc

post-test. (I) SOX9 regulates the association of GLI1 and b-TrCP. Left panel,
endogenous GLI1–b-TrCP interaction in Panc-1 cells was determined by co-
IP-immunoblot analysis. Right panel, Panc-1 cells were treated with control
siRNA, SOX9 siRNA and/or CLbL as indicated; the endogenous GLI1–b-TrCP
interaction was evaluated by co-IP-immunoblot analysis. (J) The role of b-
TrCP and the proteasome in the regulation of GLI1 by SOX9. Panc-1 cells
were treated as indicated and endogenous protein levels were determined
by immunoprecipitation-immunoblot analysis.
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(Fig. 1B, lower panel). By contrast, SOX9 appeared largely
dispensable when transformed foci were instead generated using
an ERBB2 vector (supplementary material Fig. S1E).

Following small interfering (si)RNA-mediated suppression of
SOX9 in GLI1-transformed RK3E cells, we found that GLI1
protein levels were reduced, suggesting a role for SOX9 in the

Fig. 2. See next page for legend.
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maintenance of GLI1 (Fig. 1C, lanes 2 and 4). Treatment with the
proteasome inhibitor clasto-lactacystin b-lactone (CLbL) rapidly
restored GLI1 protein levels (Fig. 1D). These results identified

SOX9 as a transcription factor with a potential role in GLI1
protein stability.

Endogenous SOX9 stabilizes GLI1 in pancreatic cancer cells
through regulation of b-TrCP-mediated degradation
Analysis of conditionally deficient mice has shown that SOX9

and GLI1 play crucial roles in PDA development. We analyzed
nine PDA tumor cell lines and found that, relative to non-
malignant human pancreatic ductal epithelial (HPDE) cells, SOX9

levels were markedly upregulated (10- to 240-fold), and most

lines likewise expressed increased levels of GLI1 (Fig. 1E).
To examine a role for endogenous SOX9, we utilized transient

or inducible siRNAs that target two distinct sequences

(supplementary material Fig. S2A). To detect endogenous GLI1,
a low abundance factor, we utilized immunoprecipitation and
immunoblot analysis. Using this assay, either of two different GLI1

antibodies identified a protein of 150 kDa (supplementary material
Fig. S2B and data not shown). Repression of SOX9 in PDA cells
resulted in the reduction of endogenous GLI1 protein levels

(Fig. 1F), and mRNA analysis revealed synchronous loss of both
SOX9 and GLI1 signals after siRNA transfection (Fig. 1G).

To analyze how SOX9 regulates GLI1, we engineered PDA
cells that independently regulate the GLI1 mRNA and protein,

through introduction of a GLI1 transgene under the control of a
retroviral promoter (Panc-1-GLI1). In these cells, the exogenous
GLI1 protein was reduced following SOX9 knockdown (Fig. 1H,

lanes 3, 4). Three independent experiments indicated loss of 82%
of the GLI1 (Fig. 1H, middle panel). By contrast, the GLI1

transgene-derived mRNA levels were not dependent upon SOX9

(Fig. 1H, right panel). In vector control cells, the suppression of
SOX9 repressed the endogenous GLI1 mRNA. These results
indicate that loss of GLI1 mRNA following SOX9 suppression is
due to destabilization of the GLI1 protein and its autoregulation

of GLI1 transcription.
Interaction of endogenous GLI1 and b-TrCP proteins was

readily detected in human PDA cells (Fig. 1I, left panel). In the

absence or presence of proteasome inhibitor the suppression of
endogenous SOX9 increased the ratio of b-TrCP:GLI1 in

immunoprecipitates (Fig. 1I, right panel). Similar to results
observed following treatment with proteasome inhibitor, GLI1
expression was rescued by suppression of b-TrCP (Fig. 1J, lanes
5, 6). Similar results were obtained using transient SOX9 siRNA

or the TO conditional approach in either Panc-1 or AsPC-1 cells
(supplementary material Fig. S2C).

SOX9 disrupts the interaction of GLI1 with b-TrCP
SOX9 was previously shown by co-immunoprecipitation (co-IP)
and colocalization studies to associate with b-TrCP, likely

through the SOX9 C-terminus, as deletion of this region
abrogated binding (Topol et al., 2009). To investigate whether
the association of SOX9 with b-TrCP can modulate the targeting

of GLI1 for ubiquitylation, we utilized HEK293 cells that contain
very low levels of endogenous SOX9. When expressed by
transient transfection, GLI1 was found to associate with both
endogenous and exogenous b-TrCP (Fig. 2A). Similar to

previous reports (Topol et al., 2009), the SOX9–b-TrCP
interaction was readily detected (Fig. 2B). However, in multiple
experiments we were unable to observe any association of GLI1

and SOX9 (Fig. 2C). Negative results were obtained for co-IP of
endogenous proteins in Panc-1 cells as well as overexpressed
proteins in HEK293, using both forward and reverse co-IP

strategies. These results suggested that SOX9 might not regulate
GLI1 through a direct interaction but rather could regulate its
association with the E3 ligase component b-TrCP.

Consistent with the established role of b-TrCP in GLI1
regulation, GLI1 levels were suppressed by transient delivery of
exogenous b-TrCP, and restored by addition of proteasome
inhibitor (Fig. 2D). In contrast to GLI1, there was no suppression

of SOX9 levels in response to b-TrCP (supplementary material
Fig. S2D). These results suggest that exogenous SOX9 might
prevent the binding of GLI1 to its E3 ligase and the subsequent

ubiquitylation (Huntzicker et al., 2006). Indeed, an assay of GLI1
stability using the protein synthesis inhibitor cycloheximide
(CHX) showed that SOX9 could extend the half-life of this

protein (Fig. 2E).
SOX9 contains three conserved domains – HMG, PQA and PQS

(Fig. 2F). The HMG box mediates DNA binding, whereas PQA
and PQS promote transactivation. Deletion analysis indicated that

the transactivation region (fragment PQA/S) is sufficient to interact
with b-TrCP, and with comparable efficiency to that of wild-type
SOX9 (Fig. 2F). As reported previously (Topol et al., 2009),

deletions within the transactivation domain (DC or HMG)
abrogated the interaction.

The WD40 repeats of b-TrCP mediate substrate binding, and

the first WD40 repeat plays a crucial role in substrate recognition
(Skaar et al., 2013). By contrast, the F-box region mediates
interaction with SKP1. Consistent with lack of a suppressive

effect of b-TrCP on SOX9 (supplementary material Fig. S2D),
and unlike SCFb-TrCP substrates or pseudosubstrates (Davis et al.,
2002), deletion analysis indicated that SOX9 associated with the
F-box region of b-TrCP (Fig. 2G, left panel). As expected for a

substrate, GLI1 interacted with the WD40 repeats of b-TrCP
(fragment WD1-7), and deletion of the first WD40 repeat
(fragment WD2-7) abrogated this interaction (Fig. 2G, right

panel). Although they interacted with distinct b-TrCP domains,
co-IP of GLI1 and b-TrCP was nevertheless markedly suppressed
in the presence of SOX9 (Fig. 2H, lane 2). By contrast, the co-

expression of SOX9DC, deficient for b-TrCP binding, had little

Fig. 2. SOX9 and GLI1 interact with distinct regions of b-TrCP in a
mutually incompatible fashion. Enforced expression studies were
performed in HEK293 cells (A–H). (A) Co-IP analysis of GLI1 and b-TrCP.
Immunoprecipitated (IP) proteins were analyzed by immunoblot analysis.
Lysate lanes represent 5% of the input extract. endog., endogenous. (B) Co-
IP analysis of SOX9 and b-TrCP. (C) Co-IP analysis of GLI1 and SOX9.
(D) Role of the proteasome in the regulation of GLI1 by b-TrCP. Cells were
transfected with the indicated vectors and treated with proteasome inhibitor
(MG132) or vehicle (DMSO) for 6 h prior to preparation of cell extracts for
immunoblot analysis. (E) Stabilization of GLI1 by SOX9. Cells transfected
with the indicated vectors were treated with cycloheximide (CHX) prior to
preparation of cell extracts for immunoblot analysis. (F) Co-IP analysis of
Myc–b-TrCP with wild-type (WT) or truncated HA–SOX9 constructs.
Precipitated proteins were detected by immunoblotting (IB). (G) SOX9 and
GLI1 interact with distinct regions of b-TrCP. Co-IP analysis of GLI1 or SOX9
with wild-type or truncated Myc–b-TrCP constructs. Precipitated proteins
were detected by immunoblot analysis. The asterisk indicates a nonspecific
species. (H) The SOX9 C-terminal region is required for disruption of the
GLI1 interaction with b-TrCP. Cells stably transduced with a GLI1 retroviral
vector were transfected with the indicated expression vectors. The Myc–b-
TrCP plasmid amount was doubled when co-transfected with wild-type SOX9
(middle lane) to achieve similar Myc–b-TrCP protein levels. Cells were
treated with MG132 for 3 h before they were harvested for Co-IP analysis.
Similar results were obtained in an independent experiment.
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effect (Fig. 2H, lane 3). Unlike for b-TrCP, using reciprocal co-
IPs, we observed no interaction of SOX9 with other F-box

proteins, including FBXW7 and SKP2 (supplementary material
Fig. S2E; data not shown).

SOX9 interferes with SKP1 binding and facilitates b-TrCP
turnover in pancreatic cancer cells
As SOX9 interacted with F-box region of b-TrCP, we asked
whether this association would interfere with b-TrCP–SKP1

Fig. 3. See next page for legend.
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binding. 293T cells contain much lower levels of endogenous
SOX9 compared with Panc-1 cells (Fig. 3A). In 293T cells, the

binding of Myc–b-TrCP to endogenous SKP1 was suppressed by
a mean of 67% in the presence of exogenous SOX9 (Fig. 3B;
three independent experiments). Conversely, the binding of Myc–

b-TrCP to endogenous SKP1 was increased by a mean of 76%
following SOX9 knockdown in Panc-1 cells (Fig. 3C; three
independent experiments). These results identify interference

with the b-TrCP–SKP1 association as a mechanism by which
SOX9 can stabilize GLI1.

In PDA cells, SOX9 suppression resulted in consistent

increases in b-TrCP protein levels relative to the mRNA
(Fig. 3D; see also the lysate panels in Fig. 1I, right panel;
Fig. 1J; supplementary material Fig. S2C). Coexpression of
SOX9 with b-TrCP in HEK293 or Panc-1 cells promoted b-TrCP

degradation (supplementary material Fig. S2D; data not shown).
We therefore determined the half-life of SOX9 and b-TrCP
proteins in control PDA cells and in cells deficient in SOX9 or b-

TrCP. Knockdown of SOX9 increased the steady-state abundance
of b-TrCP and extended its half-life from 140 to 200 minutes
(Fig. 3E). By contrast, b-TrCP suppression did not significantly

alter the expression or stability of SOX9, which had a half-life of
,230 minutes in control cells (Fig. 3F). These results identify
distinct inhibitory effects of SOX9 on SCFb-TrCP.

SOX9 tethers b-TrCP within the nucleus and selectively
protects nuclear GLI1 from degradation
Both SOX9 and b-TrCP are primarily localized in the cell nucleus

(Davis et al., 2002; Vidal et al., 2005; Wang et al., 2007; Topol
et al., 2009). We analyzed the effect of endogenous SOX9 on the
localization of transiently expressed Myc–b-TrCP in PDA cells.

As previously shown for primary chondrocytes (Topol et al.,
2009), SOX9 appeared to efficiently tether b-TrCP in this
compartment (Fig. 4A). In SOX9-deficient PDA cells, the b-

TrCP was instead dispersed throughout the cell such that the
nuclear staining was reduced and cytoplasmic staining was
increased.

Exogenous GLI1 was detected in both the nucleus and the

cytoplasm (Fig. 4B, upper row). In SOX9-deficient cells, GLI1
was preferentially lost from the cell nucleus, but cytoplasmic

staining was preserved (Fig. 4B, middle row). Consistent with a
UPS role in the suppression of nuclear GLI1, treatment of cells

with CLbL restored nuclear staining (Fig. 4B, lower row). This
immunostaining data appeared to be consistent with the partial
suppression of exogenous GLI1 observed by immunoblot analysis
(Fig. 1H). The more complete suppression observed for endogenous

GLI1 (Fig. 1F,I,J; supplementary material Fig. S2C) remains
unexplained, but could reflect its preferential nuclear localization
relative to that of the overexpressed protein. These results support a

role for SOX9 in tethering b-TrCP within the nucleus of PDA cells.
Selective loss of nuclear GLI1 upon suppression of SOX9 indicates
that nuclear SCFb-TrCP activity is increased despite the dispersal of

b-TrCP throughout the cell. These results suggest that the apparent
b-TrCP concentration can be discordant with its activity when
SOX9 is present.

SOX9 promotes the malignant properties of PDA cells in a
fashion dependent upon b-TrCP and GLI1
Both SOX9 and GLI1 appear to be crucial for tumorigenesis in

PDA (Rajurkar et al., 2012; Kopp et al., 2012; Mills et al., 2013).
Although SOX9-deficient Panc-1 cells fail to form tumors in a
mouse xenograft assay, potential links to GLI1 function remain

unexplored (Eberl et al., 2012). For SOX9-deficient and control
PDA cells we analyzed several in vitro correlates of the malignant
phenotype, including proliferation, anchorage independence and

survival. SOX9-deficient Panc-1 cells proliferated in two-
dimensional (2D) culture similarly to control cells (Fig. 5A),
but were unable to efficiently form colonies in soft agar over a

period of 2 weeks (Fig. 5B). Other PDA cell lines, AsPC-1 and
MiaPaCa-2, responded similarly. When cells were suspended in
low attachment plates for 24 or 48 h (anoikis assay), deficiency in
SOX9 resulted in a marked reduction in the overall viable cell

number and the proportion of viable cells (Fig. 5C). These results
confirm that SOX9 deficiency can abrogate the malignant
properties of PDA cells.

We used the anoikis assay to determine whether deficiency of
SCFb-TrCP substrates such as GLI1 might be responsible for the
loss of malignant properties. We restored GLI1 expression in

SOX9-deficient cells using b-TrCP siRNAs (Fig. 5D;
supplementary material Fig. S3A). The cell death phenotype of
SOX9-deficient PDA cells was attenuated by co-suppression of
b-TrCP in both Panc-1 and AsPC-1 cells. Consistent with a

functional role for GLI1 as a mediator of the increased cell
survival following b-TrCP suppression, co-suppression of GLI1
promoted cell death (Fig. 5E).

SOX9 promotes the CSC-like properties of PDA cells in a b-
TrCP-dependent fashion
CSCs are an aggressively malignant subset of tumor cells
(Clevers, 2011). In PDA, both SOX9 and GLI1 are important
for the maintenance of this subpopulation (Eberl et al., 2012;

Tang et al., 2012; Sun et al., 2013; Li et al., 2013). To determine
whether there is phenotypic overlap following modulation of
SOX9 or GLI1, we enriched for CSCs using spheroid formation
or dye efflux assays (i.e. side population cells) (Bhagwandin and

Shay, 2009) (Fig. 6A). In addition to GLI or GLI-regulated
factors (GLI1, GLI2, SOX9, SNAI1), these subpopulations had
increased levels of pancreatic CSC markers (CD24, CD44, ESA,

CD133 and CXCR4) as well as factors important for the
generation of induced pluripotent stem cells (OCT4 and KLF4)
(Takahashi and Yamanaka, 2006; Li et al., 2007; Hermann et al.,

2007) (Fig. 6B). Consistent with a role for GLI1 in the phenotype

Fig. 3. SOX9 disrupts the b-TrCP–SKP1 association and destabilizes b-
TrCP in PDA cells. (A) Relative levels of SOX9, b-TrCP and SKP1 protein in
HEK293T and Panc-1 cells. (B) The effect of exogenous SOX9 on the
association of SKP1 and b-TrCP. 293T cells were transfected with the
indicated expression vectors. Myc–b-TrCP plasmid amounts were doubled
when co-transfected with wild-type SOX9 to achieve similar levels of Myc–b-
TrCP protein expression. Cells were treated with MG132 for 3 h before they
were harvested for co-IP analysis. The results of three independent
experiments are indicated. IP, immunoprecipitation. (C) Effect of endogenous
SOX9 on the association of SKP1 and b-TrCP. Panc-1 cells were transfected
with the indicated expression vectors and siRNAs. Cells were treated with
MG132 for 3 h before being harvested for co-IP analysis. The results of three
independent experiments are indicated. (D) The effect of SOX9 on
expression of b-TrCP. Panc-1 cells were treated with the indicated siRNA and
then analyzed by immunoblot analysis (left panel) or by qRT-PCR (right
panel). Quantitative data in B–D show the mean6s.d. *P,0.05; ns, not
significant. Data were analyzed using the unpaired Student’s t-test (two-
tailed). (E,F) Analyses of protein stability. Panc-1 cells were transfected with
the indicated siRNA and then treated with cycloheximide (CHX) for the
indicated interval prior to the preparation of extracts for immunoblot analysis
at 48 h post-transfection. The scanned images were quantified using NIH
ImageJ and normalized to b-actin. Rate constants and protein half-lives were
determined using the first order rate law.
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of SOX9-deficient cells, suppression of either gene product in 2D

cultures of PDA cells reduced the expression of CSC markers,
resulting in very similar profiles (Fig. 6C).

We next examined whether b-TrCP suppression could rescue

the CSC phenotype in SOX9-deficient cells. Stable suppression
of SOX9 reduced spheroid formation by 75% (Fig. 6D).
Consistent with this result, SOX9 suppression in 2D-cultured

PDA cells also reduced the abundance of side population cells
(Fig. 6E; supplementary material Fig. S3B). Without SOX9
suppression, transient suppression of b-TrCP had little effect on
spheroid growth (Fig. 6F, left panel). However, in SOX9-

deficient cells, sib-TrCP partially rescued spheroid formation
(Fig. 6F; supplementary material Fig. S3C). The remarkably
similar expression profile in SOX9- and GLI1-deficient tumor

cells, and restoration of spheroid formation by sib-TrCP support a
role for the suppression of SCFb-TrCP activity as a mechanism by
which SOX9 can promote GLI1 expression and the CSC-like

phenotype.

SOX9 is increased whereas b-TrCP is decreased in primary
human PDA
The above data indicate that SOX9 functions in cultured PDA
cells to antagonize b-TrCP expression and its activity towards

GLI1. We utilized Oncomine microarray data (Compendia
Bioscience) to analyze SOX9 and b-TrCP expression in
primary human PDA specimens (Rhodes et al., 2004). Four

studies each detected increased levels of PDA signature genes,
typified by SFN (also known as 14-3-3s), in PDA tumor tissue
relative to morphologically normal tissue (Logsdon et al., 2003;
Iacobuzio-Donahue et al., 2003; Segara et al., 2005; Badea et al.,

2008; Pei et al., 2009) (supplementary material Table S1 and Fig.
S4). In these studies, SOX9 mRNA expression was upregulated
(1.00- to 1.87-fold), whereas transcripts encoding b-TrCP (BTRC)

were consistently repressed (1.12- to 1.25-fold). This increase in
SOX9 and decrease in BTRC expression might contribute to the
upregulation of GLI1 in PDA (Thayer et al., 2003; Feldmann

et al., 2007; Nolan-Stevaux et al., 2009).

Fig. 4. SOX9 tethers b-TrCP
within the nuclei of PDA cells
and protects nuclear GLI1 from
degradation. (A) Panc-1 cells
were transfected with exogenous
Myc-tagged b-TrCP together with
the indicated siRNA. (B) Panc-1
cells were infected with the
lentiviral GLI1 vector and then with
the indicated siRNA. Cells were
treated with CLbL or vehicle
(DMSO) for the final 3 h prior to
fixation. Cells were fixed and
processed for indirect
immunofluorescence analysis at
48 h post-transfection. Scale bars:
10 mm.
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Fig. 5. See next page for legend.
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SOX9 stabilizes other b-TrCP-regulated proteins
If SOX9 selectively stabilizes nuclear GLI1 by antagonizing
b-TrCP activity in this compartment, then other substrates might

be similarly affected, potentially with more subtle effects for
cytoplasmic substrates. Consistent with their known regulation by
SCFb-TrCP, b-catenin, Snail and MCL1 protein levels were each

reduced by similar amounts to 50% of control levels following
SOX9 knockdown in PDA cells, and CLbL treatment restored the
levels (Fig. 7A) (Polakis, 1999; Zhou et al., 2004; Ding et al.,

2007). For b-catenin, consistent results were obtained with a
transcriptional reporter assay (Fig. 7B) and immunofluorescence
analysis (Fig. 7C). Cells transfected with SOX9 siRNA had
similar to 50% reduction in the expression of both nuclear

and cytoplasmic b-catenin (Fig. 7C; supplementary material
Fig. S3D). These data are consistent with a predominant role of
SOX9 in the nuclear tethering and suppression of SCFb-TrCP

activity through protein–protein interaction, with more subtle
effects in the cytoplasm attributed to alterations in b-TrCP
concentration (Fig. 4A). Fig. 7D presents a model summarizing

the observed effects of SOX9 on b-TrCP and nuclear GLI1.

DISCUSSION
SOX9 is crucial for diverse developmental processes including
sex determination, chondrogenesis and pancreatogenesis (de
Crombrugghe et al., 2001; Kashimada and Koopman, 2010;
Barrionuevo and Scherer, 2010). For cancers of the prostate,

colorectum, pancreas and breast, SOX9 plays important roles in
carcinoma cell malignant properties (Vidal et al., 2005; Wang
et al., 2008; Eberl et al., 2012; Kopp et al., 2012; Guo et al., 2012;

Matheu et al., 2012; Sun et al., 2013). In chondrocytes, SOX9
induces the transcription of genes such as COL2A1, COL11A2
and aggrecan (de Crombrugghe et al., 2001; Oh et al., 2010;

Pritchett et al., 2011). Although SOX9-responsive genes were
analyzed in several contexts, the mechanisms by which SOX9
promotes malignant properties remain poorly understood, and the

relative importance of transcriptional signaling versus other
biochemical activities is unclear (Lynn et al., 2007; Bhandari
et al., 2012; Guo et al., 2012).

In rat RK3E epithelial cells, we identified Sox9 as an early

transcriptional response to GLI1, and linked this regulation to
a downstream Sox9 enhancer element using ChIP and
transcriptional reporter studies. These data are consistent with

previous reports indicating regulation of mouse or human SOX9

by Hedgehog and/or GLI1 (Tavella et al., 2004; Vidal et al.,
2005; McNeill et al., 2012; Eberl et al., 2012). In analyzing GLI1-

transformed cells we were surprised to observe a pronounced loss

of GLI1 protein stability upon suppression of SOX9, attributed to
UPS-mediated degradation. This effect was conserved in human

PDA cells and indicated a consistent role for SOX9 in
stabilization of GLI1.

In a previous study focused upon chondrocytes, SOX9 was
found to associate with b-TrCP and to promote b-TrCP nuclear

localization and the degradation of nuclear b-catenin (Topol
et al., 2009). In the current study focused upon PDA, we found
that SOX9 likewise functions as a nuclear tether for b-TrCP, but

few other aspects of the chondrocyte study appeared to extend to
the PDA context. We instead obtained extensive data supporting a
potent inhibitory role for SOX9 on b-TrCP activity in the nucleus.

Suppression of b-TrCP in SOX9-deficient cells restored GLI1
levels and promoted phenotypes attributed to SOX9 or GLI1.
Supporting the identification of GLI1 as a major factor in the

altered phenotype of SOX9-deficient cells, the CSC marker
profile of SOX9- or GLI1-deficient PDA cells was remarkably
similar.

Consistent with an inhibitory effect on SCFb-TrCP, SOX9

interacted through its PQA/S region with the F-box domain of b-
TrCP and suppressed the association of b-TrCP with either
endogenous or exogenous SKP1. Typical of other substrates,

GLI1 associated with the WD domain. Co-IP assays indicated
that GLI1 and SOX9 are mutually incompatible for b-TrCP
association. Indeed, in SOX9-deficient PDA cells, the association

of GLI1 with b-TrCP was increased by several fold. It is unclear
why SOX9 association with the F-box region would prevent GLI1
from binding to the WD domain. Possibilities include steric

hindrance, a conformational shift or that SOX9 could facilitate
the binding of other nuclear proteins such as hnRNP-U, a WD
domain-binding pseudosubstrate, and thereby prevent the
association of b-TrCP with GLI1 (Davis et al., 2002).

An additional effect that strongly supported the inhibition of
SCFb-TrCP by SOX9 was the destabilization of b-TrCP. Whether
this instability results from the reduced association with SKP1,

from tethering within the nuclear compartment and/or from some
other effect of SOX9 or yet another associated factor is currently
unclear.

In SOX9-deficient PDA cells, b-TrCP was more widely
distributed throughout the cell, with reduced nuclear staining
and approximately a twofold increase in cytoplasmic staining
compared with that of control cells. This redistribution appeared

to impact on not only nuclear GLI1 but also cytoplasmic proteins
such as the SCFb-TrCP substrate b-catenin. While nuclear GLI1
was markedly destabilized, the cytoplasmic substrate b-catenin

was suppressed by ,50%. Similar effects were observed for two
other well-established substrates of SCFb-TrCP, Snail and MCL1.
These results indicate a broad role for SOX9 in the regulation of

protein stability.
In SOX9-deficient PDA cells, the effects of untethered b-TrCP

were quite distinct for nuclear and cytoplasmic GLI1. These

results appear to indicate that nuclear GLI1 is selectively targeted
by b-TrCP, although the mechanism(s) responsible for this
selectivity is unclear. The results are overall consistent with
identification of the Drosophila homolog as a short-lived nuclear

transcriptional activator in response to Hedgehog signaling
(Ohlmeyer and Kalderon, 1998). We conclude that when SOX9
is present, the b-TrCP nuclear staining intensity can be discordant

with nuclear SCFb-TrCP activity.
Mouse model data have established clear roles for GLI1 and

SOX9 in the malignant progression of PDA (Pasca di Magliano

et al., 2006; Ji et al., 2007; Feldmann et al., 2007; Nolan-Stevaux

Fig. 5. In a GLI1-dependent fashion, b-TrCP suppression rescues
malignant properties in SOX9-deficient PDA cells. (A) Panc-1 cell growth
in 2D culture was analyzed following transfection of SOX9 or control siRNAs
(upper panel). Alternatively, Panc-1-TO shRNA cells were treated with Dox
(lower panel). (B) Analysis of anchorage-independent growth regulation by
SOX9. A soft agar assay was performed using Panc-1 cells (n53). Similar
results are shown for AsPC-1 and MiaPaCa-2 cell lines (lower panels). Scale
bars: 400 mm. (C) Analysis of anoikis regulation by SOX9. The anoikis
assay was performed using Panc-1 cells. The number of surviving cells (left
y-axis) and the percentages of viable cells (right y-axis) are indicated for
each timepoint (n53). (D,E) Role of b-TrCP in the phenotype of SOX9-
deficient cells. Following siRNA transfection, anoikis assays were performed
in Panc-1 cells. All quantitative data show the mean6s.d. **P,0.01;
***P,0.001; ns, not significant. Growth curves were analyzed using non-
linear regression curve fitting. Other quantitative data were analyzed using
the unpaired Student’s t-test (two-tailed) or one-way ANOVA followed by
Tukey’s multiple comparison ad hoc post-test.
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Fig. 6. See next page for legend.
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et al., 2009; Rajurkar et al., 2012; Eberl et al., 2012; Kopp et al.,
2012; Mills et al., 2013). Interestingly, both SOX9 transcript

levels and GLI1 protein stability appear to be crucially dependent
upon upstream signaling by RAS–MEK–ERK, but it remains
unclear how either factor is regulated by this signaling
(Murakami et al., 2000; Kasper et al., 2006; Ji et al., 2007;

Eberl et al., 2012). Whereas a Sox9 transgene directed to the
pancreatic acinar cells is sufficient on its own to initiate early
PanIn lesions in mice, a GLI transgene does not induce these

lesions, suggesting that GLI is the more dependent factor (Pasca
di Magliano et al., 2006; Kopp et al., 2012). These considerations
suggest that KRAS might stabilize GLI1 by signaling through

SOX9. Alternatively, it is possible that activated KRAS could
more directly regulate GLI1 or both transcription factors in
parallel. Blockade of this KRAS signaling in tumor cells, a

current focus of research, has the potential to suppress SOX9

Fig. 6. b-TrCP suppression rescues CSC properties in SOX9-deficient
PDA cells. (A) Panc-1 cells form spheroids when suspended in stem cell
growth medium (left panel). Scale bar: 200 mm. Side population (SP) Panc-1
cells were identified by verapamil-sensitive dye efflux (right panel).
(B) Expression profiling of spheroid cells and side population cells. (C) Roles
of SOX9 and GLI1 in the regulation of CSC markers. The expression of
putative CSC markers was determined in Panc-1 cells treated with the
indicated siRNA. (D) Spheroid formation assay of Panc-1-TO shRNA cells
(n53). (E) Side population analysis of PDA cells. Cells were treated with Dox
or vehicle for 5 days and then stained with Hoechst 33342. The results of
three independent experiments are presented (right panel). (F) Role of b-
TrCP in the growth of tumor spheroids. sib-TrCP had little effect on its own in
parental Panc-1 cells (left panel). The effect of sib-TrCP was then analyzed in
the context of SOX9-deficient PDA cells (middle and right panels). All
quantitative data show the mean6s.d. *P,0.05; ** P,0.01; *** P,0.001; ns,
not significant.

Fig. 7. SOX9 stabilizes b-
catenin in Panc-1 cells.
(A) Regulation of diverse
SCFb-TrCP substrates by
SOX9. Panc-1 cells were
treated with the indicated
siRNA and protein
expression was analyzed by
immunoblotting.
(B) Regulation of b-catenin
activity by SOX9 and b-
TrCP. Panc-1 cells were
transfected with the
indicated siRNA and TCF4-
dependent transcriptional
activity was determined by
using a luciferase reporter
assay. Data show the
mean6s.d. **P,0.01;
***P,0.001. (C) Regulation
of b-catenin protein
expression by SOX9. Panc-
1 cells were treated with the
indicated siRNA and then
analyzed by indirect
immunofluorescence
analysis. Scale bars: 10 mm.
Quantification of b-catenin is
shown in supplementary
material Fig. S3D. (D) A
model depicting the effects
of SOX9 on b-TrCP in PDA
cells, including nuclear
tethering (1), disruption of its
association with GLI1 (2),
promotion of UPS-mediated
turnover (3) and disruption
of its association with
SKP1 (4).
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and to activate b-TrCP-mediated degradation of multiple
oncoproteins.

MATERIALS AND METHODS
Expression vectors and plasmid transfection
pcDNA4/TO-HA-GLI1 was described previously (Li et al., 2006).

Retroviral vectors were made by inserting the HAGLI1 cassette of

pcDNA4/TO-HA-GLI1 into pB-puro and pLUT7. pLUT7 was provided

by Alexey Ivanov (West Virginia University School of Medicine). The

human SOX9 expression vector, HA3 SOX9 pcDNA3.1, was a gift from

Benoit de Crombrugghe (MD Anderson Cancer Center).

Mouse b-TrCP1 vector containing a 36Myc epitope tag at the N-

terminus (Wan et al., 2004), a gift from Xu Cao (Johns Hopkins

University School of Medicine), was used to generate truncated

constructs by PCR. All cloned PCR products were verified by

sequencing. A human ubiquitin vector, Myc-Ub, was provided by

Alexey Ivanov. pcDNA3-b-catenin (Addgene 16828) was a gift from

Eric Fearon (University of Michigan Medical School) (Kolligs et al.,

1999). pCMV-Myc CDC4 WT* was a gift from Bert Vogelstein (Johns

Hopkins University School of Medicine; FBXW7, Addgene plasmid

16652). pcDNA3-myc-Skp2 was a gift from Yue Xiong (University of

North Carolina at Chapel Hill; Addgene plasmid 19947).

pTRIPZ-TOshSOX9 lentivector was generated by transfer of the

shRNAmir cassette from pGIPZ (V3LHS_396212, Thermo Scientific).

Non-targeting TRIPZ lentiviral shRNAmir RHS4743 served as a control.

shRNA vectors targeting rat Sox9 (RnSox9) were constructed in

pSilencer 2.1-U6 neo as described previously (Li et al., 2006). shRNA

target sequences are listed in supplementary material Table S2.

Retroviral transduction was performed as described previously (Foster

et al., 1999). Transient transfections were performed as described

previously (Lin et al., 2011) using Lipofectamine 2000 Transfection

Reagent (Life Technologies) for Panc-1 cells and TransIT-LT1 Reagent

(Mirus) for other cells.

Isolation of rat Sox9 cDNA and generation of Sox9
expression vectors
PCR was used to synthesize cDNA fragments containing the RnSox9

59UTR and protein coding regions. The sequence has been deposited with

the NCBI (accession number KP732536). pBpuro-RnSox9 was used for

stable expression studies. RnSox9 vectors tagged with hemagglutinin

(HA), including wild-type HA–Sox9 and truncation mutants, were

generated by PCR followed by insertion into pcDNA3.1. All cloned PCR

products were verified by sequencing.

Cell culture and small molecules
The immortalized human pancreatic ductal epithelial cell line HPDE

(H6c7), provided by Ming-Sound Tsao (University of Toronto, Canada),

was cultured in keratinocyte serum-free (KSF) medium supplemented

with bovine pituitary extract and epidermal growth factor (Life

Technologies). S2-013 PDA cells were a gift of Martin Johnson

(University of Alabama at Birmingham). S2-013, HEK293, 293T and

RK3E cells were cultured in high-glucose DMEM supplemented with L-

glutamine, penicillin, streptomycin and 10% (v/v) fetal bovine serum.

Other PDA cell lines were from American Type Culture Collection

(ATCC) and were cultured as recommended by ATCC. Doxycycline

(Dox, 0.5 mg/ml), tetracycline (tet, 1.0 mg/ml), cycloheximide (CHX,

50 mg/ml), clasto-lactacystin b-lactone (CLbL, 10 mM) and MG132

(20 mM) were from Sigma-Aldrich.

siRNA transfection, RNA isolation and real-time quantitative PCR
siRNA target sequences are listed in supplementary material Table S2.

siRNA transfection was performed using Lipofectamine RNAiMax (Life

Technologies) as reported previously (Lin et al., 2011). For some

experiments, the Panc-1 cells were re-transfected after 24 h. Cell extracts

were prepared 48 h after the start of the initial transfection. Co-

transfection of plasmids with siRNAs was as reported previously (Lin

et al., 2011).

Total RNA was purified using the RNeasy Plus Mini kit (Qiagen).

Reverse transcription was performed using SuperScript II (Life

Technologies). Real-time quantitative (qRT)-PCR reactions utilized

Brilliant II SyBr green QPCR master mix, GAPDH served as the

internal control, and reactions were analyzed on an Mx3005P system

(Agilent). Oligonucleotides are shown in supplementary material Table

S3. qRT-PCR results represent three or more independent experiments

(error bars show the s.d.).

Luciferase reporter assay
Topflash (wild-type TCF4-binding sites) or Fopflash (mutated sites)

reporter constructs were gifts from Bert Vogelstein. The Renilla

luciferase vector pRL-TK served as an internal control. For siRNA co-

transfection, siRNA Ctrl2 served as the control (supplementary material

Table S2). Reporter assays were performed on 12-well plates at 48 h

post-transfection using Dual Luciferase Reporter Assays (Promega) as

described previously (Lin et al., 2011). Data represent three or more

independent experiments (error bars show the s.d.).

Protein expression studies
For immunoblotting, mouse anti-GLI1 and rabbit anti-b-TrCP, anti-SKP1

and anti-SNAI1/Snail were from Cell Signaling Technology. Rabbit anti-

SOX9 was from EMD Millipore. Mouse anti-Myc (9E10) and anti-b-

catenin were from BD Biosciences. Rat anti-HA (3F10) was from Roche

Applied Science. Anti-MCL1 was from Santa Cruz Biotechnology

(S-19).

Whole-cell lysates for immunoblotting were obtained by extraction in

ice-cold RIPA buffer without SDS as described previously (Lin et al.,

2011). For immunoprecipitation and co-IP, cells were resuspended in

NE-A buffer and then lysed by addition of NaCl and glycerol as

described previously (Chen and Bieker, 2001). GLI1 protein was

precipitated with rabbit anti-GLI1 (Li et al., 2006), whereas rabbit anti-

SOX9 (H-90, Santa Cruz Biotechnology) or a monoclonal anti-HA

(12CA5, Roche) was used for SOX9. Normal rabbit or mouse IgG

(Sigma-Aldrich) was used as a control. Protein complexes were

recovered using Protein-A–Sepharose (Sigma-Aldrich).

For immunoblotting, proteins were transferred to nitrocellulose

membrane and detected using chemiluminescence (Pierce ECL,

Thermo-Scientific). Quantitative analysis of autoradiographic images

was performed using ImageJ v1.42 (National Institutes of Health), and

the normalized results were transferred to GraphPad Prism (version 5) for

statistical analysis.

In vitro transformation assay
RK3E transformation assays were performed as described previously (Li

et al., 2006). Cells were fixed and stained using Modified Wright Stain

(Sigma-Aldrich) at 2–3 weeks post-transfection, and foci with a diameter

.1.0 mm were counted.

Soft agar assay
Anchorage-independent cell growth assays were performed on six-well

plates. A 2.0-ml underlay composed of 0.63% (w/v) agar in complete

DMEM was placed in each well. A volume of 1.0 ml of cells (3.06103)

in DMEM containing 0.33% agar was plated on top. Cells were fed with

1.0 ml of 0.63% agar in DMEM each week. For induction of shRNA

expression, 0.5 mg/ml of doxycycline was included. Cells were fixed

after 2–3 weeks in 10% methanol/10% acetic acid and stained with 0.1%

Crystal Violet (Sigma-Aldrich) in 50% methanol. Colonies .50 mm in

diameter were counted under phase contrast microscopy.

Anoikis assay
Matrix deprivation assays were performed as described previously

(Kumar et al., 2011). At 24 h post siRNA transfection, 2.06104 cells

were resuspended in 1.0 ml of complete DMEM containing 1%

methylcellulose (Sigma-Aldrich) and plated in six-well low-attachment

plates. Assays were performed in triplicate (error bars show the s.d.). At

24 and 48 h later, cells were collected, resuspended in Accumax

(Innovative Cell Technologies) to generate single cell suspensions, and
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mixed with 0.4% Trypan Blue (Cellgro). Trypan Blue staining was

scored using a hemocytometer.

Spheroid formation assay
PDA cells were trypsinized, counted and suspended in six-well low-

attachment plates using 1:1 DMEM/F-12 supplemented with 16 B27,

4.0 mg/ml heparin, 20 ng/ml EGF, 20 ng/ml FGF and 1%

methylcellulose. For each cell line, 2000–5000 cells were plated in

triplicate in a final volume of 2.0 ml. The spheroids in each well were

quantified by phase contrast microscopy. For RNA isolation, spheroids

were harvested after 7–10 days by centrifugation at 200 g for 1 min.

Flow cytometry
For side population analysis, cells were trypsinized, washed with PBS

and resuspended in staining buffer [DMEM, 2% (v/v) FBS, 1.0 mM

HEPES-KOH pH 7.0]. Samples were incubated for 30 min at 37 C̊ with

or without 50 mg/ml verapamil (Sigma-Aldrich), mixed with Hoechst

33342 (Sigma-Aldrich) to a final concentration of 5.0 mg/ml and

incubated for 90 min at 37 C̊ with intermittent mixing. The cells were

washed twice with PBS, resuspended in sorting buffer [16PBS, 5.0 mM

EDTA, 1% (w/v) BSA, 25 mM HEPES-KOH pH 7.0], and maintained at

4 C̊ in the dark. Analysis was performed using a FACSAria III cell sorter

(BD Biosciences), and both Hoechst Red and Hoechst Blue were

measured.

Immunofluorescent staining and quantification
Cells were treated with CLbL or DMSO for 3 h before fixation. Cells were

fixed and stained as described previously (Pandya et al., 2004) at 48 h post-

transfection using rabbit anti-SOX9 (1:1000, EMD Millipore), mouse anti-

GLI1 (1:100, Cell Signaling Technologies), anti-Myc (9E10, 2.5 mg/ml,

BD Biosciences) and/or anti-b-catenin (0.17 mg/ml, BD Biosciences).

Secondary antibodies were cross-absorbed Alexa-Fluor-647-conjugated

goat anti-rabbit-IgG and Alexa-Fluor-555-conjugated goat anti-mouse-IgG

(Life Technologies). Nuclei were counterstained in DAPI prior to

mounting of coverslips using ProLong Antifade (Life Technologies).

Digital images were captured and pseudocolored using a Zeiss LSM

510 laser scanning confocal on an upright Zeiss AxioImager and Zeiss

LSM software (Carl Zeiss). Images were exported as tiff files, and Corel

software was used to make minor identical adjustments to the

experimental and control panels in parallel. b-catenin was quantified

using Image J.
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Vidal, V. P., Chaboissier, M. C., Lützkendorf, S., Cotsarelis, G., Mill, P., Hui,
C. C., Ortonne, N., Ortonne, J. P. and Schedl, A. (2005). Sox9 is essential for
outer root sheath differentiation and the formation of the hair stem cell
compartment. Curr. Biol. 15, 1340-1351.

Vokes, S. A., Ji, H., McCuine, S., Tenzen, T., Giles, S., Zhong, S., Longabaugh,
W. J., Davidson, E. H., Wong, W. H. and McMahon, A. P. (2007). Genomic

RESEARCH ARTICLE Journal of Cell Science (2015) 128, 1123–1138 doi:10.1242/jcs.162164

1137

http://dx.doi.org/10.1101/gad.1380906
http://dx.doi.org/10.1101/gad.1380906
http://dx.doi.org/10.1101/gad.1380906
http://dx.doi.org/10.1016/S0002-9440(10)63911-9
http://dx.doi.org/10.1016/S0002-9440(10)63911-9
http://dx.doi.org/10.1016/S0002-9440(10)63911-9
http://dx.doi.org/10.1016/S0002-9440(10)63911-9
http://dx.doi.org/10.1074/jbc.M611089200
http://dx.doi.org/10.1074/jbc.M611089200
http://dx.doi.org/10.1074/jbc.M611089200
http://dx.doi.org/10.4161/cc.5.21.3406
http://dx.doi.org/10.4161/cc.5.21.3406
http://dx.doi.org/10.1016/S0962-8924(02)02388-7
http://dx.doi.org/10.1016/S0962-8924(02)02388-7
http://dx.doi.org/10.1242/dev.048983
http://dx.doi.org/10.1242/dev.048983
http://dx.doi.org/10.1128/MCB.02317-05
http://dx.doi.org/10.1128/MCB.02317-05
http://dx.doi.org/10.1128/MCB.02317-05
http://dx.doi.org/10.1128/MCB.02317-05
http://dx.doi.org/10.1159/000123838
http://dx.doi.org/10.1159/000123838
http://dx.doi.org/10.1016/j.ccr.2012.10.025
http://dx.doi.org/10.1016/j.ccr.2012.10.025
http://dx.doi.org/10.1016/j.ccr.2012.10.025
http://dx.doi.org/10.1016/j.ccr.2012.10.025
http://dx.doi.org/10.1128/MCB.01342-10
http://dx.doi.org/10.1128/MCB.01342-10
http://dx.doi.org/10.1128/MCB.01342-10
http://dx.doi.org/10.1128/MCB.01342-10
http://dx.doi.org/10.2741/4045
http://dx.doi.org/10.2741/4045
http://dx.doi.org/10.2741/4045
http://dx.doi.org/10.4161/cc.6.20.4808
http://dx.doi.org/10.4161/cc.6.20.4808
http://dx.doi.org/10.1038/nsmb.1833
http://dx.doi.org/10.1038/nsmb.1833
http://dx.doi.org/10.1038/nsmb.1833
http://dx.doi.org/10.1038/nsmb.1833
http://dx.doi.org/10.1158/0008-5472.CAN-06-2030
http://dx.doi.org/10.1158/0008-5472.CAN-06-2030
http://dx.doi.org/10.1158/0008-5472.CAN-06-2030
http://dx.doi.org/10.1007/s11010-012-1493-6
http://dx.doi.org/10.1007/s11010-012-1493-6
http://dx.doi.org/10.1007/s11010-012-1493-6
http://dx.doi.org/10.1128/MCB.01189-10
http://dx.doi.org/10.1128/MCB.01189-10
http://dx.doi.org/10.1128/MCB.01189-10
http://dx.doi.org/10.1128/MCB.01189-10
http://dx.doi.org/10.1073/pnas.0704054104
http://dx.doi.org/10.1073/pnas.0704054104
http://dx.doi.org/10.1073/pnas.0704054104
http://dx.doi.org/10.1158/0008-5472.CAN-11-3660
http://dx.doi.org/10.1158/0008-5472.CAN-11-3660
http://dx.doi.org/10.1158/0008-5472.CAN-11-3660
http://dx.doi.org/10.1016/j.mcn.2011.12.008
http://dx.doi.org/10.1016/j.mcn.2011.12.008
http://dx.doi.org/10.1016/j.mcn.2011.12.008
http://dx.doi.org/10.1016/j.mcn.2011.12.008
http://dx.doi.org/10.1074/jbc.M112.438846
http://dx.doi.org/10.1074/jbc.M112.438846
http://dx.doi.org/10.1074/jbc.M112.438846
http://dx.doi.org/10.1074/jbc.M112.438846
http://dx.doi.org/10.1074/jbc.M112.438846
http://dx.doi.org/10.1038/nrc2899
http://dx.doi.org/10.1038/nrc2899
http://dx.doi.org/10.1038/nrc2899
http://dx.doi.org/10.1073/pnas.97.3.1113
http://dx.doi.org/10.1073/pnas.97.3.1113
http://dx.doi.org/10.1073/pnas.97.3.1113
http://dx.doi.org/10.1073/pnas.97.3.1113
http://dx.doi.org/10.1101/gad.1753809
http://dx.doi.org/10.1101/gad.1753809
http://dx.doi.org/10.1101/gad.1753809
http://dx.doi.org/10.1101/gad.1753809
http://dx.doi.org/10.1242/dev.00821
http://dx.doi.org/10.1242/dev.00821
http://dx.doi.org/10.1371/journal.pone.0010113
http://dx.doi.org/10.1371/journal.pone.0010113
http://dx.doi.org/10.1371/journal.pone.0010113
http://dx.doi.org/10.1038/25533
http://dx.doi.org/10.1038/25533
http://dx.doi.org/10.1158/1078-0432.CCR-03-0484
http://dx.doi.org/10.1158/1078-0432.CCR-03-0484
http://dx.doi.org/10.1158/1078-0432.CCR-03-0484
http://dx.doi.org/10.1158/1078-0432.CCR-03-0484
http://dx.doi.org/10.1101/gad.1470806
http://dx.doi.org/10.1101/gad.1470806
http://dx.doi.org/10.1101/gad.1470806
http://dx.doi.org/10.1016/j.ccr.2009.07.016
http://dx.doi.org/10.1016/j.ccr.2009.07.016
http://dx.doi.org/10.1016/j.ccr.2009.07.016
http://dx.doi.org/10.1016/S0959-437X(99)80003-3
http://dx.doi.org/10.1016/S0959-437X(99)80003-3
http://dx.doi.org/10.1016/j.molmed.2010.12.001
http://dx.doi.org/10.1016/j.molmed.2010.12.001
http://dx.doi.org/10.1016/j.molmed.2010.12.001
http://dx.doi.org/10.1073/pnas.1114168109
http://dx.doi.org/10.1073/pnas.1114168109
http://dx.doi.org/10.1073/pnas.1114168109
http://dx.doi.org/10.1073/pnas.1114168109
http://dx.doi.org/10.1016/S1476-5586(04)80047-2
http://dx.doi.org/10.1016/S1476-5586(04)80047-2
http://dx.doi.org/10.1016/S1476-5586(04)80047-2
http://dx.doi.org/10.1016/j.tcb.2007.06.007
http://dx.doi.org/10.1016/j.tcb.2007.06.007
http://dx.doi.org/10.1016/j.tcb.2007.06.007
http://dx.doi.org/10.1158/1078-0432.CCR-04-1813
http://dx.doi.org/10.1158/1078-0432.CCR-04-1813
http://dx.doi.org/10.1158/1078-0432.CCR-04-1813
http://dx.doi.org/10.1158/1078-0432.CCR-04-1813
http://dx.doi.org/10.1158/1078-0432.CCR-04-1813
http://dx.doi.org/10.1073/pnas.0609217104
http://dx.doi.org/10.1073/pnas.0609217104
http://dx.doi.org/10.1073/pnas.0609217104
http://dx.doi.org/10.1084/jem.20112446
http://dx.doi.org/10.1084/jem.20112446
http://dx.doi.org/10.1084/jem.20112446
http://dx.doi.org/10.1084/jem.20112446
http://dx.doi.org/10.1084/jem.20112446
http://dx.doi.org/10.1038/nrm3582
http://dx.doi.org/10.1038/nrm3582
http://dx.doi.org/10.1093/jmcb/mjp052
http://dx.doi.org/10.1093/jmcb/mjp052
http://dx.doi.org/10.1093/jmcb/mjp052
http://dx.doi.org/10.1002/stem.1394
http://dx.doi.org/10.1002/stem.1394
http://dx.doi.org/10.1002/stem.1394
http://dx.doi.org/10.1002/stem.1394
http://dx.doi.org/10.1038/35077219
http://dx.doi.org/10.1038/35077219
http://dx.doi.org/10.1016/j.cell.2006.07.024
http://dx.doi.org/10.1016/j.cell.2006.07.024
http://dx.doi.org/10.1016/j.cell.2006.07.024
http://dx.doi.org/10.1002/ijc.26323
http://dx.doi.org/10.1002/ijc.26323
http://dx.doi.org/10.1002/ijc.26323
http://dx.doi.org/10.1002/ijc.26323
http://dx.doi.org/10.1359/JBMR.040706
http://dx.doi.org/10.1359/JBMR.040706
http://dx.doi.org/10.1359/JBMR.040706
http://dx.doi.org/10.1359/JBMR.040706
http://dx.doi.org/10.1038/nature02009
http://dx.doi.org/10.1038/nature02009
http://dx.doi.org/10.1038/nature02009
http://dx.doi.org/10.1038/nature02009
http://dx.doi.org/10.1073/pnas.0813203106
http://dx.doi.org/10.1073/pnas.0813203106
http://dx.doi.org/10.1073/pnas.0813203106
http://dx.doi.org/10.1073/pnas.0813203106
http://dx.doi.org/10.1074/jbc.M808048200
http://dx.doi.org/10.1074/jbc.M808048200
http://dx.doi.org/10.1074/jbc.M808048200
http://dx.doi.org/10.1016/j.cub.2005.06.064
http://dx.doi.org/10.1016/j.cub.2005.06.064
http://dx.doi.org/10.1016/j.cub.2005.06.064
http://dx.doi.org/10.1016/j.cub.2005.06.064
http://dx.doi.org/10.1242/dev.001966
http://dx.doi.org/10.1242/dev.001966


Jo
ur

na
l o

f C
el

l S
ci

en
ce

characterization of Gli-activator targets in sonic hedgehog-mediated neural
patterning. Development 134, 1977-1989.

Wan, M., Tang, Y., Tytler, E. M., Lu, C., Jin, B., Vickers, S. M., Yang, L., Shi, X.
and Cao, X. (2004). Smad4 protein stability is regulated by ubiquitin ligase
SCFb-TrCP1. J. Biol. Chem. 279, 14484-14487.

Wang, H., McKnight, N. C., Zhang, T., Lu, M. L., Balk, S. P. and Yuan, X.
(2007). SOX9 is expressed in normal prostate basal cells and regulates
androgen receptor expression in prostate cancer cells. Cancer Res. 67, 528-
536.

Wang, H., Leav, I., Ibaragi, S., Wegner, M., Hu, G. F., Lu, M. L., Balk, S. P. and
Yuan, X. (2008). SOX9 is expressed in human fetal prostate epithelium and
enhances prostate cancer invasion. Cancer Res. 68, 1625-1630.

Weinberg, R. A. (2007). Growth factors, receptors, and Cancer. In The Biology of
Cancer (ed. R. A. Weinberg), pp. 119-158. New York, NY: Garland Science,
Taylor and Francis Group, LLC.

Zhou, B. P., Deng, J., Xia, W., Xu, J., Li, Y. M., Gunduz, M. and Hung, M. C.
(2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in
control of epithelial-mesenchymal transition. Nat. Cell Biol. 6, 931-940.

RESEARCH ARTICLE Journal of Cell Science (2015) 128, 1123–1138 doi:10.1242/jcs.162164

1138

http://dx.doi.org/10.1242/dev.001966
http://dx.doi.org/10.1242/dev.001966
http://dx.doi.org/10.1074/jbc.C400005200
http://dx.doi.org/10.1074/jbc.C400005200
http://dx.doi.org/10.1074/jbc.C400005200
http://dx.doi.org/10.1074/jbc.C400005200
http://dx.doi.org/10.1158/0008-5472.CAN-06-1672
http://dx.doi.org/10.1158/0008-5472.CAN-06-1672
http://dx.doi.org/10.1158/0008-5472.CAN-06-1672
http://dx.doi.org/10.1158/0008-5472.CAN-06-1672
http://dx.doi.org/10.1158/0008-5472.CAN-07-5915
http://dx.doi.org/10.1158/0008-5472.CAN-07-5915
http://dx.doi.org/10.1158/0008-5472.CAN-07-5915
http://dx.doi.org/10.1038/ncb1173
http://dx.doi.org/10.1038/ncb1173
http://dx.doi.org/10.1038/ncb1173

	2015
	Sox9 Inhibits -Trcp-Mediated Protein Degradation To Promote Nuclear Gli1 Expression And Cancer Stem Cell Properties
	W. Deng
	D. B. Vanderbilt
	C.-C. Lin
	K. H. Martin
	K. M. Brundage
	See next page for additional authors
	Digital Commons Citation
	Authors


	Fig 1
	Fig 2
	Fig 3
	Fig 4
	Fig 5
	Fig 6
	Fig 7
	Ref 1
	Ref 2
	Ref 3
	Ref 4
	Ref 5
	Ref 6
	Ref 7
	Ref 8
	Ref 9
	Ref 10
	Ref 11
	Ref 12
	Ref 13
	Ref 14
	Ref 15
	Ref 16
	Ref 17
	Ref 18
	Ref 19
	Ref 20
	Ref 21
	Ref 22
	Ref 23
	Ref 24
	Ref 25
	Ref 26
	Ref 27
	Ref 28
	Ref 29
	Ref 30
	Ref 31
	Ref 32
	Ref 33
	Ref 34
	Ref 35
	Ref 36
	Ref 37
	Ref 38
	Ref 39
	Ref 40
	Ref 41
	Ref 42
	Ref 43
	Ref 44
	Ref 45
	Ref 46
	Ref 47
	Ref 48
	Ref 49
	Ref 50
	Ref 51
	Ref 52
	Ref 53
	Ref 54
	Ref 55
	Ref 56
	Ref 57
	Ref 58
	Ref 59
	Ref 60
	Ref 61
	Ref 62
	Ref 63
	Ref 64
	Ref 65
	Ref 66
	Ref 67
	Ref 68
	Ref 69
	Ref 70
	Ref 71
	Ref 72
	Ref 73
	Ref 74
	Ref 75
	Ref 76
	Ref 77
	Ref 78
	Ref 79

