
JOURNAL OF OPTIMIZATION, DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS (JODEA)
Volume 26, Issue 1, June 2018, pp. 45�71, DOI 10.15421/141804

ISSN (print) 2617�0108
ISSN (on-line) xxxx�xxxx

ON APPROXIMATION OF STATE-CONSTRAINED
OPTIMAL CONTROL PROBLEM IN COEFFICIENTS

FOR p-BIHARMONIC EQUATION

Peter I. Kogut∗, OlhaP. Kupenko†‡

Abstract. We study a Dirichlet-Navier optimal design problem for a quasi-linear mono-

tone p-biharmonic equation with control and state constraints. The coe�cient of the

p-biharmonic operator we take as a design variable in BV (Ω)∩L∞(Ω). In order to handle

the inherent degeneracy of the p-Laplacian and the pointwise state constraints, we use

regularization and relaxation approaches. We derive existence and uniqueness of solutions

to the underlying boundary value problem and the optimal control problem. In fact,

we introduce a two-parameter model for the weighted p-biharmonic operator and Henig

approximation of the ordering cone. Further we discuss the asymptotic behaviour of the

solutions to regularized problem on each (ε, k)-level as the parameters tend to zero and

in�nity, respectively.

Key words: p-biharmonic problem, optimal control, control in coe�cients, approximation,

existence result.
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1. Introduction

The aim of this article is to study a state constrained Dirichlet-Navier optimal
control problem (OCP) for a quasi-linear monotone elliptic equation, the so-called
weighted p-biharmonic problem. The coe�cient of the p-biharmonic operator, the
weight u, we take as a control in BV (Ω)∩L∞(Ω). Since an important matter for
applications is to obtain a solution to a given boundary value problem with desired
properties, it leads to the reasonable questions: can we de�ne an appropriate
coe�cient of p-biharmonic operator to minimize the discrepancy between a given
displacement yd and an expected solution to such problem. More precisely, we
analyse the following optimal design problem, which can be regarded as an optimal
control problem, for quasi-linear partial di�erential equation (PDE) with mixed
boundary conditions

Minimize

{
I(u, y) =

ˆ
Ω
|y − yd|p dx+

ˆ
Ω
|Du|

}
(1.1)
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subject to the quasi-linear equation

∆(u|∆y|p−2∆y) = f in Ω, (1.2)

y =
∂y

∂ν
= 0 on ΓD, y = ∆y = 0 on ΓS , (1.3)

the pointwise state constraints

0 6
∂y(s)

∂ν
6 ζmax(s) a.e. on ΓS , (1.4)

and the design (control) constraints

u ∈ BV (Ω) and 0 < α 6 ξ1(x) 6 u(x) 6 ξ2(x) a.e. in Ω. (1.5)

Here, ΓD and ΓS are the disjoint part of the boundary ∂Ω (∂Ω = ΓD ∪ ΓS),
BV (Ω) ∩ L∞(Ω) stands for the control space, yd ∈ Lp(Ω), ξ1, ξ2 ∈ L∞(Ω), f ∈
Lp
′
(Ω), and ζmax ∈ Lp(ΓS) are given distributions. Problems of this type appear

for p−power-like elastic isotropic �at plates of uniform thickness, where the design
variable u is to be chosen such that the de�ection of the plate matches a given
pro�le. The model extends the classical weighted biharmonic equation, where the
weight u = a3 involves the thickness a of the plate, see e.g. [8,21,25,26], or u can
be regarded as a rigidity parameter. The OCP (1.1)�(1.4) can be considered as
a prototype of design problems for quasilinear state equations. For an interesting
exposure to this subject we can refer to the monographs [8, 16,17].

A particular feature of OCP (1.1)�(1.4) is the restriction by the pointwise
constraints (1.4) in Lp(ΓS)-space. In fact, the ordering cone of positive elements in
Lp-spaces is typically non-solid, i.e. it has an empty topological interior. Following
the standard multiplier rule, which gives a necessary optimality condition for
local solutions to state constrained OCPs, the constraint quali�cations such as
the Slater condition or the Robinson condition should be applied in this case.
However, these conditions cannot be veri�ed for cones such as

Lp+(ΓS) = {v ∈ Lp(ΓS) | v > 0 a.e. in Ω}

due to the fact that int
(
Lp+(ΓS)

)
= ∅, where int (A) stands for the topologi-

cal interior of the set A. Therefore, it would be reasonable to propose a suitable
relaxation of the pointwise state constraints in the form of some inequality condi-
tions involving a so-called Henig approximation

(
Lp+(ΓS)

)
ε

(B) of the ordering
cone of positive elements Lp+(ΓS). Here, B is a �xed closed base of Lp+(ΓS).
As it was shown in our recent publication [12], due to fact that Lp+(ΓS) ⊂(
Lp+(ΓS)

)
ε

(B) for all ε > 0, we can replace the cone Lp+(ΓS) by its approximation(
Lp+(ΓS)

)
ε

(B). As a result, it leads to some relaxation of the inequality constraints
of the considered problem, and, hence, to the approximation of the feasible set
to the original OCP. Hence, the solvability of a given class of OCPs can be
characterized by solving the corresponding Henig relaxed problems in the limit
ε→ 0 (for the details, we refer to [12,13]).
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The ones more characteristic feature of the OCP (1.1)�(1.4) is related with
degeneracy of quasilinear di�erential operator ∆(u|∆y|p−2∆y) as ∆y tends to
zero and also if u approaches zero. Moreover, when the term u|∆y|p−2 is regarded
as the coe�cient of the harmonic operator, we also have the case of unbounded
coe�cients. In spite of the fact that the Control in the coe�cients of elliptic
problems has a long history of its own starting with work of Murat [19, 20] and
Tartar [27] (see also Casas [4], where the constrained optimal control problem in
the coe�cients of the leading order di�erential expressions was �rst discussed in
details), analogous results for the case of weighted p-biharmonic equations of the
type ∆(u|∆y|p−2∆y) remained open. In this paper, in order to avoid degeneracy
with respect to the control u, we assume that u is bounded away from zero.
For the precise statements see the next section. We leave the case of potentially
degenerating controls to a future contribution. Instead, in this article, we focus
on the degeneracies related to the nonlinearity. A number of regularizations have
been suggested in the literature. See [22] for a discussion for what has come to

be known as ε-p-Laplace problem, such as ∆u,ε,py := div(u(ε + |∇y|2)
p−2

2 )∇y.
While the ε-p-Laplacean regularizes the degeneracy as the gradients tend to zero,
the term u|∇y|p−2, viewed again as a coe�cient for the otherwise linear problem,
may grow large. Therefore, we introduce yet another regularization that leads to
a sequence of monotone and bounded approximation Fk(|∆y|2) of |∆y|2 (see our
recent publication [6], where this approach was developed for p-Laplace problem).
For �xed parameter p ∈ [2,∞), and control u, we arrive at a two-parameter
problem governed by

∆2
ε,k,py := ∆(u(ε+ Fk(|∆y|2))

p−2
2 )∆y.

Finally, we have to deal with a two-parameter family of optimal control problems
in the coe�cients for monotone nonlinear di�erential equations and Henig relaxation
of the the inequality state constraints. We consequently provide the well-posedness
analysis for the underlying partial di�erential equations as well as for the optimal
control problems. After that we pass to the limits as k → ∞ and ε → 0. The
approximations and Henig relaxation are not only considered to be useful for the
mathematical analysis, but also for the purpose of numerical simulations.

2. Preliminaries

Let Ω be a bounded open connected subset of RN (N > 2). We assume that
the boundary ∂Ω is Lipschitzian so that the unit outward normal ν = ν(x) is
well-de�ned for a.e. x ∈ ∂Ω, where a.e. means here with respect to the (N − 1)-
dimensional Hausdor� measure. We also assume that the boundary ∂Ω consists
of two disjoint parts ∂Ω = ΓD ∪ ΓS , where the sets ΓD and ΓS have positive
(N − 1)-dimensional measures, and ΓS is now C2. Let p be a real number such
that 2 6 p <∞.

ByW 2,p(Ω) we denote the Sobolev space as the subspace of Lp(Ω) of functions
y having generalized derivatives Dky up to order k = 2 in Lp(Ω). We note that
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due to the interpolation theory, see [1, Theorem 4.14], W 2,p(Ω) is a Banach space
with respect to the norm

‖y‖W 2,p(Ω) =
(
‖y‖pLp(Ω) + ‖D2y‖pLp(Ω)

)1/p
=

(ˆ
Ω

(
|y|p + |D2y|p

)
dx

)1/p

,

where

D2y ·D2v =

 N∑
i1,i2=1

∂2y

∂xi1∂xi2

∂2v

∂xi1∂xi2

1/2

, and |D2y| =
(
D2y ·D2y

)1/2
.

Since ∂Ω is Lipschitzian and ΓS is of C2, it follows that a function y ∈ W 2,p(Ω)
admits some traces on ∂Ω. In particular, if ν denotes the unit outer normal to
∂Ω, then for any y ∈ C2(Ω) we can de�ne the traces

γ0(y) = y |∂Ω , γ1(y) =
∂y

∂ν

∣∣∣∣
ΓD

and γ2(y) =
∂2y

∂ν2

∣∣∣∣
ΓS

,

where ∂y/∂ν denotes the outer normal derivative of y on ΓD de�ned by ∂y/∂ν =
(∇y, ν). By [15, Theorem 8.3], these linear operators can be extended continuously
to the space W 2,p(Ω). We set

W 2−1/p,p(∂Ω) := γ0

[
W 2,p(Ω)

]
, W 1−1/p,p(ΓD) := γ1

[
W 2,p(Ω)

]
as closed subspaces of W 1,p(∂Ω) and Lp(ΓD), respectively. Since 1− 1/p = 1/p′,
where p′ stands for the conjugate of p (that is p+p′ = pp′), we have γ1

[
W 2,p(Ω)

]
=

W 1/p′,p(ΓD). Moreover, the injections

W 2−1/p,p(∂Ω) ↪→W 1,p(∂Ω) and W 1/p′,p(ΓD) ↪→ Lp(ΓD) (2.1)

are compact by the Sobolev embedding theorem. We also put

γ2

[
W 2,p(Ω)

]
= W−1/p,p(ΓS) :=

[
W 1/p,p′(ΓS)

]∗
= the dual space of W 1/p,p′(ΓS).

Let

C∞0 (RN ; ΓD) =

{
ϕ ∈ C∞0 (RN ) :

ϕ = 0 on ∂Ω, ∂ϕ
∂ν = 0 on ΓD,

and ∆ϕ = 0 on ∂Ω \ ΓD.

}

We de�ne the Banach space W 2,p
0 (Ω; ΓD) as the closure of C∞0 (RN ; ΓD) with

respect to the norm ‖y‖W 2,p(Ω). LetW
−2,p′(Ω; ΓD) be the dual space toW 2,p

0 (Ω; ΓD).

We also de�ne the space W 1,p
0 (Ω) as the closure of C∞0 (Ω) with respect to the

norm ‖y‖
W 1,p

0 (Ω)
=
(´

Ω ‖∇y‖
p dx

)1/p
.
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Throughout this paper, we use the notation Wp(Ω) := W 2,p
0 (Ω; ΓD). Let us

notice that Wp(Ω) equipped with the norm

‖y‖p,∆ := ‖∆y‖Lp(Ω) =

(ˆ
Ω
|∆y|p dx

)1/p

=

(ˆ
Ω

∣∣∣∣∣
N∑
i=1

∂2y

∂x2
i

∣∣∣∣∣
p

dx

)1/p

(2.2)

is a uniformly convex Banach space [3]. Moreover, the norm ‖ · ‖p,∆ is equivalent
on Wp(Ω) to the usual norm ‖ · ‖W 2,p(Ω) of W

2,p(Ω). For reader's convenience, we
give below the proof of the equivalence between the standard Sobolev space norm
‖ · ‖W 2,p(Ω) and the norm ‖ · ‖p,∆. For that, let us consider the classical Dirichlet
problem for the famous Poisson's equation

∆y = f in Ω, y = 0 on ∂Ω. (2.3)

Since the Laplace operator −∆ acts from Wp(Ω) in Lp(Ω), it is well-known that
this problem is uniquely solvable in Wp(Ω) for all f ∈ Lp(Ω). Hence, the inverse

operator T := (−∆)−1 : Lp(Ω)→W 2,p(Ω) ∩W 1,p
0 (Ω) is well de�ned and satis�es

the following elliptic regularity estimate [9]

‖Tf‖W 2,p(Ω) 6 Cp‖f‖Lp(Ω).

This allows us to conclude the following. If f ∈ Lp(Ω) and y ∈ W 1,p
0 (Ω) are such

that ∂y∂ν = 0 on ΓD, ∆y = 0 on ΓS , and y is a solution of (2.3), then −∆y ∈ Lp(Ω),
y = 0 on the boundary ∂Ω, and, therefore, y ∈Wp(Ω). Hence,

‖y‖W 2,p(Ω) = ‖T (−∆y)‖W 2,p(Ω) 6 Cp‖∆y‖Lp(Ω) = Cp‖y‖p,∆, (2.4)

for a suitable positive constant Cp independent of f . On the other hand, it is easy
to observe that

‖y‖p,∆ 6 ‖y‖W 2,p(Ω).

Thus, by the Closed Graph Theorem, we can conclude that y 7→ ‖y‖p,∆ =(´
Ω |∆y|

p dx
)1/p

is equivalent to the norm induced by W 2,p(Ω) (for the details
we refer to [7, 18]).

Remark 2.1. Observe that J : Wp(Ω)→ (Wp(Ω))∗ de�ned by

J(y) =

{
‖∆y‖2−pLp(Ω)|∆y|

p−2∆y, if y 6= 0,

0, if y = 0

is the duality mapping of Wp(Ω) assicuated with the norm ‖ · ‖p,∆ (see [23]).

By BV (Ω) we denote the space of all functions in L1(Ω) for which the norm

‖f‖BV (Ω) = ‖f‖L1(Ω) +

ˆ
Ω
|Df | = ‖f‖L1(Ω)

+ sup
{ˆ

Ω
f divϕdx : ϕ ∈ C1

0 (Ω;RN ), |ϕ(x)| 6 1 for x ∈ Ω
}
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is �nite.

We recall that a sequence {fk}∞k=1 converges weakly-∗ to f in BV (Ω) if and
only if the two following conditions hold (see [10]): fk → f strongly in L1(Ω) and
Dfk ⇀ Df weakly-* in the space of Radon measuresM(Ω, i.e.

lim
k→∞

ˆ
Ω
ϕDfk =

ˆ
Ω
ϕDf ∀ϕ ∈ C0(Ω).

It is well-known also the following compactness result for BV -spaces (Helly's
selection theorem, see [2]).

Theorem 2.1. If {fk}∞k=1 ⊂ BV (Ω) and supk∈N ‖fk‖BV (Ω) < +∞, then there

exists a subsequence of {fk}∞k=1 strongly converging in L1(Ω) to some f ∈ BV (Ω)

such that Dfk
∗
⇀ Df weakly-∗ in the space of Radon measuresM(Ω). Moreover,

if {fk}∞k=1 ⊂ BV (Ω) strongly converges to some f in L1(Ω) and satis�es

supk∈N
´

Ω |Dfk| < +∞, then

(i) f ∈ BV (Ω) and

ˆ
Ω
|Df | 6 lim inf

k→∞

ˆ
Ω
|Dfk|;

(ii) fk
∗
⇀ f in BV (Ω).

(2.5)

3. Setting of the Optimal Control Problem

Let ξ1, ξ2 be �xed elements of L∞(Ω) ∩BV (Ω) satisfying the conditions

0 < α 6 ξ1(x) 6 ξ2(x) a.e. in Ω, (3.1)

where α is a given positive value.

Let f ∈W−2,p′(Ω; ΓD), yd ∈ Lp(Ω), and ζmax ∈ Lp(ΓS) be given distributions.
The optimal control problem, we consider in this paper, is to minimize the discre-
pancy between yd and the solutions of the following homogeneous Dirichlet-Navier
boundary valued problem

∆2
p(u, y) = f in Ω, (3.2)

y =
∂y

∂ν
= 0 on ΓD, y = ∆y = 0 on ΓS , (3.3)

0 6
∂y(s)

∂ν
6 ζmax(s) a.e. on ΓS (3.4)

by choosing an appropriate weight function u ∈ Aad as control. Here, ∆2
p(u, ·) is

the generalized p-biharmonic operator, i.e.

∆2
p(u, y) := ∆(u|∆y|p−2∆y), ∆y =

N∑
i=1

∂2y

∂x2
i
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and the class of admissible controls Aad we de�ne as follows

Aad =
{
u ∈ L1(Ω)

∣∣∣ ξ1(x) 6 u(x) 6 ξ2(x) a.e. in Ω
}
. (3.5)

It is clear that Aad is a nonempty convex subset of L1(Ω) with an empty topological
interior.

More precisely, we are concerned with the following optimal control problem

Minimize

{
I(u, y) =

ˆ
Ω
|y − yd|p dx+

ˆ
Ω
|Du|

}
subject to the constraints (3.2)�(3.5).

(3.6)

De�nition 3.1. We say that an element y ∈Wp(Ω) is the weak solution (in the
sense of Minty) to the boundary value problem (3.2)�(3.3), if

ˆ
Ω
u∆ϕ (∆ϕ−∆y) dx > 〈f, ϕ− y〉 , ∀ϕ ∈ C∞0 (Ω; ΓD). (3.7)

Here, 〈·, ·〉 = 〈·, ·〉(Wp(Ω))∗;Wp(Ω) stands for the duality pairing between (Wp(Ω))∗

and Wp(Ω) and, in the sequel, we will omit this index when it is from the context.

The existence of a unique solution to the boundary value problem (3.2)�(3.3)
follows from an abstract theorem on monotone operators; see, for instance, [14]
or [24, �II.2].

Theorem 3.1. Let V be a re�exive separable Banach space. Let V ∗ be the dual

space, and let A : V → V ∗ be a bounded, semicontinuous, coercive and strictly

monotone operator. Then the equation Ay = f has a unique solution for each

f ∈ V ∗. Moreover, Ay = f if and only if 〈Aϕ,ϕ− y〉 > 〈f, ϕ− y〉 for all ϕ ∈ V ∗.

Here, the above mentioned properties of the strict monotonicity, semicontinuity,
and coercivity of the operator A have respectively the following meaning:

〈Ay −Av, y − v〉V ∗;V > 0, ∀ y, v ∈ V ; (3.8)

〈Ay −Av, y − v〉V ∗;V = 0 =⇒ y = v; (3.9)

the function t 7→ 〈A(y + tv), w〉V ∗;V is continuous for all y, v, w ∈ V ; (3.10)

lim
‖y‖V→∞

〈Ay, y〉V ∗;V
‖y‖V

= +∞. (3.11)

In our case, we can de�ne the operator A as a mapping Wp(Ω)→ (Wp(Ω))∗ by

〈Aϕ, v〉(Wp(Ω))∗;Wp(Ω) :=

ˆ
Ω
u|∆ϕ|p−2∆ϕ∆v dx.

Remark 3.1. The reason of such representation comes from the following ob-
servation: having applied Green's formula twice to the operator ∆(u|∆y|p−2∆y)
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tested by v ∈ C∞0 (Ω; ΓD), where y is an element of Wp(Ω), we arrive at the
identity ˆ

Ω
∆(u|∆y|p−2∆y)v dx = −

ˆ
Ω

(
∇(u|∆y|p−2∆y),∇v

)
dx

+

ˆ
∂Ω

∂

∂ν
(u|∆y|p−2∆y)v dHN−1 =

ˆ
Ω
u|∆y|p−2∆y∆v dx

−
ˆ

ΓD

u|∆y|p−2∆y
∂v

∂ν
dHN−1 −

ˆ
ΓS

u|∆y|p−2∆y
∂v

∂ν
dHN−1

=

ˆ
Ω
u|∆y|p−2∆y∆v dx ∀ v ∈ C∞0 (Ω; ΓD).

Then it is easy to show that A satis�es all assumptions of Theorem 3.1 (for
the details we refer to [14, 22]). As a consequence of this theorem, we also know
that y ∈ Wp(Ω) satis�es (3.7) if and only if the relations (3.2)�(3.3) are ful�lled
as follows (for the details, we refer to [22, Section 2.4.4] and [8, Section 2.4.2])

∆2(u, y) = f in (C∞0 (Ω; ΓD))∗ ,

γ0(y) = 0 in W 2−1/p,p(∂Ω),

γ1(y) = 0 in W 1/p′,p(ΓD),

γ0(∆y) = 0 in W−1/p,p(ΓS) :=
(
W 1/p,p′(ΓS)

)∗
,


that is, the integral identity holdsˆ

Ω
u|∆y|p−2∆y∆ϕdx =

ˆ
Ω
fϕ dx ∀ϕ ∈Wp(Ω). (3.12)

In particular, taking ϕ = y in (3.12), this yields the relationˆ
Ω
u|∆y|p dx =

ˆ
Ω
fy dx, (3.13)

which is usually referred to as the energy equality. As a result, conditions (3.1),
(3.5), Friedrich's inequality, and identity (3.13) lead us to the following a priori
estimate

‖y‖p,∆ :=

(ˆ
Ω
|∆y|p dx

)1/p

6 CΩ

(
α−1‖f‖Lp′ (Ω)

)p′/p
∀u ∈ Aad. (3.14)

Taking this fact into account, we adopt the following notion.

De�nition 3.2. We say that (u, y) is a feasible pair to the OCP (3.6) if u ∈
Aad ⊂ L1(Ω), y ∈Wp(Ω), the pair (u, y) is related by the integral identity (3.12),
and

∂y

∂ν
∈ Lp+(ΓS), ζmax − ∂y

∂ν
∈ Lp+(ΓS), (3.15)

where Lp+(ΓS) stands for the natural ordering cone of positive elements in Lp(ΓS),
i.e.

Lp+(ΓS) :=
{
v ∈ Lp(ΓS) | v > 0 HN−1-a.e. on ΓS

}
.
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We denote by Ξ the set of all feasible pairs for the OCP (3.6).

Remark 3.2. Before we proceed further, we need to make sure that minimization
problem (3.6) is consistent, i.e. there exists at least one pair (u, y) such that
(u, y) satisfying the control and state constraints (3.3)�(3.5), and (u, y) would be
a physically relevant solution to the boundary value problem (3.2)�(3.3). In fact,
one needs the set of feasible solutions to be nonempty. But even if we are aware
that Ξ 6= ∅, this set must be su�ciently rich in some sense, otherwise the OCP
(3.6) becomes trivial. From a mathematical point of view, to deal directly with the
control and especially state constraints is typically very di�cult [4, 11,23]. Thus,
the consistency of OCPs with control and state constraints is an open question
even for the simplest situation.

In view of this remark, it is reasonably now to make use of the following
Hypothesis.

(H1) OCP (3.6) is regular in the following sense � there exists at least one pair
(u, y) ∈ L1(Ω)×Wp(Ω) such that (u, y) ∈ Ξ.

Let τ be the topology on the set Ξ ⊂ L1(Ω) ×Wp(Ω) which we de�ne as the

product of the norm topology of L1(Ω) and the weak topology of W 2,p
0 (Ω; ΓD).

We say that a pair (u0, y0) ∈ L1(Ω) ×Wp(Ω) is an optimal solution to problem
(3.6) if

(u0, y0) ∈ Ξ and I(u0, y0) = inf
(u,y)∈Ξ

I(u, y).

With this notation, the control problem (3.6) can be written as follows

(P) min
(u,y)∈Ξ

I(u, y).

4. Existence of Optimal Solutions

In this section we focus on the solvability of optimal control problem (3.2)�
(3.6). Hereinafter, we suppose that the space L1(Ω)×Wp(Ω) is endowed with the
norm ‖(u, y)‖L1(Ω)×Wp(Ω) := ‖u‖L1(Ω) + ‖y‖p,∆.

We begin with a couple of auxiliary results.

Lemma 4.1. Let {(uk, yk) ∈ Ξ}k∈N be a sequence such that (uk, yk)
τ−→ (u, y) in

L1(Ω)×Wp(Ω). Then we have

lim
k→∞

ˆ
Ω
uk∆yk∆ϕdx =

ˆ
Ω
u∆y∆ϕdx ∀ϕ ∈ C∞0 (Ω; ΓD). (4.1)

Proof. Since uk → u in L1(Ω) and {uk}k∈N is bounded in L∞(Ω), we get that
uk → u strongly in Lr(Ω) for every 1 6 r < +∞. In particular, we have that
uk → u in Lp

′
(Ω) and ∆yk∆ϕ ⇀ ∆y∆ϕ in Lp(Ω). Hence, it is immediate to pass

to the limit and to deduce (4.1).
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As a consequence, we have the following property.

Corollary 4.1. Let {(uk, yk) ∈ Ξ}k∈N and {ζk ∈Wp(Ω)}k∈N be sequences such

that (uk, yk)
τ−→ (u, y) in L1(Ω)×Wp(Ω) and ζk → ζ in Wp(Ω). Then

lim
k→∞

ˆ
Ω
uk∆yk∆ζk dx =

ˆ
Ω
u∆y∆ζ dx.

Our next step concerns the study of topological properties of the set of feasible
solutions Ξ to problem (3.6).

The following result is crucial for our further analysis.

Theorem 4.1. Let {(uk, yk)}k∈N ⊂ Ξ be a bounded sequence in BV (Ω)×Wp(Ω).
Then there is a pair (u, y) ∈ L1(Ω) × Wp(Ω) such that, up to a subsequence,

(uk, yk)
τ−→ (u, y) and (u, y) ∈ Ξ.

Proof. By Theorem 2.1 and re�exivity of the space Wp(Ω), there exists a subse-
quence of {(uk, yk) ∈ Ξ}k∈N, still denoted by the same indices, and functions
u ∈ BV (Ω) and y ∈Wp(Ω) such that

uk → u in L1(Ω), yk ⇀ y in Wp(Ω), and, hence, yk ⇀ y in W 1,p
0 (Ω).

(4.2)

Then by Lemma 4.1, we have

lim
k→∞

ˆ
Ω
uk∆ϕ∆yk dx =

ˆ
Ω
u∆ϕ∆y dx, ∀ϕ ∈ C∞0 (Ω; ΓD).

It remains to show that the limit pair (u, y) is related by inequality (3.7) and
satis�es the state constraints (3.15). With that in mind we write down the Minty
relation for (uk, yk):ˆ

Ω
uk∆ϕ (∆ϕ−∆yk) dx > 〈f, ϕ− yk〉 , ∀ϕ ∈ C∞0 (Ω; ΓD). (4.3)

In view of (4.2) and Lemma 4.1, we have

lim
k→∞

ˆ
Ω
|∆ϕ|2uk dx =

ˆ
Ω
|∆ϕ|2u dx, lim

k→∞

ˆ
Ω
uk∆ϕ∆yk dx =

ˆ
Ω
u∆ϕ∆y dx.

Thus, passing in relation (4.3) to the limit as k →∞, we arrive at the inequality
(3.7) which means that y ∈ W2(Ω) is a weak solution to the boundary value
problem (3.2)�(3.3) in the sense of Minty. Since the injections (2.1) are compact
and the cone Lp+(ΓS) is closed with respect to the strong convergence in Lp(ΓS),

it follows that ∂yk
∂ν →

∂y
∂ν strongly in Lp(ΓS) and, hence,

lim
k→∞

γ1(yk) = γ1(y) ∈ Lp+(ΓS) and γ1(y) ∈ ζmax − Lp+(ΓS).

This fact together with u ∈ Aad leads us to the conclusion: (u, y) ∈ Ξ, i.e. the limit
pair (u, y) is feasible to optimal control problem (3.6). The proof is complete.
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In conclusion of this section, we give the existence result for optimal pairs to
the problem (3.6).

Theorem 4.2. Assume that, for given distributions f ∈ Lp′(Ω), yd ∈ Lp(Ω), and
ζmax ∈ Lp(∂Ω), the Hypothesis (H1) is valid. Then optimal control problem (3.6)
admits at least one solution (uopt, yopt) ∈ BV (Ω)×Wp(Ω).

Proof. Since the set of feaasible pairs Ξ is nonempty and the cost functional is
bounded from below on Ξ, it follows that there exists a minimizing sequence
{(uk, yk) ∈ Ξ}k∈N to problem (3.6). Then the inequality

inf
(u,y)∈Ξ

I(u, y) = lim
k→∞

[ˆ
Ω
|yk(x)− yd(x)|p dx+

ˆ
Ω
|Duk|

]
< +∞,

implies the existence of a constant C > 0 such that

sup
k∈N

ˆ
Ω
|Duk| 6 C.

Hence, in view of the de�nition of the class of admissible controls Aad and a priori
estimate (3.14), the sequence {(uk, yk) ∈ Ξ}k∈N is bounded in BV (Ω) ×Wp(Ω).
Therefore, by Theorem 4.1, there exist functions u∗ ∈ Aad and y

∗ ∈ Wp(Ω) such
that (u∗, y∗) ∈ Ξ and, up to a subsequence, uk → u∗ strongly in L1(Ω) and
yk ⇀ y∗ weakly in Wp(Ω). To conclude the proof, it is enough to show that the
cost functional I is lower semicontinuous with respect to the τ -convergence. Since
yk → y∗ strongly in Lp(Ω) by Sobolev embedding theorem, it follows that

lim
k→∞

ˆ
Ω
|yk(x)− yd(x)|p dx =

ˆ
Ω
|y∗(x)− yd(x)|p dx,

lim inf
k→∞

ˆ
Ω
|Duk| >

ˆ
Ω
|Du∗| by (2.5).

Thus,
I(u∗, y∗) 6 lim inf

k→∞
I(uk, yk) = inf

(u, y)∈Ξ
I(u, y).

Hence, (u∗, y∗) is an optimal pair, and we arrive at the required conclusion.

5. Regularization of OCP (3.6)

As was pointed out in [22], the p-Laplacian ∆p(u, y) provides an example of
a quasi-linear elliptic operator with a so-called degenerate nonlinearity for p > 2.
In this context we have non-di�erentiability of the state y with respect to the
control u. As follows from Theorem 4.2, this fact is not an obstacle to prove
existence of optimal controls in the coe�cients, but it causes certain di�culties
when deriving the optimality conditions for the considered problem. On the other
hand, the ordering cone of positive elements Lp+(ΓS) is non-solid, i.e. it has an
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empty topological interior in Lp-space. Therefore, it is reasonably to apply a
suitable relaxation of the pointwise state constraints in the form of some inequality
conditions involving the so-called Henig approximation

(
Lp+(ΓS)

)
ε

(B) of Lp+(ΓS),

where B is a �xed closed base of Lp+(ΓS). Since Lp+(ΓS) ⊂
(
Lp+(ΓS)

)
ε

(B) for all

ε > 0, it allows us to replace the cone Lp+(ΓS) by its approximation
(
Lp+(ΓS)

)
ε

(B).
In fact, it leads to some relaxation of the inequality constraints of the considered
problem, and, hence, to the approximation of the feasible set to the original
OCP. As a result, we introduce the following family of approximating control
problems (see, for comparison, the approach of Casas and Fernandez [5] for quasi-
linear elliptic equations with a distributed control in the right hand side and the
approach of Kogut and Leugering [12], where the Henig regularization of pointwise
state constraints have been proposed).

Minimize
{
I(u, y) =

ˆ
Ω
|y − zd|p dx+

ˆ
Ω
|Du|

}
(5.1)

subject to the constraints

∆2
ε,k,p(u, y) = f in Ω, (5.2)

y =
∂y

∂ν
= 0 on ΓD, y = ∆y = 0 on ΓS , (5.3)

∂y

∂ν
∈
(
Lp+(ΓS)

)
ε

(B), ζmax − ∂y

∂ν
∈
(
Lp+(ΓS)

)
ε

(B), (5.4)

u ∈ Aad =
{
v ∈ BV (Ω)

∣∣∣ ξ1(x) 6 v(x) 6 ξ2(x) a.e. in Ω
}
. (5.5)

Here, k ∈ N, ε is a small parameter, which varies within a strictly decreasing
sequence of positive numbers converging to 0,

∆2
ε,k,p(u, y) = ∆

(
u(x)

(
ε+ Fk

(
|∆y|2

)) p−2
2 ∆y

)
, (5.6)

Fk : R+ → R+ is a non-decreasing C1(R+)-function such that

Fk(t) = t, if t ∈
[
0, k2

]
, Fk(t) = k2 + 1, if t > k2 + 1, and

t 6 Fk(t) 6 t+ δ, if k2 6 t < k2 + 1 for some δ ∈ (0, 1),
(5.7)

B :=
{
ξ ∈ Lp+(ΓS)

∣∣∣ ˆ
ΓS

ξ dHN−1 = 1
}

(5.8)

is a closed base of ordering cone Λ := Lp+(ΓS),(
Lp+(ΓS)

)
ε

(B) := cl‖·‖Lp(ΓS)

(
cone

(
B +Bε(0)

))
:= cl‖·‖Lp(ΓS)

({
µz
∣∣µ ≥ 0, z ∈ B +Bε(0)

})
is the Henig dilating cone, and 1

εBε(0) :=
{
v ∈ Lp(ΓS) | ‖v‖Lp(ΓS) 6 1

}
is the

closed unit ball in Lp(ΓS) centered at the origin.
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As for the function Fk : R+ → R+, it can e.g. be de�ned by

Fk(t) =


t, if 0 6 t 6 k2,
(k2 − t)3 + (k2 − t)2 + t, if k2 6 t 6 k2 + 1,
k2 + 1, if t > k2 + 1.

A direct calculation shows that in this case δ = 4/27.
It is clear that the e�ect of such perturbations of ∆2

p(u, y) is its regularization
around critical points where |∆y(x)| vanishes or becomes unbounded. In particular,

if y ∈ W 2,p
0 (Ω) and Ωk(y) :=

{
x ∈ Ω : |∆y(x)| >

√
k2 + 1

}
, then the following

chain of inequalities

|Ωk(y)| :=
ˆ

Ωk(y)
1 dx 6

1√
k2 + 1

ˆ
Ωk(y)

|∆y(x)| dx

6
1√

k2 + 1
|Ωk(y)|

1
p′

(ˆ
Ω
|∆y|p dx

) 1
p

=
‖y‖

W 2,p
0 (Ω)√

k2 + 1
|Ωk(y)|

p−1
p

shows that the Lebesgue measure of the set Ωk(y) satis�es the estimate

|Ωk(y)| 6
(

1√
k2 + 1

)p
‖y‖p

W 2,p
0 (Ω)

6 ‖y‖p
W 2,p

0 (Ω)
k−p, ∀ y ∈W 2,p

0 (Ω), (5.9)

i.e. the approximation Fk(|∆y|2) is essential on sets with small Lebesgue measure.
The main goal of this section is to show that for each ε > 0 and k ∈ N, the
perturbed optimal control problem (5.1)�(5.5) is well posed and its solutions
can be considered as a reasonable approximation of optimal pairs to the original
problem (3.6). To begin with, we establish a few auxiliary results concerning
monotonicity and growth conditions for the regularized p-harmonic operator ∆2

ε,k,p.
For our further analysis, we make use of the following the notation

‖ϕ‖ε,k,u =

(ˆ
Ω

(
ε+ Fk(|∆ϕ|2)

) p−2
2 |∆ϕ|2u dx

)1/p

∀ϕ ∈W 2,2
0 (Ω).

Remark 5.1. For an arbitrary element y∗ ∈ W 2,2
0 (Ω) let us consider the level set

Ωk(y
∗) :=

{
x ∈ Ω : |∆y∗(x)| >

√
k2 + 1

}
. Then

|Ωk(y
∗)| :=

ˆ
Ωk(y∗)

1 dx 6
1√

k2 + 1

ˆ
Ωk(y∗)

|∆y∗(x)| dx

6
1

k
|Ωk(y

∗)|
1
2

(ˆ
Ωk(y∗)

|∆y∗|2 dx

) 1
2

=
1

k

(
1

ε+ k2 + 1

) p−2
4

(ˆ
Ωk(y∗)

(
ε+ Fk(|∆y∗|2)

) p−2
2 |∆y∗|2 dx

) 1
2

|Ωk(y
∗)|

1
2

6
1

k
p
2

|Ωk(y
∗)|

1
2 α−

1
2 ‖y∗‖

p
2
ε,k,u.
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Hence, the Lebesgue measure of the set Ωk(y
∗) satis�es the estimate

|Ωk(y
∗)| 6 α−1

kp
‖y∗‖pε,k,u, ∀ y∗ ∈W 2,2

0 (Ω). (5.10)

Now, we establish the following results.

Proposition 5.1. For every u ∈ Aad, k ∈ N, and ε > 0, the operator

Aε,k,u := −∆2
ε,k,p(u, ·) : W2(Ω)→ (W2(Ω))∗

is bounded and ‖Aε,k,u‖ 6
(
ε+ k2 + 1

) p−2
2 ‖ξ2‖L∞(Ω), where

W2(Ω) := W 2,2
0 (Ω; ΓD).

Proof. From the assumptions on Fk and the boundedness of u we obtain

‖Aε,k,u‖ = sup
‖y‖

W
2,2
0 (Ω)

61
‖Aε,k,uy‖(W2(Ω))∗

= sup
‖y‖

W
2,2
0 (Ω)

61
sup

‖v‖
W

2,2
0 (Ω)

61
〈Aε,k,uy, v〉(W2(Ω))∗;W2(Ω)

= sup
‖y‖

W
2,2
0 (Ω)

61
sup

‖v‖
W

2,2
0 (Ω)

61

ˆ
Ω

(
ε+ Fk(|∆y|2)

) p−2
2 ∆y∆vu dx

6
(
ε+ k2 + 1

) p−2
2 ‖ξ2‖L∞(Ω) sup

‖y‖
W

2,2
0 (Ω)

61
sup

‖v‖
W

2,2
0 (Ω)

61
‖y‖

W 2,2
0 (Ω)

‖v‖
W 2,2

0 (Ω)

=
(
ε+ k2 + 1

) p−2
2 ‖ξ2‖L∞(Ω),

which concludes the proof.

Proposition 5.2. For every u ∈ Aad, k ∈ N, and ε > 0, the operator Aε,k,u is
strictly monotone.

Proof. To begin with, we make use of the following algebraic inequality:[(
ε+ Fk(|a|2)

) p−2
2 a−

(
ε+ Fk(|b|2)

) p−2
2 b

]
(a− b) > ε

p−2
2 |a− b|2, ∀ a, b ∈ R.

(5.11)
In order to prove it, we note that the left hand side of (5.11) can be rewritten as
follows((

ε+ Fk(|a|2)
) p−2

2 a−
(
ε+ Fk(|b|2)

) p−2
2 b

)
(a− b)

=

ˆ 1

0

d

ds

{(
ε+ Fk(|sa+ (1− s)b|2)

) p−2
2 (sa+ (1− s)b)

}
ds(a− b)

=

ˆ 1

0

(
ε+Fk(|sa+(1−s)b|2)

) p−2
2 |a−b|2 dx+(p−2)

ˆ 1

0

{(
ε+Fk(|sa+(1−s)b|2)

) p−4
2

×F ′k(|sa+ (1− s)b|2) |(sa+ (1− s)b) (a− b)|2
}
ds = I1 + I2.
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Since p > 2 and Fk : R+ → R+ is a non-decreasing C1(R+)-function, it follows
that I2 > 0 for all a, b ∈ RN . It remains to observe that(

ε+ Fk(|sa+ (1− s)b|2)
)
> ε, ∀ a, b ∈ R.

Hence, I1 > ε
p−2

2 |a − b|2 and we arrive at the inequality (5.11). With this we
obtain〈
−∆ε,k,p(u, y) + ∆ε,k,p(u, v), y − v

〉
(W2(Ω))∗;W2(Ω)

=

ˆ
Ω
u(x)

(
(ε+ Fk(|∆y|2))

p−2
2 ∆y − (ε+ Fk(|∆v|2))

p−2
2 ∆v

)
(∆y −∆v) dx

> αε
p−2

2

ˆ
Ω
|∆y −∆v|2 dx = αε

p−2
2 ‖y − v‖2

W 2,2
0 (Ω)

> 0.

Since the relation 〈
Aε,k,uy −Aε,k,uv, y − v

〉
(W2(Ω))∗;W2(Ω)

= 0

implies that y = v almost everywhere in Ω, it follows that the strict monotonicity
property (3.9) holds in this case.

Proposition 5.3. For every u ∈ Aad, k ∈ N, and ε > 0, the operator Aε,k,u is
coercive (in the sense of relation (3.11)).

Proof. In order to check this property it is enough to observe that for any y ∈
W2(Ω), k ∈ N, ε > 0, and u ∈ Aad, we have〈

Aε,k,uy,y
〉

(W2(Ω))∗;W2(Ω)
=
〈
−∆ε,k,p(u, y), y

〉
(W2(Ω))∗;W2(Ω)

=

ˆ
Ω

(
ε+ Fk(|∆y|2)

) p−2
2 |∆y|2u dx > αε

p−2
2 ‖y‖2

W 2,2
0 (Ω)

.

We are now in a position to apply the abstract theorem on monotone operators
(see Theorem 3.1) to the equation Aε,k,uy = f with f ∈ Lp′(Ω). Closely following
the arguments of Section 3, we arrive at the following assertion.

Theorem 5.1. For each ε > 0, k ∈ N, u ∈ Aad, and f ∈ Lp
′
(Ω), the boundary

value problem (5.2)�(5.3) admits a unique weak solution yε,k ∈W2(Ω), i.e.
ˆ

Ω
u(ε+ Fk(|∆yε,k|2))

p−2
2 ∆yε,k∆ϕdx =

ˆ
Ω
fϕ dx, ∀ϕ ∈W2(Ω), (5.12)

or equivalentlyˆ
Ω
u(x)(ε+Fk(|∆ϕ|2))

p−2
2 ∆ϕ (∆ϕ−∆yε,k) (5.13)

>
ˆ

Ω
f(ϕ− yε,k) dx, ∀ϕ ∈ C∞0 (Ω; ΓD). (5.14)
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For every ε > 0 and k ∈ N, we denote the set of feasible pairs to the problem
(5.1)�(5.5) as follows

Ξε,k =

(u, y)

∣∣∣∣∣∣
u ∈ Aad, y ∈W2(Ω),

(u, y) are related by equality (5.12),
∂y
∂ν satis�es the inclusions (5.4).

 . (5.15)

It is worth to notice that Hypothesis (H1) about regularity of the original OCP
(3.6) can be characterized by the non-emptiness properties of the sets of feasible
solutions Ξε,k for approximating control problem (5.1)�(5.5). Indeed, we have the
following result (see [12, Theorem 8]).

Theorem 5.2. Let {εk}k∈N ⊂ (0, δ) be a monotonically decreasing sequence

converging to 0 as k →∞. Then, for given distributions f ∈ Lp′(Ω), yd ∈ Lp(Ω),
and ζmax ∈ Lp(ΓS), the Hypothesis (H1) implies that the approximating control

problem (5.1)�(5.5) has a nonempty set of feasible solutions Ξε,k for all ε = εk, k ∈
N. And vice versa, if there exists a sequence

{
(uk, yk)

}
k∈N satisfying conditions

(uk, yk) ∈ Ξεk,k for all k ∈ N, and sup
k∈N

I(uk, yk) < +∞, (5.16)

then the sequence
{

(uk, yk)
}
k∈N is τ -compact and each of its τ -cluster pairs is a

feasible solution to the original OCP (3.6).

Thus, in view of Theorem 5.2 and Hypothesis (H1), we can suppose that the
sets Ξε,k are always nonempty and, therefore, the approximating control problem

(Pε,k) min
(u,y)∈Ξε,k

I(u, y) (5.17)

is consistent.
Analogously to problem (P), we can prove the following theorem

Theorem 5.3. For every positive value ε > 0 and integer k ∈ N, the optimal

control problem (Pε,k) has at least one solution.

The proof follows the steps of that of Theorem 4.2. Indeed, it is immediate to
check that Ξε,k is not empty. Then, we can take a minimizing sequence {(ui, yi)}i∈N ⊂
Ξε,k. The lower boundedness of I implies the boundedness of {(ui, yi)}i∈N in

BV (Ω)×W 2,2
0 (Ω). Then, arguing as in the proof of Theorem 4.2, we deduce the

existence of a subsequence, denoted in the same way, and a pair (u∗, y∗) ∈ Ξε,k
such that ui

∗
⇀ u∗ in BV (Ω) and yi ⇀ y∗ in W 2,2

0 (Ω). Hence, I(u∗, y∗) 6
lim infi→∞ I(ui, yi). Since

∂y
∂ν ∈W

1/2,2(ΓS) for any y ∈W 2,2
0 (Ω; ΓD), the injection

W 1/2,2(ΓS) ↪→ L2(ΓS) is compact, and the Henig dilating cone
(
Lp+(ΓS)

)
ε

(B) is

closed with respect to the strong convergence in L2(ΓS), it follows that ∂yk∂ν →
∂y∗

∂ν
strongly in L2(ΓS) and, hence,

lim
k→∞

∂yk
∂ν

=
∂y∗

∂ν
∈ Lp+(ΓS) and

∂y∗

∂ν
∈ ζmax −

(
Lp+(ΓS)

)
ε

(B).
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This fact together with u ∈ Aad leads us to the conclusion: (u, y) ∈ Ξε,k, i.e. the
limit pair (u∗, y∗) is optimal to the problem (Pε,k).

For our further analysis, we need to obtain some appropriate a priory estimates
for the weak solutions to problem (5.2)�(5.3). With that in mind, we make use of
the following auxiliary results.

Proposition 5.4. Let u ∈ Aad, k ∈ N, and ε > 0 be given. Then, for arbitrary
g ∈ L2(Ω) and y ∈W 2,2

0 (Ω), we have∣∣∣∣ˆ
Ω
gy dx

∣∣∣∣ 6 CΩ‖g‖L2(Ω)

[
α
− 1
p |Ω|

p−2
2p ‖y‖ε,k,u + α−

1
2 ‖y‖

p
2
ε,k,u

]
. (5.18)

Proof. Let us �x an arbitrary element y of W 2,2
0 (Ω). We associate with this

element the set Ωk(y), where Ωk(y) := {x ∈ Ω : |∆y(x)| > k}. Then, by Friedrich's
inequality,

ˆ
Ω
gy dx 6 ‖g‖L2(Ω)‖y‖L2(Ω)

6 CΩ‖g‖L2(Ω)

(
‖∆y‖L2(Ω\Ωk(y)) + ‖∆y‖L2(Ωk(y))

)
. (5.19)

Using the fact that

‖∆y‖L2(Ω\Ωk(y)) 6 |Ω|
p−2
2p ‖∆y‖Lp(Ω\Ωk(y))

6 |Ω|
p−2
2p

(ˆ
Ω\Ωk(y)

(ε+ |∆y|2)
p−2

2 |∆y|2 dx

) 1
p

and

Fk(|∆y|2) = |∆y|2 a.e. in Ω \ Ωk(y), and

k2 6 Fk(|∆y|2) 6 k2 + 1 a.e. in Ωk(y), ∀ k ∈ N,

we obtain

‖∆y‖L2(Ω\Ωk(y)) 6 |Ω|
p−2
2p

(ˆ
Ω\Ωk(y)

(ε+ Fk(|∆y|2))
p−2

2 |∆y|2 dx

) 1
p

6 |Ω|
p−2
2p α

− 1
p ‖y‖ε,k,u, (5.20)

‖∆y‖L2(Ωk(y)) 6

(ˆ
Ωk(y)

(ε+ Fk(|∆y|2))
p−2

2 |∆y|2 dx

) 1
2

6 α−
1
2 ‖y‖

p
2
ε,k,u. (5.21)

As a result, inequality (5.18) immediately follows from (5.19)�(5.21). The proof
is complete.
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De�nition 5.1. Let {uε,k} ε>0
k∈N
⊂ Aad be an arbitrary sequence of admissible

controls. We say that a two-parametric sequence {yε,k} ε>0
k∈N
⊂W 2,2

0 (Ω) is bounded

with respect to the ‖ · ‖ε,k,uε,k -quasi-seminorm if sup ε>0
k∈N
‖yε,k‖ε,k,uε,k < +∞.

To conclude this section, let us show that for every u ∈ Aad and f ∈ Lp
′
(Ω), the

sequence {yε,k = yε,k(u, f)} ε>0
k∈N

of weak solutions to the boundary value problem

(5.2)�(5.3) is bounded with respect to the ‖ · ‖ε,k,u-quasi-seminorm in the sense
of De�nition 5.1.

Indeed, the integral identity (5.12) together with estimate (5.18) (for g = f)
immediately lead us to the relation

‖yε,k‖pε,k,u :=

ˆ
Ω

(
ε+ Fk(|∆yε,k|2)

) p−2
2 |∆yε,k|2u dx

6
ˆ

Ω

(
ε+ Fk(|∆yε,k|2)

) p−2
2 |∆yε,k|2u dx =

ˆ
Ω
fyε,k dx

6 CΩ‖f‖L2(Ω)

[
α
− 1
p |Ω|

p−2
2p ‖yε,k‖ε,k,u + α−

1
2 ‖yε,k‖

p
2
ε,k,u

]
. (5.22)

As a result, it follows from (5.22) that

‖yε,k‖ε,k,u 6 max

{
C

2
p

f , C
1
p−1

f

}
, ∀ ε > 0, ∀ k ∈ N, ∀u ∈ Aad, (5.23)

where Cf := C‖f‖L2(Ω) = CΩ

(
α
− 1
p |Ω|

p−2
2p + α−

1
2

)
‖f‖L2(Ω).

6. Asymptotic Analysis of the Approximating OCP (Pε,k)

Our main intention in this section is to show that optimal solutions to the
original OCP (P) can be attained (in some sense) by optimal solutions to the
approximated problems (Pε,k). With that in mind, we make use of the concept of
variational convergence of constrained minimization problems (see [11]) and study
the asymptotic behaviour of a family of OCPs (Pε,k) as ε → 0 and k → ∞. We

also utilize the fact that the sequence of cones
{(
Lp+(ΓS)

)
εk

(B)
}
k∈N

converges

to Lp+(ΓS) in Kuratowski sense with respect to the norm topology of Lp(ΓS) as
εk tends monotonically to zero (see Proposition 7 in [12]), that is

K− lim inf
k→∞

(
Lp+(ΓS)

)
εk

(B) = Lp+(ΓS) = K− lim sup
k→∞

(
Lp+(ΓS)

)
εk

(B), (6.1)
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where

K− lim inf
k→∞

(
Lp+(ΓS)

)
εk

(B)

:=
{
z ∈ Lp(ΓS)

∣∣ for all neighborhoods N of z there is a

k0 ∈ N such that N ∩
(
Lp+(ΓS)

)
εk

(B) 6= ∅ ∀ k ≥ k0

}
,

K− lim sup
k→∞

(
Lp+(ΓS)

)
εk

(B)

:=
{
z ∈ Lp(ΓS)

∣∣ for all neighborhoods N of z and every k0 ∈ N
there is a k ≥ k0 such that N ∩

(
Lp+(ΓS)

)
εk

(B) 6= ∅
}
.

We begin with some auxiliary results concerning the weak compactness in
W 2,2

0 (Ω) of ‖ · ‖ε,k,u-bounded sequences.

Lemma 6.1. Let {uε,k} ε>0
k∈N
⊂ Aad be an arbitrary sequence of admissible controls

with associated states {yε,k} ε>0
k∈N
⊂ W 2,2

0 (Ω; ΓD), yε,k = yε,k(uε,k). Then the se-

quence {yε,k} ε>0
k∈N

is bounded in W 2,2
0 (Ω). Moreover, each cluster point y of the

sequence {yε,k} ε>0
k∈N

with respect to the weak convergence in W 2,2
0 (Ω), satis�es:

y ∈W 2,p
0 (Ω; ΓD).

Proof. The boundedness in W 2,2
0 (Ω) immediately follows from (5.23) and the

estimates

‖yε,k‖W 2,2
0 (Ω)

6 ‖∆yε,k‖L2(Ω\Ωk(yε,k)) + ‖∆yε,k‖L2(Ωk(yε,k))

by (5.20)�(5.21)

6 CΩ

[
α
− 1
p |Ω|

p−2
2p ‖yε,k‖ε,k,u + α−

1
2 ‖yε,k‖

p
2
ε,k,u

]
,

where u ∈ Aad is an admissible control and Ωk(yε,k) := {x ∈ Ω : |∆yε,k(x)| > k}
for each k ∈ N.

To establish the second part of the lemma, let us take a subsequence {yεi,ki}i∈N
of {yε,k} ε>0

k∈N
(here, εi → 0 and ki →∞ as i→∞) and a function y ∈W 2,2

0 (Ω; ΓD)

such that yεi,ki ⇀ y in W 2,2
0 (Ω) as i → ∞. Further, we �x an index i ∈ N and

associate it with the following set

Bi :=

∞⋃
j=i

Ωkj (yεj ,kj ), where Ωkj (yεj ,kj ) :=
{
x ∈ Ω : |∆yεj ,kj (x)| >

√
k2
j + 1

}
.

(6.2)
Due to estimates (5.10) and (5.23), we see that

|Bi| 6 α−1
∞∑
j=i

1

kpj
‖yεj ,kj‖

p
εj ,kj ,uεj ,kj

6 α−1 sup
j∈N
‖yεj ,kj‖

p
εj ,kj ,uεj ,kj

∞∑
j=i

1

kpj

6 α−1 max

{
C2
f , C

p
p−1

f

} ∞∑
j=i

1

kpj
< +∞,
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and, therefore,
lim
i→∞
|Bi| = LN (lim sup

i→∞
Bi) = 0. (6.3)

Using again (5.23), we getˆ
Ω\Bi

|∆yεj ,kj |
p dx 6

ˆ
Ω\Bi

(
εj + |∆yεj ,kj |

2
) p−2

2 |∆yεj ,kj |
2 dx

6 α−1

ˆ
Ω\Bi

(
εj + Fkj (|∆yεj ,kj |

2)
) p−2

2 |∆yεj ,kj |
2uεj ,kj dx

6 α−1 max

{
C2
f , C

p
p−1

f

}
, ∀ j > i, (6.4)

hence {∆yεj ,kj} is bounded in Lp(Ω \ Bi)N . Since, ∆yεj ,kj ⇀ ∆y in L2(Ω), we
infer χΩ\Bj∆yεj ,kj ⇀ ∆y in Lp(Ω), where χΩ\Bj is the characteristic function of
the set Ω \Bj . Hence, we obtainˆ

Ω
|∆y|p dx by (6.3)

= lim
i→∞

ˆ
Ω\Bi

|∆y|p dx 6 lim
i→∞

lim inf
j→∞
j>i

ˆ
Ω\Bi

|∆yεj ,kj |
p dx

by (6.4)

6 α−1 max

{
C2
f , C

p
p−1

f

}
.

Since y ∈ W 2,2
0 (Ω; ΓD), it follows from the last estimate that y ∈ W 2,p

0 (Ω; ΓD)
and this concludes the proof.

Lemma 6.2. Let {εi}i∈N, {ki}i∈N and {ui}i∈N ⊂ Aad be sequences such that

εi → 0, ki →∞, ui → u strongly in L1(Ω).

Let yi = yεi,ki(ui) and y = y(u) be the solutions of (5.3)-(5.5) and (3.2)-(3.3),
respectively. Then

yi → y in W 2,2
0 (Ω) as i→∞, (6.5)

χΩ\Ωk(yi)∆yi → ∆y strongly in Lp(Ω), (6.6)

lim
i→∞

ˆ
Ω

(
εi + Fki(|∆yi|

2)
) p−2

2 |∆yi|2ui dx =

ˆ
Ω
|∆y|pu dx, (6.7)

where Ωki(yi) is de�ned by (6.2).

Proof. The proof is divided into �ve steps.
Step 1: yi ⇀ y in W 2,2

0 (Ω).- From Lemma 6.1 we deduce the existence of a

subsequence, denoted in the same way {yi}i∈N ⊂ W 2,2
0 (Ω; ΓD) and an element

y ∈W 2,p
0 (Ω; ΓD) such that yi ⇀ y in W 2,2

0 (Ω). Let us prove that y is the solution
of (3.2)-(3.3). Let us �x an arbitrary test function ϕ ∈ C∞0 (Ω; ΓD) and pass to
the limit in the Minty inequality

ˆ
Ω
ui(x)(εi + Fki(|∆ϕ|

2))
p−2

2 ∆ϕ (∆ϕ−∆yi) dx >
ˆ

Ω
f(ϕ − yi) dx, (6.8)
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as i→∞. Taking into account that

(εi + Fki(|∆ϕ|
2))

p−2
2 ∆ϕ→ |∆ϕ|p−2∆ϕ strongly in Lr(Ω), for all 1 6 r <∞,

ui → u strongly in Lr(Ω), for all 1 6 r <∞,
∆yi ⇀ ∆y in L2(Ω),

we obtain

lim
i→∞

ˆ
Ω

(εi + Fki(|∆ϕ|
2))

p−2
2 |∆ϕ|2ui dx =

ˆ
Ω
|∆ϕ|pu dx,

lim
i→∞

ˆ
Ω

(εi + Fki(|∆ϕ|
2))

p−2
2 ∆ϕ∆yiui dx =

ˆ
Ω
|∆ϕ|p−2∆ϕ∆yu dx.

Thus, passing to the limit in relation (6.8) as i→∞, we arrive at the inequality
(3.7) for every ϕ ∈ C∞0 (Ω; ΓD). From density of C∞0 (Ω; ΓD) in W 2,p

0 (Ω; ΓD), we

infer that (3.7) holds for every ϕ ∈W 2,p
0 (Ω; ΓD), and hence y ∈W 2,p

0 (Ω; ΓD) is the
solution to the boundary value problem (3.2)�(3.3) in the sense of distributions.
Since the solution of (3.2)-(3.3) is unique, the whole sequence {yi}i∈N converges
weakly to y = y(u) in W 2,2

0 (Ω).

Step 2: χΩ\Ωk(yi)∆yi ⇀ ∆y in Lp(Ω).- Following the de�nition of the sets
Ωki(yi) and using (5.23), we obtain

ˆ
Ω
|χΩ\Ωki (yi)

∆yi|p dx =

ˆ
Ω\Ωki (yi)

|∆yi|p dx

6 α−1

ˆ
Ω\Ωki (yi)

(
εi + Fki(|∆yi|

2)
) p−2

2 |∆yi|2ui dx,

6 α−1‖yi‖pεi,ki,ui 6 C < +∞, ∀ i ∈ N.

Hence, taking a new subsequence if necessary, we infer the existence of a
function g ∈ Lp(Ω) such that χΩ\Ωki (yi)

∆yi ⇀ g in Lp(Ω) as i→∞. Since ui → u

in Lp
′
(Ω), we conclude that

lim
i→∞

ˆ
Ω\Ωki (yi)

∆yiϕui dx =

ˆ
Ω
gϕu dx, ∀ϕ ∈ C∞0 (Ω). (6.9)

On the other hand, in view of the weak convergence ∆yi ⇀ ∆y in L2(Ω),

ˆ
Ω

∆yϕu dx = lim
i→∞

ˆ
Ω

∆yiϕui dx

= lim
i→∞

ˆ
Ω\Ωki (yi)

∆yiϕui dx+ lim
i→∞

ˆ
Ωki (yi)

∆yiϕui dx. (6.10)

Since
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∣∣∣∣∣
ˆ

Ωki (yi)
∆yiϕui dx

∣∣∣∣∣ 6 ‖ui‖L∞(Ω)‖ϕ‖C(Ω)

√
|Ωki(yi)|

(ˆ
Ωki (yi)

|∆yi|2 dx

)1/2

6
‖ui‖L∞(Ω)‖ϕ‖C(Ω)(
εi + k2

i + 1
) p−2

4

√
|Ωki(yi)|‖yi‖

p
2
εi,ki,ui

by (5.10),(5.23)

6 ‖ξ2‖L∞(Ω)‖ϕ‖C(Ω)

C

kp−1
i

→ 0 as i→∞,

it follows from (6.9) and (6.10) that

ˆ
Ω
gϕu dx =

ˆ
Ω

∆yϕu dx, ∀ϕ ∈ C∞0 (Ω).

Hence, g = ∆y almost everywhere in Ω and the convergence χΩ\Ωk(yi)∆yi ⇀ ∆y
in Lp(Ω) holds.

Step 3: χΩ\Ωk(yi)∆yi → ∆y in Lp(Ω).- For each i ∈ N, we have the energy
equalities

ˆ
Ω
ui(εi + Fki(|∆yi|

2))
p−2

2 |∆yi|2 dx =

ˆ
Ω
fyi dx,

ˆ
Ω
u(x)|∆y|p dx =

ˆ
Ω
fy dx.

(6.11)

From (6.11) and the fact that yi ⇀ y in W 2,2
0 (Ω), we deduce

lim
i→∞

ˆ
Ω
ui(εi + Fki(|∆yi|

2))
p−2

2 |∆yi|2 dx = lim
i→∞

[ˆ
Ω
fyi dx

]
=

ˆ
Ω
fy dx

by (6.11)2
=

ˆ
Ω
u|∆y|p dx. (6.12)

Moreover, we have

ˆ
Ω
u|∆y|p dx = lim

i→∞

ˆ
Ω

(
εi + Fki(|∆yi|

2)
) p−2

2 |∆yi|2ui dx

> lim sup
i→∞

ˆ
Ω\Ωki (yi)

(
εi + Fki(|∆yi|

2)
) p−2

2 |∆yi|2ui dx

by (5.7)

> lim sup
i→∞

ˆ
Ω\Ωki (yi)

(
εi + |∆yi|2

) p−2
2 |∆yi|2ui dx

> lim sup
i→∞

ˆ
Ω
χΩ\Ωki (yi)

|∆yi|pui dx > lim inf
i→∞

ˆ
Ω
χΩ\Ωki (yi)

|∆yi|pui dx. (6.13)



On Approximation of OCP in Coe�cients for p-Biharmonic Equation 67

Since ui → u in Lr(Ω) for every 1 6 r < +∞, {ui}i is bounded in L∞(Ω) and

ui(x) > α for almost all x ∈ Ω, it is easy to check that χΩ\Ωki (yi)
∆yiu

1/p
i ⇀ ∆yu1/p

in Lp(Ω). Using this convergence and (6.13) we getˆ
Ω
u|∆y|p dx > lim sup

i→∞

ˆ
Ω
uiχΩ\Ωki (yi)

|∆yi|p dx

> lim inf
i→∞

ˆ
Ω
uiχΩ\Ωki (yi)

|∆yi|p dx = lim inf
i→∞

‖χΩ\Ωki (yi)
∆yiu

1/p
i ‖

p
Lp(Ω)

> ‖∆yu1/p‖pLp(Ω) =

ˆ
Ω
u|∆y|p dx.

The weak convergence χΩ\Ωki (yi)
∆yiu

1/p
i ⇀ ∆yu1/p in Lp(Ω) and the convergence

of their norms ‖χΩ\Ωki (yi)
∆yiu

1/p
i ‖Lp(Ω) → ‖∆yu1/p‖Lp(Ω) imply the strong con-

vergence χΩ\Ωki (yi)
∆yiu

1/p
i → ∆yu1/p in Lp(Ω). Now, it is a simple exercise to

check the strong convergence χΩ\Ωki (yi)
∆yi → ∆y in Lp(Ω).

Step 4: Proof of (6.7).- From (6.6) and (6.13) we obtain

lim
i→∞

ˆ
Ωki (yi)

(
εi + Fki(|∆yi|

2)
) p−2

2 |∆yi|2ui dx = 0. (6.14)

Let us prove that

lim
i→∞

ˆ
Ω\Ωki (yi)

(
εi + Fki(|∆yi|

2)
) p−2

2 |∆yi|2ui dx =

ˆ
Ω
|∆y|pu dx. (6.15)

This is established as follows. From (5.7) we deduce(
εi + Fki(|∆yi|

2)
) p−2

2 |∆yi|2χΩ\Ωki (yi)

6 (εi + δ + |∆yi|2)
p−2

2 |∆yi|2χΩ\Ωki (yi)

6 2
p−2

2 ((εi + δ)
p−2

2 |∆yi|2 + |∆yi|p)χΩ\Ωki (yi)
.

From (6.6) we know that the last term converges in L1(Ω). Taking a subsequence
if necessary we can dominate it by a L1(Ω) function. Then by a simple application
of Lebesgue's dominated convergence theorem we deduce (6.15). Finally, (6.14)
and (6.15) imply (6.7).

Step 5: yi → y in W 2,2
0 (Ω).- First, we apply (6.14) to deduce

lim
i→∞

ˆ
Ωk(yi)

|∆yi|2 dx 6
1

α
lim
i→∞

ˆ
Ωk(yi)

(εi + Fk(|∆yi|2))
p−2

2 |∆yi|2ui dx = 0.

Now, combining this estimate and (6.6) we conclude that

∆yi = χΩk(yi)∆yi + χΩ\Ωk(yi)∆yi → ∆y strongly in L2(Ω).
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We are now in a position to show that optimal pairs to the approximated OCP
(Pε,k) lead in the limit to optimal solutions of the original OCP (P).

Theorem 6.1. Let
{

(u0
ε,k, y

0
ε,k)
)
} ε>0
k∈N

be an arbitrary sequence of optimal pairs

to the approximating problems (Pε,k). Then, this sequence is bounded in BV (Ω)×
W 2,2

0 (Ω) and any cluster point (u0, y0) with respect to the (weak-*,weak) topology

is a solution of the OCP (P). Moreover, if for one subsequence we have u0
ε,k

∗
⇀ u0

in BV (Ω) and y0
ε,k ⇀ y0 in W 2,2

0 (Ω), then the following properties hold

lim
ε→0
k→∞

(u0
ε,k, y

0
ε,k) = (u0, y0) strongly in L1(Ω)×W 2,2

0 (Ω), (6.16)

lim
ε→0
k→∞

ˆ
Ω
|Du0

ε,k| =
ˆ

Ω
|Du0|, (6.17)

lim
ε→0
k→∞

χΩ\Ωk(y0
ε,k)∆y

0
ε,k = ∆y0 strongly in Lp(Ω), (6.18)

lim
ε→0
k→∞

ˆ
Ω

(
ε+ Fk(|∆y0

ε,k|2)
) p−2

2 |∆y0
ε,k|2u0

ε,k dx =

ˆ
Ω
|∆y0|pu0 dx, (6.19)

lim
ε→0
k→∞

I(u0
ε,k, y

0
ε,k) = I(u0, y0). (6.20)

Proof. The boundedness of
{

(u0
ε,k, y

0
ε,k)
)
} ε>0
k∈N

inBV (Ω)×W 2,2
0 (Ω) is an immediate

consequence of the boundedness of Aad in BV (Ω) and Lemma 6.1. Let us take

a subsequence, denoted in the same way, such that u0
ε,k

∗
⇀ u0 in BV (Ω) and

y0
ε,k ⇀ y0 in W 2,2

0 (Ω). From compactness property of BV -bounded sequences, we
get that

lim
ε→0
k→∞

u0
ε,k = u0 strongly in L1(Ω) and

ˆ
Ω
|Du0| 6 lim inf

ε→0
k→∞

ˆ
Ω
|Du0

ε,k|. (6.21)

From this convergence properties we infer that u0 ∈ Aad. Moreover, Lemma 6.2
implies that y0 is the solution of (3.2)-(3.3) corresponding to u = u0, therefore,
in virew of (6.1), we deduce that (u0, y0) ∈ Ξ. Combining (6.5) and (6.21) we
deduce (6.16). Convergences (6.18) and (6.19) follow from (6.6) and (6.7). Let us
prove that (u0, y0) is a solution of (P). Given an arbitrary element (u, y) ∈ Ξ, we
de�ne uε,k = u and yε,k as the solution of (5.2)-(5.3), hence (uε,k, yε,k) ∈ Ξε,k.
From (6.5) and (6.7) we get

I(u, y) = lim
ε→0
k→∞

I(u, yε,k) = lim
ε→0
k→∞

I(uε,k, yε,k).

Now, using (6.5), (6.16), (6.21), the above identity and the fact that (u0
ε,k, y

0
ε,k) is
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a solution of (Pε,k), we get

I(u0, y0) 6 lim inf
ε→0
k→∞

I(u0
ε,k, y

0
ε,k) 6 lim sup

ε→0
k→∞

I(u0
ε,k, y

0
ε,k)

6 lim sup
ε→0
k→∞

I(uε,k, yε,k) = I(u, y).

Since (u, y) is arbitrary in Ξ, this implies that (u0, y0) is a solution of (P).
Moreover, taking (u, y) = (u0, y0) in the above inequalities, (6.20) is proved.
Finally, (6.17) is an immediate consequence of (6.20) and the convergence pro-
perties established before.

Since Theorem 6.1 does not give an answer whether the entire set of solutions
Ξopt to problem (3.2)�(3.6) can be attained in such a way, the following result
shed some light on this matter.

Corollary 6.1. Let (u0, y0) ∈ Ξopt be an optimal solution to the OCP (P) such

that there is a closed neighborhood U(u0) of u0 in the norm topology of L1(Ω)
satisfying

I(u0, y0) < I(u, y) ∀u ∈ Aad ∩ U(u0) such that (u, y) ∈ Ξ and u 6= u0. (6.22)

Then there exists a sequence of local minima (u0
ε,k, y

0
ε,k) of problems (Pε,k) such

that

(u0
ε,k, y

0
ε,k)→ (u0, y0) in the sense of Theorem 6.1.

Proof. By the strict local optimality of (u0, y0), we have that it is the unique
solution of

(Q) min
(u,y)∈Ξ,u∈U(u0)

I(u, y).

For every ε and k let us consider the control problems

(Qε,k) min
(u,y)∈Ξε,k,u∈U(u0)

I(u, y).

Since (u0, yε,k(u
0)) ∈ Ξε,k, it follows that (Qε,k) has feasible controls, hence there

exists at least one solution (u0
ε,k, y

0
ε,k) of (Qε,k) for every (ε, k). Now, arguing as

in the proof of Theorem 6.1, we deduce that (u0
ε,k, y

0
ε,k) → (ũ0, ỹ0) strongly in

L1(Ω) × W 2,2
0 (Ω), and (ũ0, ũ0) is the unique solution of (Q). This implies the

existence of ε0 and k0 such that u0
ε,k belongs to the interior of U(u0) for every

ε 6 ε0 and k > k0. Consequently, (u0
ε,k, y

0
ε,k) is a local minimum of (Pε,k) for every

ε 6 ε0 and k > k0. This concludes the proof.
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