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RESEARCH ARTICLE
10.1002/2016MS000904

Integrating Herbivore Population Dynamics Into a Global Land
Biosphere Model: Plugging Animals Into the Earth System
Shree R. S. Dangal1 , Hanqin Tian1,2 , Chaoqun Lu1,3 , Wei Ren1,4 , Shufen Pan1 ,
Jia Yang1 , Nicola Di Cosmo5, and Amy Hessl6

1International Center for Climate and Global Change Research and School of Forestry and Wildlife Sciences, Auburn
University, Auburn, AL, USA, 2Research Center for Eco-Environmental Sciences, State Key Laboratory of Urban and
Regional Ecology, Chinese Academy of Sciences, Beijing, China, 3Department of Ecology, Evolutionary, and Organismal
Biology, Iowa State University, Ames, IA, USA, 4Department of Plant and Soil Sciences, College of Agriculture, Food and
Environment, University of Kentucky, Lexington, KY, USA, 5School of Historical Studies, Institute for Advanced Study,
Princeton, NJ, USA, 6Department of Geology and Geography, West Virginia University, Morgantown, WV, USA

Abstract Mammalian herbivores are an essential component of grassland and savanna ecosystems, and
with feedbacks to the climate system. To date, the response and feedbacks of mammalian herbivores to
changes in both abiotic and biotic factors are poorly quantified and not adequately represented in the
current global land surface modeling framework. In this study, we coupled herbivore population dynamics
in a global land model (the Dynamic Land Ecosystem Model, DLEM 3.0) to simulate populations of horses,
cattle, sheep, and goats, and their responses to changes in multiple environmental factors at the site level
across different continents during 1980–2010. Simulated results show that the model is capable of repro-
ducing observed herbivore population dynamics across all sites for these animal groups. Our simulation
results also indicate that during this period, climate extremes led to a maximum mortality of 27% of the
total herbivores in Mongolia. Across all sites, herbivores reduced aboveground net primary productivity
(ANPP) and heterotrophic respiration (Rh) by 14% and 15%, respectively (p< 0.05). With adequate parame-
terization, the model can be used for historical assessment and future prediction of mammalian herbivore
populations and their relevant impacts on biogeochemical cycles. Our simulation results demonstrate a
strong coupling between primary producers and consumers, indicating that inclusion of herbivores into the
global land modeling framework is essential to better understand the potentially large effect of herbivores
on carbon cycles in grassland and savanna ecosystems.

1. Introduction

Mammalian herbivores are an essential component of the terrestrial biosphere and therefore affect the
exchanges of energy, water, carbon, and greenhouse gases between land and the atmosphere (Herrero
et al., 2009; Steinfeld & Gerber, 2010; Tian et al., 2016). Changes in herbivore abundance can lead to dra-
matic direct and indirect effects on plant composition, aboveground and belowground primary productiv-
ity, nutrient cycling, and other ecosystem processes (Augustine & McNaughton, 1998; Pi~neiro et al., 2010;
Steinfeld & Wassenaar, 2007). The overall impact of herbivores on forage productivity and diversity has
been mixed, with results ranging from positive (increase) to negative (decrease) effects of herbivores on net
primary production (Hoshino et al., 2009; Sch€onbach et al., 2011). A better understanding of herbivore pop-
ulation dynamics and their impact on ecosystem processes is essential to enhance our knowledge of how
herbivores regulate ecosystem-climate feedback mediated by changes in carbon, nitrogen, and water cycles
across different scales. However, animal as an essential component of ecosystems has been often forgotten
in the current global land surface or biosphere-modeling framework.

Biotic factors such as species composition, plant morphology, productivity, and forage quality may affect
the population size and spatial distribution of mammalian herbivores (Bailey et al., 1996). In areas with
stable forage resources, mammalian herbivores are regulated in a density-dependent manner (Illius &
O’Connor, 1999, 2000). As the herbivore population exceeds ecological carrying capacity, increased compe-
tition among herbivores for forage resources may lead to a reduction in herbivore productivity (Vetter,
2005), provided that supplemental feeding from stored forage resources are not considered. However,
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when herbivore populations are below carrying capacity, mortality during unfavorable years is reduced due
to availability of greater forage and body fat reserves (Vetter, 2005). Thus, the availability of forage resour-
ces, both in terms of quality and quantity, may directly influence herbivore population dynamics.

Abiotic factors such as climate, topography, soil characteristics, and distance to water can directly (i.e., feed
intake, water intake, growth, and reproduction) or indirectly (i.e., feed supply, parasites and diseases, and
shelter) influence mammalian herbivore populations (Morignat et al., 2015; Rao et al., 2015; Reeves & Bagne,
2016; Williamson & Payne, 1978). Seasonal variation in precipitation creates alternating wet and dry periods,
which forces herbivores to migrate (Owen-Smith et al., 2010) or lose weight (Illius & O’Connor, 2000) during
periods of low resource availability. Likewise, extreme climatic conditions, such as drought and severe cold
can indirectly affect herbivore productivity by limiting both forage availability and accessibility (Begzsuren
et al., 2004; Rao et al., 2015). The effect of extreme climatic conditions on herbivores may vary depending
on the type of herbivore, foraging behavior, and distribution patterns.

We also have a limited understanding about how mammalian herbivores affect ecosystem processes. Exist-
ing results indicate both positive and negative effects of herbivores on forage productivity, plant species
composition, and soil organic matter input (Augustine & McNaughton, 2006; Bardgett & Wardle, 2003; Iri-
sarri et al., 2016). Some empirical and modeling studies suggest that herbivory reduces primary productivity
and decreases nutrient cycling rates (Dangal et al., 2016; Pastor & Cohen, 1997; Sch€onbach et al., 2011),
while other studies indicate that herbivory can stimulate primary productivity and promote nutrient cycling
(Frank et al., 2002; McNaughton et al., 1997). Likewise, herbivores may influence soil processes by altering
the quantity and quality of resource inputs (i.e., exudation and litter inputs) and functional composition of
vegetation, which may enhance or reduce litter quality and soil decomposition (Bardgett & Wardle, 2003).
While previous experimental and modeling studies have quantified the effect of herbivores on individual
carbon components, such as ANPP, soil organic carbon, and methane emission (Dangal et al., 2016; Herrero
et al., 2013; Milchunas & Lauenroth, 1993), these studies do not account for population dynamics of herbi-
vores, and therefore cannot quantify the feedback among climate, herbivores, and ecosystem processes.

Ecosystem models with explicit representation of herbivore population dynamics serve as an important tool
to quantify the tradeoffs and synergies related to herbivory and forage productivity across broad temporal
and spatial scales (Freer et al., 1997; Pachzelt et al., 2013; Rotz et al., 2005). Most population dynamics mod-
els lack generality, as they are parameterized for particular systems and specific herbivore types. For exam-
ple, individual-based modeling simulates individual herbivores as a function of intake rates and energetics
(Turner et al., 1993), while statistical models simulate herbivore dynamics as a function of the previous year
herbivore size, rainfall, and mean annual temperature (Ogutu & Owen-Smith, 2003). While individual-based
modeling approach is critical when biological data about the herbivores (i.e., specific behavior, activity,
development, and interactions) are available (Grimm & Railsback, 2005), it is simply not feasible to simulate
all individual herbivores at large scales. In addition, the level of information required to simulate individual
herbivores may further constrain the applicability of the individual-based modeling approach (Hellweger
et al., 2016). Similarly, statistical models can only be applied to particular species or for particular systems
(Austin, 2002). It is therefore important to use a cohort-based approach, where a closed group of individuals
with at least one similar attribute are aggregated into a single animal functional type.

Other complex models such as GRAZPLAN (Freer et al., 1997) and Growth, Metabolism and Mortality (GMM)
model (Owen-Smith, 2002) have been used to model herbivore population dynamics with detailed animal
physiology. For example, GRAZPLAN includes detailed animal and plant physiology, with pasture submodel
opertaing at a daily time step, but it can only be applied to sheep or cattle (Gill et al., 2010; King et al., 2012;
Moore et al., 1997). Similarly, the GMM model does not explicitly consider resource and climatic constraints
on different age classes of herbivores (Owen-Smith, 2002). Therefore, it is imperative to improve current
population dynamics models by including explicit representation of different herbivore types for quantify-
ing herbivore dynamics in response to changes in both biotic and abiotic factors.

The purpose of this study is to explicitly integrate herbivore population dynamics into the global land
modeling framework and to evaluate the impact of herbivores on ecosystem dynamics and ultimately, the
biogeochemistry. In this study, we simulated the population dynamics of domestic herbivores but did not
include wild herbivores because of inherent differences in their dynamics and stocking rates (Archibald &
Hempson, 2016; Sheehy et al., 2010). In particular, we attempt to model the growth, mortality, and
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reproduction of specific herbivore types as a function of available forage, climate, and other environmental
factors. The herbivore population dynamics model was coupled with a global land ecosystem model (the
Dynamic Land Ecosystem Model, DLEM 3.0) to quantify the effects of herbivores on carbon, nitrogen, and
water cycles through aboveground biomass and the associated feedback of herbivores on vegetation and
soil. Our primary objectives are to (1) simulate global mammalian herbivore population dynamics as a func-
tion of resource and environmental constraints; (2) evaluate model performance and quantify herbivore
population dynamics across multiple sites in Asia, Africa, and North America; (3) quantify climate and envi-
ronmental controls over herbivore population dynamics at the study sites; and (4) examine the impact of
herbivores on aboveground net primary productivity (ANPP), net ecosystem productivity (NEP), heterotro-
phic respiration (Rh), and evapotranspiration. We hypothesize that the incorporation of herbivore popula-
tion dynamics into the global land modeling framework will have a significant impact on terrestrial
biogeochemistry, and the magnitude and direction of this impact will depend on the relative abundance of
herbivores at a given location.

2. Materials and Methods

2.1. The Dynamic Land Ecosystem Model (DLEM)
The DLEM is a highly integrated global land ecosystem model that simulates the interactions and feedbacks
among multiple ecosystem components to estimate the stocks and fluxes of carbon, nitrogen, and water at
the landscape, regional, continental, and global scales (Pan et al., 2014, 2015; Tian et al., 2010, 2015a). The
DLEM is driven by changes in atmospheric chemistry (i.e., nitrogen deposition, tropospheric ozone concen-
tration, and atmospheric CO2 concentration), climate, land-use and land cover (LULC), and disturbances (i.e.,
fire and timber harvest). The model has been extensively used to quantify carbon stocks (i.e., vegetation car-
bon and soil carbon) and fluxes (i.e., net primary productivity and net ecosystem productivity) and the
exchange of methane and nitrous oxide between multiple terrestrial ecosystems and the atmosphere (Lu &
Tian 2013; Pan et al., 2017; Ren et al., 2012; Tian et al., 2015a, 2015b; Yang et al., 2015). Detailed descriptions
of the processes for simulating vegetation dynamics and biogeochemical cycles are available in our previ-
ous studies (Pan et al., 2014; Tian et al., 2010, 2011a, 2011b).

The basic simulation unit in the DLEM is a grid cell, which is covered by a mixture of vegetation cover,
impervious surface, lake, stream, bare land, and glacier. At all the study sites, we ran the model at a resolu-
tion of 0.58 3 0.58, which is approximately equal to 55 km 3 55 km at the equator. The vegetation cover in
the DLEM includes five plant functional types (PFTs), of which four are reserved for natural vegetation and
one for crops. The grid is assumed to have identical environmental conditions including climate, soil, and
topography.

In this study, we simulated forage productivity for three major PFTs (i.e., C3 grassland, C4 grassland, and
savanna) within a grid assuming that steppe and savanna biomass are the most preferred resources for
mammalian herbivores at the study sites. In the new version of the DLEM (DLEM 3.0), we included the fifth
core component (The Animal Dynamics Module; Figure 1). The Animal Dynamics Module includes four
major processes: (1) energy intake, (2) energy expenditure, (3) reproduction, and (4) mortality including
both base mortality (age-related mortality) and starvation-related mortality, which occurs as an indirect con-
sequence of extreme climatic conditions (i.e., drought and freezing winter conditions). We simulated the
dynamics of cattle, horses, sheep, and goats during the course of this study. The detailed processes that reg-
ulate natality, mortality, and reproduction of different herbivore types are described in section 2.2.

2.2. Modeling Herbivore Population Dynamics
The representation of herbivore population dynamics in the DLEM 3.0 is based on several previous model-
ing studies (Freer et al., 1997; Illius & O’Connor, 2000; Konandreas & Anderson, 1982; Figure 2). The basic
simulation unit for herbivore population dynamics is a grid, in which the maximum of four different herbi-
vore types can coexist at a time. Although we attempted to simulate the population dynamics of four herbi-
vores at the site level in this study, the simulation scheme makes the model applicable to any herbivore
types and at regional to global scales. Using the DLEM 3.0, we simulated the population dynamics of cattle,
horses, sheep, and goats in Mongolia, Africa, and the United States. We were particularly interested in
browsing by goats versus grazing by sheep and cattle. We assumed that grazers feed on vegetation bio-
mass at surface level while browsers feed on intact foliage, buds, and stems of woody trees and shrubs

Journal of Advances in Modeling Earth Systems 10.1002/2016MS000904

DANGAL ET AL. PLUGGING ANIMALS INTO THE EARTH SYSTEM 2922



(Askins & Turner, 1972). Goats are mixed feeders, which rely on plant parts with higher digestibility such as
buds, leaves, fruits, and flowers that contain less fiber and more protein. In case of limited supply of highly
digestible plant parts, goats shift toward grasses. For instance, Malechek and Leinweber (1972) found that
goats selected 60% shrubs, 30% grasses, and 10% forbs, while sheep selected 20% shrubs, 50% grasses, and
30% forbs. In the DLEM 3.0, we assumed that goats prefer shrubs over grasses, and leaves and reproductive
parts over stems within grasses. This assumption allows us to capture the inherent differences in the graz-
ing behavior of grazers and browsers. Below we describe the detailed model structure and algorithms
through which we model energy intake, energy expenditure, reproduction, and mortality among different
herbivore types within each grid cell.
2.2.1. Forage Intake and Digestibility
2.2.1.1. Maximum Forage Intake by Herbivores
The daily maximum forage intake (Imax) is defined as the potential intake by a single herbivore on a daily
basis given unlimited forage biomass. In the DLEM 3.0, potential forage intake is related to animal size and
food digestibility (measured in proportion) and is expressed as the maximum daily net energy intake (MJ/d)

Figure 2. Modeling framework showing the input drivers, herbivore dynamics, and outputs from the coupled herbivore-land model (DLEM 3.0).

Figure 1. The simplified framework of the Dynamic Land Ecosystem Model (DLEM 3.0) coupled with herbivore population dynamics.
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based on the relationship among physical and chemical properties of food, animal mass, and type of diges-
tive system (Illius & Gordon, 1991, 1992; Shipley et al., 1999). The maximum intake rate (MJ/d) for different
herbivore types (ruminants versus hindgut) were regressed against the body weight (kg) to derive the fol-
lowing equation:

Imax 5i 3expj3d3A k3exp dð Þ10:73ð Þ
lt 3ug (1)

where i, j, k are the parameters that control the potential intake rates for different herbivore types; d is the
biomass digestibility (measured in fraction) based on equation (4); Alt is the mature body mass of each her-
bivore type (kg); and ug is a scalar to define the gut capacity of different herbivore types by age classes and
is expressed as

ug5
W
Alt

� �0:75

(2)

where W is the body mass (kg) of different herbivore types by age classes.

The expression i 3 expj3d allows for the conversion of body mass (kg) to energy intake (MJ/kg of body
weight) such that for hindgut herbivores i is 0.108, while for ruminant herbivores i is 0.034. The higher con-
version coefficient (i) of hindgut herbivores assumes higher potential intake rate per unit body weight com-
pared to ruminant herbivores. For example, comparison of ruminant and hindgut herbivores of similar body
weights indicated that the ratio of horse to cattle dry matter intake averaged 1.73 and metabolizable
energy intake averaged 1.48 (Johnson et al., 1982).
2.2.1.2. Forage Digestibility
The digestibility of the consumable forage (Vconsume) in the DLEM is separated into the proportion of living
and dead forage, with their respective digestibility rate (fraction). The digestibility of the dead forage is
assumed to be 0.4 (Illius & O’Connor, 2000), while the digestibility of the living forage is a function of the
quantity of available live forage at any time period and is modeled similar to Pachzelt et al. (2013):

dliving50:460510:239106 3 V20:1697
living (3)

where dliving is the digestibility of live forage on offer (fraction) and Vliving is the live aboveground forage
(g DM/m2).

Equation (3) is derived by combining the dependence of digestibility on crude protein content of forage
(Prins, 1996) and the exponential decrease of crude protein content with increasing biomass (van Wijngaar-
den, 1985), such that the coefficient 0.239106 allows for the conversion of living biomass (g DM/m2) to
digestibility (fraction). The negative power (20.1697) assumes that the digestibility of living biomass
decreases with increasing biomass availability (van Wijngaarden, 1985).

The overall digestibility of the total available forage (both dead and living) is modeled as

d5dliving3Bd10:4 3 12Bdð Þ (4)

where Bd and 1 2 Bd represent the proportion of functional (live) and nonfunctional biomass, respectively.
Bd in the DLEM is based on Illius and O’Connor (2000), and is expressed as

Bd5
Vliving

Vtotal

� �0:2

(5)

The exponent 0.2 is used to describe diet selection during progressive defoliation by herbivores or annual
variation in living biomass availability (Chacon & Stobbs, 1976). Illius and O’Connor (2000) showed that the
standard error for the exponent was 0.032, with the correlation coefficient (r) of 0.79.
2.2.1.3. Relative Intake by Herbivores
The proportion of the potential intake that a herbivore can ingest depends on two attributes of forage sup-
ply: (1) relative availability and (2) relative ingestibility (Freer et al., 1997). In the DLEM, relative availability of
the forage is measured as a function of model simulated aboveground biomass (Vconsume), while relative
ingestibility is a saturating function of available plant biomass (Illius & O’Connor, 2000). Thus, daily forage
intake (MJ/d) is modeled as a function of maximum daily intake rate (MJ/d) based on equation (1) and the
saturating function of available aboveground biomass:
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Idaily5Imax3
Vconsume

b1Vconsume

� �
(6)

where Idaily is the actual daily intake rate (MJ/d), Vconsume is the total forage biomass available for different
herbivore types (kg DM/ha), and b is the half maximum intake rate (kg/ha/d).
2.2.2. Energy Intake and Expenditure
2.2.2.1. Metabolizable Energy Intake by Herbivores
Metabolizable energy is the energy remaining after urinary and gaseous energies during fermentation are
subtracted from the total digestible energy. The total metabolizable energy intake in the DLEM 3.0 is a func-
tion of forage intake and its digestibility and is mathematically expressed based on Freer et al. (1997):

MEIf 5 17:2 3d21:71ð Þ3If (7)

where MEIf is the metabolizable energy intake from forage (MJ/d) and If is the daily forage intake (kg DM/d).

Equation (7) was estimated by regression based on 55 roughage feeds in Givens and Moss (1990), such that
the expression (17.2 3 d 2 1.71) allows for the conversion of dry matter intake (kg DM/d) to metabolizable
energy (MJ/d). However, we did not attempt to quantify the metabolizable energy intake for supplemental
feeds and milk in this study.

To obtain the amount of grass (kg DM) necessary for daily energy intake, the intake energy (Idaily) is divided
by the net grass energy content. Mathematically,

If 5
Idaily

Ne
(8)

where Ne is the grass net energy content (MJ/kg DM), which depends on the total metabolizable energy
content (MJ/kg) of grass, and is estimated based on ARC (1980) as

Ne5ME 0:50310:0193MEð Þ (9)

where ME is the metabolizable energy content of the grass (MJ/kg DM), which is estimated based on ARC
(1980) as

ME515:6 3d (10)

Equation (10) assumes that the digestible organic matter of forages has 15.6 MJ ME/kg DM.
2.2.2.2. Maintenance Energy of Herbivores
In the DLEM 3.0, total energy costs are simulated as the sum of energy required for maintenance, grazing,
and travel (Freer et al., 1997). The metabolic energy required for maintenance is based on Corbett et al.
(1985), which considers the effect of different feeding levels on metabolic energy requirements. The meta-
bolic energy is expressed as

Edaily5
Emetab1Egraze

Km
1Elw3MEIf

� �
(11)

where Edaily is the metabolic energy required for maintenance by different herbivore types (MJ/d), Emetab is
the basal metabolic energy required by different herbivore types (MJ/d), Egraze is the metabolic energy
required for maintenance of grazing and travel by different herbivore types (MJ/d), and Elw is the fraction of
metabolic energy intake required for maintenance of daily liveweight gain (unit less). Elw is set to 0.09 for all
herbivore types based on Freer et al. (1997). Km is the efficiency of use of metabolic energy for maintenance
(unit less).

The basal metabolic energy requirement (Emetab) is a function of body weight, age, sex, and milk intake and
is expressed based on Freer et al. (2012):

Emetab5Bs3Ss3Ms3Ws3W0:753max exp As3ageð Þ; 0:84ð Þ (12)

where Bs is the basal metabolism scalar for metabolic energy requirement (unit less), Ss is the effect of sex
on metabolic energy requirement (unit less), Ms is the effect of milk production on metabolic energy
requirement (unit less), Ws is the effect of weight on metabolic energy requirement (unit less), W is the
weight of different herbivore types by age classes (kg), As is the effect of age on basal metabolism (day21),
and age is the age of different herbivore types (days).
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The effect of sex on the metabolic energy requirement (Ss) is obtained from Wheeler (2015). We used an Ss

value of 1.075 for a mixture of male and female herbivores.

The effect of milk production on the metabolic energy requirement (Ms) is based on Freer et al. (1997) and
is estimated as

Ms511Bmilk 3Pmilk (13)

where Bmilk is the basal metabolism for milk intake (unit less) and Pmilk is the proportion of diet as milk (unit
less).

The energy required for grazing is a function of distance walked by different herbivore types, which is
reduced to zero when herbivores are not grazing. Mathematically,

Egraze5Cc3W3If 3 Ce2DMDfð Þ1 Emove (14)

where Cc is the chewing cost of herbivores (MJ/kg2), Ce is the chewing efficiency (unit less), DMDf is the dry
matter digestibility of consumed forage (unit less), and Emove is the energy required for movement (MJ) and
is expressed as

Emove5Eh3Dc 3W (15)

where Eh is the energy cost of walking (MJ/km/kg) and Dc is the horizontal distance equivalent travelled
(km).

The horizontal distance equivalent travelled (Dc) is estimated as the product of horizontal distance travelled
and the steepness of the land (Lsteep):

Dc5

Lsteep3

min 1:0;
Sthres

Sactual

� �

0:0000573Vliving10:16
� � Vliving � 100 kg DM=ha

Lsteep3

min 1:0;
Sthres

Sactual

� �

0:0000573Vdead10:16ð Þ Vliving < 100 and Vdead � 100 kg DM=ha

0 Vdead < 100 kg DM=ha

8>>>>>>>>>>><
>>>>>>>>>>>:

(16)

where Dc is the distance covered as its horizontal equivalent (km) and Lsteep is the steepness score of the
land on a scale of 1–2 with a value of 1 indicating that the land is flat, while the value of 2 indicating that
the land is steep. In the DLEM 3.0, the slope of the grid is scaled in the range of 1–2 to obtain the steepness
score. Sthres is the threshold stocking rate of different herbivore types (head/ha) and Sactual is the actual
stocking rate of different herbivore types (head/ha).

The value of 0.000057 implies the average distance (km) travelled by herbivores per unit of biomass avail-
ability (kg DM). Overall, equation (16) assumes that the distance travelled decreases with increasing biomass
availability.
2.2.3. Growth and Reproduction of Herbivores
In the DLEM 3.0, growth of herbivores is calculated at a daily time step as a difference between the amount
of energy gained and the amount of energy lost by herbivores (Illius & O’Connor, 2000; Pachzelt et al.,
2013). The net change in daily energy flux is further used to update the fat reservoir, which is given by

df
dt

5
Idaily2Edaily
� �

m
(17)

where m is the metabolic coefficient for the conversion between energy (MJ/d) and fat (kg/d). The value of
m is based on Blaxter (1989), such that m 5 39.5 MJ net energy/kg for Idaily< Edaily (catabolism) and
m 5 54.6 for Idaily> Edaily (anabolism).

Daily change in fat (df/dt) in equation (17) is used to update the fat pool, which determines the overall body
condition (Bcon) of the herbivores.
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Bcon5
F

Fmax
(18)

where F is the net fat storage at the end of the year (kg) and Fmax is the maximum fat reserves for each age
class of herbivores (kg).

Body condition (Bcon) in the previous year is then used to determine the number of offspring born in the
current year. The number of newly born offspring is based on the number of mature herbivores and their
body condition. Mathematically,

Bh5
N3p

l � 11exp 2b Bcon2cð Þð Þð Þ (19)

where Bh is the birth rate of different herbivore types (numbers/yr), N is the number of mature individuals
for different herbivore types in previous year (heads), p is the population maximum annual intrinsic rate of
increase (proportion), l is the length of birth season (fraction of a year), which is set to 1.0 in case of large
herbivores (horse and cattle) and 0.8 in case of small herbivores (goat and sheep), and b and c are the con-
stants that control the effect of body reserves on reproductive rate (unit less).

The value of p in equation (19) is set to 0.8, which implies a male to female ratio of 1:4, with every female
having the possibility of giving birth to one offspring. Bcon is based on the net changes in body fat condition
within the mature age class of herbivores, such that a Bcon of 0.3 would result in 50% of the female breeding
while a Bcon of 0.5 would result in 95% of the female breeding.

The length of the breeding season l allows the model to capture differences in breeding rates among differ-
ent herbivore types. The l of 1.0 ensures that every female has the possibility of giving birth to one offspring
per year, while the l of 0.5 results in a birth of 2.0 offspring per year.
2.2.4. Mortality
In the DLEM 3.0, we account for two potential causes of herbivore mortality. One is a daily mortality that
occurs under normal conditions (base mortality). The other is mass herbivore mortality as a result of
extreme climatic conditions, such as summer drought or freezing winter conditions (Begzsuren et al., 2004;
Rao et al., 2015), which increases the risk of starvation-related mortality.
2.2.4.1. Mortality of Herbivores
The mortality of herbivores is predicted daily as a function of basal rate and body condition, which varies
based on specific herbivore type (Freer et al., 1997; Pepper et al., 1999). The model assumes that there is a
greater risk of death in herbivores, if the body condition is below a threshold. The model estimates age-
related (base) mortality, starvation-related mortality, and mortality associated with low fat depot (starvation)
based on Pepper et al. (1999):

MR5
Mbase10:33 12 BC

BCcrit

� �
BC < BCcrit & Wdaily < 0:2dN

Mbase else

8<
: (20)

where MR is the mortality rate of herbivore (fraction), Mbase is the basal mortality constant for specific herbi-
vore type (fraction), Wdaily is the daily weight gain (kg/d), BC is the relative body condition and is expressed
as a ratio of base weight (kg) of herbivores to normal weight (kg) of herbivores, BCcrit is the threshold body
condition below which death is assumed to occur at a higher rate, dN is the normal weight gain for different
herbivore types by current age (kg/d), and BCcrit in the DLEM is expressed as

BCcrit5120:23 11Zð Þ (21)

where Z is given by

Z5min 1;
dN
Alt

� �
(22)

where Alt is the reference mature body weight (kg).

The normal body weight gain (dN) is expressed as a function of mass, age, and weight at birth of processed
herbivore type (Freer et al., 1997) and is given by
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dN5Alt2 Alt2Wbirthð Þ3exp 20:01573
age

Alt
0:27

� ��
(23)

where Wbirth is the weight at birth (kg).
2.2.4.2. Methane Emissions From Herbivores
Methane (CH4) emissions is a function of daily gross energy expenditure, forage digestibility, and liveweight
of different herbivore types (IPCC, 2006). IPCC (2006) requires estimate of gross energy content, which is
defined as the sum of net energy for maintenance and growth. Mathematically, we first calculate the gross
energy requirement of different herbivore types based on daily net energy expenditure and the percentage
of digestible energy in the diet:

GE5

NEm
REM 1

NEg

REG

d
(24)

where GE is the gross energy (MJ/d) and NEm is the daily net metabolic energy expenditure for maintenance
obtained as

NEm5
Emetab1Egraze

Km
(25)

NEg is the daily net metabolic energy expenditure for growth obtained as

NEg5 Elw3MEIf (26)

REM is the ratio of net energy available for maintenance in a diet to digestible energy consumed, and is esti-
mated as

REM5 1:1232 4:092 310233 d3100ð Þ
� �

1 1:126310253d2
� 	

2
25:4

d


 �
(27)

REG is the ratio of net energy available for growth in a diet to digestible energy consumed and is estimated
as

REG5 1:1642 5:160 310233 d3100ð Þ
� �

1 1:308310253d2
� 	

2
37:4

d


 �
(28)

where d is the digestible energy expressed in fraction and is estimated based on equation (4).

Equations (27) and (28) are obtained from IPCC (2006, see equations (10) and 10.15). Overall the equation
assumes that as the digestibility of forage increases, the biomass intake of the herbivore decreases and vice
versa.

We then calculate the methane emissions factor for each herbivore type, which is multiplied by the total
number of herbivores to estimate total methane emissions within each grid cell. Mathematically,

Ef 5
GE 3Ym

55:65
(29)

where Ef is the emissions factor (kg CH4/head/yr) and Ym is the methane conversion factor, which refers to
the percent of gross energy in feed converted to CH4. The CH4 conversion factor is set to 6.5% for all live-
stock types based on IPCC (2006). The energy content of methane is 55.65 MJ/kg CH4.

It should be noted that equation (29) provides estimates of methane emissions for mature herbivore types,
which likely differs for lower age classes. In the DLEM 3.0, we obtain methane emissions of lower age class
individuals by scaling the emissions obtained for mature herbivore types as a function of their body
weights.

2.3. Modeling Plant Production and the Feedback of Herbivores
The representation of primary productivity in the DLEM is based on several previous studies (Bonan, 1996;
Collatz et al., 1991; Farquhar et al., 1980; Sellers et al., 1996). The detailed description of biophysical, plant
physiological, and soil microbial processes is available elsewhere (Pan et al., 2014; Tian et al., 2010, 2011a,
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2011b, 2015a). Here we only describe the major plant production processes that affect herbivore dynamics
and the feedback of herbivores to carbon, nitrogen, and water cycles.
2.3.1. Primary Production
Gross primary production (GPP) is modeled using a modified Farquhar’s model (Farquhar et al., 1980), where
the whole plant canopy is divided into sunlit and shaded layers. For each of the two layers, GPP (g C/m2/d)
is calculated by scaling leaf level assimilation rates to the whole canopy. Mathematically,

GPPsun512:01 310263 Asun 3plaisun3dayl 33600 (30)

GPPshade512:01 310263 Ashade 3plaishade3dayl 33600 (31)

GPPtotal5 GPPsun1 GPPshade (32)

where GPPsun and GPPshade are GPP of sunlit and shaded canopy, respectively (g C/m2/yr). Asun and Ashade

are leaf level assimilation rates of sunlit and shaded canopy, respectively (mmol CO2/m2/s). plaisun and plaish-

ade are projected leaf area index of sunlit and shaded canopy, respectively (fraction). dayl is daytime length
(second) in a day. 12.01 3 1026 is a constant to change the unit from mmol CO2 to g C.

The carbon assimilation rate is a minimum function of three limiting factors: (a) photosynthetic enzyme
(rubisco); (b) photosynthetically active radiation (light); and (c) photosynthetic product utilization (export).
In the case of C4 species, the export limitation (c) refers to the phosphoenolpyruvate (PEP) carboxylase lim-
ited rate of assimilation. Mathematically,

A5min wc; wj ; we
� �

3Indexgs (33)

wc5

ðci2C�ÞVmax

ci1Kcð11oi=KoÞ
for C3 plants

Vmax for C4 plants

8>><
>>:

wj5

ðci2C�Þ4:6/a
ci12C�

for C3 plants

4:6/a for C4 plants

8><
>:

we5

0:5Vmax for C3 plants

4000Vmax
ci

Patm
for C4 plants

8><
>:

(34)

where wc, wi, and we are rubisco, light, and export (for C3) or PEP carboxylase (for C4) limited assimilation
rates, respectively; ci is the internal leaf CO2 concentration (Pa); oi is the O2 concentration (Pa); C� is the CO2

compensation point (Pa); Kc and Ko are Michaelis-Menten constants for CO2 and O2, respectively; a is the
quantum efficiency; / is the absorbed photosynthetically active radiation (W m22); and Vmax is the maxi-
mum rate of carboxylation, which varies as a function of temperature, foliage nitrogen concentration, and
soil moisture (Bonan, 1996) and is expressed as

Vmax5Vmax25avmax

Tday 225

10 f ðNÞf ðTdayÞbt (35)

where Vmax25 is the rate of carboxylation at 258C, avmax is the temperature sensitivity parameter, f(Tday) is the
function of temperature related metabolic processes, f(N) is the adjustment of photosynthetic rate for
foliage nitrogen, and bt is the soil moisture and temperature effects on stomatal resistance and photosyn-
thesis (unit less).

The net primary production (NPP) in the DLEM is estimated as the net carbon gain after carbon losses
through plant respiration, and is expressed as

NPP5GPP2Mr2Gr (36)

where NPP is the net primary production (g C/m2/d), Mr is the maintenance respiration of plants (g C/m2/d),
and Gr is the growth respiration of plants (g C/m2/d).
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In the DLEM, Gr is calculated by assuming that the fixed portion of assimilated C will be used to construct
new tissue (for turnover or plant growth). During these processes, 25% of assimilated carbon is used in
growth respiration. However, maintenance respiration is a function of surface air temperature and biomass
carbon content, and is expressed as

Mri5min ðrfi 3 f Tð Þ; rmaxÞ3Ci (37)

where i is the carbon pool of different plant parts including leaf, sapwood, fine root, and coarse root, Mri is
the maintenance respiration (g C/m2/d) of different pools, rfi is the maintenance respiration coefficient for
different plant parts. rmax is the maximum respiration rate of different carbon pools and Ci is the carbon
content (g C/m2) of vegetation pool i.

The aboveground NPP (ANPP; g C/m2/d) in the DLEM 3.0 is estimated as a ratio of aboveground carbon
pools to the total carbon pools and is expressed as

ANPP5
leafC1reprodC1stemC

leafC1reprodC1stemC1rootC
3NPP (38)

The ANPP calculated in equation (38) represents the consumable forage (Vconsume) for herbivores explained
in section 2.2.1.2.

Heterotrophic respiration (Rh; g C/m2/d) is estimated as the sum of net carbon fluxes from different soil
pools and is expressed as

Rh5rhAOM11rhAOM21rhDOM1rhSMB11rhSMB21rhSMR1rhNOM1rhPSOM (39)

where rhAOM1 is the carbon flux from slowly decomposable pool (g C/m2/d), rhAOM2 is the carbon flux
from easily decomposable pool (g C/m2/d), rhDOM is the carbon flux from dissolved organic matter pool
(g C/m2/d), rhSMB1 is the carbon flux from autochthonous (slow growth) soil microbial biomass pool (g C/
m2/d), rhSMB2 is the carbon flux from zymogenous (fast growth) soil microbial biomass pool (g C/m2/d),
rhSMR is the carbon flux from soil microbial residue pool (g C/m2/d), rhNOM is the carbon flux from native
organic matter (humus) pool (g C/m2/d), and rhPSOM is the carbon flux from passive organic matter pool
(g C/m2/d).
2.3.2. Herbivore Impacts on Grassland/Savanna Ecosystems
The impact of herbivores on carbon, nitrogen, and water cycles is simulated as a function of relative supply
and demand of forage resources at a daily time step (Dangal et al., 2016). The maximum dry matter demand
per unit area is dependent on the number of herbivores and the amount of food required by herbivores on
a daily basis and is estimated as

Cdemand50:05 3 If 3 Nlt (40)

where Cdemand is the maximum amount of dry matter required by herbivores (g C/d), If is the daily forage
intake (kg DM/d) based on equation (8), Nlt is the herbivore density expressed as the standardized units
(sheep/ha), and 0.05 is a factor to convert kg/ha/d to g C/m2/d.

The demand of forage by herbivores is restricted by the amount of forage produced per unit area. Thus, the
dry matter supply is modeled as a function of grazing efficiency and the amount of forage available from a
unit area of land. Mathematically,

Csupply50:95 3 Cleaf 1 Cstem1 Creprod
� �

(41)

where 0.95 is a factor to limit the grassland biomass supply to 95% of the available biomass. Cleaf, Cstem, and
Creprod are carbon in leaf, stem, and reproduction pool, respectively.

Combining equations (40) and (41), the daily impact of herbivores on primary production is estimated as

Intakedaily5fmin Cdemand ; Csupply
� �

(42)

The biomass consumed by herbivores is then further separated into different parts using an energy flow
approach. These parts include carbon losses during respiration, assumed to be 50% (Minonzio et al., 1998),
and carbon losses through excretory processes, assumed to be 30% (Schimel et al., 1986). The amount of
carbon and nitrogen lost through excreta is further separated into urine and feces assuming that the
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nitrogen in urine is readily available for plant use (Dangal et al., 2016). However, we do not consider the
flows of carbon and nitrogen associated with the death of herbivores in the current herbivore module.

2.4. Model Parameterization and Calibration
In this study, we parameterized and calibrated both vegetation and herbivore components of the model
(Table 1). Based on existing and previous studies, we first determined the reasonable range of key model
parameters that control the growth and productivity of both vegetation (White et al., 2000) and herbivores
(Freer et al., 1997; Illius & O’Connor, 2000; Pachzelt et al., 2013). Within these ranges, we allow DLEM param-
eters to vary such that the parameters were optimized to fit the simulated carbon, nitrogen, and water
fluxes with observations for specific plant functional types (PFTs). In this study, PFT refers to a group of
biome (single plant type) that responds similarly to changes in environmental parameters. We grouped all
grasses into C3 and C4 categories, and all shrubs into evergreen and deciduous categories. In the case of
herbivores, we tuned the parameters such that the parameters were optimized to fit observed populations
for specific herbivore types. During the start of simulation, we assumed that the total number of herbivores
for each cohort is evenly distributed across all the age classes. The DLEM, however, updates the number of
herbivores in each class annually assuming that small herbivores have a maximum of three age classes,
while large herbivores have a maximum of four age classes.

2.5. Simulation Protocol
2.5.1. Input Data Sets
The model input data include daily climate data sets (daily mean temperature, maximum temperature, and
minimum temperature and daily precipitation), monthly atmospheric CO2 concentrations, annual land cover
and land use (LCLU) maps, nitrogen deposition (Dentener, 2006), tropospheric ozone concentrations (Felzer
et al., 2004), soil properties (texture, pH, and bulk density), and topographical information (e.g., elevation,
slope, and aspect). Due to limited climate data, we generated daily data differently in each study region. In
Mongolia, we used site level monthly climate data from National Statistics of Mongolia, Institute of Meteo-
rology and Hydrology. These monthly climate data were allowed to follow the daily precipitation pattern
based on CRUNCEP by restricting the total precipitation during a month using monthly meteorological
observations. In Africa, we extracted daily climate data for the sites based on CRUNCEP global data sets. In
the United States, we downloaded daily meteorological data from NOAA National Centers for Environmen-
tal Information (https://www.ncdc.noaa.gov). LCLU map for each site was extracted from the global LCLU
maps, which was constructed by combining Synergetic Land Cover Product (SYNMAP; Jung et al., 2006) and
HYDE 3.1 land use data (Klein Goldewijk et al., 2011). Monthly atmospheric CO2 concentration data were
derived from Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTIMP, http://nacp.ornl.
gov/MsTMIP.shtml). Soil property data including soil texture, pH, and bulk density were extracted from
Global Soil Data Task (www.daac.ornl.gov). The site level elevation, slope, and aspect were extracted from
Global 30 Arc-Second Elevation product (GTOPO30; https://lta.cr.usgs.gov/GTOPO30).

Table 1
Key Parameters Controlling the Herbivore Population Dynamics in the DLEM

Parameters Horse Cattle Sheep Goat Remarks References

Alt 400 400 65 65 Mature mass (kg) FAO and Illius and O’Connor (2000)
b 240 240 308 308 Half saturation intake rate (kg/ha) Wilmshurst et al. (2000)
b, c b 5 15, c 5 0.3 Parameters controlling effect of

body reserves on birth
Illius and O’Connor (2000)

i, j, k 0.034, 3.565, 0.077 Ruminant intake const Shipley et al. (1999)
i, j, k 0.108, 3.284, 0.08 Hindgut intake const Shipley et al. (1999)
p 0.8 Intrinsic rate of increase Illius and O’Connor (2000)
Ce 0.7 0.9 0.9 0.9 Chewing efficiency Freer et al. (2012) for cattle and goats
Cc 0.02 0.025 0.02 0.02 Chewing cost (MJ/kg) Freer et al. (2012) for cattle and goats
Sthres 5 5 40 40 Threshold stocking rate (heads/ha) Freer et al. (2012) for cattle and goats
Mbase 0.00003 0.00003 0.00003 0.00003 Basal rate of mortality (frac) Pepper et al. (1999) for Sheep
Fmax 0.3 0.3 0.3 0.3 Maximum body fat

(fraction of mature weight)
Illius and O’Connor (2000)
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2.5.2. Model Simulation and Implementation
The model simulation follows a three-step procedure: an equilibrium run, a spin-up, and a transient simula-
tion. The model simulation begins with an equilibrium run driven by a 30 year (1980–2009) average climatic
conditions,1980 levels of atmospheric CO2, and vegetation cover, assuming no herbivores exist in the sys-
tem. The equilibrium run is carried out for a maximum of 10,000 years or until the net carbon exchange
between the atmosphere and the site is less than 0.1 g C m22, the change in soil water pool is less than
0.1 mm, and the change in total nitrogen content is less than 0.1 g N m22 during two consecutive 20 year
periods. The purpose of the equilibrium run is to get the initial conditions for the spin-up and transient sim-
ulations. After the model spin-up, we carry out a transient simulation using daily climate data, monthly
atmospheric CO2 concentrations, and time series LCLU maps.

For the simulation of herbivore population dynamics in Mongolia, we developed a scalar that accounted for
anthropogenic changes associated with policy shifts (Chen et al., 2015). After the collapse of former Soviet
Union in the early1990s, Mongolia transitioned to private herd ownership, which resulted in a dramatic
increase in herbivore populations (Johnson et al., 2006). At present, 95% of herbivores are privately owned
with the largest proportions of sheep and goats since 1990 due to rapid growth of cashmere industry (Arul-
pragasam et al., 2004; Berger et al., 2013). In the DLEM 3.0, the transition from a centralized to market econ-
omy is represented by developing a scalar, which accounts for the rapid increase in number of herbivores
and changes in herd composition during the post-Soviet Union period. The scalar is derived as a ratio of 30
year average (1961–1990) herbivore populations to annual herbivore populations for each herbivore type,
which is directly applied to the respective herbivore pool following economic transition in Mongolia. How-
ever, in Africa and the United States, the scalar that accounts for policy shifts and economic transitions was
set to 1.0. Applying a similar approach, Shabb et al. (2013) used different parameters developed through
optimization to simulate herbivore populations by separating the study area into seven different time peri-
ods during 1970–2011. The time periods were categorized into socialist, postsocialist, dzud (severe winter),
and drought years, such that each time period assumed a separate set of parameters to simulate herbivore
populations. The dzud is a local term in Mongolia, which refers to a severe winter condition that causes her-
bivore mortality, primarily due to starvation.

In this study, we performed two different simulations. The first simulation was carried out in the absence of
feedback of herbivores to ecosystems in order to quantify the population dynamics of herbivores in
response to climate, forage availability, and local environmental conditions. In the second simulation, we
introduced the feedback of herbivores to terrestrial ecosystems to quantify the impact of herbivores on car-
bon and water cycles at the study sites. We simulated the population dynamics of horses, cattle, sheep, and
goats in Mongolia. However, in Africa and North America, we only simulated the population dynamics of
cattle, sheep, and goats because census data for model evaluation of horses were not available.

Model evaluation in the DLEM 3.0 follows a two-step procedure: (1) evaluation of simulated carbon pools
and fluxes and (2) evaluation of simulated herbivore density against observations at the study sites. Our
study sites in Mongolia, Ethiopia, South Africa, Zimbabwe, and the United States were dominated by C3
grassland, C4 grassland, and savanna (Table 2). The detailed description of the study sites used to evaluate

Table 2
Site Information Used for Model Evaluation During 1980–2010 in Mongolia, Africa, and the United States

Site location lon, lat Elev (m)

Climate Dominant

Tair (8C) Prec (mm) PFT Herbivore

Arxangai, MN 101.58E, 47.58N 1,865 0.91 335.95 C3 grassland Sheep
Bulgan, MN 103.68E, 48.88N 1,176 20.6 329.54 C3 grassland Sheep
Zavxan, MN 96.608E, 47.78N 2,547 21.65 211.91 C3 grassland Sheep
Selenge, MN 105.38E, 49.18N 926 20.64 325.84 C3 grassland Sheep
Ethiopia 39.18E, 9.18N 1,263 16.63 1,131.2 Savanna Cattle
Zimbabwe 31.18E, 20.28S 941 19.1 667.9 Savanna Cattle
South Africa 29.28E, 30.58S 1,203 13.6 795.4 Savanna Sheep
Texas, US 99.98W, 32.88N 504 17.3 673.8 C3 grassland Goat
Kansas, US 98.88W, 38.48N 330 17.6 659.5 C4 grassland Cattle
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carbon fluxes is available in supporting information Text S1. The comparison of simulated carbon fluxes
with observation was performed in the absence of herbivory. After the evaluation of carbon fluxes against
observations, we simulated the herbivore population dynamics as a function of DLEM-estimated ANPP and
prevailing climatic and environmental conditions. The simulated herbivore density was then compared with
observations at the study sites. The detailed description of study sites used to evaluate herbivore popula-
tions performance is available in supporting information Text S2.

To quantify the CH4 fluxes from the fermentation of different herbivores, the model first estimated the CH4

emission factor based on IPCC tier II approach for each herbivore type, which was then multiplied by the
total number of herbivores at the specific sites to obtain the net CH4 emissions. The model simulated emis-
sions factor using an IPCC tier II approach was compared with the IPCC tier I approach in Mongolia, Africa,
and the United States (supporting information Table S1).

2.6. Statistical Analysis
In this study, we used the mean and one standard deviation of the mean to estimate annual primary pro-
duction, carbon and water fluxes, and herbivore population dynamics. To test for a statistically significant
trend between 1980 and 2010, we performed linear regression at 5% level of significance. In addition, we
used Welch’s t test to test the statistically significant difference between model outputs with and without
herbivores. We also used coefficient of variation and regression slope to evaluate the model performance
against observations. Spearman correlation coefficient was used to quantify the relationship between envi-
ronmental factors and model simulated outputs.

3. Results

3.1. Evaluation of DLEM-Simulated Carbon Fluxes
In Inner Mongolia, there is reasonable agreement between DLEM-simulated ANPP and observed ANPP
(observed 5 1.11 3 simulated; p< 0.05; R2 5 0.87; supporting information Figure S1). In Kansas, compari-
sons of daily gross primary production (GPP), ecosystem respiration (ER), and net ecosystem productivity
(NEP) are all in reasonable agreement with eddy covariance (EC) measurements (p< 0.05; supporting infor-
mation Figure S2). Overall, DLEM overestimated daily GPP and ER by 4% and 4.6%, respectively. In Africa,
we found both simulated GPP and NEP to be significantly, though weakly, correlated with observations
(R2 5 0.26 for GPP and R2 5 0.20 for NEP; p< 0.05; supporting information Figure S3). Overall, DLEM tends
to underestimate daily GPP by 7.7%, but overestimate NEP by 0.38 g C/m2/d when compared to
observations.

3.2. Evaluation of DLEM-Simulated Herbivore Density
The DLEM-simulated herbivore density is in reasonable agreement with observations across all sites (Figure
3 and supporting information Figure S5). In general, the DLEM simulation captured the mean herbivore
populations across all sites in Mongolia, Africa, and North America (R2 5 0.72; observed 5 1.01 3 simulated;
p< 0.05). In Mongolia, the simulated herbivore density was in good agreement with observations
(R2 5 0.95; observed 5 1.08 3 simulated; p< 0.05; supporting information Figure S4a). Model tends to
underpredict herbivore density by 8%. In the United States, overall model simulated results were in reason-
able agreement with observations (R2 5 0.96; observed 5 0.89 3 simulated; p< 0.05; supporting informa-
tion Figure S4b), with slight overprediction (8%). In Africa, however, model simulated mean herbivore
density overpredicts, but simulated herbivore density was not significantly different from observations
(R2 5 0.83, observed 5 0.70 3 simulated; p< 0.05; supporting information Figure S4c).

As market/policy changes have a substantial impact on herbivore dynamics, we also compared the DLEM-
simulated herbivore density with and without the market/policy changes against observations. Simulation
results show that herbivore density after the inclusion of policy changes were closer to observations com-
pared to simulations without policy changes (Figure 4). We also found that the simulated herbivore density
with policy changes were not significantly different from simulation without policy changes for sheep, cat-
tle, and horses. However, simulation results show a significant difference in goat density between the simu-
lation with and without policy changes (p< 0.05), indicating that policy changes strongly affect the
abundance of herbivores. Overall, simulation results show that policy changes resulted in an increase in
horses, cattle, sheep, and goat density by 10%, 5%, 1%, and 83%, respectively.
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3.3. Herbivore Response to Resource Availability
Simulation results show that the temporal change in mean herbivore density across sites was correlated
with annual ANPP; however, the effect was not statistically significant (p 5 0.28; Figure 5). Interestingly,
model results also indicate that individual herbivore density of horses, cattle, sheep, and goats were signifi-
cantly correlated with annual ANPP (p< 0.05). Changes in annual ANPP explained 23% of the variation in
the density of horses, while ANPP explained <10% of the variation in case of other herbivores (cattle, sheep,
and goats).

3.4. Herbivore Mortality During Extreme Climatic Conditions
In Mongolia, simulation results show maximum mortality of 27% of the herbivores due to a combination of
drought and dzud (Figure 6). The temporal pattern of total mortality during 1980–2010 indicates that the
total herbivore mortality in Mongolia has been increasing significantly at a rate of 0.003 heads/ha (p< 0.05).
In Africa and North America, herbivores experienced a maximum mortality of 17% and 13%, respectively
(Figure 6). The DLEM simulations show a base mortality of 8.7% across all sites during 1980–2010.

Figure 3. Comparison of simulated and observed population of horse, cattle, sheep, and goat across all sites in Mongolia,
the United States, and Africa.

Figure 4. Comparison of simulated and observed population of different herbivores with and without policy changes in Mongolia.
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Interestingly, DLEM simulations did not show a significant increase in herbivore mortality in Africa and
North America during 1980–2010 (p> 0.1) suggesting high biomass availability during the growing season
led to low starvation-related mortality at these sites. For example, model simulated ANPP was 31% and 50%
higher in North America and Africa, respectively, compared to Mongolia.

3.5. Herbivore Feedback to Carbon and Water Fluxes
The DLEM simulations show that the inclusion of herbivores in the model resulted in a significant decline in
ANPP and Rh by 14% and 15%, respectively (p< 0.05; Figures 7a and 7b). When investigating NEP, model
simulation indicate that herbivores increased NEP by 12%, although the effect was not statistically signifi-
cant (p 5 0.85; Figure 7c). Likewise, herbivores did not significantly alter ET across our study sites (p 5 0.95;
Figure 7d), although herbivores tend to reduce transpiration and increase evaporation.

3.6. Herbivore Effect on CH4 Fluxes Through Enteric Fermentation
Model simulations show that herbivores had a significant impact on biogeochemistry through CH4 emis-
sions. Cattle were the largest source of CH4 emissions (56%), followed by horses (32%), sheep (8%), and
goats (4%; Figure 8). In Mongolia, DLEM simulations with herbivores show a significant increase in CH4 emis-

sions at the rate of 0.5 kg CH4/ha/yr (R2 5 0.32; p< 0.05). Similarly, CH4

emissions increased at the rate of 0.2 kg CH4/ha/yr (R2 5 0.36;
p< 0.05) and 0.3 kg CH4/ha/yr (R2 5 0.25; p< 0.05) in Africa and the
United States, respectively.

4. Discussion

4.1. Simulation of Herbivore Density in Mongolia, Africa,
and North America
The population dynamics model developed here captured the annual
variation in herbivore density reasonably well across all sites in Mon-
golia, Africa, and North America (Figure 3 and supporting information
Figures S5 and S6). We did not expect the model to exactly reproduce
the variability in the observations because we only simulated herbi-
vore density as a function of climate and environmental conditions.
We did not include other factors such as predation and diseases in
Mongolia and market-policy changes, demand and supply of herbi-
vore products, and predation and diseases in Africa and North Amer-
ica. For example, we found that the transition from a centralized to
market-based economy in 1993 resulted in a rapid increase in herbi-
vore numbers in Mongolia (Johnson et al., 2006). Unlike Mongolia, low

Figure 5. Temporal pattern of herbivore and ANPP change in the study area. The dashed lines represent the long-term
mean ANPP during 1980–2010.

Figure 6. DLEM simulated total herbivore mortality in Africa, Mongolia, and the
United States. Total mortality in the model refers to mortality due to aging
(basal) and resource limitation (starvation).
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demand of wool products due to increased availability of synthetic fibers (Jones, 2004) resulted in a decline
in sheep populations in the United States.

To account for the shortcomings associated with market/policy changes, we tested the effect of the transi-
tion from centralized to market-based economy in Mongolia on herbivore populations (see section 2.5.2).
Simulation results indicate that the transition from a centralized to market-based economy resulted in an
increase in horse, cattle, sheep, and goat density by 10%, 5%, 1%, and 83%, respectively. The largest
increase in goat populations was due to increasing demand for cashmere (Berger et al., 2013). Overall, mar-
ket/policy changes had a significant impact on goat density (p< 0.05), but no significant impact on cattle,
sheep and horse density. Our study, therefore, indicated that market/policy changes have the potential to
significantly influence herbivore density. However, such an effect not only is region-specific but also
depends on the forage demand/supply for the type of herbivores.

Figure 7. Effect of herbivores on (a) ANPP, (b) Rh, (c) NEP, and (d) ET across all sites in Mongolia, Africa, and North America. The values on the graph represent the
median values for ANPP, Rh, NEP, and ET.

Figure 8. Methane emissions from herbivores across all sites in Mongolia, Africa, and North America.
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4.2. Comparison of Simulated Carbon Fluxes and Herbivore Density With Observations
The DLEM-simulated carbon fluxes (GPP, ANPP, ER, and NEP) were close to the observed values in North
America. However, the DLEM simulation did not capture the low respiration (ER) of 2011 at Konza Prairie,
likely due to variation among root classes not adequately represented in the model. For example, using a
PnET-CN vegetation model, Thorn et al. (2015) overestimated the contribution of root respiration to ER at
the Konza Prairie site, and associated that to metabolic variation among different root classes. In the DLEM,
we broadly categorize roots into two major classes (fine and coarse roots). It is possible that DLEM overesti-
mates the contribution of roots to ecosystem respiration likely due to different root classes not included in
the model. Likewise, DLEM-simulated a daily NEP close to zero, compared to observations of 0.3 g C/m2/d
at Konza Prairie. Overall, DLEM tends to underestimate NEP during high-precipitation years (2009–2011).
Simulation results show that during high-precipitation years, increased runoff and leaching enhanced nitro-
gen limitation associated with a decrease in plant available nitrogen (Felzer et al., 2011; LeBauer & Treseder,
2008). Burke et al. (2002) found that nitrogen, particularly in the form of nitrates is vulnerable to leaching
with maximum leaching rates during wet seasons. Our results indicate that nitrogen limit NEP at Konza Prai-
rie, possibly due to increased leaching during wet years. Similarly, DLEM overestimated NEP by 0.38 g C/m2/
d when compared to observations in Africa. The overestimation is likely due to factors not included in the
model, such as fire and herbivore diversity. At Skukuza site, there are 14 species of large mammalian herbi-
vores which translates into a herbivore flux (both from respiration and decomposition of dung) of 0.03
g C/m2/d (Archibald et al., 2009). However, we did not include the effect of different herbivores while simu-
lating carbon fluxes because data on different herbivore types and their exact number were not available.
Another important factor not included is fire, which releases carbon at a rate of 0.11 g C/m2/d in Skukuzu
(Archibald et al., 2009).

The DLEM-simulated herbivore densities were close to observations across all sites, although the model has
a tendency to underpredict at some sites. For example, DLEM underpredicted herbivore density by 8% in
Mongolia. The slight underprediction is likely because we have not included the impact of extreme climate
on metabolic and physiological adjustment and their relevant effect on herbivore mortality. For example,
Bishop-Williams et al. (2015) found that every one unit increase in heat stress indices increases on-farm mor-
tality rates of dairy cows by 1.03 times. In the United States, DLEM overpredicted herbivore density by 8%.
This is likely due to reported decline of sheep density in Texas and Kansas. Although climatic conditions
and forage productivity were favorable at the study sites, which resulted in an increase in the number of
cattle and goats during the observation period, we found no link between climate and sheep population in
the United States. A previous study indicated that sheep numbers in Texas and Kansas have declined by
61% and 59%, respectively since 1975 (Jones, 2004). A decline in sheep numbers has been attributed to low
demand of wool products from sheep due to availability of less expensive synthetic fibers (Jones, 2004). In
the current version of DLEM, we have not included how demand and supply of wool products from sheep
could affect sheep productivity in the United States. However, in Africa, DLEM-simulated herbivore density
was higher than observation by 44%. This overprediction is because we did not include predation (Ogada
et al., 2003; Patterson et al., 2004) in the model, which has been suggested to reduce herbivore populations
annually by up to 2.4% in southeastern Kenya (Patterson et al., 2004), 5% in Zimbabwe’s community lands
(Butler, 2000), and 8% in South Africa (Van Niekerk, 2010).

4.3. Herbivore Response to Resource Availability
The response of herbivores to forage availability has been the subject of ongoing debate over the last few
decades (Fernandez-Gimenez & Allen-Diaz, 1999; Illius & O’Connor, 1999; Sullivan & Rohde, 2002; Vetter,
2005). The debate focuses on two important aspects of rangeland ecology, i.e., density-dependent and
density-independent interactions. Density-dependent interactions are affected by competition and preda-
tion among herbivores, while density-independent interactions are affected by abiotic factors including cli-
mate and soil properties. While the model does not account for the effect of predation on herbivores,
competition among herbivores during period of low carrying capacity limits the growth and productivity of
herbivores (Illius & O’Connor, 2000). Likewise, abiotic factors such as temperature and precipitation changes
indirectly affect herbivore dynamics through changes in biomass availability (Ellis & Swift, 1988). Our simu-
lated results indicate that the mean herbivore density (heads/ha) was not significantly related to biomass
availability (p 5 0.28). This is likely because we aggregated herbivore as a sum of individual herbivore densi-
ties (Figure 5). We did not consider the differences among body weights and intake rates while aggregating
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the density (heads/ha) across different herbivore types. However, our simulated results also indicate that
the density of individual herbivores was significantly correlated with biomass availability (p< 0.05), where
biomass availability explained 23% of the variation in horse density and less than 10% of the variation in
the density of cattle, sheep, and goats. With the mechanistic modeling approach, we found that hindgut
herbivores show a different dependencies on biomass availability compared to ruminants. Interestingly,
simulation results show that ANPP (an indicator of carrying capacity of land) increased with low-
precipitation, intermediate-precipitation, and high-precipitation levels (supporting information Figure S7).
Although herbivore density increased with an increase in carrying capacity of the land during wet years,
extreme climatic events in some years led to an overall decline in herbivore density as an indirect conse-
quence of limited forage availability.

4.4. The Role of Extreme Events on Herbivore Mortality
In Mongolia, DLEM-simulated results indicate that summer drought and extreme winter conditions led to a
maximum mortality of 27% of the total herbivores. In Africa and the United States, herbivore experienced a
mortality of 17% and 15%, respectively. Our simulation results are consistent with previous studies, which
report that the consecutive drought and extreme winter (dzud) event of 1999–2002 resulted in a mass mor-
tality of 30% of the herbivores in Mongolia (Fernandez-Gimenez et al., 2012). The highest mortality rates
during consecutive drought and dzud events are due to prior summer drought and upcoming winter snow-
fall, which reduces the carrying capacity of land and increases the risk of starvation-related mortality (Begz-
suren et al., 2004; Rao et al., 2015). Similarly, high mortality rates of cattle population in the range of 37–
42% have been reported in semiarid Ethiopia during drought (Alemayehu & Fantahun, 2012; Desta & Cop-
pock, 2002). In the United States, a decrease in herbivore productivity and an increase in mortality rate due
to increasing heat waves and maximum temperatures have been reported (Key et al., 2014; Nienaber &
Hahn, 2007). Extreme events, such as maximum temperatures and drought, can either result in high herbi-
vore mortality or lead to a reduction in their productivity through adjustments in metabolic rate to cope
with maximum temperatures (Coulson et al., 2001; Nardone et al., 2010; Walthall et al., 2012). Climate-
related mass mortality of herbivores has been strongly linked to summer droughts in Mongolia, Africa, and
the United States (Key et al., 2014; Kgosikoma & Batisani, 2014; Megersa et al., 2014; Nardone et al., 2010;
Rao et al., 2015). Similarly, extreme winter conditions have also been linked to mass herbivore mortality, par-
ticularly in countries like Mongolia (Begzsuren et al., 2004; Fernandez-Gimenez et al., 2012; Rao et al., 2015).
Winter weather disasters associated with deep snow and severe cold limits forage accessibility increasing
the risk of starvation-related mortality (Rao et al., 2015). But mortality could vary depending on herbivore
type as, for example, their feeding behavior and recovery rate following extreme winters may vary (Nardone
et al., 2010). In the DLEM 3.0, extreme events related herbivore mortality is a function of annual changes in
body fat. For example, decline in forage resources (ANPP) due to extreme climatic conditions reduces the
accumulation of body fat, which ultimately alters the growth, reproduction, and survival of herbivores. Over-
all, DLEM simulations indicate that drought is the primary cause of starvation-related mortality in Africa and
the United States, while both drought and winter snowfall are responsible for starvation-related mortality in
Mongolia.

4.5. Herbivore Feedback to Carbon and Water Fluxes
Analysis of model simulated impacts of herbivores on carbon and water fluxes suggests that herbivores
have a significant negative impact on ANPP and Rh (p< 0.05). However, herbivores have no significant
impact on NEP and ET. Previous studies indicate that herbivores have a substantial impact on the flow of
energy and nutrients (Augustine & McNaughton, 2006; Bardgett & Wardle, 2003; McNaughton et al., 1997),
but the magnitude and direction of this effect varies widely across ecosystems (Augustine & McNaughton,
1998; Milchunas & Lauenroth, 1993). In many ecosystems, herbivores have been found to reduce ANPP, but
there are also reports of an increase in ANPP following herbivory (McNaughton, 1979; Milchunas & Lauen-
roth, 1993). The differences among studies are likely due to differences in herbivore density and how they
affect litter inputs and nutrient cycling in different ecosystems (Asner et al., 2004). For example, Irisarri et al.
(2016) found that doubling grazing intensity resulted in a reduction in ANPP by 25%, while our simulation
results indicate an overall reduction in ANPP by 14%. Similarly, exclosure experiments in Mongolia, Africa,
and the United States have indicated that herbivores reduce ANPP in areas with low rainfall, regardless of
nutrient availability (Augustine & McNaughton, 2006; Irisarri et al., 2016; Sch€onbach et al., 2011). Our
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simulation results are consistent with the findings that herbivores have a negative impact on ANPP, but the
magnitude of this impact largely depends on the density and type of herbivores and the ecosystem
considered.

Likewise, DLEM simulations also indicate that herbivores reduce Rh by 15% across the study sites. In semi-
arid grasslands, Kang et al. (2013) found that herbivory resulted in a significant reduction in Rh by 33%,
which is higher than our estimate. Kang et al. (2013) used a moderate herbivore density to quantify the
effect of grazing on Rh, while we used a dynamic approach to simulate herbivore density and its effect on
Rh. The reduction in Rh in the DLEM is due to reduced litter input (Savadogo et al., 2007). The reduction in
litter pool suppress soil organic matter decomposition, due to reduction in substrate availability necessary
for soil microbial activity (Pi~neiro et al., 2010; Raiesi & Asadi, 2006). In addition to reduction in litter pools,
herbivores can reduce canopy photosynthesis and slow down the translocation of carbon to the rhizo-
sphere, resulting in an overall reduction in annual soil respiration by 18% (Bremer et al., 1998). The DLEM
3.0 accounts for changes in leaf area index (LAI; a measure of one sided leaf area per unit of ground surface
area) following herbivory, which ultimately drives canopy photosynthesis. Changes in allocation of carbohy-
drates also occur due to a grazing-induced reduction in canopy photosynthesis, which affect Rh at the study
sites.

Model simulations also indicate that herbivores increased NEP by up to 12%, but the effect was not statisti-
cally significant. The change in NEP following herbivory depends on several factors such as soil water con-
tent, soil temperature, and properties (Potts et al., 2006; Zhao et al., 2011), biomass, and litter inputs
including other vegetation characteristics (Frank, 2002; Risch & Frank, 2006). In a recent study in semiarid
steppe, Kang et al. (2013) found that moderate grazing increased NEP significantly, shifting the ecosystem
from negative to positive carbon balance. This was likely due to a slight increase in GPP combined with a
significant reduction in Rh. Meanwhile, other studies report no significant effect of herbivory on NEP (Hou
et al., 2016; Lecain et al., 2000, 2002), although the general trend was an increase in NEP due to reduction in
ecosystem respiration, open canopy structure and the presence of young, photosynthetic leaves that
enhance carbon uptake (Owensby et al., 2006). Our study is consistent with the finding that a decrease in
Rh is responsible for an increase in NEP, but model simulation also indicate a significant decrease in ANPP
following herbivory (p< 0.05). While both ANPP and Rh decreased, the reduction in Rh was larger than the
reduction in ANPP, which resulted in an increase in NEP in this study.

Increase in herbivores abundance since 1990, particularly in Mongolia suggest an overall increase in CH4

emissions (Figure 8), but the increasing trends can be modified by the type of herbivores, their body weight
and the quality of forage resources (Dangal et al., 2017; Herrero et al., 2013; Steinfeld et al., 2012). The DLEM
simulations show that cattle were the largest source of CH4 emissions, followed by horses, sheep, and goats.
Higher emissions from cattle and horses occur because of higher body weight compared to sheep and
goats. For example, Chang et al. (2015) found that live body weight is an important factor affecting CH4

emissions. In addition to live body weight, fermentation of food products and their quality also played an
important role in determining net emissions (Moss et al., 2000). In the current modeling framework, we
used Intergovernmental Panel on Climate Change (IPCC) tier II guidelines for estimating the CH4 emission
factor, which relies on estimating different components of energy expenditure (lactation, feeding, work,
wool, and pregnancy) and digestibility of forage as simulated by the DLEM to quantify the CH4 emissions.

Analysis of model simulated ET further showed that herbivores does not significantly alter ET at the study
sites. The amount of water lost through ET depends on soil surface roughness, which affects surface evapo-
ration and the type of vegetation, which affects plant transpiration (Bhattarai et al., 2016; Frank & Inouye,
1994; Pan et al., 2015; Parton et al., 1981). In grassland ecosystems, reduction in plant surface area and LAI
following herbivory resulted in a decline in transpiration rates (Bremer et al., 2001; Naeth & Chanasyk, 1995).
Meanwhile, herbivores also increases bare soil surface area, which could ultimately lead to an increase in
surface evaporation (Bremer et al., 2001). The net effect of herbivores on ET depends on the balance
between lower transpiration rates due to reduction in vegetation cover and LAI, and higher soil evaporation
rates due to an increase in bare surface area (Naeth & Chanasyk, 1995). In a recent study, Wang et al. (2012)
found that the direct effect of reduced LAI on ET following herbivory was not significant in semiarid ecosys-
tems because increased soil evaporation compensated for most of the losses in plant transpiration. Like-
wise, in a modeling study with different herbivore density, Zhao et al. (2010) showed that moderate
herbivore density had no significant effect on water budget components. But high herbivore density
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resulted in a significant reduction in transpiration by 39% (47 mm) and increase in evaporation by 45%
(40 mm). When transpiration and evaporation where aggregated together, herbivores led to a reduction in
ET by 3%, which is comparable to DLEM simulated changes in ET of 0.3%. This implies that herbivores/her-
bivory has the potential to alter individual components (evaporation and transpiration) of the water fluxes
However, when the water fluxes (evaporation and transpiration) are aggregated together, decreases in
plant transpiration are compensated by an increase in evaporation resulting in no substantial changes in
evapotranspiration.

4.6. Implications of Coupling Herbivore Feedbacks Into the Global Land Ecosystem Model
By incorporating herbivore dynamics in the global land ecosystem model, we quantified the response of
herbivores to climate variability and resource availability, as well as herbivore effects on carbon, water, and
greenhouse gas fluxes. Regarding similar work, Pachzelt et al. (2013) coupled LPJ-GUESS with the grazer
model to simulate the population of large ungulates in African savanna. However, the version of LPJ-GUESS
considers natural grazer population dynamics and does not account for carbon-nitrogen coupling. Likewise,
Madingley model used mechanistic approach to simulate ecosystem structure and function of both terres-
trial and marine ecosystems (Harfoot et al., 2014), but the model does not account for the impact of human
activity on herbivore dynamics and the complex plant-herbivore interactions. Other models use detailed
animal physiology (Kooijman, 2010) and competition for resources (Shabb et al., 2013); however, the models
are not explicitly linked to plant physiology. Here we present a global land ecosystem model that explicitly
accounts for both herbivore and plant physiology and simulates the impact of climate and other environ-
mental factors on herbivore growth and productivity. By linking the DLEM plant model with the herbivore
dynamics, we demonstrate that herbivores have a significant impact on ANPP, Rh, and CH4 emissions, but
no significant impacts on NEP and ET. In addition, model results suggest that the magnitude of herbivore
impact on biogeochemical cycles varies by ecosystem type and prevailing climatic conditions. In the
absence of herbivore dynamics and their effect on biogeochemical processes, current land models may
overestimate ANPP and Rh by up to 14% and 15%, respectively. In addition, current land model may under-
estimate NEP by up to 12%. But the extent to which model simulated site level responses would scale up to
regional and global level remains a subject of future investigation.

5. Uncertainty and Future Needs

This study incorporated a simplified herbivore dynamics model into a global land ecosystem model (DLEM)
to simulate the herbivore populations in response to climate and other environmental factors at the site
level. Although we attempted to include major processes that affect herbivore populations and how they
alter carbon, nitrogen, and water cycles, there are several limitations that need to be addressed in the future
work. The largest uncertainty in the model comes from how market-based economic activity (change in
demand and supply of products) affects population dynamics of herbivores. While we have shown the
effect of market/policy changes in Mongolia, we did not attempt to quantify the effect of market-based eco-
nomic activity in Africa and North America. Our model can be used to examine how extensive the effect of
market/policy changes will be on herbivore populations (see section 4.1), but future work is needed to accu-
rately estimate the effect of policy and market-based economic changes on herbivore populations. In addi-
tion, forage digestibility is strictly a function of available biomass. We did not attempt to differentiate
digestibility associated with the morphological (dicots and monocots) differences in plants. For example,
Codron et al. (2007) found higher fiber digestibility of grass compared to browse, indicating that inherent
differences in diet quality may play an essential role in herbivore diversification. Likewise, we have only
included four herbivores (horse, cattle, sheep, and goat) in Mongolia, while three herbivores (cattle, sheep,
and goat) in Africa and the United States but did not consider the dynamics of wild herbivores. Our study
also recognizes that mortality associated with climate extremes is not adequately represented in the current
modeling framework. For example, thermal discomfort due to extreme heat waves and drought enhances
herbivore mortality (Crescio et al., 2010; Morignat et al., 2014; Vitali et al., 2015). However, we only consid-
ered starvation-related mortality due to drought and freezing winter but did not include the impact of ther-
mal discomfort associated with increasing heat waves on herbivore dynamics. We need more experimental
studies to model the complexity associated with summer heat waves, and its subsequent impact on herbi-
vore population.
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6. Conclusions

In this study, we integrated a mammalian herbivore population model into the global land ecosystem
model (DLEM) and quantified the effects of both biotic and abiotic factors on herbivore growth and produc-
tivity in various sites across Mongolia, Africa, and the United States. In addition, we simulated the impact of
herbivores on carbon, water, and greenhouse gas fluxes. The generalized model was able to capture the
observed values of herbivore populations at all sites. Likewise, our simulation results demonstrate that her-
bivores have a significant impact on ANPP, Rh, and CH4 emissions. Our simulation results also indicate that
climate extremes (droughts and extremely cold winters) resulted in a cumulative mortality of 27% in
Mongolia, while drought resulted in mortality of up to 17% and 15% in Africa and the United States,
respectively.

Our simulation results demonstrate a strong coupling between primary producers and consumers, indicat-
ing that the inclusion of herbivores in the current land surface or biosphere models is essential to better
understand the impacts of herbivores on carbon and water cycles in grassland and savanna ecosystems.
Animal as an essential component of ecosystem needs to be taken into account in the earth system model-
ing framework. To the best of our knowledge, this study is the first attempt to couple herbivore population
dynamics with a global land ecosystem model, particularly incorporating a detailed animal physiology and
the influence of market/policy changes on herbivore populations. Although the current work focused on
model development and its application at the site level, with adequate parameterization, the model could
be applied at regional and global scales to simulate herbivore population dynamics and its impacts on bio-
geochemical and hydrological cycles.
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