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A new regime of fast magnetic reconnection with an out-of-plane (guide) magnetic field is reported
in which the key role is played by an electron pressure anisotropy described by the Chew-Goldberger-
Low gyrotropic equations of state in the generalized Ohm’s law, which even dominates the Hall term.
A description of the physical cause of this behavior is provided and two-dimensional fluid simulations
are used to confirm the results. The electron pressure anisotropy causes the out-of-plane magnetic
field to develop a quadrupole structure of opposite polarity to the Hall magnetic field and gives rise
to dispersive waves. In addition to being important for understanding what causes reconnection
to be fast, this mechanism should dominate in plasmas with low plasma beta and a high in-plane
plasma beta with electron temperature comparable to or larger than ion temperature, so it could
be relevant in the solar wind and some tokamaks.

Magnetic reconnection allows for large-scale conver-
sion of magnetic energy into kinetic energy and heat by
changing magnetic topology. It occurs in a wide range of
environments, such as solar eruptions, planetary magne-
tospheres, fusion devices, and astrophysical settings [1].
One key unsolved problem is what determines the rate
that reconnection proceeds [2, 3].

In simplified two-dimensional (2D) systems often em-
ployed in simulations, the reconnection rate E is deter-
mined by the aspect ratio of the current sheet, but it is
not understood what controls its length. In collisional
plasmas, current layers are elongated [4, 5] which make
collisional reconnection relatively slow. For less colli-
sional 2D systems, elongated layers break and produce
secondary islands [6–9], giving normalized reconnection
rates of 0.01 [9–11]. However, this is ten times slower
than the fastest rates seen in simulations [12–17].

The GEM Challenge [18] showed that the Hall term,
when active, is sufficient to produce short current layers
with E ' 0.1. The interpretation of this is still under
debate [19–25]. One can ask - do other mechanisms limit
the length of current layers that could help explain what
causes fast reconnection?

In this Letter, we report that fast reconnection can be
caused by electron pressure anisotropy using the Chew-
Goldberger-Low (CGL) equations of state [26] in the gen-
eralized Ohm’s law. This has not been seen previously
because (a) most simulations use no out-of-plane (guide)
magnetic field, but this mechanism requires one and (b)
previous fluid simulations included pressure anisotropies
only in the momentum equation, which does not pro-
duce fast reconnection [27–29]. This result is distin-
guished from known results that off-diagonal elements
of the electron pressure tensor balance the reconnection
electric field at the reconnection site [30–32] and agy-
rotropies contribute near the reconnection site [33, 34].
Neither effect is present for the CGL equations because
the pressure tensor is gyrotropic. As with the Hall effect,
gyrotropic pressure does not break the frozen-in condi-

tion [35]. Nonetheless, it plays a crucial role in allowing
fast reconnection in this regime.

Gyrotropic pressures are different parallel p|| and per-
pendicular p⊥ to the magnetic field [36]. The CGL, or
double adiabatic, equations of state [26] follow rigorously
from kinetic theory in the ideal limit (no heat conduc-
tion) with strong enough magnetic fields so particles are
magnetized. Previous studies treated gyrotropic pres-
sures in tearing instabilities [37–42]. Electron pressure
anisotropies have garnered interest lately since they are
self-generated by reconnecting magnetic field lines [43].
The resulting equations of state [44] are valid for guide
fields no stronger than the reconnecting magnetic field.

Simulations are carried out using the two-fluid code
F3D [45] modified to include gyrotropic pressures. The
code updates the continuity equation, momentum equa-
tion, Faraday’s law, and pressure equations. The electric
field E is given by the generalized Ohm’s law,

E+
v ×B

c
=

J×B

nec
− 1

ne
∇·pe+ηJ+

me

e

d(J/ne)

dt
, (1)

where v is velocity, B is magnetic field, J is current den-
sity, n is number density, e is proton charge, pe is the
electron pressure tensor, η is resistivity, me is electron
mass, and each term on the right can be turned off, in-
cluding the Hall term J×B/nec. The momentum equa-
tion is

∂(ρv)

∂t
+∇ · (ρvv) = ∇ ·

[
ε
BB

4π
−
(
p⊥ +

B2

8π

)
I

]
, (2)

where ε = 1− 4π(p||− p⊥)/B2, I is the identity tensor, ρ
is mass density, and p is total (electron plus ion) pressure.

When pressure anisotropies are used, we employ the
CGL equations, equivalent to pσ||B

2/ρ3 and pσ⊥/ρB be-
ing constants [26] for species σ. We write them as evolu-
tion equations {see Eqs. (17) and (18) in Ref. [46]} with
E · J omitted for simplicity. The numerical implementa-
tion is benchmarked using Alfvén waves and the firehose
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and mirror instabilities. For isotropic plasmas, pσ/ρ
5/3

= constant.

All quantities are normalized: magnetic fields to the
reconnecting magnetic field B0, densities to the value ρ0
far from the current sheet, velocities to the Alfvén speed
cA = B0/(4πρ0)1/2, lengths to the ion inertial length di =
c/ωpi, electric fields to cAB0/c, resistivities to 4πcAdi/c

2,
and pressures to B2

0/4π. The simulation size is Lx×Ly =
204.8 × 102.4 in a doubly periodic domain with 4096 ×
2048 cells. This system is large enough that boundaries
do not play a role; a steady state prevails for an extended
time.

The initial reconnecting magnetic field is Bx(y) =
tanh[(y + Ly/4)/0.5] − tanh[(y − Ly/4)/0.5] − 1. Un-
less otherwise stated, the guide field is large at 5 and
increases at the current sheet to balance total pressure.
The density ρ = 1 and pressure pσ = 5 are initially uni-
form (pσ⊥ = pσ|| = 5 for anisotropic). When electron
pressure is evolved, ions are cold, and vice versa.

All simulations use me = mi/25 unless otherwise
stated, which is acceptable because E is insensitive to
me [47] and length scales for the ions (cs/Ωci ' 0.7)
and electrons (de = c/ωpe = 0.2) are sufficiently sep-
arated [48]. The resistivity is 0.005, chosen so that if
reconnection is Sweet-Parker-like, the layer thickness is
(ηLx/4)1/2 ' 0.5 which makes it marginal against sec-
ondary islands [7]. Reconnection is seeded using a co-
herent magnetic perturbation of amplitude 0.014. Initial
random velocity perturbations of amplitude 0.04 break
symmetry. The equations employ fourth order diffusion
with coefficient D4 = 2.5 × 10−5 to damp noise at the
grid.

Benchmark simulations using two-fluid simulations
(with the Hall term, electron inertia, and isotropic elec-
tron pressure) reveal a well-known open exhaust, as
shown by the out-of-plane current density Jz in Fig. 1(a).
Various simulations are then performed without the Hall
term. When the CGL equations are used on the electrons
(which we call eCGL), an open exhaust occurs (panel
b). Panel (c) is for the same system but with me = 0,
showing that electron inertia does not cause the open ex-
haust. Panel (d) is when the CGL equations are used on
the ions (which we call iCGL). The current sheet is elon-
gated like in Sweet-Parker reconnection. To further iden-
tify the key physics, a simulation of an unphysical system
is tested: the electron pressure anisotropy is included in
the momentum equation [Eq. (2)] but not in generalized
Ohm’s law [Eq. (1)]. The result is an elongated current
sheet (panel e). The three with open exhausts are fast,
E ' 0.06−0.1, while the elongated sheets give the Sweet-
Parker rate of 0.01. The thickness of the current sheets
in (a) and (b) are near 0.2, showing that layers in eCGL
go down to de as in two-fluid reconnection. In contrast,
the layer thickness for (d) and (e) is 0.525 and 0.6 (the
Sweet-Parker thickness). The conclusion is clear: the
eCGL equations give rise to fast reconnection even with
no Hall term, and the key physics is the electron pressure
gradient in generalized Ohm’s law.

The physics when electron pressure anisotropies dom-
inate bears similarities to Hall reconnection with a guide
field [49]. The z component of Eq. (1) in terms of the
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FIG. 1: (Color) Out-of-plane current density Jz using various
models: (a) two-fluid, (b) eCGL, (c) eCGL with no electron
inertia, (d) iCGL, (e) eCGL in the momentum equation only.

flux function ψ defined as Ez = (1/c)∂ψ/∂t is

∂ψ

∂t
+

(
v − J

ne

)
·∇ψ = − c

ne
(∇·pe)z+

(
ηc2

4π
+
d

dt
d2e

)
∇2ψ.

(3)
With the Hall term present, the left side reveals mag-
netic flux is convected by electrons, so electrons carrying
the current drag the reconnecting magnetic field out of
the plane [50]. This produces a quadrupole out-of-plane
magnetic field Bz [51], shown for the two-fluid simulation
in Fig. 2(a). With a strong guide field, the gas pressure
(not shown) develops a quadrupole with opposite polar-
ity to maintain total pressure balance [49].

Without the Hall term, Eq. (3) implies magnetic flux
is convected by ions [52]. The magnetic field is dragged
out of the plane by ions, giving a Bz quadrupole with
opposite polarity as in Hall reconnection, displayed for
the eCGL simulation in Fig. 2(b). (An instability is vis-
ible in the exhaust. The system is not firehose or mirror
unstable; it is likely a drift instability.) To balance total
pressure, pe⊥ develops a quadrupole of opposite polarity,
displayed in Fig. 2(c). The density (not shown) develops
a quadrupole like that of pe⊥. This requires a parallel
electric field pointing from low density to high, which
comes from a parallel electron pressure with high pe|| in
regions of low pe⊥ so pe|| has a quadrupole of opposite po-
larity as pe⊥, shown in Fig. 2(d). Thus, an electron pres-
sure anisotropy is self-generated. It contributes to the
reconnection electric field as Epe,z = −(1/ne)(∇ ·pe)z =
−(1/ne)(B · ∇)[(pe⊥ − pe||)Bz/B2], plotted as the solid
line in a vertical cut through the X-line in Fig. 2(e). For
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FIG. 2: (Color) (a) Out-of-plane magnetic field Bz in two-
fluid reconnection. For eCGL simulation, (b) out-of-plane
magnetic field Bz, (c) perpendicular electron pressure pe⊥,
and (d) parallel electron pressure pe||. Reconnection electric
field contributions in the (e) eCGL, two-fluid, and iCGL sim-
ulations and (f) a simulation with eCGL and the Hall term.

comparison, the dashed line shows the Hall electric field
EHz in the two-fluid simulation and the dash-dot line
shows the resistive electric field Eη in the iCGL simu-
lation. The structure of Epe,z is similar to the known
EHz profile in two-fluid reconnection. Note that eCGL
with me = 0 also has quadrupoles, but iCGL with slow

reconnection does not.

The guide field is key to the physics. If it is too
large, the ion Larmor radius falls below electron or resis-
tive scales which prevents fast reconnection, analogous
to Hall reconnection [53]. If it is too small, the pres-
sure change due to the Bz quadrupole is small, so the
effect in the previous paragraph is negligible. We quan-
tify this by finding when Epe,z is dominated by other
contributions to Ohm’s law, which for the present sim-
ulations is the resistive term. A scaling analysis gives
Epe,z/Eη ∼ 0.1βe0(Bg/Brec)/(2ηc

2/4πcAdi), where 0.1
is E for fast reconnection, βe0 = 8πpe0/(B

2
rec + B2

g) is
the electron plasma beta, and Brec and Bg are the re-
connecting and guide field strengths. This ratio is small
if Bg is sufficiently big or small. We confirm this in
simulations with pe⊥ = pe|| = 1; the predicted range is
0.05� Bg � 20. (Formally, the CGL model is invalid for
small Bg, so this tests fundamental physics independent
of the appropriateness of the CGL model.) We find re-
connection is Sweet-Parker-like for Bg = 0 and 0.1, has a
short current layer with E ' 0.03 for a transitional guide
field Bg = 0.25, is fast with E ' 0.05 for Bg = 0.5, 5, and
7.5, and is again Sweet-Parker-like for Bg = 15. These
results agree with the prediction.

This system yields an interesting way to study the
cause of fast reconnection. It was proposed that recon-
nection is fast if linear perturbations to a homogeneous
equilibrium permit dispersive waves with faster phase
speeds at smaller scales [54], such as the whistler or ki-
netic Alfvén wave in Hall-MHD. This has been contro-
versial because reconnecting fields are not homogeneous.

We present the linear theory of a plasma with pressure
anisotropies, the Hall term, and electron inertia. Rather
than using CGL, we generalize by taking ion and elec-
tron pressures to be arbitrary functions of ρ and B, i.e.,
pσ⊥ = pσ⊥(ρ,B) and pσ|| = pσ||(ρ,B). This captures
adiabatic, CGL, and Egedal’s equations of state [43, 44].
The dispersion relation relating the frequency ω to the
wavevector k is

ω6 − C4ω
4 + C2ω

2 − C0 = 0, (4)

where
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C4 =
k2⊥c

2
A

D

[
1 +

(
∂p⊥
∂pB

)
0

]
+

2ε̃k2||c
2
A

D
+

(
∂(k2||p|| + k2⊥p⊥)

∂ρ

)
0

+
ε̃ek

2
||c

2
Ad

2
i

D2

{
k2 − k2⊥

[
2ε̃e − 2 +

(
∂(pe|| − pe⊥)

∂pB

)
0

]}

C2 =
ε̃2k4||c

4
A

D2
+
ε̃k2||k

2
⊥c

4
A

D2

[
1 +

(
∂p⊥
∂pB

)
0

]
+
k2||c

2
A(k2⊥ + 2ε̃k2||)

D

(
∂p||

∂ρ

)
0

+
k2||k

2
⊥c

2
A

D

[(
∂p⊥
∂ρ

)
0

+

(
∂(p||, p⊥)

∂(ρ, pB)

)
0

]
+
ε̃2k2||k

2c2Ad
2
i

D2

[
k2||

(
∂p||

∂ρ

)
0

+ k2⊥

(
∂p⊥
∂ρ

)
0

]
+
ε̃ek

2
||k

2
⊥c

2
Ad

2
i

D2
[k2||(2ε̃− 1) + k2⊥]

(
∂(pe|| − pe⊥)

∂ρ

)
0

+
ε̃ek

2
||k

2
⊥c

2
Ad

2
i

D2

[
(2ε̃e − 2)

(
∂(k2||p|| + k2⊥p⊥)

∂ρ

)
0

−

(
∂(k2||pi|| + k2⊥pi⊥, pe|| − pe⊥)

∂(ρ, pB)

)
0

− k2
(
∂(pe⊥, pe||)

∂(ρ, pB)

)
0

]

C0 =
ε̃k4||c

4
A

D2

[
(ε̃k2|| + k2⊥)

(
∂p||

∂ρ

)
0

+ k2⊥(1− ε̃)
(
∂p⊥
∂ρ

)
0

+ k2⊥

(
∂(p||, p⊥)

∂(ρ, pB)

)
0

]
.

Here, D = 1 + k2d2e, pB = B2/8π is the magnetic
pressure, ε̃ = 1 − 4π(p||0 − p⊥0)/B2

0 is the equilib-
rium anisotropy parameter for the total pressure, ε̃e is
similarly defined for the electrons, ∂(A1, A2)/∂(x, y) =
(∂A1/∂x)(∂A2/∂y) − (∂A1/∂y)(∂A2/∂x) is a Poisson
bracket-type operator, and the 0 subscript denotes equi-
librium quantities. This reduces to known results in
the limits of anisotropic-MHD with the CGL equations
(dσ → 0, pσ⊥/ρB = constant, pσ||B

2/ρ3 = constant) [55]
and isotropic two-fluid (pσ|| = pσ⊥) [54].

We find pressure anisotropies introduce dispersive
waves even when the Hall term is absent. All terms
in Eq. (4) with d2i give dispersive waves. For the
high ω, high k with ε̃ = ε̃e = 1 limit, ω2 '
C4 ' (k2||c

2
Ad

2
i /D

2){k2 − k2⊥[∂(pe|| − pe⊥)/∂pB ]0}. The

k2 term comes from the Hall term and is the stan-
dard whistler wave, while the k2⊥ term is a whistler-
like wave coming from the electron pressure anisotropy
in generalized Ohm’s law. For eCGL, this is ω2 =
(3/2)β0k

2
‖k

2
⊥c

2
Ad

2
i , where β0 = p0/pB . Similarly, fol-

lowing Ref. [54], the intermediate frequency range gives
ω2 ' C2/C4. In the k⊥ � k||, short wavelength, cold

ion limit, this yields ω2 = (k2||k
2c2Ad

2
i /D

2){
(
∂pe||/∂ρ

)
0
−

[∂(pe⊥, pe||)/∂(ρ, pB)]0}/[c2A/D + (c2A/D)(∂pe⊥/∂pB)0 +
(∂pe⊥/∂ρ)0]. In the low β0 limit, the first term
gives the standard kinetic Alfvén wave, while the sec-
ond is a kinetic Alfvén-type wave arising from the
pressure anisotropy. In eCGL, this wave has ω2 =
(5/2)β0k

2
‖k

2d2i (p0/ρ0).

There are many ways to test the dispersive wave model.
For cold ions, dispersive waves from anisotropies per-
sist. However, they vanish identically for cold electrons.
The dispersive wave model predicts fast reconnection for
eCGL but slow reconnection for iCGL, consistent with
our simulations. Eq. (4) implies there are dispersive
waves without the Hall term when there is an equilib-
rium pressure anisotropy, independent of the equations
of state, consistent with previous studies [40, 56].

Interestingly, when Egedal’s equations of state [43, 44]
are employed in simulations without the Hall term, re-
connection is Sweet-Parker-like (J. Egedal, private com-
munication). Thus, simply having an electron pressure

anisotropy is insufficient to cause fast reconnection; the
pressure anisotropy must have a particular form. Fluid
modeling of other equations of state could provide insight
about what physically sets the length of the current layer.

We now show that electron pressure anisotropies can
dominate the Hall term in real systems. First, we have
performed particle-in-cell simulations with parameters
similar to the fluid simulations, confirming that the CGL
model (p|| ∝ ρ3/B2 and p⊥ ∝ ρB) is reasonably re-
produced (plots not shown). Also, electron pressure
anisotropies dominate the Hall term for the parameters
of the simulations in Fig. 1. Fig. 2(f) shows a simulation
of eCGL with the Hall term; the contribution to the re-
connection electric field of the pressure anisotropy (solid
line) dominates the Hall term (dashed line).

We suspect electron pressure anisotropy dominates
when dispersive wave terms due to the anisotropy dom-
inate the standard whistler and kinetic Alfvén waves in
Eq. (4). In C2, the first term with d2i gives the stan-
dard kinetic Alfvén wave. The second term with d2i is
the most important term arising from the electron pres-
sure anisotropy (by a factor of β, which is small for many
systems of interest). In the ε̃e = ε̃ = 1 limit, a simple
calculation reveals that the electron pressure contribu-
tion of the kinetic Alfven wave is completely cancelled
by part of the electron pressure anisotropy. This implies
that it always dominates the Hall term when Te > Ti
with low β. Therefore, when Te > Ti, the anisotropy is
the dominant mechanism for the entire parameter regime
previously thought to be the kinetic Alfvén regime of re-
connection [54] - low β, high in-plane β based on Brec,
and strong guide field (but not strong enough to make the
ion Larmor radius smaller than de). Physically, Ti needs
to be smaller than Te because if it is large enough, it can
dominate the electron pressure effect discussed here.

There are physical systems where reconnection in this
parameter regime could occur. The solar wind and some
tokamaks are low β where significant guide fields are ex-
pected and Te > Ti is possible.
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