
Faculty Scholarship

2011

Introduction To Focus Issue: Nonlinear And
Stochastic Physics In Biology
Sonya Bahar

Alexander B. Neiman

Peter Jung

Jürgen Kurths

Lutz Schimansky-Geier

See next page for additional authors

Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications

This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship
by an authorized administrator of The Research Repository @ WVU. For more information, please contact ian.harmon@mail.wvu.edu.

Digital Commons Citation
Bahar, Sonya; Neiman, Alexander B.; Jung, Peter; Kurths, Jürgen; Schimansky-Geier, Lutz; and Showalter, Kenneth, "Introduction To
Focus Issue: Nonlinear And Stochastic Physics In Biology" (2011). Faculty Scholarship. 567.
https://researchrepository.wvu.edu/faculty_publications/567

https://researchrepository.wvu.edu?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/faculty_publications?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/faculty_publications?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/faculty_publications/567?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ian.harmon@mail.wvu.edu


Authors
Sonya Bahar, Alexander B. Neiman, Peter Jung, Jürgen Kurths, Lutz Schimansky-Geier, and Kenneth
Showalter

This article is available at The Research Repository @ WVU: https://researchrepository.wvu.edu/faculty_publications/567

https://researchrepository.wvu.edu/faculty_publications/567?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages


Introduction to Focus Issue: Nonlinear and Stochastic Physics in Biology
Sonya Bahar, Alexander B. Neiman, Peter Jung, Jürgen Kurths, Lutz Schimansky-Geier et al. 
 
Citation: Chaos 21, 047501 (2011); doi: 10.1063/1.3671647 
View online: http://dx.doi.org/10.1063/1.3671647 
View Table of Contents: http://chaos.aip.org/resource/1/CHAOEH/v21/i4 
Published by the American Institute of Physics. 
 
Related Articles
Generalized complexity measures and chaotic maps 
Chaos 22, 023118 (2012) 
On finite-size Lyapunov exponents in multiscale systems 
Chaos 22, 023115 (2012) 
Exact folded-band chaotic oscillator 
Chaos 22, 023113 (2012) 
Components in time-varying graphs 
Chaos 22, 023101 (2012) 
Impulsive synchronization of coupled dynamical networks with nonidentical Duffing oscillators and coupling
delays 
Chaos 22, 013140 (2012) 
 
Additional information on Chaos
Journal Homepage: http://chaos.aip.org/ 
Journal Information: http://chaos.aip.org/about/about_the_journal 
Top downloads: http://chaos.aip.org/features/most_downloaded 
Information for Authors: http://chaos.aip.org/authors 

Downloaded 30 Apr 2012 to 157.182.48.231. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions

http://chaos.aip.org/?ver=pdfcov
http://aipadvances.aip.org?ver=pdfcov
http://chaos.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Sonya Bahar&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://chaos.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Alexander B. Neiman&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://chaos.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Peter Jung&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://chaos.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=J�rgen Kurths&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://chaos.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Lutz Schimansky-Geier&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://chaos.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3671647?ver=pdfcov
http://chaos.aip.org/resource/1/CHAOEH/v21/i4?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4705088?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4704805?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4704813?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3697996?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3692971?ver=pdfcov
http://chaos.aip.org/?ver=pdfcov
http://chaos.aip.org/about/about_the_journal?ver=pdfcov
http://chaos.aip.org/features/most_downloaded?ver=pdfcov
http://chaos.aip.org/authors?ver=pdfcov


Introduction to Focus Issue: Nonlinear and Stochastic Physics in Biology

Sonya Bahar,1 Alexander B. Neiman,2 Peter Jung,2 Jürgen Kurths,3,4

Lutz Schimansky-Geier,4 and Kenneth Showalter5

1Department of Physics and Astronomy and Center for Neurodynamics, University of Missouri at St. Louis,
St. Louis, Missouri 63121, USA
2Department of Physics and Astronomy and Quantitative Biology Institute, Ohio University, Athens,
Ohio 45701, USA
3Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany
4Institute of Physics, Humboldt University of Berlin, 12489 Berlin, Germany
5C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown,
West Virginia 26506, USA

(Received 1 December 2011; published online 29 December 2011)

Frank Moss was a leading figure in the study of nonlinear and stochastic processes in biological

systems. His work, particularly in the area of stochastic resonance, has been highly influential to

the interdisciplinary scientific community. This Focus Issue pays tribute to Moss with articles that

describe the most recent advances in the field he helped to create. In this Introduction, we review

Moss’s seminal scientific contributions and introduce the articles that make up this Focus Issue.
VC 2011 American Institute of Physics. [doi:10.1063/1.3671647]

Biological systems are complex, nonlinear and, in many

cases, subject to various kinds of noise. Concepts of non-

linear dynamics and stochastic processes have been trans-

formational for the study and understanding of biological

systems on all organizational scales, from single mole-

cules to swarms of organisms. This Focus Issue provides

an overview of current research at the interface of non-

linear and stochastic physics with biology. This volume

also pays tribute to Frank E. Moss, whose work in this

area was profoundly influential and who will be greatly

missed. In this Introduction, we review briefly Moss’s

most influential works.

Frank Moss made numerous and fundamental contribu-

tions to the field of nonlinear physics. But in both the physics

and biophysics communities, the name Frank Moss is most

strongly associated with the phenomenon of stochastic reso-

nance. Frank’s unique intuition and deep knowledge of

physics were critical in extending this interesting effect,

observed first in physical systems, to biological systems,

sparking world-wide interest.

Frank’s interest in nonlinear stochastic processes prob-

ably began with his work from the 1960s to the 1980s on tur-

bulence in superfluid helium. In a 1975 Physical Review
Letter, he provided the first measurements of fluctuations in

turbulent He II.1 One of the aims of that paper was to verify

Vinen’s dimensional theory of liquid He turbulence. An

equation describing the growth of vortex-line density,

Vinen’s equation, is a first-order nonlinear differential equa-

tion with several parameters that are likely to fluctuate in a

physical experiment. This led Moss to use the concept of

multiplicative (or parametric) noise, which could alter quali-

tatively the dynamics of a nonlinear system. Indeed, in 1982

Moss theoretically predicted that noise modulation of the

counterflow velocity in superfluid He (a control parameter in

Vinen’s theory) shifts the critical velocity of the turbulence

onset towards higher values.2

Having a strong background in electrical engineering,

Moss soon realized that analog models provide an effective

way to study the dynamics of systems perturbed by noise.

Such approaches were particularly important, since only a

limited class of nonlinear stochastic dynamical systems

allows for exact analytical evaluations of their statistical

properties, such as probability density, power spectrum, and

relaxation times. The analog simulations of stochastic non-

linear systems developed by Moss and Peter McClintock

provided a platform for testing various theories for non-

equilibrium nonlinear stochastic dynamics. For example, in

Ref. 3 the first measurement of the phase diagram of a noise-

induced phase transition was presented. Another representa-

tive example was the use of an analog simulation to attack

the problem of evaluating the statistical properties of nonlin-

ear systems driven by colored noise, i.e., noise with finite

correlation time.

The problem of finding the escape rate from a potential

well arises in many areas of physics, chemistry, and biology,

e.g., the firing rate of an excitable cell. Several approximate

theories of stochastic dynamics with colored noise were

developed and tested with the use of analog simulators, such

as in the highly cited Ref. 4. Note that even now, in the days

of fast and inexpensive computers, these works are of high

value, as the noise used in Moss’s experiments came from

physical sources rather than being obtained with pseudo-

random number generators.

Moss also used analog simulations to study bifurcations

of nonlinear oscillators in the presence of noise. These works

provided the first experimental observations of many inter-

esting effects, such as noise-induced postponement of bifur-

cations and noise-induced shaping of two-dimensional

stationary probability densities.5–7 Growing interest in the

dynamics of non-equilibrium stochastic systems led to
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publication of the famous three-volume book “Noise in Non-

linear Dynamical Systems” by Cambridge University Press,

which Frank co-edited with Peter McClintock.8–10 This col-

lection of theoretical and experimental papers by the leading

experts in the field is still a desk book for many researchers

and graduate students.

As mentioned above, many of Frank’s best known con-

tributions are in the field of stochastic resonance. Stochastic

resonance (SR) describes a phenomenon where the addition

of noise to a system results in enhancement of its sensitivity

to a weak, subthreshold external signal. Various measures

characterizing input-output relations have been used to quan-

tify SR, such as signal-to-noise ratio (SNR), spectral power

amplification, distributions of residence times, mutual infor-

mation rate, signal discriminability, etc. The hallmark of SR

is the existence of a maximum of some SR measure as a

function of the noise intensity, indicating optimal transmis-

sion of information at a non-zero noise intensity.

Stochastic resonance was first discovered and proposed

to explain periodic recurrence of earth’s ice ages.11,12 It was

subsequently observed in experiments with several physical

systems such as lasers,13 electron paramagnetic resonance

(EPR) systems,14 and tunnel diodes.15 A canonical model for

SR is an overdamped bistable system driven by noise and a

weak periodic force. In the absence of noise, this weak peri-

odic drive is not sufficient to switch the system from one

potential well to another. Addition of noise allows for

switching between the states and an optimal noise intensity

at which the noise-controlled switching time approaches the

period of the signal. At this optimal noise intensity, the sig-

nal-to-noise ratio or other SR measures are maximized. The

probability density of escape times from a potential well of a

periodically modulated stochastic bistable system shows

multiple peaks centered at the half period of the driving

force, a structure remarkably similar to an interspike interval

histogram of a neuron with periodically modulated firing

rate, as was pointed out by Longtin, Bulsara, and Moss in

Ref. 16.

Moss and colleagues soon realized that the phenomenon

of stochastic resonance might be important for sensory neu-

rons, which are known to be noisy and in many cases are ex-

citable. Moss speculated that the theory of SR developed for

physical systems could be applied to neuronal models in

order to investigate the possible benefits of noise in sensory

information processing.17–20 Consider a canonical example

of an excitable neuron, which is silent in the absence of noise

and fires an action potential spike in response to a strong

depolarizing stimulus. A weak subthreshold stimulus, how-

ever, keeps the neuron silent, so that it does not convey in-

formation about the stimulus. When noise is present, the

neuron fires spikes, encoding the stimulus in a sequence of

interspike intervals. For weak stimuli and large noise

strengths, the neuron’s firing is dominated by fluctuations,

and the efficiency of information encoding (quantified, for

example, by the signal-to-noise ratio) is small. At an optimal

noise intensity, the information transmission becomes maxi-

mal, a clear manifestation of the phenomenon of stochastic

resonance. Moss established a collaboration with the neuro-

biologist Lon Wilkens to perform the first experiment on sto-

chastic resonance in a biological system, using the crayfish

mechanoreceptor system. Their 1993 Nature paper21 opened

up stochastic resonance to the neuroscience community,

sparking great interest in this phenomenon, and in the role of

noise in sensory neurobiology in general. Using a carefully

designed experiment, whereby single mechanoreceptor neu-

rons were stimulated by a combination of mechanical noise

and periodic vibration, they demonstrated a maximum in the

signal-to-noise ratio derived from a mechanoreceptor neu-

ron’s spike train. This clearly demonstrated the positive role

that noise might play in a sensory nervous system and led to

many follow-up studies of SR in other single-neuron prepa-

rations. Moss and Wilkens then extended their experimental

studies to a light-sensitive interneuron in the crayfish mecha-

nosensory system, the caudal photoreceptor. This inter-

neuron integrates outputs from an array of peripheral

mechanoreceptors, but also responds directly to light. An

SR-like phenomenon was documented from the recording of

spiking activity of a caudal photoreceptor when weak peri-

odic mechanical vibrations were applied to the crayfish tail-

fan mechanoreceptors. Just as the signal-to-noise ratio

increased in the mechanoreceptor spike trains in the presence

of mechanical noise, the signal-to-noise ratio increased in

the photoreceptors when the photoreceptor was stimulated

by light, mimicking injection of noise.22 Other studies from

Moss’s group later showed various phase-locking regimes as

the photoreceptor/mechanoreceptor system was driven with

various frequencies and intensities of mechanical vibration;

essentially, these experiments recreated the passage of the

synchronizing system through a series of Arnol’d tongues.23

Moss and colleagues also demonstrated that the synchroniza-

tion index between the periodic drive and the photoreceptor

spike train could be optimized as a function of light intensity,

as the SNR is optimized as a function of noise in “classical”

SR experiments.24 In parallel, Gingl, Kiss, and Moss devel-

oped the concept of non-dynamical stochastic resonance,

i.e., stochastic resonance for threshold-like nonlinear ele-

ments which offered a simple, general, and transparent

description of the essence of SR (Ref. 25; see also Refs. 26

and 27).

To foster interdisciplinary collaboration, Moss and

Wilkens founded the Center for Neurodynamics in 1996 at

the University of Missouri at St. Louis. The Center was sup-

ported by a University Research Instrumentation Program

(URIP) grant from the Office of Naval Research. In this new

collaborative setting, Moss and Wilkens set out to address a

fundamental, but still unanswered, question about stochastic

resonance in biology. Experimental evidence of SR in a sin-

gle neuron did not answer the question of whether biological

organisms actually exploit noise in order to perform useful

tasks, such as locating prey for feeding. To attack this funda-

mental problem, the Center used another animal model, the

paddlefish. Paddlefish inhabit the muddy waters of the Mis-

sissippi, Missouri, and Ohio rivers and use a passive electro-

sense to feed on zooplankton prey such as Daphnia. In fact,

electrosense largely substitutes for vision in this animal.

Moss and colleagues posed the question of whether addition

of noise in the water can help paddlefish to better locate and

feed on Daphnia. In a series of unique behavioral
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experiments, Russell, Wilkens, and Moss showed that the

addition of weak electrical noise to a swim mill in which a

paddlefish is feeding results in a wider distribution of distan-

ces of successful feeding strikes. Thus, in the presence of a

small electrical noise, the paddlefish was able to detect prey

at longer distances as compared to a noise-free control condi-

tion. This result, published in 1999 in Nature,28 was the first

experimental observation and verification of behavioral sto-

chastic resonance. This study gave a strong argument in favor

of the hypothesis that sensory nervous systems have evolved

to take advantage of inevitable environmental fluctuations.

Another transformative study initiated by Moss involved

visual perception of stochastic resonance. In a 1997 Physical
Review Letter,29 Moss and colleagues showed that SR can be

used as an assay to study the ability of the human brain to

interpret visual stimuli. They used psychophysics experi-

ments where noise-contaminated images were presented to

human subjects; a perceptive contrast threshold was deter-

mined for various levels of noise strengths and correlation

times. The perceptive contrast threshold was consistently

minimal for an optimal (intermediate) noise strength and fol-

lowed non-dynamical SR theory,25,27 which allowed the

authors to identify a measurable sensitivity parameter for the

human visual system. This paper opened up a new avenue

for SR studies in psychophysics and in medical physics.

Another project actively pursued in the Center was

devoted to the development of methods for detection of low-

dimensional dynamics from biological data.30–33 Moss estab-

lished active collaborations with many research groups

world-wide, sharing his ideas and inspiring research projects

on various aspects of fluctuations and noise in biological sys-

tems. He wrote several highly cited reviews on stochastic

resonance,34–38 as well as many News and Views articles in

Nature and articles in other journals highlighting and pro-

moting research of other groups.39–47

The behavioral stochastic resonance paper28 suggested a

biologically plausible source of noise: the electric field from

the collective motion of many Daphnia forming a swarm.

Observation of a swarm in an aquarium triggered Moss’s in-

terest in the area of collective animal motion, and he turned

his attention away from the paddlefish and toward its noisy

prey. This led to the development of theoretical models for

the detection of a noisy Daphnia swarm.48,49 But Moss was

soon drawn away from the study of Daphnia as prey, and

began to study how these small creatures searched for their

own food. Following a detailed experimental investigation in

collaboration with Ai Nihongi and Rudi Strickler at the Great

Lakes WATER Institute,50 he began to investigate the vari-

ous theoretical models that might be applied to Daphnia for-

aging.50,51 Questions of foraging not only interested Moss

because of their deep relation to fundamental problems of

nonlinear dynamics, random walks, fractal search strategies,

and statistical physics; Moss was perhaps even more

intrigued by the question of how evolution might have

shaped optimal foraging strategies. In his last paper, he dem-

onstrated how a simple model of natural selection could be

used to “evolve” step length and turning angle distributions

quite similar to those found in actual Daphnia.52 Already in

ailing health, Moss had no hesitation about taking a leap into

the unknown and beginning to explore a new scientific field.

It is that intellectual courage, perhaps even more than his

pioneering scientific contributions, which made Frank Moss

such an inspiring figure to colleagues, students, and friends

around the world.

In this issue, we bring together a collection of papers

reflecting the state of the art in the application of nonlinear

and stochastic processes to biological systems. The authors

of the papers included here have all had their lives and their

work shaped in some way by the inspiration of Frank Moss.

A number of papers included here address the phenomenon

of SR, a central theme in Moss’s work. Yu et al.53 investi-

gate the phenomenon of SR on a modular neuronal network

consisting of several small-world subnetworks with a sub-

threshold periodic pacemaker. They show that the correlation

between the pacemaker frequency and the dynamical

response of the network is resonantly dependent on the inten-

sity of additive spatiotemporal noise. Turning to the interac-

tion between Brownian motors and stochastic resonance,

Mateos and Alatriste54 study the transport properties of a

Brownian walker on a ratchet potential, finding an optimal

amount of noise for which the amplitude of the system’s per-

iodic response is maximum, a hallmark of SR. They also

show that, precisely for this optimal noise, the average veloc-

ity of the walker is maximal, implying a strong link between

SR and the ratchet effect.

Other contributors address aspects of dynamics and syn-

chronization in experimental neural systems. Hofmann and

Wilkens55 report on the original experimental finding of a

new kind of skin potential in paddlefish. The voltage pulses

are triggered by external electric fields, and propagate from

the tip of the rostrum towards the gill covers. The authors

show that the skin potentials are closely akin to neuronal

action potentials, following an all-or-nothing rule and requir-

ing a refractory period before their next initiation. The

response to and encoding of time-varying stimuli in paddle-

fish electroreceptors are studied by Neiman and Russell.56

Coherence analysis demonstrates that weak stimuli, with

waveforms derived from zooplankton prey, are encoded to a

high degree into afferent spike trains, transmitting informa-

tion at �30 bits/s. When the stimulus strength is increased to

induce bursting firing, the stimulus transfer to afferent spike

timing becomes nonlinear. Takeshita and Bahar57 investigate

synchronization during seizures in an in vivo model of focal

neocortical epilepsy in the rat neocortex. Using voltage sen-

sitive dye imaging and stochastic phase synchronization

analysis, they demonstrate a significant rise in synchrony

during seizure events.

Turning to computational studies of neural systems, Yu

and Longtin58 study how quasiperiodic stimuli composed of

two sinusoids, one with noise-modulated amplitude, are

encoded by generic leaky integrate-and-fire neuron models.

The authors study how the coherence between modulation

and response spike trains (a measure of linear stimulus

encoding) depends on the frequency content of the stimulus,

versus the intrinsic firing rate of the neuron. They showed

that a neuron model with an adaptive threshold can improve

the coherence, providing a better linear encoding of modula-

tion. However, the coherence is depressed by noise when the
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beat frequency and the intrinsic neuronal firing rate overlap.

Van Hemmen and collaborators59 explore a frequently-used

method in neuroscience to detect periodicities in neuronal

spike trains: a geometric interpretation of the Fourier trans-

formation called the vector strength, which has some similar-

ities to standard stochastic phase synchronization techniques.

The timing of each neuronal spiking event is mapped onto

the simultaneous phase of a harmonic with variable fre-

quency, denoting the putative frequency of the neuronal

spike train. If, for a given frequency, the events cluster on

the unit circle, the vectors corresponding to the spiking

events add constructively, like waves emerging from a

coherently driven periodic diffraction grating in certain

directions, to yield a large vector strength. Van Hemmen and

collaborators generalize this method, address the influence of

noise, and apply it to spike trains from the auditory system

of the cat and from the electrosensitive fish.

Transitions from tonic spiking to bursting regimes are often

observed in neurons from various areas of the central nervous

system (CNS). Unraveling the detailed mechanisms leading to

such transitions is a subject of current research in computational

neuroscience and requires the knowledge of a model, e.g., in

the form of a system of nonlinear ordinary differential equations

(ODEs). However, Braun et al.60 show that the tonic spiking to

bursting transition, via a period-doubling bifurcation, can be

anticipated from experimental sequences of interspike intervals,

using a method previously developed for the detection of unsta-

ble periodic orbits. The method is based on detection of specific

patterns (encounters) in the first return map of interspike inter-

vals and a further assessment of the statistical significance of

these patterns. The authors apply this method to experimental

data and verify the nature of correlated patterns of interspike

intervals with a noisy conductance-based neuron model.

Finke et al.61 study the stochastic dynamics of a ther-

moreceptor neuron model. This conductance-based model,

developed by Huber and Braun, demonstrates the rich variety

of periodic spiking and chaotic bursting patterns when the

control parameter, the temperature, is varied. The authors

consider two distinct sources of noise: a fluctuating synaptic

current and a fluctuating activation kinetic variable; they

show that the effect of these two types of noises on neuronal

responses is dramatically different in the low temperature

region of the model. Yanchuk et al.62 show that a ring of uni-

directionally delay-coupled spiking neurons may possess a

multitude of stable spiking patterns and provide a construc-

tive algorithm for generating a desired spiking pattern. Such

multistability significantly enhances the coding capability of

oscillatory neuronal loops. In the paper by Quan et al.,63 res-

onance phenomena in a two-neuron model with mutual time-

delayed inhibitory feedback are investigated. These authors

discuss delay-induced oscillations in the noise-free as well as

in the noisy case, and construct a Markov chain model for

their dynamics. Astakhov et al.64 investigate the synchroni-

zation of noise-induced oscillations over a range of frequen-

cies, using the FitzHugh-Nagumo neural model. They

demonstrate that this excitable system undergoes the same

frequency lockings as a self-sustained quasiperiodic oscilla-

tor, and discuss noise-induced stable and unstable limit

cycles and tori, as well as bifurcations between these states.

Noisy dynamics in biologically-inspired ODEs is not lim-

ited to the neural realm, however, as Bashkirtseva and

Ryashko65 remind us when they apply the novel tool of sto-

chastic sensitivity functions to study dynamics in a noise

perturbed predator-prey model with the Allee effect. Their

computational method allows constructing so-called confi-

dence ellipses, providing a geometrical description of

noise-forced dynamics. In particular, for the stochastic

predator-prey model this method allows estimation of a

threshold value of noise intensity resulting in a transition from

coexistence to extinction states of the model. Wiesenfeld and

Borrero-Echevery66 address more general problems of syn-

chronization, with applications to neural systems and beyond,

developing a generic iterative map model of coupled oscilla-

tors. The model enhances our understanding of the original

synchronization experiments by Huygens, and modern realiza-

tions of his two coupled clocks, from a unified perspective.

Other contributors address problems of collective behav-

ior in active Brownian particles and other aspects of noisy

Brownian motion. The motion of a Brownian particle in a

double-well potential, driven by a periodic force, is analyzed

by Jung and Marchesoni.67 They show that the power deliv-

ered by the periodic force is controlled by the strength of the

noise, while the power delivered by the noise is independent

of the amplitude and frequency of the periodic force. The

implications of these findings to the mechanism of stochastic

resonance are discussed. Romanczuk et al.68 look back on

their creative cooperation with Frank Moss, and discuss how

an oscillating internal degree of freedom may act as an effec-

tive bridge between an internal energy depot and macro-

scopic propulsion of an active particle. Martens et al.69

consider biased Brownian motion of point-size particles in a

three-dimensional tube with smoothly varying cross-section.

They employ an asymptotic analysis of the stationary proba-

bility distribution of a geometric parameter and calculate

from this the mobility and diffusion coefficient of the

Brownian particle as a function of the geometry and of the

applied force. Berezhkovskii and Bezrukov70 remind us of

how Frank Moss was able to merge his enjoyment of science

with his enjoyment of life in their paper on the movement of

a spherical Brownian particle, by pointing out that the Wie-

ner sausage is not only an Austrian culinary delicacy made

from beef and pork, but it also denotes the neighborhood of a

spherical Brownian particle it has visited during a time inter-

val. Since Brownian trajectories are stochastic, so is the Wie-

ner sausage! Berezhkovskii and Bezrukov provide a simple

and intuitive method to calculate surface area and the sto-

chastic variations of the Wiener sausage with important

implications for enzyme binding kinetics.

Kia et al.71 take us in a different direction and return to

some of the fundamental problems of chaotic dynamics, with

applications to chaos computing. These contributors employ

unstable periodic orbits, which form the skeleton of any cha-

otic system, to build a model for the chaotic system in order

to measure the sensitivity of each orbit to noise, and to select

the orbits whose symbolic representations are relatively ro-

bust against the existence of noise.

Dynamics and stochastic processes in biology were first

explored, by Moss and his colleagues, in single cells and in
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multi-cellular organisms. The inclusion of several studies in

this issue applying stochastic dynamics to gene networks and

systems biology is indicative of the extent to which stochas-

tic dynamics has extended its reach in recent years. Dari

et al.72 offer a genetic module that can perform the AND/OR

gate functionalities in the presence of noise, following the

logical stochastic resonance paradigm. The effects of con-

nection topology and time-delayed coupling on the dynamics

of genetic regulatory small-world networks are studied by

Yang et al.73 For a fixed network topology, the phenomenon

of delay-induced resonance is revealed. Tuning the time-

delay and connection topology gives rise to optimal spatial

synchrony, while temporal resonance is always reduced by

time-delay with large rewiring probability. The issue con-

cludes with an investigation by Stamatakis et al.74 of the role

of noise in gene expression. They investigate the common

assumption that extrinsic noise acts as a pure input on a gene

of interest, which exerts no feedback on the extrinsic noise

source, and demonstrate that this assumption falls short

when multiple genes share a common pool of regulatory

molecules. Due to competitive utilization of the molecules

existing in this pool, genes cease to be uniformly influenced

by the extrinsic noise source, and begin to exert negative reg-

ulatory effects on each other, rendering it impossible to

determine the extrinsic noise source by currently established

methods. What better way to close this special issue than to

show how Frank Moss’s influence carries us into the future

via the emerging fields of genomics and systems biology?
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