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ABSTRACT

Aims. We report on a search for continuous gravitational wave emission from three recycled radio pulsars, performed by using the
data of the resonant detector AURIGA. Given the spin rate of the selected targets – the isolated pulsar PSR J1939+2134 and the
binary pulsars PSR J0024-7204J and PSR J0218+4232 – the expected frequency of the emitted gravitational waves falls in the high
sensitivity range of the detector.
Methods. The main topic is the method, meaning that the statistical analysis is performed by implementing a slightly modified version
of the Feldman and Cousins Unified Approach.
Results. By using ephemerides provided by suitable radio observations of the targets, we were able to demodulate the Doppler shifts
within a coherence time of 1 day, and then incoherently sum 10 daily spectra collected from December 8th to December 17th, 2006.
We have found upper limits on the gravitational wave amplitudes in the order of a few units of 10−23 at 90% Confidence Level (C.L.),
which translate to limits in the ellipticity of the targeted pulsars of ε < 10−4 at 90% C.L.
Conclusions. The same framework can then be applied to data coming from most sensitive experiments as VIRGO or LIGO; more-
over, an application to recently discovered transients in X-ray pulsars is discussed.

Key words. gravitational waves – pulsars: general – methods: data analysis – methods: statistical – techniques: radial velocities

1. Introduction

Continuous, high-frequency gravitational waves (GWs) sources
are good candidates for detection with resonant mass detectors.
Even though their signals are expected to have smaller amplitude
with respect to other GW emission phenomena in the Universe,
such as supernovae or gamma-ray bursts (GRBs) (Cutler &
Thorne 2001), the data can be folded over long time intervals
in order to increase the signal to noise ratio.

In particular, a promising class of sources for the reso-
nant mass detectors are the so called millisecond radio pulsars
(MSPs). According to common wisdom, they are relatively old
(age typically longer than at least 108 yr) neutron stars (NSs)
spun up to high rotational rate (typically larger than 100 Hz) dur-
ing a stage of mass and angular momentum transfer from a com-
panion star in a binary system (Alpar et al. 1982). During this
process – often referred to as “recycling” – the NS is believed
to appear as an accreting X-ray source belonging to a low mass
X-ray binary system (LMXB) (Battacharya & van den Heuvel
1991).

The occurrence of GW emission from MSPs and from NSs in
LMXBs has both theoretical and observational support. As to the
theory, there are several mechanisms for a rapidly rotating NS to
emit GWs. The two most relevant (Jones 2002; Owen 1999) are
(i) the presence of a time-varying NS quadrupole moment (in a

� For the AURIGA Collaboration.

description considering the NS as a rotating rigid body); and (ii)
the occurrence of the so-called r-modes. In the first model, the
NS is approximated as a non-spherical rigid object, rotating at
an angular velocity ν0 ≈ 1 KHz; the ellipticity parameter ε is
defined as ε = (I1 − I2) /I3 where the Ik are the principal inertia
moments of the star, and presumably ranges from 10−7 to 10−9

(Jones 2002; Ruderman 2006). In this case, one of the possible
GW emission channels is characterized by the angular frequency
ωgw = 2ω0, where ω0 = 2πν0. The relation between the gravi-
tational strain amplitude h0 and the pulsar’s parameters (angular
frequency ω, distance d, moment of inertia I and ellipticity ε) is

h0 =
4G
c4d
εIω2. (1)

The second emission mechanism involves the so-called r-modes,
which have been widely studied in the literature (Anderson et al.
2001). Assuming that the NS is spherically symmetric and that
second order terms can be neglected in the Poisson equation de-
scribing the stellar fluid (Anderson & Kokkotas 2001), r-modes
exhibit linear relations between the rotational and gravitational
frequencies, i.e. ωgw = (4/3)ω0, (2/3)ω0. These GW emission
frequencies are exact only if the linearized equations of fluid dy-
namics hold, and this can in principle be the case, for binary
systems where accretion occurs at a stable rate.

On the side of the observations, it has been noticed that
the spins of both the known accretion powered NSs included

Article published by EDP Sciences
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in LMXBs (Bildsten 1998) and the spins of the known rotation
powered MSPs (the most rapidly spinning of which is rotating at
716 Hz, Hessels et al. 2006) tend to be clustered at frequencies
significantly below the break up frequency imposed by most of
the proposed Equations of State for the nuclear matter. Binary
evolution effects may play a role for that (Possenti et al. 2000),
but another viable possibility is that GW emission sets in at
high spin rates, preventing the achievement of a rotational pe-
riod close to the mass shedding spin limit (Bildsten 1998; Levin
& Ushomirsky 2001).

In this paper we report on a search for continuous GW emis-
sion from three recycled MSPs, performed by using the data of
the resonant detector AURIGA. The selection of the sample of
targeted sources accounts for the bandwidth of the detector and
is described in Sect. 2.

As anticipated above, a data folding procedure is applied in
order to extract a GW signal from the detector noise. In Sect. 3
it is first reported on the algorithm used to take into account the
AURIGA motion in the Solar System Barycenter frame (SSB),
and the relative motion of the neutron star with respect to the
barycenter of the binary system. In the same section the imple-
mented method for the data analysis is also presented.

Section 4 contains the discussion of the statistical frame (the
unified approach) used to interpret the results. We show here,
as a new feature, as a slightly modified version of the Feldman
and Cousins method can be used to search for continuous sig-
nals. As we were not able to reject the null hypothesis, we can
only set upper limits on the associated GW amplitudes. The sta-
tistical methods used to determine the upper limits involve the
construction of a modified version of the Feldman and Cousins
Confidence Belt, and this is also discussed in some detail in
Sect. 4.

In Sect. 5 we will finally draw our conclusions and discuss
future prospects in this field opened by the upcoming Advanced
LIGO/VIRGO detectors. In particular, we suggest the applica-
tion of the algorithms presented in this paper to the sample of
the accreting X-ray millisecond pulsars (AMXPs), belonging to
transient LMXBs.

2. The selection of the sample

AURIGA is a resonant mass gravitational wave detector1 with
an usable bandwidth going from 850 Hz to 960 Hz (Baggio
et al. 2005). We have inspected the ATNF pulsar catalogue2

(Manchester et al. 2005) searching for sources whose gravita-
tional radiation emission could occur at a frequency ωgw in the
range above. For the GW emission mechanisms described in
Sect. 1, we found five MSPs with a suitable spin frequency.

The folding procedure described below requires the knowl-
edge of the positional, rotational and, when appropriate, bi-
nary parameters of the targeted NSs, valid over the time inter-
val of collection of the AURIGA data (i.e. from December 8th,
2006 until December 17th, 2006). These parameters were re-
trieved from timing observations in the radio band performed at
the 64-m Parkes Telescope (Australia) and at the 76-m Lovell
Telescope at Jodrell Bank (UK), over a ∼1 yr dataspan including
the 10 days of the AURIGA runs.

We note that the simple extrapolation of the parameters from
the ephemeris reported in the aforementioned pulsar catalog,
which is built on the basis of published observations usually

1 See http://www.auriga.lnl.infn.it/ for a detailed descrip-
tion of the instrument).
2 http://www.atnf.csiro.au/research/pulsar/psrcat

Table 1. ν0 is the spin frequency of the targeted MSPs at the time of the
AURIGA run, whereas νgw[Hz] is the frequency of the GW signal we
searched for.

Name ν0 [Hz] νgw [Hz]
PSR J0024−7204J 476.0468584406(...) 952.0937168812(...)
PSR J0218+4232 430.4610663457(...) 860.9221326914(...)
PSR J1939+2134 641.9282611068(...) 855.9043481424(...)

Notice that, for the third source, we are looking for the r-mode emission
channel.

taken many years before the AURIGA runs, may not always
be a viable choice. This is particularly true for sources orbit-
ing in a tight orbit with a non degenerate companion. In this
case, matter irregularly released from the companion and/or tidal
effects can significantly affect the orbital parameters of the bi-
nary, hampering the extrapolation of a reliable timing solution
over long time intervals. Despite MSPs usually being much less
affected by intrinsic timing noise than other kinds of pulsars,
some of them also displayed rotational irregularities, like small
glitches (Cognard & Backer 2004). In summary, monitoring of
the sources (both the binary and the isolated MSPs) in a time
interval bracketing the runs of the GW detector is the safest pro-
cedure for optimizing the capability of the GW search analysis.

In view of that, we had to exclude two of the five objects
in the original list: PSR J1701−3006F and PSR J0024−7204W,
for which no viable timing solution for the dates including the
AURIGA runs was available. In the end we have been left with
PSRs J0024−7204J, J0218+4232 and J1939+2134. We checked
that their spin frequencies fall in frequency sub-bands where
the AURIGA noise is well behaved (Gaussian and stationary)
(Vinante 2006), which is a requirement for the following sta-
tistical analysis of the results. The spin frequency ν0 of the 3
selected targets and the frequency νgw of the gravitational waves
that we searched for are reported in Table 1.

In particular, PSR J0024−7204J is a binary pulsar discov-
ered on 1991 (Manchester et al. 1991) in the globular clus-
ter 47 Tucanae. It orbits a very low mass (minimum mass
0.021 M�) companion in a ∼0.12 day almost circular (eccentric-
ity ∼4 × 10−5) orbit. The ephemerides for the epoch of interest
have been retrieved from observations performed at the Parkes
radio telescope at a center frequency of 1390 GHz. The total
256 MHz bandwidth has been split in 512 0.5-MHz wide chan-
nels per polarization, in order to minimize the effects of the in-
terstellar dispersion. After having been summed in polarization
and digitized every 80 μs, the resulting 512 data streams (ac-
curately tagged in time) have been de-dispersed and folded off-
line in order to produce pulse profiles. Topocentric pulse time
of arrivals (ToAs) were determined by convolving these pro-
files with a template pulse profile of high signal to noise ratio
and then analyzed using TEMPO3. It converts the topocentric
ToAs to solar-system barycentric ToAs at infinite frequency (us-
ing the DE405 solar-system ephemeris ftp://ssd.jpl.nasa.
gov/pub/eph/export/) and then determines the pulsar (posi-
tional, rotational and binary) parameters using a multi-parameter
fit.

PSR J0218+4232 is a binary millisecond pulsar discovered
on 1995 Navarro et al. (1995) in the Galactic field. Also in this
case the orbit is nearly circular (eccentricity ∼7 × 10−6), but the
orbital period is significantly longer (∼2.03 days) and the com-
panion (likely a white dwarf) more massive (minimum mass of

3 http://www.atnf.csiro.au/research/pulsar/timing/
tempo
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0.167 M�) than for the case of J0024−7204J. The ephemeris
were obtained from regular timing observations carried on at a
central frequency of 1400 MHz at the Jodrell Bank Observatory.
A cryogenic receiver mounted on the 76-m Lovell Telescope
provided 32 MHz bandwidth (split in 32 1-MHz wide channels)
over two hands of circular polarization. Pulsar profiles were
formed every 1-min sub-integrations and then were added in po-
larization pairs and combined to produce a single total-intensity
profile. This was then convolved with a template derived from
a single high signal-to-noise ratio profile at the same frequency
to give a topocentric ToA. The pulsar parameters were finally
determined from the ToAs with the same procedure described
above.

Contrary to the other two selected targets, PSR J1939+2134
(also known as PSR B1937+21) is an isolated MSP, the first
detected ever (Backer et al. 1982) and ranked as the most
rapidly rotating pulsar until 2006 (Hessels et al. 2006). The po-
sitional and rotational parameters of the source at the time of the
AURIGA runs resulted from timing observations conducted at
the Jodrell Bank Observatory with the same instrumental set up
as for PSR J0218+4232.

At the time when the paper was prepared, the ephemerides
for these PSRs where not yet published in the ATNF catalogue,
and this is why we don’t show them here.

3. Data analysis

The instantaneous frequency and phase of a GW impinging upon
the GW detector are of course affected by both the detector and
source motions. A basic step in the data analysis is then to report
frequency and phase to a suitable reference frame, which has
been chosen to be the Solar System Barycenter (SSB).

Firstly, we computed the detector motion by means of a code
which makes use of the freely available NOVAS routine pack-
age http://aa.usno.navy.mil/software/novas/novas_
c/novasc_info.php and the ephemeris file DE405 by JPL.
Then, the source motion along its orbit – when necessary –
was calculated from the radio ephemeris, using procedures
largely applied in the radio astronomy community (Manchester
& Taylor 1974).

The problem is basically to exactly implement the matched
filter where the prior knowledge of pulsar parameters is used to
extract the signal power. The GW phase doesn’t increase linearly
with the time, but can be conveniently expressed as φ0+ω0t+φ̂(t),
where φ0 is the unknown initial GW phase,ω0 is the intrinsic fre-
quency at some initial time t0, t is the time elapsed from time t0,
and φ̂(t) represents the phase shift due to both intrinsic frequency
derivatives from the ephemerides files and the Doppler effects.
For each MSP, the GW signals to extract from AURIGA data
read

s(t) = M(t) cos (φ0 + φ(t)), (2)

where φ(t) = ω0t + φ̂(t) is the estimated phase evolution (i.e. the
known part of the phase) and M(t) is an amplitude modulation
due to the AURIGA antenna pattern. Moreover, in Eq. (2) there
will generally be a suppressing factor due to the generally non
optimal orientation of the pulsar rotation axis. This representa-
tion in which s(t) is factorized in two terms is interesting when
the timescales of variation of the two terms are much different
one from each other. M(t) is the slow-varying term and takes ac-
count of the changes in the orientation between the source and
the detector.

The angle between this axis and the direction of sight is un-
known and this uncertainty results in a scale factor to be applied

Table 2. Antenna Pattern factors.

PSR Fraction of available energy ΔS NR/S NRWiener

0024−7204J 0.286 9.3%
0218+4232 0.290 18.0%
1939+2134 0.256 18.2%

First column: the complement to 1 of these values represent the energy
loss respect to the optimal orientation and polarization; second column:
percentage of SNR loss respect to the optimal filter.

to Eq. (2). The signal template in Eq. (2) reproduces the physical
GW signals when quasi-stationary approximation holds, i.e. one
has also to require slowness of the function M(t) and smoothness
of the functions φ(t) and ω(t) = ω0 + dφ̂(t)/dt. For our targets it
results φ̇(t)−ω0 < 2× 10−5 s−1. Moreover, from the bar antenna
pattern (Misner et al. 1973), we can write

M(t) =
4∑

k=0

Mk cos(kω⊕t + ck) (3)

where ω⊕ is the Earth rotation frequency, whereas amplitudes
Mk, and phase shifts ck are constants which depend on the detec-
tor latitude and longitude and on the source right ascension and
declination. Clearly, as the antenna pattern varies with the period
of 1 sidereal day we have Ṁ(t)/M < ω⊕ = 1.16×10−5 s−1. Thus,
the amplitude modulation due to the antenna pattern factors can
be taken into account by the calculation of averaged values of
the antenna pattern during the observation time.

The next step of the analysis is to represent s(t) as

s(t) = A(t) cosφ(t) − B(t) sinφ(t) (4)

where we have introduced the two time-dependent functions

A(t) = M(t) cosφ0 (5)

and

B(t) = M(t) sin φ0 (6)

where A(t) and B(t) are the two components of the signal in
quadrature with respect to each other. The optimal filtering prob-
lem, i.e. the matching of the template s(t) to the detector data is
then reduced to the application to the data of a locking filter at
the variable frequencyω(t). What we did is to consider M(t) as a
slow modulation multiplying the frequency and amplitude mod-
ulation, and this results in a small signal to noise ratio (SNR)
loss, as we now show. In fact, the maximum SNR would be ob-
taining applying the exact matched filter. In case of Gaussian and
stationary noise it is

SNR2 =

∫ |s(ν)|2
S h(ν)

dν (7)

where ν is the frequency and S h(ν) is the noise power spectrum
in equivalent gw strain. In our case the signal always stays in a
very narrow band around a frequency ν0 where S h is constant,
so

SNR2 =

∫ |s(ν)|2dν

S h(ν0)
· (8)

The integrals over frequencies can be substituted with integrals
over the time. Assuming stationary, Gaussian, and white noise
within the signal bandwidth (<1 Hz) we calculated the SNR loss
due to our approximation and result are reported in Table 2.
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Fig. 1. Complete data-analysis pipeline. The h-reconstructed signal is passed trough a band-pass digital filter before the Doppler correction. This
allows to decimate the samples to deal with a reasonable amount of data. Then, after the Fourier transformation, all the signal, if present, is in the
bin 0 of the spectrum. The other bins are used to infer the statistics of the noise, thus allowing to calculate the confidence intervals for the GW
amplitude.

It is worth noticing that we are not able to estimate the ini-
tial phase φ0 by means of radio timing observations and so both
components in phase and in quadrature are present.

The Fourier transform of s(t) is the convolution of the
Fourier transforms of A(t) and cosφ(t), minus the convolution of
the Fourier transforms of B(t) and sin φ(t), and within the con-
stant phase approximation it reads

s̃(ω) � 1
2

[Ã(ω − ω0) + Ã(ω + ω0)]

− 1
2i

[B̃(ω − ω0) − B̃(ω + ω0)]. (9)

In order to extract the signal from the detector’s output, we pro-
vided the signal s(t) as input to a code that first creates a copy of
the time series. Then it puts (see the pipeline in Fig. 1) the signal
multiplied by cosφ(t) in a first channel, whereas a second chan-
nels stores the signal multiplied by sin φ(t). The first channel s1
will contain the time series

s1(t) = A(t) cos2 φ(t) − B(t) sinφ(t) cosφ(t)

=
1
2

A(t)[1 + cos 2φ(t)] − 1
2

B(t) sin 2φ(t) (10)

and its Fourier transform is

s1(ω) =
1
2

A(ω) +
1
4

A(ω − 2ω0) + A(ω + 2ω0) − 1
4

B(ω − 2ω0)

−B(ω + 2ω0). (11)

Equation (11) shows that it is now possible to extract the signal:
remembering that A and B are functions that slowly vary with
time, the only important components of their Fourier transforms
A(ω) and B(ω) are the one characterized by the condition ω �
ω0. For these frequencies, |ω ± 2ω0| 	 ω. So, if we apply a
suitable numerical low-pass filter, with a time constant

τ 	 1
2ω0

(12)

the product of Eq. (11) and the low pass filter, performed in the
frequency domain, is

s f
1 (ω) =

A(ω)
2(1 + iωτ)

· (13)

If the filter is chosen to have a rapid decay, i.e. the filter is a
square box with a certain amplitude around the 0 frequency,
leads to

s f
1 (ω) � A(0)

2
· (14)

Similar considerations would lead to

s f
2 (ω) � B(0)

2
(15)

for the second channel s2. It’s clear that this approach completely
solves the problem of Doppler modulations. The coorections of
each sample for its proper Doppler factor is unnecessary. We
compute the instantaneous frequency at the start time of each
frame of data, and then, inside each frame, the phase is taken
to evolve linearly with that frequency. This does not lead to er-
rors, provided the duration of each frame is short enough (in
our case, about 80.5 s). However, the duration of each coherent
sub-search is 1 day; the frame duration is not the time of each
coherent search but only the dimension of the buffers taken by
the acquisition. For the following steps required for the analy-
sis, we implemented the code using the MATLAB environment.
Finally, the amplitude of the signal H was simply estimated as

H = 2
√

s f
1 (0)2 + s f

2 (0)2. (16)

The outline of the method we have now discussed is represented
in Fig. 1.

4. Upper limits

We chose to run the analysis on 10 segments – 1 day long each
– of contiguous data (MJD between 54077–54086), during the
scientific run numbered 852. This period was chosen because
the behavior of AURIGA was satisfactory, namely the noise was
low and stable. This means that during the run of our choice
the white noise level is better compared with the ones of other
scientific runs. To extend the duration of this search to more seg-
ments would not improve so much the results, given the fact that
in this case the result in terms of upper limit on GW emission
would scale only with the fourth root of the number of seg-
ments. Also, we checked that in this period the rotational behav-
ior of our sources was well reproduced by the radio timing data.
A coherent search over the whole 10 days period was impossi-
ble, because the stability of the poles of the transfer function of
AURIGA is not guaranteed for such a long time. So we opted
for performing 10 coherent sub-searches (each lasting 1 day)
and then incoherently summing (i.e. averaging) the results, thus
ending with a unique spectrum for each target. The continuous
component of the final spectrum (i.e. the bin 0 of a Fast Fourier
Transform) holds the signal, if present. The noise spectral den-
sity is shown in Fig. 2. The plot represents the quantity

S 1/2
hh (ω) =

√
|V(ω)|2
|T (ω)|2 , (17)
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Fig. 2. The AURIGA strain sensitivity (gray) compared with the expected (black curve) sensitivity at 4.5 K.

where V(ω) is the Fourier transform of the output data v(t) and
T (ω) is the transfer function.

All the bins in the final spectrum except the bin 0 (which is
special because it could hold the signal) can be used in order
to test the null hypothesisH0 that the signal is not present in the
data. Because of the performed operation of spectrum averaging,
the distribution of the frequency counts we find is a non-centered
χ2, with some non-centrality parameter θ holding the informa-
tion about the signal energy. So, θ is the parameter we want to
estimate. The first part of the hypothesis test consists of arbi-
trarily setting a false alarm probability, in our case, we choose a
false alarm probability of 10−2. When the signal is present our
bin 0 is made by the sum of the energies of the noise and of the
quantity h2

0T 2 where T is the coherence-time T = 86 400 s and
h0 is the average signal amplitude. Since the standard deviation
σ assumes a different value for each MSP (because each MSP
belongs to a different band in the spectrum which has its own
specific variance) we end up with a different value of the thresh-
old for each MSP. Let x be the generic energy in some bin. Let’s
call xFA this calculated threshold on x. Finally, we have to define
a procedure in order to set a confidence interval, either upper-
limit or two-sided, on the measured GW amplitude h0. The way
we choose, to measure h0 and to know the statistical meaning
of our conclusions, is to build the so-called “confidence belt”, in
the plane (x, θ), where x is the generic result of our experiment
and θ is the parameter we want to estimate. There are several
ways to construct a confidence belt. Here, we decided to follow
the recipe given by Feldman and Cousins (Feldman & Cousins
1998). We require our confidence belt to have the property to
guarantee a selected coverage over all the parameters region.
This selected coverage is, for us, C = 0.9. In reality, our method
is a little different from Feldman and Cousins’ one (Feldman
& Cousins 1998), because we also choose to set a small false
alarm probability. This choice, in fact, causes the coverage to be
more than the goal-coverage in the upper-limit region, namely
for x < xFA. This over-coverage is the price we need to pay
in order to have a small false-alarm probability. The confidence
belt that we find can be seen in Fig. 3. The construction of our

confidence belt proceeds as follows. For each fixed value x̄, of x
we define θbest to be the value of θ that maximizes the likelihood
f (x, θ), requiring the physical constraint that θbest ≥ 0. In partic-
ular, if the measured x is less than its average value x̄, we impose
θbest = 0, because if the result of the measurement is less than
the mean value, the best estimator of the signal is 0. Now, for
each possible value θ̄, we calculate the likelihood ratio given by

R(x̄, θ̄) =
f (x̄, θ̄)

f (x̄, θbest)
· (18)

This ratio of likelihoods is the function that we use to choose the
confidence intervals. In fact, for each choice of θ̄, the confidence
interval (x1, x2) is uniquely defined by the requirements (19)
and (20):

R(x1) = R(x2) (19)

and∫ x2

x1

f (x, θ̄) = C. (20)

If the condition (19) cannot be satisfied within the condi-
tion (20), we consider as good the confidence interval also if
R(x2) < R(x1). The choice of this ordering principle for the
choice of the confidence intervals, will result in a more regular
behavior of the confidence belt in the regions of the parameter
space where x is very low. The pairs of values (x1, x2) are taken
starting from the value xmax which maximizes R(x, θ̄) for a given
θ̄. Taking all the different values of θ, we cover all the param-
eter space and so we can trace the confidence belt. We start by
selecting a grid of values in the parameters space (x, θ) and cal-
culating the value of the likelihood ratio R over all the points of
the grid. It’s important to notice that, unfortunately, the problem
of finding θbest can be solved only numerically, because in our
case the probability density function f is very complicated: it
is in fact expressed in terms of the regularized hypergeometric
0F̄1 functions, and the problem of finding an always viable rela-
tionship θbest = θbest( f , x) is not analytically solvable. Then the
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Fig. 3. The construction of the confidence intervals. Once we have decided confidence belt parameters (goal coverage and false alarm probability),
the shape of the belt is the same for all the targets. However, due to different noise standard deviation and bin 0 value, the target sources have
different abscissa.

Table 3. Values of the statistical quantities for 3 targeted MSPs.

PSR x0[Hz−2] std[Hz−2] x0/std θu.l. / std[] θu.l.[Hz−2]
0024-7204J 1.00 × 10−36 5.75 × 10−37 1.74 8.8 8.83 × 10−36

0218+4232 9.50 × 10−37 7.09 × 10−37 1.34 8.0 7.60 × 10−36

1939+2134 9.22 × 10−37 5.62 × 10−37 1.64 8.6 7.93 × 10−36

x0 is the value of the bin 0 of the averaged spectrum; std is the standard deviation of the noisy bins of the same spectrum; θu.l. is the upper limit on
the parameter θ to estimate.

Table 4. Measured upper limits for the 3 targeted MSPs for 3 different
goal coverages.

PSR hu.l.
68% hu.l.

90% hu.l.
95%

0024-7204J 2.74 × 10−23 3.44 × 10−23 3.88 × 10−23

0218+4232 2.55 × 10−23 3.19 × 10−23 3.60 × 10−23

1939+2134 2.60 × 10−23 3.26 × 10−23 3.68 × 10−23

program takes a value θ̄ and, for the section of the parameter grid
at θ = θ̄, searches for xmax. Next, we move from xmax to larger
values of x, and the program shows all the pairs of values (x1, x2)
that best satisfy Eq. (19). For each pair, the program integrates
the probability density function to find the coverage. Finally, be-
tween all the coverage values, the program extracts the pair for
which the coverage is the most similar to C and not less than it,
thus computing the confidence interval at θ̄. The computed con-
fidence belt is shown in picture 3. The confidence belt must be
interpreted in this way: given a result x̄ of the experiment, we
trace a vertical line, which intercepts the edges of the confidence
belt, thus giving the extreme values θ1 and θ2 of the confidence
interval.

The final values of the statistical quantities are shown in
Table 3. These results produce the upper limits summarized in
Table 4 if we require the different coverages 0.68, 0.9 and 0.95.

5. Discussion

We have performed a search for GW emission from 3 MSPs us-
ing the resonant mass detector AURIGA.

It’s important to notice here that this is the first attempt
to look at GW emission from known binary pulsars using a
resonant detector. Moreover, this is done by implementing a

modified version of the Feldman and Cousins confidence belt
method, which is quite a new feature for searches for continu-
ous quasi-periodic signals. The upper limits calculated in Sect. 4
translate to limits on the neutron star ellipticity ε. We adopted
the distances calculated from the dispersion measure of the tar-
gets and a model for the distribution of the electrons in the
interstellar medium (Taylor & Cordes 1993) in the cases of
J0218+4232 (5.8 kpc) and PSR J1939+2134 (3.6 kpc), whereas
for PSR J0024−7204J we used the distance of the related cluster
47 Tucanae (4.5 kpc, from feb 2003 revision of the Harris cat-
alog, Harris 1996). According to the considerations in (Abbott
et al. 2005) we find the following upper limits on ε: 3.7 × 10−5

for PSR J0024−7204J and 4.1× 10−5 for PSR J0218+4232. The
inferred upper limit on ε scales with the adopted distance d of
the source like d−1.

Unfortunately, given the current theoretical predictions for
ε (see e.g. Jones 2002; Ruderman 2006), these values are not
very restrictive yet, reflecting the still relatively low sensitivity
of the class of the detectors like AURIGA with respect to the
interferometric GW detectors.

In particular, the most sensitive search to date performed
by using interferometric data exploited the LIGO runs S3 and
S4 (Abbott et al. 2007). For the 3 MSPs that we looked for,
the resulting upper limits on h were: hu.l.

95% = 7.41 × 10−25

for J0024−7204J, hu.l.
95% = 1.11 × 10−24 for J0218+4232 and

hu.l.
95% = 1.65 × 10−24 for J1939+2134. Comparing these values

with the ones in Table 4, we see that the capabilities of the in-
terferometers allows for reaching upper limits about 20 up to
50 times better than what a detector like AURIGA can do. The
most recent improvement in this field is an all sky search using
LIGO S5 data (Abbot et al. 2008).

However, the procedure introduced in this paper is suitable
to be applied to any other more sensitive and broadband GW
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detectors, such as Advanced LIGO and Advanced VIRGO
(Viceré 2007): firstly, the method is not affected by cumula-
tive phase errors because we recalculate the phase every time a
new frame begins, using the associated GPS time and the pulsar
ephemeris. Secondly, the noise statistics is well known because
we have a background given by many bins which don’t carry the
signal, and so the accuracy in the noise variance estimate is very
satisfatory.

We finally note that a very promising application of the pro-
cedure described in this work involves the class of the so called
Accreting X-ray millisecond pulsars (AMXPs). They are NSs
undergoing transients phases of intense X-ray activities (known
as outbursts) due to accretion of matter from the companion star
in a LMXB system. During the outbursts, these sources display
coherent pulsations in the X-ray band at frequency of order hun-
dreds of Hz. These pulsations are believed to reflect the spin
frequency of the neutron star. This opened the possibility of
performing an accurate timing of the NSs, tracking their rota-
tional phase for the duration (typically at least few weeks long)
of the outburst (Falanga et al. 2005; Burderi et al. 2007). Since
the X-ray emissions is due to matter falling onto the star from
the accretion disk, it is possible that, during the outbursts, the
ellipticity of the star changes. Moreover, also emitting mech-
anisms such the r-modes are likely to become instable and so
available as GW emission channels. The amplitude of these ef-
fects is still uncertain (see e.g. (Watts et al. 2008), for limits and
caveats); however a folding procedure like that described in this
paper and based on ephemeris provided by X-ray data, could be
a very effective method for revealing this putative GW emission.
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