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The Streptococcus pyogenes cell-surface protein Scl2 contains
a globular N-terminal domain and a collagen-like domain, (Gly-
Xaa-X�aa)79, which forms a triple helix with a thermal stability
close to that seen for mammalian collagens. Hyp is a major con-
tributor to triple-helix stability in animal collagens, but is not
present in bacteria, which lack prolyl hydroxylase. To explore
thebasis of bacterial collagen triple-helix stability in the absence
of Hyp, biophysical studies were carried out on recombinant
Scl2 protein, the isolated collagen-like domain from Scl2, and a
set of peptidesmodeling the Scl2 highly charged repetitive (Gly-
Xaa-X�aa)n sequences. At pH 7, CD spectroscopy, dynamic light
scattering, and differential scanning calorimetry of the Scl2 pro-
tein all showed a very sharp thermal transition near 36 °C, indi-
cating a highly cooperative unfolding of both the globular and
triple-helix domains. The collagen-like domain isolated by tryp-
sindigestion showeda sharp transition at the same temperature,
with an enthalpy of 12.5 kJ/mol of tripeptide. At low pH, Scl2
and its isolated collagen-like domain showed substantial desta-
bilization from the neutral pH value, with two thermal transi-
tions at 24 and 27 °C. A similar destabilization at low pH was
seen for Scl2 charged model peptides, and the degree of desta-
bilizationwas consistent with the strong pHdependence arising
from the GKD tripeptide unit. The Scl2 protein contained twice
as much charge as human fibril-forming collagens, and the
degree of electrostatic stabilization observed for Scl2 was simi-
lar to the contributionHypmakes to the stability ofmammalian
collagens. The high enthalpic contribution to the stability of the
Scl2 collagenous domain supports the presence of a hydration
network in the absence of Hyp.

Collagens are considered to be the characteristic structural
molecules of the extracellular matrix of multicellular animals.
Fibril-forming collagens and basement membrane collagens
are ubiquitous in vertebrates and invertebrates, whereas fami-
lies of more specialized collagens have developed in different
organisms such as the 28 distinct collagen types found in ver-

tebrates (1–3) and the �100 cuticle collagen genes inCaenorh-
abditis elegans (4). In recent years, the range of occurrence of
collagen-like sequenceswithGly as every 3rd residue and a high
Pro content has been extended from metazoans to �100 pro-
teins in bacteria and bacteriophage (5). Anunderstanding of the
structure and stabilization of such bacterial collagens presents
new challenges because they lack the Hyp post-translational
modification characteristic of animal collagens.
A high content of Hyp is a unique stabilizing feature of ani-

mal collagens. The characteristic structural motif of all collag-
ens is the triple helix, composed of three left-handed polypro-
line II-type chains (3 residues/turn) wound around the central
axis to form a right-handed superhelix (6–8). The close pack-
ing of each chain near the central axis constrains every 3rd
residue of the amino acid sequence to be Gly, generating the
repeating sequence (Gly-Xaa-X�aa)n. A high content of the
imino acids Pro and Hyp is found in all animal collagens, and
their restricted ring conformation close to the �,� dihedral
angles found in the triple helix confers entropic stabilization to
collagen (9, 10). Pro residues located in the X�aa position of the
(Gly-Xaa-X�aa)n sequence become post-translationally modi-
fied to Hyp by prolyl hydroxylase (11). The presence of Hyp
residues in the X�aa position confers a thermal stability greater
than that conferred by Pro residues. Inhibition of post-transla-
tional hydroxylation leads to a decrease in the melting temper-
ature of type I collagen by �15 °C (12, 13), whereas recombi-
nant human collagen homotrimers of type I �1-chains that are
unhydroxylated have a Tm � 11 °C lower than that of the
hydroxylated form (14). Confirmation of Hyp stabilization of
the triple helix and its position-specific nature is seen in model
peptides, where Tm � 60 °C for (Pro-Hyp-Gly)10, Tm � 30 °C
for (Pro-Pro-Gly)10, and Tm � 0 °C for (Hyp-Pro-Gly)10 (15). A
close correlation is observed between the thermal stability of
the collagen molecule and the upper environmental tempera-
ture of the organism (16), and analysis suggests that Hyp is a
major determinant of the variations in thermal stability among
organisms (17).
Themechanism ofHyp stabilization of the triple helix is con-

troversial because the hydroxyl group of Hyp points outward
from the triple helix and cannot form any direct intramolecular
hydrogen bonds. The classic calorimetric studies of Privalov
(10) showed that collagens have a very high enthalpic contribu-
tion to their stability compared with other proteins and that
this calorimetric enthalpy increases with Hyp content. Because
direct intramolecular hydrogen bonding is not possible,
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Privalov postulated Hyp participation in a hydration network
involving available backbone carbonyl groups. Such an exten-
sive oriented water-mediated hydrogen bonding network, sup-
ported by early NMR studies (18), is seen in the high resolution
crystal structures of collagen-like peptides (19, 20). Jenkins and
Raines (21) suggested an alternative stereoelectronic mecha-
nism of Hyp stabilization due to the electron-withdrawing
effect of the hydroxyl group. The electron withdrawal favors an
exo-pyrrolidine ring pucker, and recent x-ray studies on colla-
gen-like peptides show that the exo/up-pucker of the imide ring
in the X�aa position is favorable for the triple helix (22).
Prolyl hydroxylase is considered to be present only in multi-

cellular organisms, although a recent report indicates its pres-
ence in the yeastHansenula polymorpha (23). Bacteria lack this
enzyme and cannot post-translationally modify Pro in the X�aa
positionof the (Gly-Xaa-X�aa)n sequence to formHyp.Despite the
absenceofHyp, several expressedbacterial proteinswithcollagen-
like sequences have been shown to form stable triple-helix struc-
tures (24–26). Some of the best characterized bacterial collag-
en-like proteins are the streptococcal collagen-like proteins
Scl1 and Scl2, which are expressed on the cell surface of groupA
Streptococcus (26–31). Structurally, the extracellular portions
of Scl proteins consist of an N-terminal globular domain (also
known as the variable domain) attached to a rod-shaped colla-
gen-like domain (28). Although the function of Scl proteins is
not known, they have been reported to be involved in the adher-
ence of Streptococcus pyogenes to human cells and tissues (27,
29). One member of the Scl family interacts with �2�1 integrin
to promote cell adhesion and intracellular signaling (32), indi-
cating that bacterial collagen-like proteins show functional as
well as structural similarities to human collagens. CD spectros-
copy, rotary shadowing electron microscopy, and enzymatic
digestion studies indicate that recombinant Scl1 and Scl2 pro-
teins adopt a stable collagen triple-helix structure (26).
To explore the basis of bacterial collagen triple-helix stability

in the absence of Hyp, biophysical studies were carried out on
recombinant Scl2, its isolated collagen domain, and a set of
peptides modeling the highly charged region of this protein.
The results indicate that ion pairs play amajor role in stabilizing
the Scl2 triple helix and that enthalpic stabilization, likely to
involve interactions of polar groups with an ordered hydration
network, also makes an important contribution.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification—The fragment of the
scl2.28 allele (Q8RLX7) encoding the combined globular and
collagen-like portions of the Scl2.28 protein (p163 clone) (26)
was recloned into the Escherichia coli vector pColdIII (33), and
recombinant protein was expressed in the BL21 strain. Cells
were grown in M9-casamino acid medium until they reached
A600 � 0.8. The cultures were shifted to a 15 °C water bath, and
1mM isopropyl�-D-thiogalactopyranosidewas added to induce
protein expression. After overnight incubation, cells were har-
vested by centrifugation and disrupted by a French press. Cel-
lular debriswas removed by centrifugation. The expressed p163
protein was found in the supernatant as a soluble protein. The

p163 protein product (recombinant Scl2 (rScl2)2 protein) was
precipitated by 35% ammonium sulfate. The pellet was dis-
solved in phosphate-buffered saline (20 mM sodium phosphate
and 150 mM NaCl (pH 7.0)) and loaded onto a Sephacryl S-100
HR gel filtration column (GE Healthcare). The fractions con-
taining rScl2 were dialyzed against 20 mM Tris-HCl (pH 8.0)
containing 1 mM EDTA and 5% glycerol and further purified
using a DEAE-Sephadex anion exchange column. Protein
purity was checked by SDS-PAGE and MALDI-TOF mass
spectrometry, and protein concentrationwas determined using
an extinction coefficient of �280 nm� 13,980M�1 cm�1 (34). For
all later experiments, the protein was dialyzed into either phos-
phate-buffered saline or glycine buffer (20 mM glycine and 150
mM NaCl (pH 2 or 2.8)).
Trypsin Digestion of rScl2—To obtain the collagenous frag-

ment, 1.4 mg of the rScl2 protein was digested with 150 �g of
trypsin. The digested product was loaded onto a Sephacryl
S-100 HR gel filtration column. The purity of the fractions was
checked by mass spectrometry. Mass spectrometry of the
digested product (the rScl2 collagen-like domain (rScl2-CL))
showed a heterogeneous product containing slightly different
lengths of the collagen domain. Amajor peak seen at 22,385 Da
represents the expected (Gly-Xaa-X�aa)79 molecular mass of
the complete collagen-like domain, whereas a second peak seen
at 20,570 Da represents (Gly-Xaa-X�aa)72; several minor peaks
were also observed with molecular masses between those of
these two major peaks.
Peptides—Peptide Ac-(GPO)3GKDGKD(GPO)3GY-CONH2

(where “O” is Hyp), denoted as theGKDGKDpeptide, and pep-
tide Ac-(GPO)3GKDGKDGQNGKDGPL(GPO)4GY-CONH2,
denoted as the Scl2 repeat peptide, were synthesized by the
Tufts University Core Facility (Boston, MA). The peptide
sequence differs in one tripeptide unit (GPL versusGLP) from the
Scl2 repeat sequence, but the charges are unchanged, and the sta-
bility is expected todiffer by 2 °C.Thepeptides include aTyr at the
C terminus for concentration determination using the molar
extinctioncoefficient� �1400M�1 cm�1 at 275nmonaBeckman
Model DU640 spectrophotometer. Peptides were purified on a
Shimadzu reversed-phase high pressure liquid chromatography
system, and the identityof thepeptideswasconfirmedbyMALDI-
TOFmass spectrometry.
CircularDichroismSpectroscopy—CDspectrawere recorded

on an AVIV Model 62DS spectropolarimeter. Cuvettes with
0.2-mmpath lengthswere used tomeasure spectra down to 190
nm. For measurements between 210 and 260 nm, 1-mm path
lengths were used. The temperature of the cells was controlled
using a Peltier temperature controller. Protein solutions were
equilibrated for at least 24 h at 4 °C before measurements.
Wavelength scans were collected in 0.5-nm steps with a 4-s
averaging time and repeated three times. For temperature-in-
duced denaturation, the ellipticity was monitored as a function
of temperature using wavelength maxima of 220 nm for the
expressed proteins and 225 nm for the peptides. For thermal

2 The abbreviations used are: rScl2, recombinant Scl2; MALDI-TOF, matrix-
assisted laser desorption ionization time-of-flight; rScl2-CL, rScl2 collagen-
like domain; DSC, differential scanning calorimetry; DLS, dynamic light
scattering; MRE, mean residue ellipticity; deg, degrees.
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transitions of rScl2 and rScl2-CL, samples were equilibrated at
each temperature for at least 5 min, and the transitions were at
or close to equilibrium. The peptide melting curves were
obtained under standard conditions used in our laboratory for
comparison, even though equilibrium was not fully reached
(35). Peptides were equilibrated for 2 min at each temperature,
and the temperature was increased at an average rate of 0.1 °C/
min. The datawere fit assuming the trimer-to-monomermodel
T 3 3M, which showed good agreement. The Tm was deter-
mined as the temperature at which the fraction folded was
equal to 0.5 in the curve fitted to the trimer-to-monomer tran-
sition. The Tm was determined with an accuracy of �0.5 °C.
Differential Scanning Calorimetry (DSC)—DSC experiments

were recorded on a NANO DSC II Model 6100 (Calorimetry
Sciences Corp.). The sample was dialyzed against either phos-
phate-buffered saline or glycine buffer and equilibrated at 5 °C
for at least 24 h. Sample solutions were loaded at 5 °C into the
cell and heated at a rate of 1 °C/min. The enthalpy was calcu-
lated from the first scan because the scans were not reversible
upon cooling.
Dynamic Light Scattering (DLS)—DLS was carried out on a

DynaPro Titan instrument (Wyatt Technology Corp.). The
instrument calculates the intensity-intensity autocorrelation
function (g(�)) from the scattered light at an angle of 90°. The
translational diffusion coefficient was obtained from g(�) and
converted into the Stokes radius (RS) via the Stokes-Einstein
equation: RS � kBT/(6�	D), where kB is the Boltzmann con-
stant, T is the temperature in Kelvin, 	 is the solvent viscosity,
and D the translational diffusion coefficient. Samples were fil-
tered through 100-nm pore size filters before measurement.
For each measurement, the sample was equilibrated at the rel-
evant temperature for 5 min. The data were fit assuming the
trimer-to-monomer model T3 3M. The Tm was determined
with an accuracy of �1 °C.
Fluorescence—Fluorescence measurements were done on an

Aminco-Bowman Series 2 luminescence spectrometer with a
protein concentration of 0.1 mg/ml. The excitation wavelength
was 295 nm, and the emission signal was measured at 340 nm.
The excitation and emission slit widths were 4 nm. The protein
was heated at a heating rate of 0.16 °C/min, and the signal was
measured every 0.2min. The data were fit assuming the trimer-
to-monomer model T3 3M. The Tm was determined with an
accuracy of �0.2 °C.
Collagen Stability Calculations—Predictions ofTm values for

peptides and of the relative stability along a collagen molecule
were based on the algorithm derived from host-guest peptides
(36). The pH-dependent changes in the stability contributions
of charged tripeptide sequences such as GKD were based on
previously published data (37).

RESULTS

Stability of rScl2 and Its Trypsin-resistant Collagenous
Domain, rScl2-CL—A protein was expressed from a clone of
the S. pyogenes collagen-like protein Scl2.28 variant (denoted
here as Scl2) containing theN-terminal globular region (74 res-
idues), the (Gly-Xaa-X�aa)79 triple-helix domain, a short Pro-
rich sequence (17 residues), and the C-terminal 8-residue
Strep-tag II protein (28) (Fig. 1a); this protein is referred to as

rScl2. The rScl2 productwas expressed in the cold-shock vector
pColdIII in E. coli (33) and purified by ammonium sulfate pre-
cipitation followed by gel filtration chromatography and anion
exchange chromatography. The puritywas determined by SDS-
PAGE, and the identity was confirmed by mass spectroscopy.
Because the collagen triple helix is known to be resistant to

trypsin, the rScl2 product was treated with trypsin at pH 7
for 1 h at room temperature to isolate the collagenous
domain of this protein. The trypsin-digested product (desig-
nated rScl2-CL) contained the intact (Gly-Xaa-X�aa)79
region and a significant amount of (Gly-Xaa-X�aa)72 as
detected by mass spectroscopy.
The CD spectra of the rScl2 protein at pH 7 showed a maxi-

mumnear 220 nm (MRE220 � �1200 degrees (deg)�cm2�dmol�1)
and a minimum near 200 nm (MRE200 � �45,000
deg�cm2�dmol�1) (Fig. 1b). The positions of the maximum and
minimum are typical of the collagen triple helix, but with lower
magnitudes. The isolated collagen domain (rScl2-CL)
had similar CD features, but with much larger magnitudes
(MRE220 � �7400 deg�cm2�dmol�1 and MRE198 � �66,000
deg�cm2�dmol�1), giving values similar to those seen for mam-
malian collagens (38). Subtraction of the CD spectrum of the
collagenous domain from that of total rScl2 suggests that the
globular domain has a negative contribution at 220 nm and a
positive contribution at 197 nm, indicating the possibility of
�-sheet or �-helix contributions. Secondary structure pro-
grams (e.g. NNPREDICT, www.cmpharm.ucsf.edu/�nomi/
nnpredict.html) predicted that 46 residues or 62% of the glob-
ular domain can adopt an�-helical conformation, whichwould
be consistent with the subtracted CD curve and with earlier
structure analysis (26). The program COILS (www.ch.embnet.
org/software/COILS_form.html) predicts a high coiled-coil
propensity for residues 1–15 and 43–60, consistent with the
observation that coiled-coil domains are often found adjacent
to triple helices and may fill a nucleating role (39).
Monitoring the change in CD ellipticity at 220 nm for

rScl2 at pH 7 with increasing temperature gave a very sharp
thermal transition with a Tm of 36 °C (Fig. 1b). rScl2-CL
showed a similar sharp transition at 36 °C. The absence of a
second independent thermal transition in rScl2 suggests that
the non-collagenous globular domain unfolds at the same
time as the triple helix in a highly cooperative transition
under these conditions. This is consistent with the Trp flu-
orescence monitored as a function of temperature at neutral
pH, which showed a single transition at 36 °C (Fig. 1c). It is
likely the fluorescence arises from Trp60 in the globular
region because the only other Trp is located in the unstruc-
tured C-terminal Strep-tag II sequence and is not expected
to show any change with temperature.
Conformational properties and thermal stability were also

investigated using DLS (Fig. 1d). Both rScl2 and rScl2-CL
showed a significant decrease in the hydrodynamic radius with
increasing temperature. For rScl2, the Stokes radius changed
from 10.4 to 4.6 nm at 36–37 °C, whereas for rScl2-CL, it
decreased from8.0 to 3.6 nmat 34–35 °C. The temperature-de-
pendent changes in the hydrodynamic radius, together with a
decrease in intensity (data not shown) upon unfolding, confirm
that these molecules are undergoing a thermal transition from
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native trimers to unfolded monomers. The larger hydrody-
namic radius for the native rScl2 protein (10.4 nm) compared
with that for the rScl2-CL protein (8.0 nm) likely reflects the
effect of the globular domain on the molecular shape.
DSC of the rScl2 protein at pH 7 exhibited a single very sharp

transition at 37 °C,with a calorimetric enthalpy of	Hcal� 3499
kJ/mol (Fig. 2a and Table 1). rScl2-CL showed a somewhat
broader transition at the same temperature, with a small shoul-
der that is likely due to some heterogeneity in the digestion
products (Fig. 2b). The calorimetric enthalpy of rScl2-CL was
	Hcal � 3400 kJ/mol assuming an intact (Gly-Xaa-X�aa)79 col-
lagen domain of 22,385 Da. The enthalpy/tripeptide for the
bacterial collagen domain was 12.5 kJ/mol of tripeptide or 4.2
kJ/residue.

Following heat denaturation, incubation of rScl2 at low
temperature (neutral pH, 5 °C, 0.8 mg/ml) led to rapid
refolding, resulting in the native CD signal regained within
the dead time (1–2 min), whereas incubation at 20 °C led to
refolding within minutes. In contrast, rScl2-CL alone showed
no indication of refolding, even after 1 week at 0 °C. This is con-
sistent with a previous report of the necessity of the N-terminal
globular domain for formation of triple helices (26).
Effect of pH on Stability—The collagenous region of Scl2

contains a high proportion of charged residues, with �30%
of the (Gly-Xaa-X�aa)79 sequence occupied by Asp, Glu, Lys,
and Arg. The effects of pH on the stability and conforma-
tion of rScl2 and its isolated collagenous domain were
characterized.

FIGURE 1. Thermal stability of the rScl2 protein and its collagenous domain rScl2-CL. a, amino acid sequence of the recombinant rScl2 protein, with
the (Gly-Xaa-X�aa)79 collagenous domain shown in boldface. b, CD thermal transitions of rScl2 (F) and rScl2-CL ({) at pH 7, monitored at 220 nm, with
their CD spectra shown as an inset. c, tryptophan fluorescence of rScl2 at pH 7, monitored as a function of temperature (excitation wavelength 295 nm;
emission signal 340 nm). Fluorescence measurement could not be done at the rScl2-CL because there are no aromatic residues in the collagenous
domain. d, changes in the hydrodynamic radius of rScl2 (F) and rScl2-CL ({) at pH 7 as a function of temperature as measured by dynamic light
scattering (DLS).
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TheCDspectrumof the rScl2protein showeda significantdrop
in the 220 nmpeak at pH 2.2 (data not shown) comparedwith pH
7 (MRE220 � �1200 deg�cm2�dmol�1 at pH 7 and MRE220 �
�1252 deg�cm2�dmol�1 at pH 2.2). A dramatic decrease in
MRE220 was seen for rScl2-CL, from �7000 deg�cm2�dmol�1 at
pH 7 to �2000 at pH 2.2 (Fig. 3, inset). The decrease in the char-
acteristic triple-helix 220nmCDsignal at pH2.2 indicates that the
protonation and loss of negative charge on Glu and Asp residues
lead to a significant loss of triple-helix content.

Low pH also led to a significant decrease in triple-helix
stability. The CD thermal transition at pH 2.2 showed a
broad transition near 23–27 °C compared with the sharp
36 °C transition at pH 7 (Fig. 3). Although largely coopera-
tive melting behavior was seen for the globular and triple-
helix domains of rScl2 at a neutral pH value, in some cases,
there was an indication that the globular domain unfolded
slightly after unfolding of the triple helix. For instance, at pH
5, monitoring the 220 nm ellipticity as a function of temper-
ature showed a sharp decrease at 36 °C, followed by a small
increasing signal at higher temperatures (data not shown).
The increasing 220 nm signal likely represents denaturation
of the �-helix in the globular domain subsequent to denatur-
ation of the triple helix.
At pH 2.2, DSC scans of the rScl2 and rScl2-CL proteins

showed two discrete transitions at 24 and 27 °C in contrast with
the single DSC transition at 36 °C and pH 7 (Fig. 2 and Table 1).
Again, the decrease in thermal stability at low pH suggests that
ion pairs make an important contribution to triple-helix stabil-
ity. The appearance of two discrete peaks for the collagenous
domain suggests two independent folding/unfolding domains
at low pH. There was some indication of a biphasic transition
in the CD denaturation curve, although it was fit to a single
transition (Fig. 3). There was a significant loss of calorimet-
ric enthalpy in going from neutral to acidic pH (Table 1),
from 3400 kJ/mol for the single peak at pH 7 to 2427 kJ/mol
for the sum of the two peaks at pH 2.2, suggesting that neu-

FIGURE 2. DSC of rScl2 (a) and rScl2-CL (b) at pH 7 and 2.2, showing heat capacity (Cp) as a function of temperature.

FIGURE 3. pH dependence of thermal stability monitored by CD for
rScl2-CL at pH 7 and 2.2. Inset, its CD spectra; F, pH 7; {, pH 2.2.

TABLE 1
Thermal stability determined by CD spectroscopy, fluorescence, DLS, and DSC for the rScl2 protein and its collagenous domain (rScl2-CL) at
pH 7 and 2.2

Protein
CD Tm

Fluorescence
Tm DLS Tm at pH 7

DSC Tm �Hcal

pH 7 pH 2.2 pH 7 pH 2.2 pH 7 pH 2.2 pH 7 pH 2.2
°C °C °C °C kJ/mol

rScl2 35.6 24.2 36.5 26.5 36.4 37 24.2, 28 3499 2827a
rScl2-CL 35.9 25.7 NAb NA 34.4 36.1 23.7, 27 3400 2427a

a Sum of two peaks.
b NA, no aromatic residues in the triple-helix domain.
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tral pH promotes hydrogen bonding as well as electrostatic
interactions.
The thermal transition of rScl2 monitored by Trp fluores-

cencewas shifted from36.0 °C at neutral pH to 26.5 °C at pH2.2
(Table 1). The higher of the two acidic transitions seen by DSC
near 27 °C was observed, whereas the lower DSC transition
near 24 °C was not. The Trp residue appears to unfold with the
more stable of the two acidic triple-helix domains. The location
of Trp60 at the C terminus of the globular sequence close to the
N-terminal end of the triple-helix sequence suggests that the
more stable domain includes the N terminus of the (Gly-Xaa-
X�aa)79 sequence.
Model Peptides for Regions of the Scl2 Collagen Domain—

Peptides were designed to clarify the role of the highly charged
repeating sequences found near the C-terminal end of the col-
lagenous domain of Scl2. There are three full repeats of
sequence GKDGKDGQNGKDGLP and several partial repeats
of this sequence.One peptide included the 15-residue sequence
Ac-(GPO)3GKDGKDGQNGKDGPL(GPO)4GY-CONH2 (des-
ignated the Scl2 repeat peptide), whereas the other contained
GKDGKD in a host-guest design, Ac-(GPO)3GKDGKD
(GPO)3GY-CONH2 (designated theGKDGKDpeptide) (Table2).
Using the Tm values obtained from guest tripeptide units in

the host peptide (Gly-Pro-Hyp)8, it was predicted that the Scl2
repeatpeptidewouldhavea stabilityof 4.9 °C (/jupiter.umdnj.edu/
collagen_calculator/) (36). Surprisingly, the Scl2 repeat peptide
formed a stable triple helix at neutral pH with MRE225 � 3500
deg�cm2�dmol�1 andTm�34.0 °C (Fig. 4), demonstrating that the

triple-helix structure of the Scl2 repeat peptide is far more stable
than expected. DSC indicated this peptide to have a calorimetric
enthalpy of 251 kJ/mol at pH 7. At pH 1.4, the Tm decreased to
16.5 °C, and the calorimetric enthalpy decreased to 119 kJ/mol.
The GKDGKD peptide in the host-guest peptide design

formed a triple helix at neutral pH with MRE225 � 4000
deg�cm2�dmol�1. The observed Tm for the GKDGKD peptide
was 29.4 °C, which is again greater than that predicted (pre-
dicted Tm � 21.6 °C) (36), with 	Hcal � 266 kJ/mol (Table 2).
Measurements of thermal stability by CD at different pH values
indicated that the Tm decreased below pH 4, with Tm � 16.0 °C
at pH 2.1 and 15.1 °C at pH 1.4. The calorimetric enthalpy was
not substantially lower at acidic pH, with	Hcal � 245 kJ/mol at
pH 2.1. The DSC scans showed higher Tm values than CD tran-
sitions, which is due to the higher scan rate and non-equilib-
rium conditions for these peptides (36).

DISCUSSION

The thermal stability of animal collagens plays a critical role
in their biological function, in terms of biosynthesis, their role
in the extracellular matrix, and degradation. In animals, the
stability of collagen has been correlated with overall imino acid
content and in particular with Hyp content (9, 17). Bacterial
collagen-like proteins contain no Hyp, yet the collagenous
domains of S. pyogenes Scl proteins and the Bacillus anthracis
BclA collagen-like proteins form triple-helix structures with a
stability near 37 °C, close to that seen for mammalian collagens
(24–26). The high Tm of BclA may relate to its high �25% Pro

FIGURE 4. Thermal transitions monitored by CD spectroscopy of model peptides for the Scl2 C-terminal charged region. a, Scl2 repeat peptide at pH 7
and 1.4; b, GKDGKD peptide at pH 7 and 2.1.

TABLE 2
Observed melting temperature values obtained by CD spectroscopy and predicted stability, together with calorimetric enthalpy, for the
model peptides of the highly charged repeating portion of the collagenous region of Scl2

Peptide Sequence Observed Tm
at pH 7

Predicted Tm
at pH 7

�Hcal
at pH 7

Observed Tm
at acidic pH

Predicted Tm
at acidic pH

�Hcal
at acidic pH

°C °C kJ/mol °C °C kJ/mol
Scl2 repeat Ac-(GPO)3GKDGKDGQNGKDGPL(GPO)4GY-CONH2 34.0 4.9 251 16.5b �11.4 119b
GKDGKD Ac-(GPO)3GKDGKD(GPO)3GY-CONH2 29.4 21.6 266a 16.0c 11 245c

a pH 8.5 and 6.
b pH 1.4.
c pH 2.1.
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content and the O-glycosylation of the abundant Thr residues
by novel oligosaccharides (24, 40, 41). However, the Scl2 colla-
gen-like domain has a relative low �12% Pro content. Placing
the Scl2 collagenous domain on a plot of thermal stability versus
imino acid content for animal collagens indicates that its Pro
content is not predicted to lead to a stable collagen triple helix
(Fig. 5). This plot shows that animal collagens generally use a
similarmechanismof stabilization, inwhich imino acid content
and Hyp content play a key role, whereas the collagenous
domain of Scl2 must have differences in the major interactions
leading to triple-helix stability. Stability of the triple helix is also
dependent on length when the number of (Gly-Xaa-X�aa)n
units is small, e.g. n� 10, 20, or 30 (42). However, Han et al. (25)
have shown that collagen-like regions of Scl1 and Scl2 proteins
from different strains that vary in length from 40 to 120 tripep-
tide units have Tm values in the range of 34–37 °C, indicating
that there is no longer a length dependence.
The thermal transitions of Scl2 and its collagen domain are as

sharp as those of bovine collagen, so high cooperativity and
stability are realized in the absence of Hyp. The 12% Pro con-
tent of the collagen-like domain of Scl2 compares with �20%
imino acids in animal fibril-forming collagens (Table 3). In the
collagenous domain of Scl2, the Pro residues are found prefer-
entially in the Xaa positions, and this seems to be true for all
prokaryotic collagen-like proteins, with the frequency of Pro
residues in the Xaa position exceeding 30%, whereas the fre-
quency of Pro in the X�aa position is �5%.3 The percent of
hydrophobic residues is relatively low in both Scl2 (7.5%) and
human fibril-forming collagens (�6%), consistent with the lack
of hydrophobic core in the triple helix. The most striking dif-
ference lies in the charged residue content, with the Scl2 colla-
gen domain having 30% charged residues comparedwith�15%
for fibrillar collagens (Table 3). Because all residues in the Xaa
and X�aa positions of a collagen triple helix are largely exposed

to solvent, this high percentage of charged amino acids can be
accommodated in the triple-helix structure.
Evaluation of the Tm values of triple-helix host-guest pep-

tides has provided insight into the contributions of varyingGly-
Xaa-X�aa amino acid sequences to stability (36). Within the
host peptide (Pro-Hyp-Gly)8, the propensities of all 20 amino
acids in the Xaa position were evaluated as a guest Gly-X-Hyp
triplet and in the X�aa position as a guest Gly-Pro-Y triplet,
whereas more complex interactions were studied as guest Gly-
Xaa-X�aa tripeptides with complementary charges (e.g. GEK,
GKD, etc,) or in guest hexapeptide sequences, e.g. GPKGEO.
Examination of the (Gly-Xaa-X�aa)79 sequence of the Scl2 col-
lagen domain in light of these studies indicates a stable domain
for tripeptide units 5–53, which contain 15% Pro content,
hydrophobic stabilization of the form GLQGLQGLQ, and
favorable charge interactions (e.g. KGD and KGE). The C-ter-
minal end of the collagenous sequence of Scl2 (tripeptide units
54–79) is repetitive and highly charged, containing three
repeats of GKDGKDGQNGKDGLP (40% charged residues)
and several partial repeats. Other strains of Streptococcus have
triple-helix domains ranging from 10 to 220 tripeptide units
and many contain repeating sequences related to the repeat
in Scl2 (25, 43). An algorithm based on host-guest peptides
(jupiter.umdnj.edu/collagen_calculator/) (36) predicts this
highly charged repeating region to be very unstable and unable
to form a triple helix. However, the peptide data reported here
indicate that this repeating sequence and the GKDGKD
sequence are much more stable than expected (Table 2).
Although the collagen stability calculator is reasonably success-
ful at predicting the stability of peptides that include frequent
Gly-Pro-Hyp triplets and sequences from human collagens
(36), it is far off in its predictions of these highly charged bacte-
rial collagen sequences. It appears that a tripeptide sequence
such as GQN or GKD in the context of the imino acid-poor
sequence GKDGKDGQNGKDGLP does not lead to the large
destabilization seen in the context of surroundingGly-Pro-Hyp
triplets. These highly charged and polar repeating sequences
contribute to the stability of the triple helix even though they
lack Hyp and have only 1 Pro in each 15-residue repeat. These
studies point out the limitations of the collagen stability calcu-
lator because of its simplified basis sets, but the data from these
studies are being incorporated into future calculations to
improve its prediction accuracy.
The destabilizing effect of low pH on rScl2-CL (	Tm �

10–13 °C) indicates an important contribution of electrostatic
interactions to stability and contrasts with the relatively small
effect of acidic pH on animal collagens (44). It is interesting to
note that the degree of electrostatic stabilization observed in
rScl2-CL is similar to the contribution that Hyp makes to the
stability of mammalian collagens (12–14). Peptide studies indi-
cate the molecular basis for this strong pH dependence in the
rScl2 triple helix. The peptide (Pro-Hyp-Gly)10 has a 3 °C
higher Tm at acid pH than at neutral pH, whereas the Scl2
repeat peptide and theGKDGKDpeptide both show significant
destabilization at pH 2.2 relative to pH 7. The pH dependence
of both peptides can be explained by the presence of GKD trip-
lets. The tripeptide sequence GKD in a host-guest system
shows a decrease in its Tm from 35.8 °C at neutral pH to 30.5 °C3 M. Pawlowski and J. M. Bujnicki, personal communication.

FIGURE 5. Plot of Tm values against imino acid content for a wide variety
of animal collagens (�), showing the bacterial collagen-like protein Scl2
(Œ) and the B. anthracis collagen-like protein BclA (F). The values for the
animal collagens were taken from Ref. 10.
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at pH 2.2 (37). This 5.3 °C decrease in the	Tm from pH 7 to 2.2
for GKD is consistent with the observed 17.5 °C decrease from
neutral to pH 2.2 in the Tm of the Scl2 repeat peptide, which
contains three GKD units (3 
 �5.3 °C � �15.9 °C), and the
observed 13.4 °C decrease from neutral to pH 2.1 in the Tm of
the GKDGKD peptide, which contains two GKD units (2 

�5.3 °C � �10.6 °C). The double peaks seen for thermal tran-
sitions of both rScl2 and rScl2-CL upon DSC suggest that,
under low pH conditions, there are two less stable triple-helix
domains. Their lower stability (24 and 27 °C) is likely to reflect
their shorter length as well as their high GKD content. The
C-terminal repeating unit GKDGKDGQNGKDGLP is likely to
be more destabilized at low pH than the N-terminal part of the
collagenous domain.
Animal collagens have a very high enthalpy of denaturation,

indicating that hydrogen bonding is amajor contributing factor
to stability. Privalov (10) observed that the enthalpy increased
with increasing Hyp content and proposed that this is a conse-
quence of an ordered water-mediated hydrogen bonding net-
work. Such a hydration network has been observed in the crys-
tal structure of various collagenmodel peptides, andHyp residues
appear to be linchpins of this network (6, 19). The calorimetric
enthalpy of the collagenous domain of Scl2 is �12.5 kJ/mol of
tripeptide (Table 4), which is less than the 18–22 kJ/mol of tripep-
tide seen for animal collagens near neutral pH (10, 45), but in the
same range as seen for (Pro-Hyp-Gly)10 (35). This relatively high
calorimetric enthalpy for Scl2-CL suggests that a hydration net-
work is likely tobepresent in thebacterial collagendomaineven in
the absence of Hyp and may involve the numerous polar and
charged residues in this domain.
Eukaryotic collagens utilize Pro hydroxylation in the X�aa

position as a major mechanism of modulating triple-helix sta-
bilization, whereas prokaryotes have evolved different molecu-
lar strategies of triple-helix stabilization that differ not only
from their eukaryotic counterparts, but also between different

prokaryotic collagen-like proteins (5, 24, 25). In theory, bacteria
could use Gly-Pro-Pro tripeptide units, which are very stabiliz-
ing sequences (e.g. the Tm of (Gly-Pro-Pro)14 is �40 °C) (42),
but Gly-Pro-Pro tripeptides are rarely found in bacterial colla-
gen-like proteins, and it is possible that such sequences present
toxicity problems in bacteria. The studies reported here high-
light the flexibility of the triple-helix motif, which can attain
37 °C stability by interactions not involving Hyp. Imino acid-
free tripeptide sequences with polar residues such as Gly-Gln-
Asn are much less destabilizing in the Scl2 sequence than in a
Pro/Hyp-richenvironment.Once the length is longer than40 trip-
eptide sequences, the Scl2 protein uses a variety of electrostatic
interactions, interchain hydrogen bonds, and a hydration-medi-
ated hydrogen bonding network as an alternative to the Hyp sta-
bilization in animal collagens.
These studies have focused on the role of Hyp in stabilizing

the collagen triple helix, but Hyp also plays important roles in
nucleation and folding of the collagen triple-helix domain (46–
48) and in the self-association of triple helices (49). The triple-
helix domain of rScl2 does not refold by itself, but requires the
N-terminal globular domain, which contains a coiled-coil
motif, for trimerization and folding. It is not yet clear whether
alternative interactions are involved in the folding process in
the absence of Hyp. Because Scl2 is a membrane-bound cell-
surface protein, self-association to a supramolecular structure
is not likely to be necessary for its biological role. It is possible
that Hyp is a requirement for all collagen-like proteins that do
self-assemble to higher order structures. The availability of tri-
ple-helix proteins with the same stability as mammalian colla-
gens but without Hyp provides opportunities for the use of
expressed bacterial collagenous domains to create well defined
and novel biomaterials.
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