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Abstract: Several factors can affect the validity and reliability of benefit transfers.  This paper 
proposes the existence of a meta-valuation function and uses meta-regression analysis to estimate 
this function.  The meta-valuation function controls for systematic effects of differences in 
sample and site characteristics on the magnitude of error associated with an experimental benefit 
transfer.  Validity measures are derived through various specifications of multi-site and single-
site travel cost demand models for hiking on a variety of trails in Colorado.  The results show 
that some characteristics account for a large portion of error in the benefit transfer application.  
When the meta-regression analysis function is adapted for benefit transfer estimation, it results in 
more accurate and reliable transfer measures than traditional methods.  (JEL Q20) 



 1

1. Introduction 

 Benefit transfer is the adaptation of existing information or data to new contexts.  Benefit 

transfer has become a practical way to inform decisions when primary data collection is not 

feasible due to budget and time constraints, or when expected marginal payoffs from primary 

data collection are small.  Primary research is conducted to address valuation needs for a specific 

resource, in space and time, while benefit transfer uses existing information about similar 

resources and conditions.  Traditionally, the context of primary research is referred to as the 

study site, and the benefit transfer context is referred to as the policy site.  Benefit transfers 

include two general approaches: value transfers and function transfers.  Value transfers are the 

use of point estimates of value or range of point estimates of value.  Function transfers entail the 

adjustment of a valuation (benefit or demand) function from a study site to characteristics of the 

policy site.  The degree of correspondence between the study site and the policy site determines 

the validity of a benefit transfer. 

 Benefit transfer is potentially a very important tool for policy makers since it can be used to 

estimate the benefits of a study site, based on existing research, for considerably less time and 

expense than a new primary study (see, for example, Water Resources Research 28(3) (1992), 

and Krupnick (1993) for a discussion of the concept of benefit transfer and Brookshire and Neill 

(1992) and Desvousges et al. (1998) for reviews of the issues and problems involved with benefit 

transfer).  The primary obstable to realizing this potential is developing an accepted framework 

for assessing the magnitude of error, termed generalization error, involved in benefit transfer 

(Rosenberger and Loomis, forthcoming; Smith and Pattanayak 2002). 

 Generalization errors arise when estimates from study sites are adapted to policy sites.  These 

errors are inversely related to the degree of correspondence between the study site and the policy 
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site.  Validity measures have been used in past studies to test for the accuracy of benefit transfers 

(Table I).  These measures specify the difference between the known value for a policy site1 and 

a transferred value to the policy site.  Little research has been conducted on the relationship 

between these measures and the factors that affect them.  These factors include the quality and 

robustness of the study site data, the methods used in modeling and interpreting the study site 

data, analysts’ judgments regarding the treatment of study site data and questionnaire 

development, other errors in the original study, and the physical characteristic, attribute, and 

market correspondence between the study site and the policy site (Bergland, Magnussen, and 

Navrud 1995; Boyle and Bergstrom 1992; Brouwer 2000; Desvousges, Naughton, and Parsons 

1992).  Protocols for conducting benefit transfers have been suggested as an attempt to minimize 

the effect of these factors on benefit transfer error (Rosenberger and Loomis 2001, forthcoming).   

[TABLE I ABOUT HERE] 

 This paper presents the results of a project that goes beyond traditional tests of validity by 

relating validity measures to site correspondence factors and estimating a meta-valuation 

function.  The practice of benefit transfer has a necessary, but generally implied, assumption that 

there exists a meta-valuation function from which values for a specific resource can be inferred.  

The validity or accuracy of benefit transfers depends on the robustness and stability of this 

valuation function and the degree of information existing for a specific resource.  Other implicit 

assumptions not explicitly addressed in this paper include the ability to capture differences 

between the study site context and the policy site context through a price vector.  This 

assumption is that the multi-dimensionality of site characteristics is reducible to a single 

dimension price variable (Downing and Ozuna 1996; Smith, Van Houtven and Pattanayak 2002).  
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A tertiary assumption is that values are stable over time, or vary in a systematic fashion that is 

captured in a price deflator index (Eiswerth and Shaw 1997). 

 This paper is an empirical test of our assumption regarding the existence of an underlying 

valuation function.  If we treat individual, site-specific value measures as unbiased estimates of 

points on an underlying valuation function, then meta-regression analysis of these individual 

measures may enable us to estimate this valuation function.  The resulting meta-regression 

analysis function should enable us to control for methodological differences in primary research 

and differences in site characteristics, resulting in more accurate benefit transfers.  Primary 

research is traditionally reductionistic by collecting data and estimating values for a single site, 

without examining the broader valuation context.  For example, individual site models cannot 

account for the effect of modeling decisions and site characteristics on site values because these 

factors are, by default, held constant.  The valuation function places these individual studies in a 

broader context that models how values are related to factors across sites and studies. 

 To meet the objective of this paper, we have structured it as follows.  A conceptual 

illustration of a meta-valuation function is provided.  The site correspondence and the meta-

regression analysis models are then developed, followed by a description of the data.  Validity 

measures based on a traditional benefit transfer method using several multi-site and single-site 

travel cost models are calculated.  These validity measures are then related to correspondence 

measures between the study sites and policy sites based on the physical characteristics of the 

sites and the characteristics of the sample populations.  If there are statistically significant 

relationships between benefit transfer error and site correspondence, then we may be able to 

model these stochastic effects using meta-regression analysis.  The meta-regression analysis 

benefit transfer function is estimated and applied, illustrating the gains in accuracy over the 
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traditional benefit transfer methods used.  The paper ends with a discussion of the results and 

issues encountered in this research. 

2. Meta-Valuation Function 

 Figure 1 is a conceptual illustration of the proposed meta-valuation function.  First, let us 

assume there is an underlying or meta-valuation function, F(V).  F(V) is a function that links the 

values of a resource (such as wetlands) or an activity (such as downhill skiing or camping) with 

characteristics of the markets and sites, across space and over time:   

� � � � � � � �� �CgBgAgVF ;;� , where        (1) 

� � � �iiiiii TSPSCMKgg ,,,�� .         (2) 

The meta-valuation function (F(V)) is the envelope of a set of study site functions (g(.)) that 

relates site values to characteristics or attributes associated with each site, including market 

characteristics (MK), physical site characteristics (SC), spatial characteristics (SP), and time (T).  

Market characteristics may include factors such as individual preferences, socio-economic status 

(income, age, education, health), socio-cultural characteristics (attitudes, beliefs, dispositions), 

and socio-political influences (institutions, regulations, citizen participation).  Physical site 

characteristics may include factors such as quality and diversity of the site, resource composition 

and complexity, and other physically measurable and observable factors.  Spatial factors may 

include distance from point of origin to the site, scope or scale of the site, geographic location of 

the site, and diversity of the surrounding region.  Temporal factors may include such issue as 

stability of demand and supply and socio-cultural evolution (changes in tastes, values, 

preferences, knowledge).  The degree that any of these sets of factors affects benefit transfer 

accuracy is an empirical question.  Some research illustrates the efficiency gains from calibrating 

preference functions (Smith and Pattanayak 2002; Smith, Van Houtven and Pattanayak 2002). 
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[FIGURE 1 ABOUT HERE] 

 We hypothesize that primary research projects attempting to value a resource at a specific 

place, for a specific market, at a point in time, are randomly sampling from this function.  How 

close the original research project gets to estimating the actual or ‘true’ value from the meta-

valuation function depends on the quality of the research and the assumption that there is one 

true value for the resource at that place, for these people, at this point in time.  Thus, in Figure 1, 

g(A), g(B) and g(C) are independent site-specific functions estimating the value of the same (or 

similar) resource at three different locations.  Assuming the primary research was conducted 

properly, ceteris paribus, the estimated ‘true’ value for each site is VPA*, VPB* and VPC*, 

respectively.   

 Benefit transfer validity tests typically assume the value estimated using primary research is 

the ‘true’ value for a site, or VP.  However, since VP is unobservable, primary research 

approximates it, Vpp.  In terms of notation, let the subscripts be s for a study site and p for a 

policy site.   In benefit transfer applications, the study site values Vss are used to inform the value 

of a similar, but unstudied, site.  That is, Vss is transferred to a different, but similar site j, where 

site j is the policy site.  When the study site measure, Vss, is transferred to the policy site, it 

becomes a transfer value, Vps.2   

Vps = VP + �ps,           (3) 

where �ps is the error associated with the transfer of a benefit measure from site i to site j.  The 

empirical tests of the convergent validity, or accuracy in estimating VP
 by Vps, presented in Table 

I are based on calculating the percentage difference between Vps and Vpp:  

%�Vij = [(Vps – Vpp)/Vpp] * 100        (4) 

when i � j.  Given equations (3) and (4), the convergent validity measures become �ps/Vpp * 100.  
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 There are two sources of variability in �ps, and thus, errors in benefit transfers: (1) differences 

in the characteristics of the study site and policy site (�ps); and (2) errors associated with 

estimating VP via Vpp (�i) (Woodward and Wui 2001).  Figure 1 illustrates the potential 

generalization error associated with applying different benefit estimates to other sites.  The 

individual site value distribution g(C’) is a deviation from the ‘true’ distribution of the value for 

Site C (g(C)) by the amount �C.  This source of error arises from poorly conducted primary 

research, such as poor sample design, questionnaire development, and other sources for bias 

(Mitchell and Carson 1989).  Dealing with this form of error requires subjective judgments about 

the quality of primary research, and is beyond the scope of this paper.   

 The remaining form of error, which is the main thesis of this paper, is the error associated 

with the correspondence between the study site and policy site.  In figure 1, �CA and �CB are the 

errors associated with using the distribution of value for Site A or Site B, respectively, to 

estimate the value for Site C given the differences in the site characteristics.  For example, �CA is 

the error associated with adjusting g(A) by the characteristics of site C to estimate the value for 

site C, or VPC(A).  This error arises in part because g(A) was not developed with the characteristics 

of site C in mind.  However, the greater the correspondence, or similarity, of the two sites, the 

smaller the expected error (Boyle and Bergstrom 1992; Desvousges, Naughton and Parsons 

1992).   

 Several of the studies listed in Table I support this hypothesis.  Lower transfer errors resulted 

from in-state transfers than from across-state transfers (Loomis 1992; VandenBerg, Powell and 

Poe 2001).  Socio-political differences are smaller for in-state transfers than for across-state 

transfers.  In the Loomis et al. (1995) study, their Arkansas and Tennessee/Kentucky multi-site 

lake recreation models performed better in benefit transfers between the two regions (percent 
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errors ranging from 1% to 25% with a nonlinear least squares models and 5% to 74% with the 

Heckman models) than either one when transferred to California (percent errors ranged from 

106% to 475% for the nonlinear least squares models and from 1% to 113% for the Heckman 

models).  This suggests that the similarity between the Eastern United States models implicitly 

accounted for site characteristic effects.  VandenBerg, Poe and Powell (2001) show accuracy 

gains when they transfer values and functions within communities that have experienced 

groundwater contamination in the past, than transferring across states, within states, or to 

previously unaffected communities. 

 Several of the studies in Table I also support the hypothesis that generalization errors can be 

reduced by transferring functions instead of point estimates or values.  Benefit functions enable 

the calibration of the function to differences between the study site for which the function was 

developed and the policy site to which the function is applied (Loomis 1992; Parsons and Kealy 

1994; Bergland, Magnussen and Navrud 1995; Kirchhoff et al. 1997 (for the birdwatching model 

only); Brouwer and Spaninks 1999; and VandenBerg, Poe and Powell 2001 (pooled data 

models)).  However, the gains in accuracy may be more a function of the similarity of the sites 

than the calibration of site characteristics in the function transfers.  This is because most of the 

functions did not include variables measuring the physical differences between the sites, but 

socio-economic differences between the markets.  Many of the physical differences important for 

calibrating values across sites are unmeasured in the original functions because these 

characteristics are fixed, or constant in individual site models. 

3. Site Correspondence Effects 

 This paper focuses on the site correspondence factors affecting the validity of benefit 

transfers.  Other factors such as time and research methodology are important, but they require 
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additional assumptions that are beyond the scope of this paper.  The correspondence between 

two sites, i and j, (SCij) is measured as the differences between study site i and policy site j based 

on observable measures of the distribution of market characteristics (age, gender, and income) 

and the distribution of physical characteristics (topography and other landscape features, 

resource qualities, and other measures of the physical attributes of the respective sites).  We 

hypothesize that �ij is a function of several factors: 

� �� �iijij SCh ��� ,�           (5) 

where �ij is the generalization error associated with the transfer of study site measure i to policy 

site j.  �, or the error associated with movements along the valuation function, is defined by SCij, 

which is a measure of the correspondence between characteristics of study site i and policy site j.   

�i is the error associated with the study site measure.  In equation (5), we hold �i as a stochastic 

component of the study site.   

 Thus, the site correspondence model takes on the following form: 

%�Vij = h(%�SCij).          (6) 

That is, the percentage difference in the value transfer from site i to site j (%�Vij) is a function of 

the percentage difference in the characteristics of site i and site j (%�SCij), where SCij includes 

characteristics of the sample population or market and physical characteristics of the study sites.  

Market characteristics can be measured in terms of the demographic profiles of the sample 

populations for the sites and the physical characteristics can be measured as the physical 

differences between the sites. 

4. Meta-Regression Analysis Benefit Transfer Function 

 If we can identify the factors that determine the accuracy of benefit transfers, then, in theory, 

it should be possible to develop a transfer function that calibrates transfer measures (Vps) based 



 9

on these identifiable factors, resulting in more accurate estimates of VP.  We posit the existence 

of an underlying meta-valuation function based on aggregated individual preferences that 

determines individual site values and the distribution of the characteristics across all sites (figure 

1).  The valuation function (F(V)) illustrated in figure 1 is a cross-section of a multi-dimensional 

surface where the per unit total value for a site is a function of the characteristics of each site.  

This valuation function is an envelope function of individual site-value distributions (g(A), g(B), 

and g(C)) estimated from different studies.  The goal of meta-analysis is to estimate this 

underlying meta-valuation function.   

 Meta-regression analysis is a statistical method for summarizing relationships between 

benefit measures and quantifiable characteristics of studies.  Meta-regression analysis has been 

traditionally used to understand the influence of methodological and study-specific factors on 

research outcomes and to provide syntheses of past research (Stanley 2001).  More recently, 

meta-regression analysis has been applied to benefit transfer (Desvousges, Johnson, and Banzhaf 

1998; Kirchhoff 1998; Sturtevant, Johnson, and Desvousges 1998; Rosenberger and Loomis 

2000b, 2001).  One potential advantage of using meta-analysis functions for benefit transfer is 

the increased sensitivity of transfer estimates to characteristics of the policy site (Rosenberger 

and Loomis 2000b).  This increased sensitivity is due, in part, to the robustness of the method to 

underlying distributions in primary data (Desvousges, Johnson and Banzhaf 1998).  In Table I, 

Kirchhoff’s (1998) results suggest that benefit function transfers outperform meta-analysis 

transfers.  This is misleading in that the meta-analysis functions used in this study were not 

developed for benefit transfers, and the developers even cautioned against their use for benefit 

transfer purposes.  However, in spite of these cautions, Kirchhoff (1998) found that existing 
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meta-analyses outperformed or did as well as the benefit function transfers in Kirchhoff et al. 

(1997). 

 We define the meta-analysis valuation function as: 

Vj = f(SCj, �j).           (7) 

That is, the benefit measure derived for site j is a function of its market characteristics, its 

physical attributes, and error in the original study (�j).  We can test whether the meta-regression 

analysis valuation function provides more accurate benefit estimates for a policy site than 

traditional benefit transfers.  A hypothesis is: 

H0:  %�VMETAij = %�VTRADij         (8) 

H1:  %�VMETAij < %�VTRADij,         (9) 

where %�VMETAij is calculated in the same fashion as %�Vij ((2)).  A one-tailed paired t-test may 

be used to test this hypothesis. 

5. Data 

5.1. SURVEY DESIGN 

 The data used in this analysis was collected in 1998 to investigate the effects of forest fires on 

the value of hiking and mountain biking (Englin, Loomis and Gonzalez-Caban 2001).  Trails 

were selected in a stratified random sampling of past fire occurrences by age of fire and number 

of acres burned.  Recreation users of the trails were sampled during July and August.  Over a 35-

day period, 10 trails were sampled on a weekday and a weekend day by intercepting recreation 

users as they returned to a trailhead parking area.  They were provided with a statement 

regarding the purpose of the survey and a mail-back questionnaire.  The questionnaire elicited 

information from the users about their primary activity on the trail, travel cost information (travel 

time, distance from home to the trail, travel costs, number of trips this year and last year to the 
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current trail), and sociodemographics, among other questions.  Table II provides a description of 

the variables used in this analysis.  A total of 527 surveys were distributed with 354 being 

returned, for a response rate of 67 percent.  For our purposes, we restrict the data to hikers and 

trails predominantly used by hikers in order to control for individual preference differences 

between hikers and mountain bikers.  Therefore, the current sample consists of 127 respondents 

across six individual or combined trails in three National Forests.  Some of the trails were 

combined based on similarity of characteristics and proximity to each other in order to improve 

the degrees of freedom in the analysis. 

[TABLE II ABOUT HERE] 

 Three National Forests (NF) in Colorado (the Arapaho-Roosevelt NF, the Gunnison-

Uncompaghre NF, and the Pike-San Isabel NF) were selected, providing a range of fire and trail 

characteristics (Table III).  Two of the National Forests are along the front range of the Rocky 

Mountains with the other National Forest being interior to the mountains.  The sample of 127 

recreational hikers also provides a range of demographic characteristics (Table IV). 

[TABLES III AND IV ABOUT HERE] 

5.2. BENEFIT MEASURES 

 Figure 2 illustrates the development of the study site measures from various travel cost model 

specifications.  Based on a single meta-database, several travel cost models are specified from 

various treatments of the data.  These travel cost models are used to estimate Marshallian 

consumer surplus values Vpp and Vps.  Table V provides an overview of the various travel cost 

variable specifications and whether sample and physical characteristics of the sites were included 

in the model specifications.  The single-site, or trail-specific, models are assumed to provide 



 12

measures of Vpp for each trail (j = 1,…,6).  We assume the benefit measures based on these 

models is the ‘true’ value for each trail because each trail model’s data is site-specific.   

[FIGURE 2 ABOUT HERE] 

 The multi-site models provide the transfer values (Vps).  The multi-site models are general 

models of the value of hiking for a broader range of trails.  Therefore, the benefit measures 

derived from these models are not specific to a single trail.  Several specifications of multi-site 

models are developed.  For the State Models, the entire database is used with three travel cost 

variable specifications, including an aggregate travel cost variable, forest-specific travel cost 

variables, and trail-specific travel cost variables.  The N-1 models use the approach wherein data 

is pooled for all but the nth trail (Loomis 1992).  These models result in ballpark estimates of the 

value to be transferred to the nth (or excluded) site. The Forest Models are developed from the 

data for a specific forest and two travel cost variable specifications, including a forest aggregate 

travel cost variable and trail-specific travel cost variables.   

 The basic form of the travel cost models is given by: 

lnTripsabi = � + �TCabi + �Demographics + �Site Characteristicsi + �ab + �i.  (10) 

The dependent variable is the natural log of the number of hiking trips this year (a) and last year 

(b) to site i.  Trips is a function of travel costs to site i this year (a) and last year (b), 

demographics of the respondent, and characteristics of site i.  � is the intercept term and �, �, and 

� are parameters to be estimated.  	ab is the random panel effect accounting for the panel nature 

of the data (Rosenberger and Loomis 1999), and �i is the common error component.  A negative 

binomial random effects regression technique is used to estimate the various travel cost models.3 

 The benefit estimates derived from the travel cost models are measures of Marshallian 

consumer surplus.  Consumer surplus is calculated by integrating the demand function (equation 
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(10)) over the relevant price or travel cost range, yielding consumer surplus per trip.  The 

negative binomial random effects model is equivalent to a semi-log demand function.  Therefore, 

consumer surplus can be simply calculated as (-1/�i), or –1 divided by the coefficient on travel 

cost (Adamowicz, Fletcher, and Graham-Tomasi 1994; Creel and Loomis 1990).  In those 

models with forest- or trail-specific travel cost shift variables, the formula is [-1/(�1+�2)].    

 Table VI provides the benefit measures for each of the travel cost models.  The baseline 

measures are calculated from the trail-specific travel cost models and provide estimates of Vpp for 

equation (3).  The transfer measures of equation (3) (Vps) are calculated from Model A through 

Model M (Table V).  Table VI shows that there is a wide range of benefit measures from a low 

of $12.12 per trip for Trail 1 to a high of $248.85 per trip for Trail 4.  Table VI also shows that 

there is an increase in the variability of hiking values as we progress from Model A (which 

provides a ballpark estimate of the value of hiking in Colorado), to more specific measures for a 

National Forest (Models B, D and F), to the value of hiking for a specific trail (Models C, E, G, 

and H through K). 

[TABLES V AND VI ABOUT HERE] 

5.3. VALIDITY MEASURES 

 Table VII provides the validity measures as percent differences (%�Vij) ((2)) between the 

transfer value (Vps) and the actual, or baseline value (Vpp).  These measures provide an indication 

of the relative accuracy of the benefit transfer process when VP is known.4  These measures are 

consistent with other empirical measures from the literature (Table I).  The validity measures 

range from a low of about 4 percent underestimating the value of Trail 6 using Model G (a 

multisite forest model that includes Trail 6) to a high of over 900 percent overestimating the 

value of Trail 1 using Model C (a multisite state model with trail specific travel cost variables).  
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The average percent difference measures for each model ranged from an average of about 43 

percent when using the forest-specific travel cost models with trail-specific travel cost shift 

variables (Models E and G) to over 200 percent when using the N-1 modeling strategy (Models 

H through M).   

[TABLE VII ABOUT HERE] 

 There is not an apparent pattern to these validity tests.  The state-level model with a single 

travel cost variable (Model A) does best for estimating the value for Trail 2, which has the 

largest number of individual observations in the model.  By adding a forest-specific travel cost 

variable (Model B), the accuracy improves for nearly all trails.  With the further addition of trail-

specific travel costs variables (Model C), the state-level model accuracy improves for the two 

trails in the Gunnison/Uncompaghre Forest, but diminishing for the other trails and forests as 

compared to Model B.  The forest level models with a generic travel cost variable (Models D and 

F) and those with trail-specific travel cost variables (Models E and G) generally perform better 

than the state-level models.  This may be due to greater similarities within forests than across 

forests.  The data splitting modeling approach (N-1 modeling, Models H through M) do not 

perform very well.  This is potentially due to increasing the heterogeneity of the data underlying 

each model. 

6. Estimating the Site Correspondence Model 

 This section estimates the site correspondence model.  The validity measures presented in 

Table VII form the dependent variable in the site correspondence model (equation (6)).  The 

explanatory variables are calculated in a similar fashion by applying equation (4) where Vps 

becomes demographic and site characteristic measures for site i, and Vpp becomes the 
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corresponding measure of the characteristic for policy site j.  The specific form of the site 

correspondence model is: 

%�Vijm = � + �1%�GENDERij + �2%�AGEij + �3%�ELEVij + �4%�GAINij + �5%�LONGij + 

�6%�FIREij + �7%�WATERij + �8%�PPij + �9%�LPij + �10%�ASPij + 	m + �.  (11) 

This model investigates the magnitude of the effect of differences in market and site 

characteristics between study site i and policy site j on the error associated with the transfer of a 

benefit measure from site i to site j using modeling strategy m (State, Forest, or N-1 models).  In 

this model, 	m is the panel-specific error component and � is the common error component.   

 The dependent variable (%�Vijm) is of the panel data type; multiple observations are from the 

same source (modeling strategy).  Identifying the strata or panels is an important component 

when dealing with panel data (Rosenberger and Loomis 2000a).  In this case, the modeling 

strategy m is a potential source of panel effects.  Three unbalanced panel strata are defined: (1) 

18 validity measures are derived from applying the State Models A through C (Table VII), (2) 

ten validity measures are derived from applying the Forest Models D through G (Table VII), and 

(3) six validity measures are derived from applying the N-1 Models H through M (Table VII).  A 

random effects generalized least squares regression technique is used because some of the 

regressors are invariant within a panel.  A fixed effect estimator requires all regressors to have an 

intra-panel variance (Greene 1999).   

 Table VIII provides the results of the estimated site correspondence model.  We have no prior 

expectations regarding sign and significance of the explanatory variables.  The model has an 

adjusted-R2 of 0.79.  Interpretation of the estimated covariates is relatively straightforward.  

First, a significant variable in the regression indicates the variable has an effect on the accuracy 

of benefit transfers.  Second, because the variables are unitless measures of percent difference 
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between the study site and the policy site (equation (4)), a positive (negative) sign indicates that 

percentage differences between site characteristics and validity measures move with (against) 

each other.  For example, a positive covariate means that when transferring a value from a short 

(long) trail to a long (short) trail the result is an overestimation (underestimation) of the policy 

site’s value.  Third, the larger the coefficient on each variable, the greater the effect on the 

accuracy of the benefit transfers. 

[TABLE VIII ABOUT HERE] 

 Table VIII shows that the demographic variables (%�GENDER, %�AGE) are significant and 

positively related to the direction of error in benefit transfers, with differences in gender 

composition of the samples having over twice the effect as differences in the age composition of 

the samples.  Differences in the lengths of the trails (%�LONG) are significant and positively 

related to the direction of error in benefit transfers.  In descending order of the magnitude of their 

effect, differences in elevation (%�ELEV), presence of water (%�WATER), and gain in elevation 

of the trail (%�GAIN) are significant and inversely related to the direction of error in benefit 

transfers.  Tree cover type of the recreation sites, in particular the presence of lodgepole pine 

(%�LP) and aspen forests (%�ASP), have somewhat significant, but opposite relationships with 

the resulting error in benefit transfers.  However, tree cover type in Colorado is a function of 

elevation, although these variables are not statistically correlated in this dataset. 

7. Meta-Regression Analysis Valuation Function 

 The final step in this analysis is to estimate the underlying valuation function for hiking 

values in Colorado’s National Forests (equation (7)) using meta-regression analysis and to test 

for increased accuracy in benefit transfer over a traditional transfer approach (Table VII).  The 

meta-regression analysis function acts as a calibration of the benefit measures to characteristics 
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of the sites.  The model treats each value measure (Table VI) as a random draw from the 

underlying valuation function.  Therefore, the dependent variable in the regression analysis is 

composed of all benefit measures reported in Table VI.   

 The data for the meta-regression analysis function also is of the panel data type.  The strata 

are the same as the site correspondence model above with the exception that there are now four 

strata: (1) 18 observations derived from the State Models A through C (Table VI); (2) ten 

observations derived from the Forest Models D through G (Table VI); (3) six observations 

derived from the N-1 Models H through M (Table VI); and (4) six observations derived from the 

Trail-specific models (Table VI).  A random effects generalized least squares regression 

technique is used to fit the data.  As noted above, a fixed effects specification is inappropriate 

because some of the panels are invariant in some of the regressors (Greene 1999).   

 The specific form of the empirical model is: 

CSim = � + �iTRAILi + �6ELEVm + �7GAINm + �8LONGm + �9FIREm + �10PPm + 	m + �. (12) 

That is, consumer surplus (CSim) for the ith trail using the mth travel cost model is a function of 

TRAILi (a dummy variable identifying the trail where i is Trail 1 through Trail 6 (Table III) with 

Trail 2 being the omitted variable), and site characteristic measures for trail-head elevation 

(ELEVm), gain in elevation (GAINm) and length (LONGm) of the trail, age of past forest fire 

events (FIREm), and ponderosa pine forest type (PPm) for the mth model.  	m is the panel-specific 

error component and � is the common error component.  Several of the variables could not be 

included in the model because they were correlated with other characteristics of the trails or trail-

specific dummy variables (e.g., WATER is a characteristic of Trail 3). 

 Table IX provides the results of the estimated meta-regression analysis valuation function.  

The adjusted-R2 of the model is 0.72.  Although only two of the variables (Trail 3 and LONG) 
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are significant at the 0.10 level or better, the majority of the other variables are significant at the 

0.40 level or better.  The coefficient estimates are the incremental consumer surplus per unit of 

the variable.  The function can be adjusted to predict consumer surplus for a trail according to 

specific characteristics of the trail.  Consumer surplus measures per trail are reported in Table X.  

These measures are calculated from the meta-regression analysis function by turning on (=1) or 

turning off (=0) the full effect of the trail-specific (TRAILi) and forest type (PP) dummy 

variables and adjusting each of the other variables according to the measure of the characteristic 

for a specific trail.  If we use the same baseline consumer surplus measures as the target values 

used in previous assessments, validity measures (%�Vij) can be calculated.  These percentage 

difference measures range from –62 percent error to –2 percent error, with an average percent 

error of 20 percent (Table X).   

[TABLES IX AND X ABOUT HERE] 

 We can now test the hypothesis (equations (6) and (7)) that the meta-regression analysis 

valuation function, when adapted as a benefit transfer function, provides more accurate measures 

of consumer surplus than using traditional benefit transfer approaches (Table VII).  Table XI 

provides the results of one-tailed paired t-tests on the validity measures for the meta-regression 

analysis transfer (Table X) versus each of the different modeling strategies (by row comparison) 

in Table VII.  The results show that we can reject the null hypothesis (equation (8)) that the two 

approaches result in equivalent levels of accuracy in favor of the alternative hypothesis (equation 

(9)) that the meta-analysis transfer approach is more accurate than the traditional value transfer 

approach for three out of six comparisons at the 0.10 significance level or better (Table XI).  The 

three models that cannot be rejected at this significance level are those models that incorporate 

trail-specific travel cost shift variables (Model C) or the Forest models that are based on regional 
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data (Models D and F, and Models E and G).  At a significance level of 0.16 or better, we can 

reject the null hypothesis of equal accuracy in favor of the alternative hypothesis that the meta-

analysis transfer is more accurate than the traditional approach (Table XI).  This indicates that 

more specific modeling strategies result in more accurate benefit transfers. 

[TABLE XI ABOUT HERE] 

8. Discussion and Conclusions 

 This study investigated how differences in the market and physical characteristics of 

recreation sites are related to the errors associated with a benefit transfer process.  In addition, an 

underlying valuation function was developed using meta-regression analysis.  The valuation 

function statistically relates measures of physical attributes of recreation sites with their 

associated benefit estimates.  This study does not provide definitive evidence regarding the 

methodology and outcomes described herein.  However, it does begin the process of 

scientifically investigating the accuracy of benefit transfers and how different factors, as 

identified in the literature, affect them.  As Bergland, Magnussen, and Navrud (1995) note, there 

is a need for research that specifically targets benefit transfers and/or is specifically designed for 

future benefit transfer applications.  This study was undertaken for both of these reasons. 

 A site correspondence model is developed for hiking trips to several trails in Colorado.  This 

model suggests that we can identify the effects of differences in the physical attributes of 

recreation sites on differences in value measures.  Taking the constraints of the current dataset 

into account, we identified that error in the benefit transfer process was sensitive to differences in 

the sample’s characteristics and differences in physical attributes of the sites.  That is, a hiking 

trail is not necessarily a hiking trail, especially if their attributes are different such as degree of 

difficulty, landscape attributes, crowding, etc.  It is not necessarily that these are different goods 
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to be modeled differently, but that there are differences across the range of this good.  That is, 

differences between measures of values for recreation sites are movements along an underlying 

valuation function.  These differences must be captured in a broad model if the model is to 

perform reasonably well in benefit transfers.  The meta-regression analysis valuation model we 

develop shows how the benefit transfer process is improved with models that are more sensitive 

to differences in the physical attributes of similar recreation sites.  Our hypothesis test illustrates 

that valuation models sensitive to differences between sites performed better in benefit transfers 

than models providing ballpark estimates of value.   

 Resource managers and policy makers should consider the correspondence between their 

policy site and the available information from study sites.  Lacking the ability to fully specify a 

meta-valuation function that takes into account the differences across the candidate study sites, 

resource managers and policy makers should choose candidate study sites by the degree to which 

they correspond, or are similar, to their policy site needs across physical attributes of the site and 

the affected market.  By doing so, the literature and evidence provided in this study suggest that 

generalization errors may be minimized.  Funding agencies and other interested parties should 

continue to support (and fund) primary research.  It is primary research that samples from the 

meta-valuation function and provides information necessary in its empirical construction through 

the use of meta-analysis techniques.  Without the addition of new information, the confirmation 

of existing information, and growth in our body of knowledge pertaining to the values of 

nonmarket goods, our ability to develop robust and valid benefit transfer functions is limited. 

 Two obvious improvements on this analysis can be identified.  First, limitations of the data 

can be improved.  For example, several of the single-site models, from which baseline or target 

values are derived, potentially suffer from small numbers problems.  More observations for each 
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of the models should improve their quality.  In addition, the lack of modeling substitute sites may 

affect inter-site comparisons.  Second, a broader range of physical attributes could be measured, 

especially using Geographic Information Systems technology, providing an added spatial 

dimension (Eade and Moran 1996).  This may provide us with models that are more accurate, 

and subsequently more defensible, in applications to benefit transfers.    

 This analysis needs to be repeated under different circumstances.  It would be interesting to 

see if a general pattern in the effects of different site characteristics emerges.  This pattern, if it 

existed, could have a tremendous effect on how and what kind of data is collected in non-market 

valuation surveys.  Another empirical question is whether there is a single meta-valuation 

function for all related goods and services (such as outdoor recreation) or whether different 

goods and services (such as recreation activities) have different valuation functions. 

 In general, evidence presented in this paper supports the need for primary research to target 

the development of benefit transfer models (Bergland, Magnussen, and Navrud 1995), or at least 

be more sensitive to potential use of primary research outcomes in benefit transfer applications.  

This sensitivity to benefit transfers would entail gathering and reporting data that may not be of 

immediate use in the primary research, but essential to developing valid and reliable benefit 

transfers.  For example, insignificant covariate effects or explanatory variables that define the 

context of a study site (and are therefore constant for a site) are often not reported in primary 

research.  However, in order to develop a meta-valuation function, these covariate effects and 

measures of other variables are necessary.   
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Notes 

                                                           
1 The known (‘true’ or actual) value for a policy site is derived from an original study designed to estimate a value 

for this site. 

2 Although we speak of value in the singular, the reader should recognize that benefit transfers quite often use 

multiple values to infer a value and its distribution for a policy site. 

3 The estimated travel cost models are available upon request from the authors. 

4 Vpp is itself an approximation of the unknown but ‘true’ value of hiking at a specific site.  Because this value is 

unknown, there is an error associated with it.  For our present purposes, Vpp as estimated is the assumed ‘true’ value, 

VP, for each trail with no estimation error.  This is the traditional approach used when testing the validity of benefit 

transfers. 
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Table I. Summary of Benefit Transfer Validity Tests. 

 

Reference 

 

Resource/Activity 

Value Transfer 

Percent Errora 

Function Transfer 

Percent Errora 

Loomis (1992) Recreation 4 – 39  1 – 18 

Parsons and Kealy (1994) Water\Recreation 4 – 34  1 – 75 

Loomis et al. (1995) Recreation   

  Nonlinear Least Squares Model  --- 1 – 475 

  Heckman Model  --- 1 – 113 

Bergland et al. (1995) Water quality 25 – 45  18 – 41 

Downing and Ozuna (1996) Fishing 0 – 577 --- 

Kirchhoff et al. (1997) Whitewater Rafting 36 – 56 87 – 210 

 Birdwatching 35 – 69 2 – 35 

Kirchhoff (1998) Recreation/Habitat   

  Benefit Function Transfer  --- 2 – 475 

  Meta-analysis Transfer  --- 3 – 7028 

Brouwer and Spaninks (1999) Biodiversity 27 – 36  22 – 40  

Morrison and Bennett (2000) Wetlands 4 – 191 --- 

Rosenberger and Loomis (2000a) Recreation --- 0 – 319 

VandenBerg et al. (2001) Water quality   

   Individual Sites  1 – 239 0 – 298 

   Pooled Data  0 – 105 1 – 56 

Shrestha and Loomis (2001) International Recreation --- 1 – 81 

Adapted from and expanded on Brouwer (2000). 

aAll percent errors are reported as absolute values. 
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Table II. Description of Variables. 

Variable Description 

TC Travel cost as individual’s reported share of transportation costs plus time costs 

(1/3 wage rate * travel time) (dollars) 

TC*Fi Interaction terms of TC and National Forest (i=3) (dollars) 

TC*Ti Interaction terms of TC and Trail (i=6) (dollars) 

GENDER Dummy variable; 1 = male, 0 = female 

AGE Respondent’s age (years) 

EDU Respondent’s level of education (years completed) 

INC Gross annual household income of respondent (dollars) 

ELEV Trailhead elevation above sea-level (feet) 

GAIN Elevation gain of trail from trailhead to summit (feet) 

LONG Length of trail (miles) 

FIRE The negative of the age of a wildfire in the recreation area (years) 

WATER Dummy variable; 1 = presence of water (lake, stream) near trail, 0 = no water 

CROWN Dummy variable; 1 = extreme fire in past as evidenced by crown fire, 0 = otherwise 

PP Dummy variable; 1 = presence of ponderosa pine trees, 0 = otherwise 

LP Dummy variable; 1 = presence of lodgepole pine trees, 0 = otherwise 

ASPEN Dummy variable; 1 = presence of aspen groves, 0 = otherwise 
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Table III. National Forest and Trail Summary Statistics. 

National Forest/  

   Trail 

 

Na 

 

ELEV

 

GAIN

 

LONG

 

FIRE

 

WATER 

 

PP 

 

LP

 

ASPEN

Arapahoe/Roosevelt   (Forest 1)        

  Mount Margaret (Trail 1) 13 7800 100 5 -50 0 1 0 0 

  Grey Rock (Trail 2) 52 5400 2055 6 -8 0 1 0 0 

 Kilpecker/Blue Lake 

(Trail 3) 

10 9400 1450 10 -42 1 0 1 0 

          

Pike/San Isabel (Forest 2)         

  Devil’s Lookout (Trail 4) 25 8900 600 3 0 0 1 0 1 

          

Gunnison/Uncompaghre (Forest 3)        

North Bank/Doc Park  

(Trail 5) 

6 8600 900 7 -2 0 1 1 1 

Summerville/DoubleTop 

(Trail 6) 

21 8900 1400 9 -50 0 0 1 0 

an = number of respondents per trail. 
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Table IV. Summary Statistics of Sample (n=127). 

Variable Mean Standard Deviation Range 

GENDER 0.51 0.50 0 – 1 

AGE 36.48 11.22 19 – 73 

EDU 16.12 2.22 11 – 20 

INC $68760 45326 5000 – 175000 
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Table V. Travel Cost Model Specifications 

MODEL TC TCFOREST TCTRAIL Physical Char. Sample Char. #Obs. 

A - State X   X X 254 

B – State X X  X X 254 

C – State X  X X X 254 

D – Forest  X  X X 150 

E – Forest  X X X X 150 

F – Forest  X  X X 54 

G – Forest  X X X X 54 

H – N-1 X   X X 228 

I – N-1 X   X X 150 

J – N-1 X   X X 234 

K – N-1 X   X X 204 

L – N-1 X   X X 242 

M – N-1 X   X X 212 

Trail 1   X  X 26 

Trail 2   X  X 104 

Trail 3   X  X 20 

Trail 4   X  X 50 

Trail 5   X  X 12 

Trail 6   X  X 42 
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 Table VI. Baseline and Transfer Consumer Surplus Measures per Trip. 

 Baseline Measures (Vpp) 

Model Trail 1 Trail 2 Trail 3 Trail 4 Trail 5 Trail 6 

   Trail $12.12 $60.38 $41.56 $248.85 $33.81 $46.57 

  

Transfer Measures (Vps) 

Model Trail 1 Trail 2 Trail 3 Trail 4 Trail 5 Trail 6 

   A $81.93 $81.93 $81.93 $81.93 $81.93 $81.93 

   B 45.56 45.56 45.56 61.29 76.91 76.91 

   C 126.14 87.62 6.47 65.45 22.09 41.21 

   D 65.50 65.50 65.50 --- --- --- 

   E 22.43 46.73 7.37 --- --- --- 

   F --- --- --- --- 36.41 36.41 

   G --- --- --- --- 32.37 37.40 

   H 116.42 --- --- --- --- --- 

   I --- 95.76 --- --- --- --- 

   J --- --- 73.01 --- --- --- 

   K --- --- --- 31.83 --- --- 

   L --- --- --- --- 73.81 --- 

   M --- --- --- --- --- 126.82 
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Table VII. Benefit Transfer Validity Measures Using Traditional Value Transfer Approach. 

Model Trail 1 Trail2 Trail 3 Trail 4 Trail 5 Trail 6 Average 

|%�Vij| 

A 575.99%a 35.69% 97.14% -67.08% 142.32% 75.93% 165.69%

B 275.91 -24.54 9.62 -75.37 127.48 65.15 96.35 

C 940.76 45.11 -84.43 -73.70 -34.66 -11.51 198.36 

D & F 440.43 8.48 57.60 --- 7.69 -21.82 107.20 

E & G 85.07 -22.61 -82.27 --- -4.26 -19.69 42.78 

H – M  860.56 58.60 75.67 -87.21 118.31 172.32 228.78 

aValidity (percentage difference) measures = [(Vps – Vpp)/Vpp]*100 (Equation (4)). 
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Table VIII. Site Correspondence Model: Random Effects. 

Variable Coefficient Standard Error Significance Level 

Constant 87.2429 121.34 0.47 

%�GENDER 45.4459 11.93 0.00 

%�AGE 22.4562 14.58 0.12 

%�ELEV -9.7922 5.72 0.09 

%�GAIN -0.7929 0.32 0.01 

%�LONG 12.3915 5.80 0.03 

%�FIRE -0.0284 0.14 0.84 

%�WATER -4.6403 1.92 0.02 

%�PP 0.2824 3.75 0.94 

%�LP -2.1720 2.41 0.37 

%�ASP 10.4403 8.12 0.20 

Adj-R2 0.79   

# Obs. 34   

Dependent variable is %�Vij, or validity (percentage difference) measures (Table VII). 



 36

Table IX. Meta-Regression Analysis Valuation Function: Random Effects. 

Variable Coefficient Standard Error Mean of Variable 

Constant -2602.9263 2704.68 --- 

TRAIL 1 7.9950 11.15 0.175 

TRAIL 3 -20.6873a 11.17 0.175 

TRAIL 4 -5.2568 12.52 0.125 

TRAIL 5 -9.9429 12.20 0.175 

TRAIL 6 2.5347 12.04 0.175 

ELEV 0.2381 0.20 7514.542 

GAIN 0.5439 0.47 1341.859 

LONG -75.8477a 26.73 6.332 

FIRE -8.9823 10.25 -22.661 

PP 618.0245 729.57 0.700 

Adj. –R2 0.72   

# Obs. 40   

Dependent variable is consumer surplus per trip (Table VI). 

aVariable is significant at the 0.10 level or better.   
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Table X. Meta-Analysis Consumer Surplus Estimates and Validity Measures. 

Trail VTi VPj* a %�Vij 

Trail 1 $4.54 $12.12 -62.54% 

Trail 2 56.88 60.38 -5.80 

Trail 3 35.16 41.56 -15.40 

Trail 4 242.90 248.85 -2.39 

Trail 5 29.36 33.81 -13.16 

Trail 6 36.82 46.57 -20.94 

Avg. |%�Vij|   20.04 

aFrom trail-specific models, see Table VI. 

 



 38

Table XI. Results of Hypothesis Tests. 

Model Comparisons t-Stat Significance Level 

Meta vs. Model A 1.95 0.05 

Meta vs. Model B 2.36 0.03 

Meta vs. Model C 1.26 0.13 

Meta vs. Models D, F 1.13 0.16 

Meta vs. Models E, G 1.45 0.11 

Meta vs. Models H – M 1.76 0.07 

Hypothesis Tested: H0: %�VMETAij = %�TRADij vs. H1: %�VMETAij < %�TRADij. 



 39

(Rosenberger Fig. 1) 
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(Rosenberger Fig. 2)

Colorado Hiking Data 

State models 
A – C (3) 

N-1 models 
H – M (6) 

Forest models 
D – G (4) 

Trail models 
(6) 

Vps Vpp 

Validity Measures 
%�Vij

TC Specifications include: 
State TC (Models A – C, H – M) 
Forest TC (Models B, D, F) 
Trail TC (Models C, E, G, Trails 1-6)
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Figure captions: 

Figure 1.  Meta-Valuation Function and Benefit Transfer Error. 

Figure 2.  Travel Cost Models and Data Development. 
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