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PHYSICAL REVIEW D, VOLUME 59, 065002

Mass-shell behavior of the electron propagator at low temperature

H. Arthur Weldon
Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315
(Received 15 October 1998; published 1 February 1999

At T=0 the full electron propagator is known to have an infrared anomalous dimension and thus a branch
point atP?=m? rather than a pole. An explicit calculation shows that @T<m the retarded self-energy is
analytic in the vicinity ofP2~m?, which includes the thermal mass shell. The low-temperature propagator has
a simple pole. Only wheif =0 is there a branch point at the mass shell.

[S0556-282(199)06804-9

PACS numbss): 11.10.Wx, 11.15.Bt, 14.60.Cd

[. INTRODUCTION tron propagator actually has a branch poinPat m? rather
than a pole. The propagator has the behavior
In high temperature gauge theories the fermion propaga-
tor is quite different than at zero temperat(it¢ and calcu- S'(P)— Z; P+m 1)
lations require the Braaten-Pisarski resummation of hard m27 (Pz—mz)“V
thermal loopg2—4]. One of the important quantities to be
calculated is the imaginary part of the fermion self-energy, oiin the vicinity P2~m?. The value ofy depends upon the
damping rate, which has been computed in various circumehoice of gauge. If the free photon propagator is
stances. In QCD the massless gluons are so changed by ther-
mal effects that a resummed gluon propagator is always nec- gr K#K”
essary to compute thermal damping rates. Whether the quark DH(K) == 1z +(1-9) K32
masses are small or large comparedyi determines if a
resummed quark propagator is required. The quark damping,qn,
rate has been computed in both cagg§] and the potential
infrared divergences are controlled by incorporating a mag- y=(¢-3)al2m. )
netic screening mass. The absence of a magnetic screening

mass in QED makes the electromagnetic damping rates Moysy _ :
. : y whené=3 (Yennie gauggdoes the electron propaga-
problematic[6]. It appears that at high temperatureT( , ‘haye a simple pole. The exponeptis the infrared

>m) the electron propagator at large time does not decayn,majous dimension of the electron propagator. A recent
exponentially[7]. The same behavior is observed in Scalarcalculation[lz] of v for the propagator and other multi-

QED(8]. ) fermion Green functions shows that Ed) is valid provided

In QED at low temperature(T<m) neither the electron the anomalous dimension in the rangd <y<1/2, which
nor photon propagator require Braaten-Pisarski resumma!:'orresponds to an enormo@srange:—857<§<4,33. Al-
tion. One would expect very little qualitative difference be-y,, 1. is an infrared anomalous dimension and arises from

tween low temperature and zero temperature. H_owever, ®Xhe infrared behavior of the gauge boson propagatatself
plicit calculation will show that there is an important is not infrared divergent

difference: afT=0 the electron propagator has a branch cut
at the mass shell but foFr>0 the propagator has a simple
pole. B. Nonzero temperature
The question that will be investigated here is the effect of
massless photons on the near mass-shell behavior of the
finite-temperature electron propagator. At finite temperature
The scattering formalism of zero-temperature quantunthe location of the singularity in the propagator is
field theory relies upon the assumption that asymptoticallyemperature-dependent. It is convenient to deal with the re-
separated particles do not influence each other. Consequentyrded propagator. The inverse of the full retarded thermal
propagators are supposed to have simple poles at the phygiropagator is
cal mass of the particle. However, this argument fails for .
charged particles because of the long range of the Coulomb Sk (P)=P—m—2Xg, (©)
force. Two charged particles that are arbitrarily far apart do
not travel in straight lines. Instead their asymptotic trajectowhere 3.y is defined to contain th& =0 mass counterterm
ries are bent and the curvature grows logarithmically withém. In the rest frame of the plasma, rotational invariance
their separation. Thus charged particles that are infinitelyequires thattz be a linear combination of the matrices
separated cannot be treated as free particles. The conskyg,y- P, andyyy-p. Itis then straightforward to compute
guences of this for QED were first investigated by Abriko-the inverse of Eq(3). The result may be expressed com-
sov, Chung, and Kibbl§9—11]. They showed that the elec- pactly by defining

A. Zero temperature
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S 1 B P+m
SR=2Rp— ETr[ER]. Sp(P)= L g

Then TfSR]=—Tr[Sg]. The inversion of Eq(3) gives for ~ and for the photon in a general covariant gauge is

the full propagator
propag KEK? g

2k ok |KZ+inky'

DR(K)=| —g*"+(1-¢) (10

P+m+3g
SH(P)= B TPy @
R SinceeT<m neither propagator requires resummation. The
where the scalar self-energy in the denominator is advanced propagators are obtained by reversing the sign of
the infinitesimal imaginary part in the denominators. Dimen-
1 1 ~ sional regularization will be used to control the zero-
p(P)= 5 T (P+m)Zg]— 7 Tr22g]. (5)  temperature ultraviolet divergences. The one-loop self-
energy has the structure

Let D(P)=P?—m?—TIIx(P) be the denominator of Eg4). . )
The location at which D is singular(either a pole or a 2R(P)=2R(P)+2&(P)+om, (1D

branch point gives a complicated, temperature-dependent . , N
relation betweerp, andp of the form with dm the T=0 mass counterterm. The first contribution

has the internal electron on shell:
P2=m?+a(P). (6)
e u

i 2 € 4 K
e — —
The denominator of the propagator has the structure 2r(P)= 2 f (2m)* tanh(po—ko)/2T)

D(P)=[P?*~m?*-a(P)]*"*®[1+b(P)], @) XDR"(K)y,[Sr(P=K)=Sa(P=K)]y,.

with a,b,c generally complex. The question of whether the (12

p_ropaggtor has a branch p(_)int at the thermal dispe_rsion relz%:t T=0 this contribution does not contain a term of the form
tion (6) is therefore a question of whether the functiz(iP) (P2—m?)In(P>—1?). Although the magnitude of the

vargsges wRen Ec{_ﬁ) 'ff Sa;'Sf'e(_jg O turbati temperature-dependent part is exponentially suppressed by
raer a Approximation for € km. In a perturbative ex- exp(—m/T), that would not rule out a branch cut with a small

pansion the functlonzg,b,c are each OT ordes or smal_ler. I coefficient. Appendix A proves that there is no such term.
eT<m thena(P)<m?". To first order ina the denominator,  rpe jmportant contribution is the second term in Exf).

IS It has the internal photon on shell:
~P2_m2_ 2_m2
D(P)NP m a(P)+b(P)(P m ) ) _ieZ,LLE d4—EK
_C(P)(Pz—m2)|n(P2—m2)_ (8) R(P)—TJ WCOthg/ZT)’y#SR(P—K)’yV
Although the thermal mass-shell condition is given by Eq. X[DE"(K)=D&"(K)].

(6), the possibility of a branch point at the thermal mass shell
is reduced to finding whether there is a term of the forminserting the photon propagattt0) gives
c(P)(P?—m?)In(P>—n). To first order ina this only re-

quires computing e’us [ d*°K
1P~ T4 | G ot Koli2T) 7, 8P K) 7,

1
Ha(P)= 5 TH(P+m)Se]+0(a?). © L UZORIKT 715 ke (13
k0K

X| —g*¥

Note that the logarithmic term in E€B) is quite small at the
mass-shell6), O(a? In(«)) and was not examined in previ- The contribution of this term to the denominator of the elec-
ous calculation$13]. tron propagator will be labeled

Section Il gives the explicit result for the one-loop elec-
tron denominator both in Feynman gauge and in general co-
variant gauges. The detailed calculations are contained in the
appendixes.

HV(P)Z%Tr[(P—Fm) L(P)]. (14

Most of the paper is devoted to this computation.
Il. ONE-LOOP SELF-ENERGY

To compute the one-loop self-enerdy, it will be useful A. Self-energy in Feynman gauge

to use free propagators that are themselves retarded or ad- In the Feynman gauge&g=1, the photon propagator is
vanced. The free retarded propagator for the electron is  simplest. The trace in Eq14) yields

065002-2
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e°T? APP-m3)| 1 [im2-iP?
M(P)=co+ —5— +f(P), (15) f(P)|ge P | L e P
2wP € 2u+\/P?

where cq is a temperature-independent, divergent constant P Po+p

that is canceled by the mass counterterm in @4). Thus -1+ —Oln( 0 ” (22
the mass shell conditio(6) is essentiallyP?~m?+ e>T?/6, 2p {1 po—p

which is well known[13].

. . 2 2
The P dependence is contained in the function This does contain the termP{—m?)In(P?—nt). The loga-
rithmic contribution to the electron denominator function,
o _AMGJ . S(K?)coth(|ko|/2T) 16 D(P)=P*-m*-f(P), is
( )_2772 (PC_K)Z_mZ ’ ( )

D(P)~P2—m2+ —(P2—m?)In(P?—m?). (23
A=a(P?—3m?), (17) m

This agrees with the standard result in E2).

Analyticity for Im p,>0: A further check of the result is
the requirement that the retarded self-energy be analytic in
the upper half of the complep, plane. The only singulari-
ties in EQ.(19) that occur at complep, come from poles in
I'(Z.). These occur aZ.=1—n, for n a positive integer

Po>p=|pl. (18) and require thatp, satisfy pézEz—i4wnT(p0t p). The
complex roots of this equation can be writtgny=po,
Then P in Eq. (16) can be taken real anch replaced by *tiPoi and satisfy
m§=m2—i 7. The integration is performed in Appendix B
with the result

A [P?—m? 1 24T
e LY

whereP.=(py+i#,p) because of the retarded prescription.
The imaginary part of the denominator isy@,—Kky) and
will generally change sign ak, is integrated. Appendix B
shows that the denominator does not change sigm, ifs
positive time-like:

PG, =E2+4mnTpy +pj;,

p0i=2wnT(—1i£).
Por

AT(1 (potp rz,) If there were a root wittpg; >0, then the first equation im-
_'? 2 Po— P +In Lz (19) plies that|pg,|>E so thatp/py,<1. But then the second
equation implies thatpy; <O contrary to the hypothesis.
m2— p2 Hence there are no branch cuts for pg»0.
Z.=1+i —CW (20) Imaginary Part: At P2=m? the self-energy(19) is pure
4nT(p"£p) imaginary:
The ultraviolet divergent term, &/ is absorbed into the am?T (E+p
wave-function renormalization factor. Various properties are f(P)|p2=m2=i In . (29
discussed below. P E-p

Analyticity at PP~m?: The most important result is that
there is no term of the formR?—m?)In(P>—n?). In the
vicinity of P2~m? the variablesZ.. are close to 1. There-
fore, In['(Z..) is analytic near the mass shell. This means th
whenT+#0 the electron propagator has a simple pol@®t
~m?+e?T2/6 and not a branch cut.

This is an artifact of not having an infrared regularization as
shown by Rebhan in a different cont¢®f. Even the sign of
Eq. (24) is opposite what it should be for a retared self-

aEnergy. To check that it is an infrared effect, one can return
to Eqg.(16) and compute the imaginary part directly:

Zero-Temperature Limitit is rather surprising that Eq. —A  d3 k
(19) does have a logarithmic branch point preciselyTat Imf(P):E Wcotl—(ﬁ) e(po—ko)
=0. This comes about because&s:0, the argumentZ ..
—o in Eq. (20). Using the Stirling approximation (2) ><5(p2_m2_2p.|<)|k0:ik.

—ZIn(2)—Z gives the zero-temperature limit
At P?=m? the 6 function becomes

| img—iP?
" 47T\P? 3(k)

lim

—iTI (F(Z+))_ P2—m?

n = 2
0 i 8(2P - K) [y y= sk= ————-
2(EFp-k)
—1+ ﬁln(pﬁp) (21)
2p \po—p/| Even though the support is &=0 the integral does not
vanish because because of the Bose-Einstein enhancement of
Therefore, the zero-temperature limit of Eq9) is k=0:

065002-3
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o k
jo kd kcott‘( ﬁ) o(k)=T.

The remaining angular integration is

am?TE
2

1
[
E?—(p-k)?

and reproduces Eq24). The entire effect comes from the

Imf(P)=

pointk=0. If the infrared behavior is regulated there will be

no imaginary part aP?=m?,

B. Self-energy in general covariant gauge

In a general covariant gauge wigl¥ 1, the second term in

Eq. (13) must be computed. A prime will be used to denote

this contribution:

d* <K 98(K?)
(2m)® ok

SH(P)=(1-) 57

eZM€ J<
2
K#*KY
2k Tm

|ko|>

X Sr(P—K)v,. (25

The trace necessary for the electron denominator is

1
t'(P)=STHL(P+m)XK(P)], (26)
which yields
. Buf [ d*TK I8(K?) lkol\ P-K—K?2
f<P>—4W2f Kok ﬁ)m
2
B=a(1-&)(P?—m?). (29

In Appendix C this is computed fqu,>p with the result

tPy= =t 14 L)+i277—p°TZ
2m| € 27T Pz—mc
+ilT|n Pot P iw_Tn(F(ZQ)
2p \po—p/ p \T(Z))
1 PZ—m?
5(“ 2p(po+p))d’(z+)
2 2p(po—p) )

Analyticity at P~m?: As was the case in Feynman
gauge, there is no explicit lmi>—iP?). Sincel'(Z.) and
Y(Z.) are analytic neaZ .~ 1, the entire functiorf’ (P) is
analytic near the mass shell. There is no branch point.

Zero-temperature limitTo evaluatef’(P) at zero tem-
perature requires using E(1) and the asymptotic behavior
Yy(Z.)—In(Z.) in order to obtain

PHYSICAL REVIEW D59 065002

B |1 P%+m? 2uP?
f'(P)r=0=5=|-— >—+In| l; —||. (30
27| € 2P im“—iP

This does contain the ternP¢— m?)In(P?>—m?) with coeffi-
cient

o
~ 5 (1= &) (P?=m?)In(P2—m?).

Subtracting this from the Feynman-gauge contribut{@8)
gives

D(P)~P2=mP+ (3= )(P2=m?)In(P?~m?).
(32)

This agrees with the general res(#).

Analyticity for Im py>0: Since the only singularities in
I'(Z.) or y(Z.) are whenZ.. is zero or a negative integer,
the same analysis as before shows that(E§). is analytic in
the upper-half of the complep, plane.

Imaginary Part: The factorB vanishes aP?=m?. How-
ever, from the first line of Eq(29) it appears thaf’(P)
—ia(l1—&)ETasP?2—m?. As before this term would not
survive if the infrared behavior had been regulatgf

IIl. COMMENTS

The branch point in théf =0 electron propagator is a
major complication. It indicates the impossibility of an elec-
tron being isolated. It will always have a cloud of photons
and will, therefore, not be an eigenstate of the mass operator
[14]. To treat charged particles properly it is necessary to
employ a Hilbert space containing an infinite number of co-
herent photons [10,11,13. The Lehmann-Symanzik-
Zimmermann (LSZ) asymptotic conditions and reduction
formulas are modified16]. It is possible to avoid having a
branch point by using a more complicated, gauge-invariant
field operator for the electrofl7].

It is remarkable that for &€eT<m the electron self-
energy does not contain a ternP{—m?)In(P>—n?). The
reason for this difference is that the coordinate-space photon
propagatoD#”(x) at large time-like separations falls expo-
nentially, exg— 2= T(t—r)), whereas at zero-temperature it
falls like a power, 142—r?). This approach will be pre-
sented in a subsequent publication.

The electron propagator thus has a simple pole at the ther-
mal mass shelP?~m?+e?T?/6. This result does not auto-
matically carry over to QCD at low temperature. No matter
how large the quark masses are that break chiral symmetry,
the gluon propagator requires Braaten-Pisarski resummation.
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APPENDIX A: ANALYSIS OF X8 P2_m2 P2_ m2
__¢c __¢ Bl)
One can eliminate the self-energy contribution in Bp) ' 2(pY+p)’ S 2(pl-p)’ (
as a possibility for producing a branch cutR=m? rather
easily: where p8=p°+i 7. The imaginary parts of ands are al-

ways positive for any real values of and p. For py posi-

o e?uc [ d* K _— tive and time-like, i.e.py>p, the denominators of EqB1)
2r(P)= 2 f (2m)3 SL(P—K)*=m?] are positive so that ands can be replaced by
2 24 2 24
wtanf P )y (k4 m)y g omy o P oMy
21 )R # v 2(potp) 2(po—p)

This is the same as using a Feynman prescriptiof; i 7,
in the original denominator of Eq16). Thus,

Auc S(K?)coth( |ko|/2T)

2 € 3—¢€ — 4—¢€

ze(p):e_’“futan Q@ f(P) zwzfd KPZ—m2—2P-K+i77'
R 167 ] 20Q 2T

The & function constraint set&,=py*={ where Q=[m?
+(p—Kk)4]¥2 so that

(B2)

) which will be easier to compute. Because the imaginary part
XDg"(K) y,(P—K+m) 7v|k0=pot0- of the denominator no longer changes sign one can use the
parametric representation
If this were to contain a termR%—m?)In(P?>—n¥) then the
derivative with respect tp, would be logarithmically diver- 1
gent atpy=E. The case&ky=py+ ) does not have this be- X+in _'f
havior because ap,—E the denominator of the photon
propagator is infrared safe. That leaves the ckgep,  and interchange the order of integrations to get
—. The largest contribution to the derivative of the self-
energy comes from differentiatingK#:

. dSé(X+i77)s, (B3)

f(P)z—ifmdsé@z*mzﬂm(s),

0

JIZR(P)
JPo

20 [(E-Q)—KT% Auc

j d3 <k E-Q
E =
J(S) 2772

Po=

fd‘“fK&(Kz)cotr(|k°|/2T)e*i2P'KS.

The important region isk small, in which caseQ)~E

- . ) . The k° integration can be performed using the Dirac delta
—v -k, wherev =p/E is the electron velocity. This gives g b g

function and the angular integrals are elementary:

J(s)=

f d* kv -k+0O(k?)
2

Aps (=

. J dkk™ € coth(k/2T)

2E [(17"2)2_k2]2 mPS Jo
X {sin2s(p®+ p)k]—sin2s(p°—p)k]}. (B4)

By power counting this integration could give a logarithmic

divergence. However, the numerafoik is odd ink and thus At zero temperature there are ultraviolet divergengegu-

the angular integral gives zero. The neglected terms are affized byk™*); at finite temperature there are not. The re-

d3kk?/k* and are finite. ThusSg cannot contain a term lation cothi/2T)=1+2n(k/T), where

(P2—m?)In(P?>— 7). 1

()= expx)—1’

(BS)
APPENDIX B: CALCULATION OF 3% IN FEYNMAN

GAUGE allows the temperature-independent part of the integration to

The integral displayed in Eq16) for the Feynman-gauge Pe€ isolated and leads to
self-energy is performed explicitly in this Appendix. The an- 3(5)=Jo(S)+I1(s)
swer for the zero-temperature contribution is displayed in -0 TS

Eq. (B6); for the thermal contribution, in EB8). The sum Zero-TemperatureAt T=0 the momentum integration in

of the two gives the result quoted in EJ.9). -
To analyze Eq.(16) the integration ovelk, and over Ea. (B4) gives
angles can be performed with the result Jo(8)=Ns 2,
«dk [(k+r)(k—s) I'( k A(2u)¢ em
- i - - — — _ _ 0 e—=1_A0_ e—1
P) 47p Jo k€ | (k=r)(k+s) coth 551 N= pp r(1 G)COS( 5 )[(p +p) (p"=p) -1

065002-5
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The zero-temperature contribution t6P) is
fo(P)=—iNFdsé('ﬁ*mz“77>sz*2
0

=—iNI(e—1)(im?—iP?)1 ¢,

In the limit e—0 this has the expectedellltraviolet diver-
gence plus finite terms:

Am?—P%) (1 p° (p°+p
fO(P): 27P2 ;‘f‘l_%h’] po_p
2u\P?
+In w)} (B6)

PHYSICAL REVIEW D59 065002

A(m*—P?) Po, (P+P
fT(P)_W -1+ ﬁ'ﬂ ﬁ
im2—ip? iAT[l p°+p
+In| —=| |- —|zIn| o—
47T P2 p 2 \p—p
I'(Z,)
+|n(F(Z_)) , (B8)
where the arguments of tHéfunction are
mZ_PZ
ZiEl‘Flm. (B9)

Although it is not apparenti+(P) does vanishe¥=0. The
most important feature is then®— P?)In(im?—iP?) term that

There is no branch point @y=p because of a cancellation exactly cancels the zero-temperature contributidf). The
between the two logarithms. It does have a logarithmicsym of Eqs(B6) and(B8) is given in Eq.(19).

branch cutP?=m? as expected.
Thermal Contribution: The remainder of Eq{(B4) is
temperature-dependent:

Auc [
” f dkk <

mTPS Jo

sin 2s(p®+ p)k] —sin 2s(p°—p)k]
x expKIT) —1 :

Jr(s)=

This can be performed using the useful inteqd]

de 1 explax)  I'(v)
o X expbx)—1 b’

a
| v,1- ol (B7)

which is valid for positive reab and Rea<b. The result is

0
m‘l‘ﬂ[‘]—ﬁ-r(p + p)S]

] B AT
7(s)= DS

1
- 0__
+ 4’7TT( pO_ p)S n[47TT(p p)s]
The final integration oves requires
fT(P)z—if dsd(P-m*Hinmsg (s).
0

Although various pieces af+(s) behave likes™? for small
s, the complete function is completely finite a&=0. To
integrate overs it is convenient to regulate the smallbe-

APPENDIX C: CALCULATION OF 3 L(P) IN COVARIANT
GAUGE

This appendix computes the self-energy integtab),
which is present in covariant gauges in whi¢## 1. TheT
=0 result is displayed in Eg(C3) and the temperature-
dependent part in EqC4).

The analysis begins with the observation that the denomi-
nators of EQ.(27) have singularities irk at the locations
(B1). Therefore, forp®>p the infinitesimal positive imagi-
nary part can be omitted froumg and replaced by a negative
imaginary part on the masm?—m2=m?—i 7 as was done
in Eq. (B2). After an integration by parts, E¢27) can be
written

, BME d4feK
f “’):me

a} -P-K+K?

—etk—|=——5—.
etk k=

8(K?)coth(|ko|/2T)

X (Cy

It is convenient to pur=1— €. Computing the derivatives
gives

€ 4—€

’ B,LL K 2

—oP-K+p-k—2k?
(P—K)?—m;

2P-K(p-k—k?)
T HP=Ky?—m)

The denominators can be exponentiated using (B8) so

havior of the individual terms by multiplying the integrand that

by s” with »>1. The termss” 2 integrate tol" functions.
The exponential parts can be integrated by using (BJ)
again. The full integration has no singularity @=1 or at
v=0. After settingr— 0 the result is

t'(P)=—i f dsdP* -mHmsy(g),
0

065002-6
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This can be performed using E@®7) and gives
J (S)—jj —2—5( ?)coth(|ko|/2T)e™ 2P Ks

X[~ oP-K+p-k—2k2—is2P-K(p-k—k?)]. _
. J'}(S)ZB(R_FIF)OT)
Integration ovelk, and the angles df give m

J’(s)=E:; f:dkk‘fcotr(kIZT): 2ip(potp) BT H(Potp)= 2ps o ) n(A4mT(Po+p)s)
J
‘ED 512 < | Sin2sk(po+p)] FETIPoTPI ¥ s 1+T<9T”
L XNn(47T(po—P)S).
+12ip(po—p)+ D+
1ieD. For Iater co_nvenier_me tre derivatives have been converted
-2 sin2sk(py— p)]], (C2)  toT derivatives using

whereD .=1*sd/ds. Note that the integral is convergent at
both small and larg&. The term linear ire cannot be omit-
ted as it will lead to a nonvanishing contribution after the
integration. As before use col#ipT)=1+2n(k/T) to obtain
the separation

J d
s—n(aTs) T n(aTs)

, , , The remaining integration is
J'(s)=Jy(s)+I1(s).

Zero-TemperatureThe zero-temperature integration of

Eg. (C2) contains powers ok times a sin function. The , B e S ,
reqsult is P Jr(P)=~—i fo dseP=mHinsy(s).
Bu® e\ [2(po+ —es?
309 = 22 P (1 e)c0 5( ) [2(po+p)]°
4m 2 p 2(Potp) It is easy to check thai’(s) vanishes as=0. However,
various pieces behave as? ands™ ! at smalls. It is there-
+i[p—e(potp)Isc |+ (p——p). fore convenient to multiphd+(s) by a factors” where ini-

tially »>1. Individual terms will have singularities at=1
and atv=0. All these singularities cancel when the terms are
combined, at which point one can put0. The integration
o is performed using Eq(B7). The T derivatives of Euler
fo(P)=—i fo dsd(PTmHimsgi(s) gamma functions givey functions. The final result is

Because only powers afappear, the final integration over

is straightforward. The result in the limé—0 is

iml2_ip2 2 2 H
, B[l1 P2+m? ZM\/EZ ¢ P=E n im*—iP _P—m +|27-rp0T
fo(P)= Z[E‘ 2p2 +|n<im2—iP2 . (C3 T(P) 2 A7T\P? 2P? Pz—mg
Thermal Contribution:Since there are no ultraviolet di- + iLT| PotP iLTm(F(L))
vergences in the thermal part of E€C2) one may sete 2p \po—p I'(z-)
=0: 2_m?
1(5)= B dek ) _E(H 2p(po+p))w(z+)
S)=—— n
T 2mp Jo 1 P2—m?
| 1] “2\" 2o ) M%) (4
X1|2ip(potp)— gD+ |sin2sk(po+p)]
. 1 . with Z.. as in Eq.(B9). The sum of Eqs(C3) and (C4) is
+ 2|p(p0_p)+ gDJr SIr{ZSk(pO_ p)]] dlsplayed in Eq(zg)
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