
Faculty Scholarship

1999

Mass-shell behavior of the electron propagator at
low temperature
H. Arthur Weldon

Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications

This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship
by an authorized administrator of The Research Repository @ WVU. For more information, please contact ian.harmon@mail.wvu.edu.

Digital Commons Citation
Weldon, H. Arthur, "Mass-shell behavior of the electron propagator at low temperature" (1999). Faculty Scholarship. 225.
https://researchrepository.wvu.edu/faculty_publications/225

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230397649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/faculty_publications?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/faculty_publications?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/faculty_publications/225?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ian.harmon@mail.wvu.edu


Mass-shell behavior of the electron propagator at low temperature

H. Arthur Weldon
Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315

~Received 15 October 1998; published 1 February 1999!

At T50 the full electron propagator is known to have an infrared anomalous dimension and thus a branch
point atP25m2 rather than a pole. An explicit calculation shows that if 0,eT!m the retarded self-energy is
analytic in the vicinity ofP2'm2, which includes the thermal mass shell. The low-temperature propagator has
a simple pole. Only whenT50 is there a branch point at the mass shell.
@S0556-2821~99!06804-6#

PACS number~s!: 11.10.Wx, 11.15.Bt, 14.60.Cd

I. INTRODUCTION

In high temperature gauge theories the fermion propaga-
tor is quite different than at zero temperature@1# and calcu-
lations require the Braaten-Pisarski resummation of hard
thermal loops@2–4#. One of the important quantities to be
calculated is the imaginary part of the fermion self-energy, or
damping rate, which has been computed in various circum-
stances. In QCD the massless gluons are so changed by ther-
mal effects that a resummed gluon propagator is always nec-
essary to compute thermal damping rates. Whether the quark
masses are small or large compared togT determines if a
resummed quark propagator is required. The quark damping
rate has been computed in both cases@2,5# and the potential
infrared divergences are controlled by incorporating a mag-
netic screening mass. The absence of a magnetic screening
mass in QED makes the electromagnetic damping rates more
problematic @6#. It appears that at high temperature (eT
@m) the electron propagator at large time does not decay
exponentially@7#. The same behavior is observed in scalar
QED @8#.

In QED at low temperature (eT!m) neither the electron
nor photon propagator require Braaten-Pisarski resumma-
tion. One would expect very little qualitative difference be-
tween low temperature and zero temperature. However, ex-
plicit calculation will show that there is an important
difference: atT50 the electron propagator has a branch cut
at the mass shell but forT.0 the propagator has a simple
pole.

A. Zero temperature

The scattering formalism of zero-temperature quantum
field theory relies upon the assumption that asymptotically
separated particles do not influence each other. Consequently
propagators are supposed to have simple poles at the physi-
cal mass of the particle. However, this argument fails for
charged particles because of the long range of the Coulomb
force. Two charged particles that are arbitrarily far apart do
not travel in straight lines. Instead their asymptotic trajecto-
ries are bent and the curvature grows logarithmically with
their separation. Thus charged particles that are infinitely
separated cannot be treated as free particles. The conse-
quences of this for QED were first investigated by Abriko-
sov, Chung, and Kibble@9–11#. They showed that the elec-

tron propagator actually has a branch point atP25m2 rather
than a pole. The propagator has the behavior

S8~P!→
Z2

m2g

P” 1m

~P22m2!12g ~1!

in the vicinity P2'm2. The value ofg depends upon the
choice of gauge. If the free photon propagator is

Dmn~K !52
gmn

K2 1~12j!
KmKn

~K2!2 ,

then

g5~j23!a/2p. ~2!

Only whenj53 ~Yennie gauge! does the electron propaga-
tor have a simple pole. The exponentg is the infrared
anomalous dimension of the electron propagator. A recent
calculation @12# of g for the propagator and other multi-
fermion Green functions shows that Eq.~1! is valid provided
the anomalous dimension in the range21,g,1/2, which
corresponds to an enormousj range:2857,j,433. Al-
thoughg is an infrared anomalous dimension and arises from
the infrared behavior of the gauge boson propagator,g itself
is not infrared divergent.

B. Nonzero temperature

The question that will be investigated here is the effect of
massless photons on the near mass-shell behavior of the
finite-temperature electron propagator. At finite temperature
the location of the singularity in the propagator is
temperature-dependent. It is convenient to deal with the re-
tarded propagator. The inverse of the full retarded thermal
propagator is

SR8
21~P!5P” 2m2SR , ~3!

whereSR is defined to contain theT50 mass counterterm
dm. In the rest frame of the plasma, rotational invariance
requires thatSR be a linear combination of the matrices
1,g0 ,gW •pW , andg0gW •pW . It is then straightforward to compute
the inverse of Eq.~3!. The result may be expressed com-
pactly by defining
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S̃R5SR2
1

2
Tr@SR#.

Then Tr@S̃R#52Tr@SR#. The inversion of Eq.~3! gives for
the full propagator

SR8 ~P!5
P” 1m1S̃R

P22m22PR~P!
, ~4!

where the scalar self-energy in the denominator is

PR~P!5
1

2
Tr@~P” 1m!SR#2

1

4
Tr@SRS̃R#. ~5!

Let D(P)5P22m22PR(P) be the denominator of Eq.~4!.
The location at which 1/D is singular ~either a pole or a
branch point! gives a complicated, temperature-dependent
relation betweenp0 andp of the form

P25m21a~P!. ~6!

The denominator of the propagator has the structure

D~P!5@P22m22a~P!#12c~P!@11b~P!#, ~7!

with a,b,c generally complex. The question of whether the
propagator has a branch point at the thermal dispersion rela-
tion ~6! is therefore a question of whether the functionc(P)
vanishes when Eq.~6! is satisfied.

Order a Approximation for eT!m: In a perturbative ex-
pansion the functionsa,b,c are each of ordera or smaller. If
eT!m thena(P)!m2. To first order ina the denominator,
is

D~P!'P22m22a~P!1b~P!~P22m2!

2c~P!~P22m2!ln~P22m2!. ~8!

Although the thermal mass-shell condition is given by Eq.
~6!, the possibility of a branch point at the thermal mass shell
is reduced to finding whether there is a term of the form
c(P)(P22m2)ln(P22m2). To first order ina this only re-
quires computing

PR~P!5
1

2
Tr@~P” 1m!SR#1O~a2!. ~9!

Note that the logarithmic term in Eq.~8! is quite small at the
mass-shell~6!, O„a2 ln(a)… and was not examined in previ-
ous calculations@13#.

Section II gives the explicit result for the one-loop elec-
tron denominator both in Feynman gauge and in general co-
variant gauges. The detailed calculations are contained in the
appendixes.

II. ONE-LOOP SELF-ENERGY

To compute the one-loop self-energySR it will be useful
to use free propagators that are themselves retarded or ad-
vanced. The free retarded propagator for the electron is

SR~P!5
P” 1m

P22m21 ihp0
,

and for the photon in a general covariant gauge is

DR
mn~K !5F2gmn1~12j!

KmKn

2k

]

]kG 1

K21 ihk0
. ~10!

SinceeT!m neither propagator requires resummation. The
advanced propagators are obtained by reversing the sign of
the infinitesimal imaginary part in the denominators. Dimen-
sional regularization will be used to control the zero-
temperature ultraviolet divergences. The one-loop self-
energy has the structure

SR~P!5SR
e~P!1SR

g~P!1dm, ~11!

with dm the T50 mass counterterm. The first contribution
has the internal electron on shell:

SR
e~P!5

ie2me

2 E d42eK

~2p!4 tanh„~p02k0!/2T…

3DR
mn~K !gm@SR~P2K !2SA~P2K !#gn .

~12!

At T50 this contribution does not contain a term of the form
(P22m2)ln(P22m2). Although the magnitude of the
temperature-dependent part is exponentially suppressed by
exp(2m/T), that would not rule out a branch cut with a small
coefficient. Appendix A proves that there is no such term.

The important contribution is the second term in Eq.~11!.
It has the internal photon on shell:

SR
g~P!5

ie2me

2 E d42eK

~2p!4 coth~k0/2T!gmSR~P2K !gn

3@DR
mn~K !2DA

mn~K !#.

Inserting the photon propagator~10! gives

SR
g~P!5

e2me

2 E d42eK

~2p!3 coth~ uk0u/2T!gmSR~P2K !gn

3F2gmn1
~12j!KmKn

2k

]

]kGd~K2!. ~13!

The contribution of this term to the denominator of the elec-
tron propagator will be labeled

Pg~P!5
1

2
Tr@~P” 1m!SR

g~P!#. ~14!

Most of the paper is devoted to this computation.

A. Self-energy in Feynman gauge

In the Feynman gauge,j51, the photon propagator is
simplest. The trace in Eq.~14! yields
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Pg~P!5c01
e2T2

6
1 f ~P!, ~15!

where c0 is a temperature-independent, divergent constant
that is canceled by the mass counterterm in Eq.~11!. Thus
the mass shell condition~6! is essentiallyP2'm21e2T2/6,
which is well known@13#.

The P dependence is contained in the function

f ~P!5
Ame

2p2 E d42eK
d~K2!coth~ uk0u/2T!

~Pc2K !22m2 , ~16!

A5a~P223m2!, ~17!

wherePc5(p01 ih,pW ) because of the retarded prescription.
The imaginary part of the denominator is 2h(p02k0) and
will generally change sign ask0 is integrated. Appendix B
shows that the denominator does not change sign ifp0 is
positive time-like:

p0.p5upW u. ~18!

Then P in Eq. ~16! can be taken real andm replaced by
mc

25m22 ih. The integration is performed in Appendix B
with the result

f ~P!5
A

2p S P22m2

P2 D F2
1

e
1 lnS 2pT

m D G
2 i

AT

p F1

2
lnS p01p

p02pD1 lnS G~Z1!

G~Z2! D G , ~19!

Z6[11 i
mc

22P2

4pT~p06p!
. ~20!

The ultraviolet divergent term, 1/e, is absorbed into the
wave-function renormalization factor. Various properties are
discussed below.

Analyticity at P2'm2: The most important result is that
there is no term of the form (P22m2)ln(P22m2). In the
vicinity of P2'm2 the variablesZ6 are close to 1. There-
fore, lnG(Z6) is analytic near the mass shell. This means that
whenTÞ0 the electron propagator has a simple pole atP2

'm21e2T2/6 and not a branch cut.
Zero-Temperature Limit:It is rather surprising that Eq.

~19! does have a logarithmic branch point precisely atT
50. This comes about because asT→0, the argumentsZ6

→` in Eq. ~20!. Using the Stirling approximation lnG(Z)
→Z ln(Z)2Z gives the zero-temperature limit

lim
T→0

2 iT

p
lnS G~Z1!

G~Z2! D5
P22m2

2pP2 F lnS imc
22 iP2

4pTAP2 D
211

p0

2p
lnS p01p

p02pD G . ~21!

Therefore, the zero-temperature limit of Eq.~19! is

f ~P!uT505
A~P22m2!

2pP2 F2
1

e
1 lnS imc

22 iP2

2mAP2 D
211

p0

2p
lnS p01p

p02pD G . ~22!

This does contain the term (P22m2)ln(P22m2). The loga-
rithmic contribution to the electron denominator function,
D(P)5P22m22 f (P), is

D~P!'P22m21
a

p
~P22m2!ln~P22m2!. ~23!

This agrees with the standard result in Eq.~2!.
Analyticity for Im p0.0: A further check of the result is

the requirement that the retarded self-energy be analytic in
the upper half of the complexp0 plane. The only singulari-
ties in Eq.~19! that occur at complexp0 come from poles in
G(Z6). These occur atZ6512n, for n a positive integer
and require thatp0 satisfy p0

25E22 i4pnT(p06p). The
complex roots of this equation can be writtenp05p0r
1 ip0i and satisfy

p0r
2 5E214pnTp0i1p0i

2 ,

p0i52pnTS 216
p

p0r
D .

If there were a root withp0i.0, then the first equation im-
plies that up0r u.E so that p/p0r,1. But then the second
equation implies thatp0i,0 contrary to the hypothesis.
Hence there are no branch cuts for Imp0.0.

Imaginary Part: At P25m2 the self-energy~19! is pure
imaginary:

f ~P!uP25m25 i
am2T

p
lnS E1p

E2pD . ~24!

This is an artifact of not having an infrared regularization as
shown by Rebhan in a different context@5#. Even the sign of
Eq. ~24! is opposite what it should be for a retared self-
energy. To check that it is an infrared effect, one can return
to Eq. ~16! and compute the imaginary part directly:

Im f ~P!5
2A

2p E d3k

2k
cothS k

2TD e~p02k0!

3d~P22m222P•K !uk056k .

At P25m2 the d function becomes

d~2P•K !uk056k5
d~k!

2~E7pW • k̂!
.

Even though the support is atk50 the integral does not
vanish because because of the Bose-Einstein enhancement of
k50:
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E
0

`

kdkcothS k

2TD d~k!5T.

The remaining angular integration is

Im f ~P!5
am2TE

2p
E dV

1

E22~pW • k̂!2
,

and reproduces Eq.~24!. The entire effect comes from the
point k50. If the infrared behavior is regulated there will be
no imaginary part atP25m2.

B. Self-energy in general covariant gauge

In a general covariant gauge withjÞ1, the second term in
Eq. ~13! must be computed. A prime will be used to denote
this contribution:

SR8 ~P!5~12j!
e2me

2 E d42eK

~2p!3

]d~K2!

]k
cothS uk0u

2T D
3

KmKn

2k
gmSR~P2K !gn . ~25!

The trace necessary for the electron denominator is

f 8~P!5
1

2
Tr@~P” 1m!SR8 ~P!#, ~26!

which yields

f 8~P!5
Bme

4p2 E d42eK

k

]d~K2!

]k
cothS uk0u

2T D P•K2K2

~Pc2K !22m2 ,

~27!

B5a~12j!~P22m2!. ~28!

In Appendix C this is computed forp0.p with the result

f 8~P!5
B

2p F1

e
211 lnS m

2pTD1
i2pp0T

P22mc
2

1
ipT

2p
lnS p01p

p02pD1
ipT

p
lnS G~Z1!

G~Z2! D
2

1

2 S 11
P22m2

2p~p01p! Dc~Z1!

2
1

2 S 12
P22m2

2p~p02p! Dc~Z2!G . ~29!

Analyticity at P2'm2: As was the case in Feynman
gauge, there is no explicit ln(im22iP2). Since G(Z6) and
c(Z6) are analytic nearZ6'1, the entire functionf 8(P) is
analytic near the mass shell. There is no branch point.

Zero-temperature limit:To evaluatef 8(P) at zero tem-
perature requires using Eq.~21! and the asymptotic behavior
c(Z6)→ ln(Z6) in order to obtain

f 8~P!uT505
B

2p F1

e
2

P21m2

2P2 1 lnS 2mAP2

im22 iP2D G . ~30!

This does contain the term (P22m2)ln(P22m2) with coeffi-
cient

2
a

2p
~12j!~P22m2!ln~P22m2!.

Subtracting this from the Feynman-gauge contribution~23!
gives

D~P!'P22m21
a

2p
~32j!~P22m2!ln~P22m2!.

~31!

This agrees with the general result~2!.
Analyticity for Im p0.0: Since the only singularities in

G(Z6) or c(Z6) are whenZ6 is zero or a negative integer,
the same analysis as before shows that Eq.~29! is analytic in
the upper-half of the complexp0 plane.

Imaginary Part:The factorB vanishes atP25m2. How-
ever, from the first line of Eq.~29! it appears thatf 8(P)
→ ia(12j)ET asP2→m2. As before this term would not
survive if the infrared behavior had been regulated@5#.

III. COMMENTS

The branch point in theT50 electron propagator is a
major complication. It indicates the impossibility of an elec-
tron being isolated. It will always have a cloud of photons
and will, therefore, not be an eigenstate of the mass operator
@14#. To treat charged particles properly it is necessary to
employ a Hilbert space containing an infinite number of co-
herent photons @10,11,15#. The Lehmann-Symanzik-
Zimmermann ~LSZ! asymptotic conditions and reduction
formulas are modified@16#. It is possible to avoid having a
branch point by using a more complicated, gauge-invariant
field operator for the electron@17#.

It is remarkable that for 0,eT!m the electron self-
energy does not contain a term (P22m2)ln(P22m2). The
reason for this difference is that the coordinate-space photon
propagatorDmn(x) at large time-like separations falls expo-
nentially, exp„22pT(t2r )…, whereas at zero-temperature it
falls like a power, 1/(t22r 2). This approach will be pre-
sented in a subsequent publication.

The electron propagator thus has a simple pole at the ther-
mal mass shellP2'm21e2T2/6. This result does not auto-
matically carry over to QCD at low temperature. No matter
how large the quark masses are that break chiral symmetry,
the gluon propagator requires Braaten-Pisarski resummation.
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APPENDIX A: ANALYSIS OF SR
e

One can eliminate the self-energy contribution in Eq.~12!
as a possibility for producing a branch cut atP25m2 rather
easily:

SR
e~P!5

e2me

2 E d42eK

~2p!3 d@~P2K !22m2#

3tanhS up02k0u
2T DDR

mn~K !gm~P” 2K” 1m!gn .

The d function constraint setsk05p06V where V5@m2

1(pW 2kW )2#1/2 so that

SR
e~P!5

e2me

16p3 E d32ek

2V
tanhS V

2TD
3DR

mn~K !gm~P” 2K” 1m!gnuk05p06V .

If this were to contain a term (P22m2)ln(P22m2) then the
derivative with respect top0 would be logarithmically diver-
gent atp05E. The casek05p01V does not have this be-
havior because asp0→E the denominator of the photon
propagator is infrared safe. That leaves the casek05p0
2V. The largest contribution to the derivative of the self-
energy comes from differentiating 1/K2:

]SR
e~P!

]p0
U

p05E

;E d32ek

2V

E2V

@~E2V!22k2#2 .

The important region isk small, in which caseV'E

2vW •kW , wherevW 5pW /E is the electron velocity. This gives

E d32ek

2E

vW •kW1O~k2!

@~vW •kW !22k2#2
.

By power counting this integration could give a logarithmic
divergence. However, the numeratorvW •kW is odd inkW and thus
the angular integral gives zero. The neglected terms are all
d3kk2/k4 and are finite. ThusSR

e cannot contain a term
(P22m2)ln(P22m2).

APPENDIX B: CALCULATION OF SR
g IN FEYNMAN

GAUGE

The integral displayed in Eq.~16! for the Feynman-gauge
self-energy is performed explicitly in this Appendix. The an-
swer for the zero-temperature contribution is displayed in
Eq. ~B6!; for the thermal contribution, in Eq.~B8!. The sum
of the two gives the result quoted in Eq.~19!.

To analyze Eq.~16! the integration overk0 and over
angles can be performed with the result

f ~P!5
Ame

4pp E0

` dk

ke lnF ~k1r !~k2s!

~k2r !~k1s!GcothS k

2TD ,

r 5
Pc

22m2

2~pc
01p!

, s5
Pc

22m2

2~pc
02p!

, ~B1!

wherepc
05p01 ih. The imaginary parts ofr and s are al-

ways positive for any real values ofp0 andp. For p0 posi-
tive and time-like, i.e.,p0.p, the denominators of Eq.~B1!
are positive so thatr ands can be replaced by

r 85
P22m21 ih

2~p01p!
, s85

P22m21 ih

2~p02p!
.

This is the same as using a Feynman prescription,m22 ih,
in the original denominator of Eq.~16!. Thus,

f ~P!5
Ame

2p2 E d42eK
d~K2!coth~ uk0u/2T!

P22m222P•K1 ih
, ~B2!

which will be easier to compute. Because the imaginary part
of the denominator no longer changes sign one can use the
parametric representation

1

X1 ih
52 i E

0

`

dsei ~X1 ih!s, ~B3!

and interchange the order of integrations to get

f ~P!52 i E
0

`

dsei ~P22m21 ih!sJ~s!,

J~s![
Ame

2p2 E d42eKd~K2!coth~ uk0u/2T!e2 i2P•Ks.

The k0 integration can be performed using the Dirac delta
function and the angular integrals are elementary:

J~s!5
Ame

2ppsE0

`

dkk2e coth~k/2T!

3$sin@2s~p01p!k#2sin@2s~p02p!k#%. ~B4!

At zero temperature there are ultraviolet divergences~regu-
larized byk2e); at finite temperature there are not. The re-
lation coth(k/2T)5112n(k/T), where

n~x!5
1

exp~x!21
, ~B5!

allows the temperature-independent part of the integration to
be isolated and leads to

J~s!5J0~s!1JT~s!.

Zero-Temperature:At T50 the momentum integration in
Eq. ~B4! gives

J0~s!5Nse22,

N[
A~2m!e

4pp
G~12e!cosS ep

2 D @~p01p!e212~p02p!e21#.

MASS-SHELL BEHAVIOR OF THE ELECTRON . . . PHYSICAL REVIEW D 59 065002

065002-5



The zero-temperature contribution tof (P) is

f 0~P!52 iNE
0

`

dsei ~P22m21 ih!sse22

52 iNG~e21!~ im22 iP2!12e.

In the limit e→0 this has the expected 1/e ultraviolet diver-
gence plus finite terms:

f 0~P!5
A~m22P2!

2pP2 F1

e
112

p0

2p
lnS p01p

p02pD
1 lnS 2mAP2

im22 iP2D G . ~B6!

There is no branch point atp05p because of a cancellation
between the two logarithms. It does have a logarithmic
branch cutP25m2 as expected.

Thermal Contribution: The remainder of Eq.~B4! is
temperature-dependent:

JT~s!5
Ame

ppsE0

`

dkk2e

3
sin@2s~p01p!k#2sin@2s~p02p!k#

exp~k/T!21
.

This can be performed using the useful integral@18#

E
0

`

dxxn21
exp~ax!

exp~bx!21
5

G~n!

bn zFn,12
a

bG , ~B7!

which is valid for positive realb and Rea,b. The result is

JT~s!5
AT

ps F 21

4pT~p01p!s
1n@4pT~p01p!s#

1
1

4pT~p02p!s
2n@4pT~p02p!s#G .

The final integration overs requires

f T~P!52 i E
0

`

dsei ~P22m21 ih!sJT~s!.

Although various pieces ofJT(s) behave likes22 for small
s, the complete function is completely finite ats50. To
integrate overs it is convenient to regulate the smalls be-
havior of the individual terms by multiplying the integrand
by sn with n.1. The termssn22 integrate toG functions.
The exponential parts can be integrated by using Eq.~B7!
again. The full integration has no singularity atn51 or at
n50. After settingn→0 the result is

f T~P!5
A~m22P2!

2pP2 F211
p0

2p
lnS p01p

p02pD
1 lnS im22 iP2

4pTAP2 D G2
iAT

p F1

2
lnS p01p

p02pD
1 lnS G~Z1!

G~Z2! D G , ~B8!

where the arguments of theG function are

Z6[11 i
m22P2

4pT~p06p!
. ~B9!

Although it is not apparent,f T(P) does vanishesT50. The
most important feature is the (m22P2)ln(im22iP2) term that
exactly cancels the zero-temperature contribution~B6!. The
sum of Eqs.~B6! and ~B8! is given in Eq.~19!.

APPENDIX C: CALCULATION OF SR8 „P… IN COVARIANT
GAUGE

This appendix computes the self-energy integral~27!,
which is present in covariant gauges in whichjÞ1. TheT
50 result is displayed in Eq.~C3! and the temperature-
dependent part in Eq.~C4!.

The analysis begins with the observation that the denomi-
nators of Eq.~27! have singularities ink at the locations
~B1!. Therefore, forp0.p the infinitesimal positive imagi-
nary part can be omitted frompc

0 and replaced by a negative
imaginary part on the mass:m2→mc

25m22 ih as was done
in Eq. ~B2!. After an integration by parts, Eq.~27! can be
written

f 8~P!5
Bme

4p2 E d42eK

k2 d~K2!coth~ uk0u/2T!

3F12e1k
]

]kG 2P•K1K2

~P2K !22mc
2 . ~C1!

It is convenient to puts512e. Computing the derivatives
gives

f 8~P!5
Bme

4p2 E d42eK

k2 d~K2!coth~ uk0u/2T!

3F2sP•K1pW •kW22k2

~P2K !22mc
2 1

2P•K~pW •kW2k2!

@~P2K !22mc
2#2G .

The denominators can be exponentiated using Eq.~B3! so
that

f 8~P!52 i E
0

`

dsei ~P22m21 ih!sJ8~s!,
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J8~s![
Bme

4p2 E d42eK

k2 d~K2!coth~ uk0u/2T!e2 i2P•Ks

3@2sP•K1pW •kW22k22 is2P•K~pW •kW2k2!#.

Integration overk0 and the angles ofkW give

J8~s!5
Bme

4pp E0

`

dkk2e coth~k/2T!H F2ip~p01p!

2
1

s
D12

1

s2

i eD2

2k2 Gsin@2sk~p01p!#

1F2ip~p02p!1
1

s
D1

2
1

s2

i eD2

2k2 Gsin@2sk~p02p!#J , ~C2!

whereD6[16s]/]s. Note that the integral is convergent at
both small and largek. The term linear ine cannot be omit-
ted as it will lead to a nonvanishing contribution after thes
integration. As before use coth(k/2T)5112n(k/T) to obtain
the separation

J8~s!5J08~s!1JT8~s!.

Zero-Temperature:The zero-temperature integration of
Eq. ~C2! contains powers ofk times a sin function. The
result is

J08~s!5
Bme

4p
G~12e!cosS ep

2 D @2~p01p!#e

p F 2ese22

2~p01p!

1 i @p2e~p01p!#se21G1~p→2p!.

Because only powers ofs appear, the final integration overs

f 08~P!52 i E
0

`

dsei ~P22m21 ih!sJ08~s!

is straightforward. The result in the limite→0 is

f 08~P!5
B

2p F1

e
2

P21m2

2P2 1 lnS 2mAP2

im22 iP2D G . ~C3!

Thermal Contribution:Since there are no ultraviolet di-
vergences in the thermal part of Eq.~C2! one may sete
50:

JT8~s!5
B

2pp E0

`

dkn~k/T!

3H F2ip~p01p!2
1

s
D1Gsin@2sk~p01p!#

1F2ip~p02p!1
1

s
D1Gsin@2sk~p02p!#J .

This can be performed using Eq.~B7! and gives

JT8~s!5BS 2 i

2ps
1 ip0TD

1BTF i ~p01p!2
1

2ps S 11T
]

]TD Gn~4pT~p01p!s!

1BTF i ~p02p!1
1

2ps S 11T
]

]TD G
3n~4pT~p02p!s!.

For later convenience thes derivatives have been converted
to T derivatives using

s
]

]s
n~aTs!5T

]

]T
n~aTs!.

The remaining integration is

JT8~P!52 i E
0

`

dsei ~P22m21 ih!sJT8~s!.

It is easy to check thatJT8(s) vanishes ats50. However,
various pieces behave ass22 ands21 at smalls. It is there-
fore convenient to multiplyJT(s) by a factorsn where ini-
tially n.1. Individual terms will have singularities atn51
and atn50. All these singularities cancel when the terms are
combined, at which point one can putn50. The integration
is performed using Eq.~B7!. The T derivatives of Euler
gamma functions givec functions. The final result is

f T8~P!5
B

2p F lnS im22 iP2

4pTAP2 D 2
P22m2

2P2 1
i2pp0T

P22mc
2

1
ipT

2p
lnS p01p

p02pD1
ipT

p
lnS G~Z1!

G~Z2! D
2

1

2 S 11
P22m2

2p~p01p! Dc~Z1!

2
1

2 S 12
P22m2

2p~p02p! Dc~Z2!G ~C4!

with Z6 as in Eq.~B9!. The sum of Eqs.~C3! and ~C4! is
displayed in Eq.~29!.
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