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Abstract

Semi-supervised learning approaches are trained using the full training (labeled) data and
available testing (unlabeled) data. Demonstrations of the value of training with unlabeled
data typically depend on a smoothness assumption relating the conditional expectation to
high density regions of the marginal distribution and an inherent missing completely at
random assumption for the labeling. So-called covariate shift poses a challenge for many
existing semi-supervised or supervised learning techniques. Covariate shift models allow
the marginal distributions of the labeled and unlabeled feature data to differ, but the
conditional distribution of the response given the feature data is the same. An example of
this occurs when a complete labeled data sample and then an unlabeled sample are obtained
sequentially, as it would likely follow that the distributions of the feature data are quite
different between samples. The value of using unlabeled data during training for the elastic
net is justified geometrically in such practical covariate shift problems. The approach works
by obtaining adjusted coefficients for unlabeled prediction which recalibrate the supervised
elastic net to compromise: (i) maintaining elastic net predictions on the labeled data with
(ii) shrinking unlabeled predictions to zero. Our approach is shown to dominate linear
supervised alternatives on unlabeled response predictions when the unlabeled feature data
are concentrated on a low dimensional manifold away from the labeled data and the true
coefficient vector emphasizes directions away from this manifold. Large variance of the
supervised predictions on the unlabeled set is reduced more than the increase in squared bias
when the unlabeled responses are expected to be small, so an improved compromise within
the bias-variance tradeoff is the rationale for this performance improvement. Performance
is validated on simulated and real data.

Keywords: joint optimization, semi-supervised regression, usefulness of unlabeled data

1. Introduction

Semi-supervised learning is an active research area (Chapelle et al., 2006b; Zhu and Gold-
berg, 2009). Existing theoretical and empirical work typically invokes the missing com-
pletely at random (MCAR) assumption where the inclusion of a label is independent of the
feature data and label. Under MCAR, there is theoretical work, mostly in classification, on
finding borders that pass between dense regions of the data with particular emphasis on the
cluster assumption (Chapelle et al., 2006b), semi-supervised smoothness assumptions (Laf-
ferty and Wasserman, 2007; Azizyan et al., 2013), and manifold assumptions (Hein et al.,
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Figure 1: These feature data with p = 2 are referred to as the “block extrapolation” example
because the unlabeled data “block” the 1st principal component of the labeled
data. It is informative to think about how ridge regression would predict the
unlabeled cases in this example. Favoring shrinking along the 2nd component will
lead to high prediction variability. These block data are the primary working
example throughout Sections 2-5, and it will be demonstrated that our semi-
supervised approach has a clear advantage.

2005; Aswani et al., 2010). Many techniques including manifold regularization (Belkin et al.,
2006) and graph cutting approaches (Wang et al., 2013) were developed to capitalize on
unlabeled information during training, but beneath the surface of nearly all this work is the
implicit or explicit use of MCAR (Lafferty and Wasserman, 2007).

Covariate shift is a different paradigm for semi-supervised learning (Moreno-Torres et al.,
2008). It stipulates that the conditional distribution of the label given the feature data does
not depend on the missingness of a label, but that the feature data distribution may depend
on the missingness of a label. As a consequence, feature distributions can differ between
labeled and unlabeled sets. Attempting to characterize smoothness assumptions between
the regression function and the marginal of X (Azizyan et al., 2013) may not realize the
value of unlabeled data if an implicit MCAR assumption breaks down. Instead, its value
is in shrinking regression coefficients in an ideal direction to optimize the bias-variance
tradeoff on unlabeled predictions. This is a novelty of our research direction.

The proposed approach is ideally suited for applications where the sequential generation
of the labeled and unlabeled data causes covariate shift. Due to either matters of practicality
or convenience the marginal distribution of the labeled feature data is likely to be profoundly
different than that of the unlabeled feature data. Consider applications in drug discovery
where the feature information consists of measurements on compounds and the responses
are compound attributes, e.g., side effects of the drug, overall effect of the drug, or ability

3184



Covariate Shift in Regression

to permeate the drug (Mente and Lombardo, 2005). Attributes can take years to obtain,
while the feature information can be obtained much faster. As a result, the labeled data are
often measurements on drugs with known attributes while the unlabeled data are usually
compounds with unknown attributes that may potentially become new drugs (marketed
to the public). Other applications mostly in classification include covariate shift problems
(Yamazaki et al., 2007), reject inference problems from credit scoring (Moreno-Torres et al.,
2008), spam filtering and brain computer interfacing (Sugiyama et al., 2007), and gene
expression profiling of microarray data (Gretton et al., 2009). Gretton et al. (2009) further
note that covariate shift occurs often in practice, but is under reported in the machine
learning literature.

Many of the hypothetical examples to come do not conform to MCAR. The Figure 1 fea-
ture data are used to illustrate key concepts as they are developed in this work. Its labeled
and unlabeled partitioning is unlikely if responses are MCAR. The vector of supervised
ridge regression coefficients is proportionally shrunk more along the lower order principal
component directions (Hastie et al., 2009). Such shrinking is toward a multiple of the unla-
beled data centroid in the hypothetical Figure 1 scenario, so ridge regression may not deflate
the variance of the unlabeled predictions enough. Standard methods for tuning parameter
estimation via cross-validation do not account for the distribution of the unlabeled data
either. Thus, supervised ridge regression is at a distinct disadvantage by not accounting for
the unlabeled data during optimization. In general, the practical shortcoming of supervised
regression (e.g., ridge, lasso, or elastic net) is to define regression coefficients that predict
well for any unlabeled configuration. Our main contribution to come is a mathematical
framework for adapting a supervised estimate to the unlabeled data configuration at hand
for improved performance. It also provides interpretable “extrapolation” adjustments to
the directions of shrinking as a byproduct.

Culp (2013) proposed a joint trained elastic net for semi-supervised regression under
MCAR. The main idea was to use the joint training problem that encompasses the S3VM
(Chapelle et al., 2006a) and ψ-learning (Wang et al., 2009) to perform semi-supervised
elastic net regression. The concept was that the unlabeled data should help with decorrela-
tion and variable selection, two known hallmarks of the supervised elastic net extended to
semi-supervised learning (Zou and Hastie, 2005). Culp (2013), however, did not contain a
complete explanation of how exactly the approach used unlabeled data and under what set
of mathematical assumptions it is expected to be useful.

The joint trained elastic net framework is strengthened in this paper to handle covariate
shift. Rigorous geometrical and theoretical arguments are given for when it is expected
to work. Circumstances where the feature data distribution changes by label status is the
primary setting. One could view the unlabeled data as providing a group of extrapola-
tions (or a separate manifold) from the labeled data. Even if responses are MCAR, the
curse of dimensionality stipulates that nearly all predictions from a supervised learner are
extrapolations in higher dimensions (Hastie et al., 2009), so the utility of the proposed
semi-supervised approach is likely to increase with p.

Presentation of major concepts often begins with hypothetical, graphical examples in
p = 2, but is followed by general mathematical treatments of p ≥ 2. The work is written
carefully so that themes extracted from p = 2 generalize. Section 2 provides a conceptual
overview of the general approach with emphasis on the value of unlabeled data in covariate
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shift before diving into the more rigorous mathematics in later sections. The problem is
set-up formally in Section 3. The nature of regularization approaches (e.g., ridge, lasso, and
elastic net) is studied with emphasis on a geometric perspective in Section 4. The geometry
helps articulate realistic assumptions for the theoretical risk results in Section 5, and the
theoretical risk results help define informative simulations and real data tests in Section 6.
In addition, the simulations and real data applications validate the theoretical risk results.
The combined effect is a characterization of when the approach is expected to outperform
supervised alternatives in prediction. Follow-up discussion is in Section 7, and a proof for
each proposition and theorem is in Appendix A.

2. The Value of Unlabeled Data due to Covariate Shift

The purpose of this section is to motivate the proposed approach for covariate shift data
problems. The data are partitioned into the set of the labeled L and unlabeled U observa-
tions with n = |L|+ |U |, and a response variable is recorded only for labeled observations.
Let Y L denote the observed |L| × 1 vector of mean centered, labeled responses and Y U

the |U | × 1 missing, unlabeled responses. If data are sorted by label status, the complete
response vector and n× p model matrix partition to

Y =

(
Y L

Y U

)
X =

(
XL

XU

)
.

The XL data are mean centered and standardized so that XT
LXL is a correlation matrix,

andXU is also scaled using the means and variances of the labeled data. A supervised linear

regression coefficient vector β̂
(SUP)

is trained using only the labeled data: XL and Y L. Our
semi-supervised β̂ is trained with data X and Y L by trading off: (i) supervised predictions

XLβ̂ = XLβ̂
(SUP)

on L with (ii) shrinking XU β̂ towards ~0 on U , and the geometric value of
this type of usage of the unlabeled data is presented in Section 2.1. A deeper presentation
of this Section 2.1 concept is given by Sections 3 and 4. This work also demonstrates its
theoretical performance under the standard linear model. In particular, the true coefficient
vector must encourage shrinking as a good strategy in order for the unlabeled data to be
useful in the proposed fashion. The introduction of this concept here in Section 2.2 precedes
the corresponding mathematical presentation of performance bounds in Section 5.

2.1 Geometric Contribution of Unlabeled Data

The main strategy is to find a linear compromise between: (i) fully supervised prediction
on the labeled data and (ii) predicting close to zero on the unlabeled data. Two examples
of this are given below. In the “collinearity” example, it is possible to achieve both (i)
and (ii). Thus, there is no need for a compromise. In the block extrapolation example, (i)
and (ii) cannot be achieved simultaneously. The compromise is obtained by organizing the
coefficient vector in terms of directions orthogonal to feature data extrapolation directions,
so the predictions corresponding to more extreme unlabeled extrapolations are shrunk more.

Collinearity Example: Suppose p = 2, the two columns of labeled feature data are
collinear with XL1 = XL2, and the unlabeled data are also collinear and orthogonal to

the labeled data with XU1 = −XU2. The ordinary least squares estimator β̂
(OLS)

(i.e., a
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Figure 2: The dashed lines are the 1st and 2nd extrapolation directions for the block extrap-
olation example from Figure 1. The extent of U -extrapolation vector is a larger
multiple of the extent of L-extrapolation vector in the 1st versus the 2nd extrapo-
lation direction, so predictions corresponding to feature vectors on the 1st extrap-
olation direction are shrunk more than those on the 2nd extrapolation direction
under the proposed method.

supervised linear regression estimator) is not unique since rank(XL) = 1, but the semi-
supervised estimator β̂ =

(
XT

L1Y L/2
)
~1 is the unique solution to

min
β
‖Y L −XLβ‖22 + ‖XUβ‖22 . (1)

This β̂ is the ordinary least squares estimator with equal components, so it achieves objec-

tives (i) XLβ̂ = XLβ̂
(OLS)

and (ii) XU β̂ =
(
XT

L1Y L/2
)
XU

~1 = ~0. Optimization Problem
(1) is a special case of the joint training framework to come in Section 3, and our general
semi-supervised approach is based on this type of estimator.

Block Extrapolation Example: These data in Figure 2 include two lines marked
as 1st and 2nd extrapolation directions, and each direction has extent vectors of largest U -
and L-extrapolations (XT

L`1, X
T
Uu1 and XT

L`2, X
T
Uu2). Each L-based extent vector in

Figure 2 is the longest possible of the form XT
L` in a given direction for ` ∈ IR|L| such that

‖`‖22 = 1. Similarly, the U -based extent vectors are the longest possible in a given direction
based on a unit length linear combination of the rows of XU . While precise mathematics
on determining the two extrapolation directions is deferred until Section 4, it also turns out
that the ratio of U - to L-extent vector lengths in the 2nd direction is never bigger than that
in the 1st direction, i.e., ∥∥XT

Uu2

∥∥
2∥∥XT

L`2

∥∥
2

≤
∥∥XT

Uu1

∥∥
2∥∥XT

L`1

∥∥
2

. (2)
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The sought after compromise is struck with semi-supervised estimator β̂ by shrinking a

supervised estimator β̂
(SUP)

with respect to a basis of directions orthogonal to the extrapo-
lation directions. With this in mind, define the decomposition of a supervised estimate

β̂
(SUP)

= ν̃1 + ν̃2, where

ν̃1 is orthogonal to the 1st extrapolation direction (3)

ν̃2 is orthogonal to the 2nd extrapolation direction,

and consider a semi-supervised estimate of the form

β̂ = p1ν̃1 +p2ν̃2, where p1 =

∥∥XT
L`1

∥∥
2∥∥XT

L`1

∥∥
2

+
∥∥XT

Uu1

∥∥
2

and p2 =

∥∥XT
L`2

∥∥
2∥∥XT

L`2

∥∥
2

+
∥∥XT

Uu2

∥∥
2

. (4)

Coefficient shrinking is more focused on the vector orthogonal to the 1st extrapolation
direction because 0 ≤ p1 ≤ p2 ≤ 1 by Inequality (2).

A semi-supervised β̂ from Display (4) was decomposed with regard to a basis orthogonal
to directions of extrapolations from Display (3) so that linear predictions xT0 β̂ at an arbi-
trary feature vector x0 ∈ IR2 are shrunk more heavily when x0 is in directions with larger
extrapolations. To demonstrate this, define a closely related decomposition of a feature
vector

x0 = ν1 + ν2, where

ν1 is on the 1st extrapolation direction (5)

ν2 is on the 2nd extrapolation direction.

Together, Decompositions (4) and (5) result in the semi-supervised prediction

xT0 β̂ = p1ν
T
1 ν̃2 + p2ν

T
2 ν̃1

because νT1 ν̃1 = νT2 ν̃2 = 0 by construction. Thus, with fixed length feature vectors x0 = νi
on the 1st and 2nd extrapolation directions, the 1st direction corresponds to a semi-supervised

prediction xT0 β̂ that is a more heavily shrunken version of its supervised prediction xT0 β̂
(SUP)

whenever p1 < p2.

The supervised estimate β̂ = β̂
(SUP)

results whenever p1 = p2 = 1, by Displays (3)
and (4). Thus, supervised predictions are favored when L-based extrapolations

∥∥XT
L`i
∥∥

2

dominate U -based extrapolations
∥∥XT

Uui
∥∥

2
because pi ≈ 1 follows from Display (4). On

the other hand, predictions near zero are favored when U -based extrapolations dominate
L-based extrapolations (pi ≈ 0). In both cases, the pi regulate the compromise (i) with (ii)
for β̂ term-by-term in each extrapolation direction. A significant contribution of this work
is to provide a rigorous mathematical framework to study semi-supervised linear predictions
for unlabeled extrapolations. In Section 4, directions of extrapolation and relative degrees
of shrinking pi are shown to follow from the joint trained optimization framework.

2.2 Model-based Contributions of Unlabeled Data

Under the linear model (E[Y ] = Xβ and Var(Y ) = σ2I), the coefficient parameter space
partitions into lucky (β, σ2) and unlucky (β, σ2) subsets. Lucky versus unlucky β direc-
tions are not equally likely but depend greatly on the range and shape of the unlabeled
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data manifold and on the model parameter σ2. The general theme is that lucky (unlucky)
β’s are in directions orthogonal (parallel) to the unlabeled feature data manifold, so lower
variability within this manifold implies more lucky β directions where our approach im-
proves performance. A general bound is presented in Section 5 to help understand when
our semi-supervised linear adjustment is guaranteed to outperform its supervised baseline
on unlabeled predictions. Next, the collinearity and block extrapolation examples from
Section 2.1 are revisited to illustrate lucky versus unlucky (or favorable versus unfavorable)
prediction scenarios.

Collinearity Example: This example had p = 2, XL1 = XL2, and XU1 = −XU2. A
lucky β follows with β = (b, b)T for some arbitrary b ∈ IR, since XUβ = ~0 is clearly ideal
for the semi-supervised approach. On the other hand, suppose the true β = (b,−b)T for
some scalar b of large magnitude, and the components of XU1 are all of large magnitude
with the same sign. This is an example of an unlucky β since the truth XUβ = 2bXU1 is
far from the origin ~0 with components of the same sign, so setting XU β̂ = ~0 is less than
ideal. Since XLβ = ~0, the typical supervised linear regression estimators (e.g., ridge, lasso,
and ENET) would predict the XU cases close to ~0 not 2bXU1 and does not fair much better
as a result. The bottom-line is that this unlucky β situation is not handled well by the
conventional wisdom in machine learning of shrinking to optimize the bias-variance tradeoff
(Hastie et al., 2009).

Block Extrapolation Example: This example was the block extrapolation from
Figures 1 and 2. As it turns out, the ridge regression version of the Section 5 bound
simplifies to a function of just β (call it σ2

LB(β)) such that the semi-supervised approach is
guaranteed to outperform the supervised approach whenever σ2 − σ2

LB (β) > 0 at a given
σ2. Next, this bound is used to give a snapshot of parameter space (β, σ2) in the context
of the block extrapolation example, where lucky β correspond to σ2 − σ2

LB (β) > 0 while
unlucky β correspond to σ2 − σ2

LB (β) ≤ 0.
In order to investigate this, take all σ2 ∈ [0, 1] with all possible coefficient vectors

β (ϑ) =

(
sin(ϑ)
cos(ϑ)

)
for ϑ ∈ [0, π]

on the right half of the unit circle. These parameters capture performance trends of an
arbitrary fixed length β in all possible directions by the technical details in Section 5. Curves
in Figure 3(a) are the bound σ2−σ2

LB (β (ϑ)) as a function of ϑ at a given σ2. Lighter (darker)
curves correspond to smaller (larger) values σ2 over an equally spaced grid on the interval
[0, 1], and the corresponding differences between unlabeled root mean-squared errors at the
best supervised (RMSE(SUP)

U ) and semi-supervised (RMSE(SEMI)

U ) tuning parameter settings
are provided in Figure 3(b). If ϑ is uniformly distributed on [0, π], a lucky β is more likely
than an unlucky β, especially as σ2 increases. The center for potentially large improvements
in Figure 3(a) is roughly β (π/4) ≈ (1, 1)T /

√
2. In addition, the unlabeled feature data

centroid XT
U
~1/|U | in Figure 1 is roughly a multiple of (−1, 1)T . Thus, ~1 TXUβ (π/4) ≈ 0.

In other words, lucky β directions encourage shrinking predictions on U . On the other
hand, unlucky β directions encourage large predictions. Take the center for little to no
theoretically guaranteed improvement in Figure 3(a), i.e., β (3π/4) ≈ (1,−1)T /

√
2. In this

case, the true expected response at the unlabeled feature data centroid ~1 TXUβ (3π/4) /|U |
is large because β (3π/4) is roughly a multiple of XT

U
~1/|U |.
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Figure 3: (a) The theoretical bound σ2 − σ2
LB (β(ϑ)) is plotted against ϑ for the block

extrapolation example from Figures 1 and 2. Darker curves correspond to larger
σ2. Interest was in identifying ϑ such that σ2 − σ2

LB (β(ϑ)) > 0, since values
greater than zero highlight the lucky unit length directions β(ϑ) at a given σ2

where our semi-supervised adjustment helps. (b) The corresponding differences
between supervised and semi-supervised root mean squared errors (RMSEs) on
the unlabeled set are displayed.

In general, the proposed approach is well suited for lucky β prediction problems, which
include the following generalization of the Figure 1 block extrapolation example. The
distance between feature data centroids (i.e., between the origin XT

L
~1/|L| = ~0 due to mean

centering and XT
U
~1/|U |) is increased relative to the variation about each centroid and the

true coefficient vector β is not roughly a multiple of XT
U
~1/|U |. One might conjecture lucky

β to occur more often in practice during high-dimensional applications with large p by a
sparsity of effects assumption (i.e., the true β has few non-zero components). For example,
if the unlabeled feature data are concentrated on a low dimensional manifold away from the
labeled data, there are more lucky directions for the true coefficient vector to emphasize
directions away from the unlabeled feature data manifold. Also note that the supervised
RMSEs are no better than semi-supervised in the block example, i.e., no negative differences
in Figure 3(b). In theory, our technique handles unlucky β by defaulting to supervised
predictions; see Remark 1 for how unlucky scenarios are handled empirically in practice.

Remark 1 Nearly all supervised techniques would be challenged by an unlucky β direction
since approaches typically improve predictive performance by shrinking (Hastie et al., 2009)
and thus predicting large responses accurately on a covariate shifted data set is not what
these techniques are designed to do. Supervised learning has a possible advantage over the
proposed semi-supervised method in such situations by simply not shrinking extrapolation
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directions in the unlabeled data, but there is no guarantee here either (i.e., the supervised
technique may still perform much worse). In this work, we do not assume that the response
is generated under a lucky β linear model. Instead, a tuning parameter is used to move the
semi-supervised estimator closer to supervised in such cases to mitigate the losses relative
to supervised for an unlucky β. Cross-validation is used to estimate this parameter in the
results Section 6.

3. A Linear Joint Training Framework

The focus of this paper is the joint trained elastic net(
α̂γ,λ, β̂γ,λ

)
= argmin

α,β
‖Y L −XLβ‖22 + γ1‖XU (α− β)‖22 + γ1γ2 ‖α‖22 + λ1 ‖β‖11 + λ2 ‖β‖22, (6)

where β̂γ,λ is appropriately scaled and λ = (λ1, λ2) ∈ [0,∞]2 and γ = (γ1, γ2) ∈ [0,∞]2 are
tuning parameter vectors. The joint trained elastic net is an example of a joint training opti-
mization framework used in semi-supervised learning (Chapelle et al., 2006b). Comparisons
will be made to the supervised optimization

β̂
(ENET)

λ = arg min
β

‖Y L −XLβ‖22 + λ1 ‖β‖11 + λ2 ‖β‖22 , (7)

which is a partial solution to Joint Optimization (6) whenever γ1 = 0 or γ2 = 0.
Let XUX

T
U = OUDUOTU be the eigendecomposition of this outer product and define

X(γ2) =

(
XL

X
(γ2)
U

)
=

(
XL

√
γ2 (DU + γ2I)−

1
2 OTUXU

)
(8)

for γ2 > 0. Proposition 2 establishes that the reduced problem

β̂γ,λ = arg min
β

‖Y L −XLβ‖22 + γ1

∥∥∥X(γ2)
U β

∥∥∥2

2
+ λ1 ‖β‖11 + λ2 ‖β‖22 (9)

is an alternative to Joint Optimization (6) over (α,β) ∈ IRp × IRp.

Proposition 2 If γ2 > 0, then rank(XU ) = rank
(
X

(γ2)
U

)
and a solution β̂γ,λ to Opti-

mization Problem (9) is a partial solution to Optimization Problem (6).

By Proposition 2, the semi-supervised estimate β̂γ,λ can be computed by an elastic
net subroutine through data augmentation if the user simply inputs the supervised tuning

parameters λ with model matrix

(
XT

L,
√
γ1X

(γ2)
U

T
)T

and response vector
(
Y T
L, ~0

T
)T

(i.e., impute Y U = ~0). The Elastic Net Optimization Problem (7) is convex and can be
solved quickly by the glmnet package in R (Friedman et al., 2010; R Core Team, 2015), so
this helps make our semi-supervised adjustment computationally viable.

MatrixX
(γ2)
U

T
X

(γ2)
U from Optimization Problem (9) has the same eigenvectors asXT

UXU ,

but its eigenvalues homogenize to unity as γ2 → 0. As γ2 → ∞, X
(γ2)
U

T
X

(γ2)
U → XT

UXU ,
and Optimization Problem (9) goes to the semi-supervised extreme

β̂(γ1,∞),λ = arg min
β

‖Y L −XLβ‖22 + γ1 ‖XUβ‖22 + λ1 ‖β‖11 + λ2 ‖β‖22. (10)
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Semi-Supervised Extreme (10) with λ = ~0 and γ1 = 1 was seen earlier in Problem (1)
during the conceptual overview. Finite γ2 > 0 will later be seen to produce intermediate
compromises between Supervised (7) and Semi-Supervised Extreme (10).

4. Geometry of Semi-Supervised Linear Regression

A geometrical understanding of the Joint Trained Elastic Net (6) is developed through the
following logical progression: Section 4.1 joint trained least squares λ = ~0, Section 4.2 joint
trained ridge λ = (0, λ2), Section 4.3 joint trained lasso λ = (λ1, 0), and then Section 4.4
joint trained elastic net regression λ. Last, Section 4.5 provides a gallery of geometrical
examples. The conceptual overview from Section 2.1 lines-up closely with the mathematics
of Section 4.1 and is back-referenced extensively to help the reader make connections. The
ridge, lasso, and elastic net semi-supervised geometries do, to some degree, simply follow
from their well-known supervised properties when combined with the geometrical properties
of joint trained (semi-supervised) least squares. However, an important subtlety is worth
mentioning. This geometry section, especially Sections 4.3 and 4.4, establishes properties
of the Joint Trained Elastic Net (6), and these properties are stated as the assumptions of
Section 5 in order to derive general performance bounds that necessarily apply to the joint
trained elastic net.

4.1 Joint Trained Least Squares

Optimization Problem (9) with λ = ~0 reduces to joint trained least squares

β̂γ = arg min
β

‖Y L −XLβ‖22 + γ1

∥∥∥X(γ2)
U β

∥∥∥2

2
. (11)

Briefly recall the collinearity example from Section 2.1, i.e., p = 2, XL1 = XL2, XU1 =

−XU2, and γ = (1,∞). A supervised β̂
(OLS)

was not unique, but the β̂
(OLS)

with equal
components was the unique semi-supervised Estimator (11). In general, Estimator (11)
is unique whenever γ > ~0 and rank(X) = p. Henceforth, assume rank(XL) = p, so

β̂
(OLS)

=
(
XT

LXL

)−1
XT

LY L is unique during this discussion of joint trained least squares.
Section 4.2 on joint trained ridge regression is tailored for rank(XL) < p.

Figure 4(a) displays the semi-supervised extreme β̂γ1,∞ from the block extrapolation
example for a particular γ1 > 0 based on the calculus of Lagrangian multipliers. For
general p ≥ 2 with γ2 ≥ 0, there exists unique scalars aγ2 , bγ2 such that the ellipsoids

βTX
(γ2)
U

T
X

(γ2)
U β ≤ aγ2 (12)(

β − β̂
(OLS)

)T
XT

LXL

(
β − β̂

(OLS)
)
≥ bγ2 (13)

have the same tangent slope at the point of intersection β̂γ . A novelty of the semi-supervised
approach, that holds for general p ≥ 2, is the use of origin-centered Ellipsoids (12) as opposed
to the multidimensional spheres used in supervised ridge regression.

When γ2 ≈ 0, β̂γ ≈ β̂
(RIDGE)

γ1
=
(
XT

LXL + γ1I
)−1

XT
LY L because Ellipsoids (12) are

roughly spherical. When γ2 is large, β̂γ approximates a point on the semi-supervised
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Figure 4: The Figure 1 block example is revisited. (a) A labeled response Y L that resulted

in the plotted estimate β̂
(OLS)

is part of the assumed labeled data set. Each
estimate on the semi-supervised extreme β̂γ1,∞, like the small white circle at

γ1 = 0.18, is the intersection of an origin-center Ellipse (12) and a β̂
(OLS)

-centered
Ellipse (13) having the same tangent slope at this point of intersection. Similarly,
each ridge estimate, like the small gray circle with λ2 = 5.9, uses origin-centered,
concentric circles instead of Ellipses (12). (b) Paths β̂γ varying γ1 with darker
curves for larger γ2 fill-in all possible compromises between supervised ridge and
the semi-supervised extreme. (c) The semi-supervised extreme β̂γ1,∞ is shrunk

within its bounding parallelogram from supervised β̂
(OLS)

toward the origin as
γ1 →∞.

extreme. For example, take the point along the supervised ridge (semi-supervised extreme)
path indicated by the small gray (white) circle in Figure 4. Paths β̂γ , like those in Figure

4(b), start at β̂
(OLS)

and converge to a point in the null space of XU as γ1 →∞.
The semi-supervised estimator for any γ is

β̂γ =

(
XT

LXL + γ1X
(γ2)
U

T
X

(γ2)
U

)−1

XT
LXLβ̂

(OLS)

=
(
I + γ1M

(γ2)
)−1

β̂
(OLS)

, where M (γ2) =
(
XT

LXL

)−1
X

(γ2)
U

T
X

(γ2)
U .

(14)

An eigenbasis
{(
w

(γ2)
i , τ

(γ2)
i

)}p
i=1

of M (γ2) such that
∥∥∥XLw

(γ2)
i

∥∥∥2

2
= 1 will be used to help

understand how joint trained least squares regression coefficients are shrunk. Proposition 3
establishes that this important eigenbasis is real whether or not matrix M (γ2) is symmetric.

Proposition 3 Any eigenbasis of the possibly non-symmetric matrix M (γ2) is real with

eigenvalues τ
(γ2)
1 ≥ · · · ≥ τ (γ2)

p ≥ 0. Furthermore, τ
(γ2)
i = 0 iff i > rank(XU ).

While
{
w

(γ2)
i

}p
i=1

may be neither orthogonal nor unit length,

β̂
(OLS)

= ĉ
(γ2)
1 w

(γ2)
1 + · · ·+ ĉ(γ2)

p w(γ2)
p (15)
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for some scalars ĉ
(γ2)
i , and by Equations (14) and (15),

β̂γ =

(
1

1 + γ1τ
(γ2)
1

)
ĉ

(γ2)
1 w

(γ2)
1 + · · ·+

(
1

1 + γ1τ
(γ2)
p

)
ĉ(γ2)
p w(γ2)

p . (16)

Equations (15) and (16) generalize Estimator (4) from Section 2.1 to p ≥ 2. The terms
on the right of Equation (15) were previously denoted by the ν̃i from Display (3), and
these terms are weighted by proportions on the right of Equation (16) that were previously

denoted by the pi from Display (4). Eigenvector ĉ
(γ2)
1 w

(γ2)
1 is proportionally shrunk the

most at any fixed γ1 > 0 because its proportion weight 1/
(

1 + γ1τ
(γ2)
1

)
is the smallest.

The bounding parallelogram in Figure 4(c) helps introduce another interpretation of

Equation (16). This parallelogram has opposite corners at the origin and β̂
(OLS)

and sides

parallel to the eigenvectors of M (γ2). The path β̂γ shrinks from β̂
(OLS)

to the origin along

the sides with corner ĉ
(γ2)
2 w

(γ2)
2 as γ1 ∈ [0,∞] increases and does so more closely when τ

(γ2)
1

and τ
(γ2)
2 differ in magnitude. Proposition 4 generalizes this concept to arbitrary γ2 ≥ 0

and p ≥ 2.

Proposition 4 The path β̂γ as a function of γ1 ≥ 0 is bounded within a p-dimensional

parallelotope with corners at each binary linear combination of
{
ĉ

(γ2)
1 w

(γ2)
1 , . . . , ĉ

(γ2)
p w

(γ2)
p

}
.

Furthermore, the terminal point as γ1 →∞ is the corner
∑p

i=1 I{i>rank(XU )}ĉ
(γ2)
i w

(γ2)
i with

indicator I{·}.

The conceptual overview in Section 2.1 made a careful distinction between shrinking re-
gression coefficients β̂ versus shrinking linear predictions xT0 β̂. Vectors ν̃i from Display (3)
were related to coefficient shrinking, whereas νi from Display (5) were the feature vectors

x0 related to prediction shrinking. Mathematically, eigenvectors w
(γ2)
i determine directions

of coefficient shrinking. Since p = 2, the Section 2.1 discussion in-fact concentrated on all

feature vectors w
(γ2)
1

⊥
and w

(γ2)
2

⊥
, and an eigenvector direction of maximum (minimum)

coefficient shrinking was orthogonal to feature vectors of maximum (minimum) prediction
shrinking. Generalizing this story to p > 2 also results in p directions of coefficient shrinking
and p feature vector directions of interpretable prediction shrinking, but the mathematics

has the following subtlety. When p > 2, a direction of coefficient shrinking w
(γ2)
i is orthog-

onal to a p − 1 dimensional vector space w
(γ2)
i

⊥
of feature vectors, so if p − 1 ≥ 2, vector

space w
(γ2)
1

⊥
consists of an infinite number of directions. Proposition 5 below provides a

convenient form for the line in common to all w
(γ2)
j

⊥
with j 6= i for each i ∈ {1, . . . , p} by es-

tablishing a relationship between w
(γ2)
i , w

(γ2)
i

⊥
, and X(γ2) from Equation (8). These p lines

of feature data vectors for arbitrary p ≥ 2 will later be seen to have a clear interpretation
when it comes to prediction shrinking, so we call them extrapolation directions.

Proposition 5 The span
(
X(γ2)TX(γ2)w

(γ2)
i

)
=
⋂
j∈{1,...,p}−{i}w

(γ2)
j

⊥
∀i ∈ {1, . . . , p}.

Henceforth, the line span
(
X(γ2)TX(γ2)w

(γ2)
i

)
is called the ith extrapolation direction ∀i ∈

{1, . . . , p}.
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The ith extrapolation direction necessarily traces out a line because it’s all scalar mul-

tiples of the nonzero vector X(γ2)TX(γ2)w
(γ2)
i . Any feature vector on the ith extrapolation

direction, i.e., x0 ∈
⋂
j∈{1,...,p}−{i}w

(γ2)
j

⊥
from Proposition 5, is of special note. Their

Equation (16) semi-supervised predictions simplify to xT0 β̂γ = ĉ
(γ2)
i /

(
1 + γ1τ

(γ2)
i

)
xT0w

(γ2)
i

and are shrunk more (relative to the corresponding OLS supervised prediction xT0 β̂
(OLS)

=

ĉ
(γ2)
i xT0w

(γ2)
i ) for smaller i ∈ {1, . . . , p} at any fixed γ1 > 0 because τ

(γ2)
1 ≥ · · · ≥ τ (γ2)

p .

Next, the ith extrapolation direction is shown to be one of more (or less) extreme un-
labeled extrapolations. With this in mind, use the indicator function I{·} to define the

positive number κ
(γ2)
i = τ

(γ2)
i + I{i>rank(XU )} and define the vectors

`
(γ2)
i = XLw

(γ2)
i and u

(γ2)
i =

X
(γ2)
U w

(γ2)
i√

κ
(γ2)
i

. (17)

Vectors (17) in the semi-supervised extreme of γ2 =∞ were temporarily denoted by `i and
ui during their more conceptual introduction within Section 2.1 (e.g., Figure 2). It was also
stated previously during this overview that `i and ui were unit length. Proposition 6 is a
generalization.

Proposition 6 If γ2 > 0, vectors
{
`

(γ2)
i

}1

i=p
and

{
u

(γ2)
i

}rank(XU )

i=1
are orthonormal bases

for the column spaces of XL and X
(γ2)
U , and u

(γ2)
i = ~0 if i > rank(XU ).

Section 2.1 also introduced extents of L- and U -extrapolation. Vectors (17) are used to
define these now for each i ∈ {1, . . . , p} as

XT
L`

(γ2)
i Extent of L-Extrapolation (in the ith Direction)

X
(γ2)
U

T
u

(γ2)
i Extent of U -Extrapolation (in the ith Direction), where (18)

span
(
X(γ2)TX(γ2)w

(γ2)
i

)
is the ith Direction of Extrapolation from Proposition 5.

Propositions 7 establishes that the ith extent vectors are in-fact on the ith extrapolation
direction.

Proposition 7 For each i ∈ {1, . . . , p},

XT
L`

(γ2)
i =

1

1 + τ
(γ2)
i

X(γ2)TX(γ2)w
(γ2)
i

X
(γ2)
U

T
u

(γ2)
i =

τ
(γ2)
i

(1 + τ
(γ2)
i )

√
κ

(γ2)
i

X(γ2)TX(γ2)w
(γ2)
i ,

so X(γ2)TX(γ2)w
(γ2)
i , XT

L`
(γ2)
i , and X

(γ2)
U

T
u

(γ2)
i are parallel vectors in IRp.
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Previously defined vectors are now verified to possess fundamental interpretations: (i)
Extent Vectors (18) do indeed measure “extrapolation extents” in a sensible manner, (ii)
Vectors (17) determine shrinking directions for joint trained least squares fits Xβ̂γ , and

(iii) magnitudes of extent vectors regulate the shrinking of regression coefficients β̂γ . These
three interpretations are gleaned by applying Propositions 6 and 7 in conjunction with
well-known properties of orthogonal projection matrices and quadratic forms from linear
algebra. The n× p matrix identity

X(γ2)
(
w

(γ2)
1 · · · w

(γ2)
p

)
=

((
`

(γ2)
1√

κ
(γ2)
1 u

(γ2)
1

)
· · ·

(
`

(γ2)
p√

κ
(γ2)
p u

(γ2)
p

))
(19)

follows from Definitions (17). The right of Equation (19) has orthogonal columns by Propo-
sition 6, and the columns on the left of Equation (19) are eigenvectors with eigenvalue one of

the orthogonal projection matrix X(γ2)
(
X(γ2)TX(γ2)

)−1
X(γ2)T . Therefore, the columns

of Matrix (19) are an orthogonal basis for the eigenspace of X(γ2)
(
X(γ2)TX(γ2)

)−1
X(γ2)T

corresponding to eigenvalue one, because rank
(
X(γ2)

)
= p is a necessary condition for the

joint trained least squares assumption that rank(XL) = p.

Projection matrix X(γ2)
(
X(γ2)TX(γ2)

)−1
X(γ2)T is nonnegative definite, so its main

diagonal block sub matrices based on the L, U data partition are also nonnegative definite.

The nonnegative definite, rank-p, sub matrix XL

(
X(γ2)TX(γ2)

)−1
XT

L has orthonormal

eigenvectors
{
`

(γ2)
i

}1

i=p
corresponding to its nonzero eigenvalues 1/(1 + τ

(γ2)
i ) by Proposi-

tions 6 and 7. Similarly, nonnegative definite sub matrix X
(γ2)
U

(
X(γ2)TX(γ2)

)−1
X

(γ2)
U

T

has orthonormal eigenvectors
{
u

(γ2)
i

}rank(XU )

i=1
corresponding to its nonzero eigenvalues

τ
(γ2)
i /(1+τ

(γ2)
i ). Well-known eigenvector solutions to constrained optimizations of quadratic

forms imply

`
(γ2)
i = arg max

υ∈IR|L|:υTυ=1,υT `
(γ2)
j =0 ∀j>i

υTXL

(
X(γ2)TX(γ2)

)−1
XT

Lυ

u
(γ2)
i = arg max

υ∈IR|U|:υTυ=1,υTu
(γ2)
j =0 ∀j<i

υTX
(γ2)
U

(
X(γ2)TX(γ2)

)−1
X

(γ2)
U

T
υ.

In other words, the unit length weight vectors on the rows of XL (of X
(γ2)
U ) that maximize a

Mahalanobis distance measuring extent of extrapolation subject to orthogonality constraints

are the eigenvectors
{
`

(γ2)
i

}1

i=p
(eigenvectors

{
u

(γ2)
i

}rank(XU )

i=1
) sorted by descending positive

eigenvalues. Proposition 7 also establishes that each eigenvalue

τ
(γ2)
i =

∥∥∥∥X(γ2)
U

T
u

(γ2)
i

∥∥∥∥
2∥∥∥XT

L`
(γ2)
i

∥∥∥
2

(20)
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of the shrinking matrix M (γ2) from Display (14) is a ratio of parallel extent eigenvector
lengths, so the extent of U -extrapolation is larger (smaller) than the corresponding L-extent

in the ith direction of extrapolation if τ
(γ2)
i > 1 (if τ

(γ2)
i < 1).

The joint trained least squares fits vector for all n observations has the form

Xβ̂γ =

p∑
i=1

ĉ
(γ2)
i

(
1

1 + γ1τ
(γ2)
i

)(
`

(γ2)
i√

κ
(γ2)
i /γ2OU (DU + γ2I)

1
2 u

(γ2)
i

)

by Equations (16) and (19) and the reverse of Transformation (8). Thus, eigenvectors `
(γ2)
i

and u
(γ2)
i involved in constructing the ith extrapolation direction with smaller i ∈ {1, . . . , p}

are used to shrink fits more as γ1 is increased. By Equation (16) and Ratios (20), coefficient
vector

β̂γ =

p∑
i=1


∥∥∥XT

L`
(γ2)
i

∥∥∥
2∥∥∥XT

L`
(γ2)
i

∥∥∥
2

+ γ1

∥∥∥∥X(γ2)
U

T
u

(γ2)
i

∥∥∥∥
2

 ĉ
(γ2)
i w

(γ2)
i

is a generalization of Display (4) and balances the degree of coefficient shrinkage by the
relative extents of U - versus L-extrapolations in the ith direction as tuning parameter γ1 is
increased.

The Figure 2 block extrapolation example is now revisited with the notation of Display
(18) and other mathematical developments from this section in mind. Extrapolation di-
rections can always be computed with Proposition 5. When p = 2, the 1st extrapolation

direction is comprised of all vectors orthogonal to w
(γ2)
2 , and the 2nd extrapolation direction

is comprised of all vectors orthogonal to w
(γ2)
1 . Directions and extents in Figure 2 were

all based on the semi-supervised extreme setting γ2 = ∞. In this example, the extent of

U -extrapolation is a larger multiple of the L-extent in the 1st direction, so τ
(γ2)
1 > τ

(γ2)
2 is a

strict inequality. In addition, U -extents have the larger magnitude, so τ
(γ2)
2 > 1 is another

artifact of this particular example. An example of p > 2 is deferred until discussion of
Figure 6 in the examples Section 4.5.

4.2 Joint Trained Ridge Regression

Estimator (9) with λ = (0, λ2) is motivated with augmented labeled data

X
(λ2)
L =

(
XL√
λ2I

)
and Y ?

L =

(
Y L

~0

)
(21)

having p additional rows. The resulting joint trained ridge estimator

β̂γ,(0,λ2) = arg min
β

‖Y L −XLβ‖22 + γ1

∥∥∥X(γ2)
U β

∥∥∥2

2
+ λ2 ‖β‖22

is equivalent to Joint Trained Least Squares (11) given Data (21). Hence,

β̂γ,(0,λ2) =

(
X

(λ2)
L

T
X

(λ2)
L + γ1X

(γ2)
U

T
X

(γ2)
U

)−1(
X

(λ2)
L

T
X

(λ2)
L

)
β̂

(RIDGE)

λ2
, (22)

3197



Ryan and Culp

●●

●●

●●

β2 β1

β̂
(OLS)

Semi-Supervised Extreme

Supervised Ridge

�
�
�	

�
���

β̂
(RIDGE)

λ2

@@R

(a)

●●

●●

β2 β1

β̂
(LASSO)

λ1
Semi-Supervised Extreme

�
�
�	

@R

(b)

� -γ2 = 308 Path

●●

●●

●●

●●

(c)

β̂
(LASSO)

λ1
= β̂

[j1]

λ1

β̂
[j3]

λ1

β̂
[j2]

λ1

rr

β2 β1

Figure 5: Paths of candidate β̂γ,λ for the Figure 1 block example varying γ1 > 0 with
darker curves for larger γ2 > 0 are compared. (a) Joint trained ridge paths at

a fixed λ = (0, 0.1) start at supervised ridge β̂
(RIDGE)

λ2
instead of supervised OLS

β̂
(OLS)

. (b) Similarly, joint trained lasso paths at a fixed λ = (0.01, 0) start at

supervised lasso β̂
(LASSO)

λ1
. However, these continuous paths are not differentiable

at points where the active set changes. (c) The path from (b) with γ2 = 308
is highlighted. Active set changes are marked by bullets •, and the reference
curves based on the right of Equation (23) are also displayed as dashed lines for

i = 1, 2, 3. Each reference curve starts at a β̂
[ji]

λ1
(marked by an open circle ◦)

and terminates at the origin. The actual candidate path always equals one of the

displayed reference curves. It starts at β̂
(LASSO)

λ1
= β̂

[j1]

λ1
when γ1 = 0 and switches

reference curves whenever there is a change in the active set.

because β̂
(RIDGE)

λ2
=

(
X

(λ2)
L

T
X

(λ2)
L

)−1

XT
LY L is the OLS estimator given Data (21). Matrix

X
(λ2)
L

T
X

(λ2)
L = XT

LXL + λ2I with λ2 > 0 is positive definite, so the inverse required to

compute β̂γ,(0,λ2) exists. Estimates (22) for the block extrapolation example come out as

expected in Figure 5(a). Paths start at β̂
(RIDGE)

λ2
with λ2 = 0.1 and converge to the origin.

4.3 Joint Trained Lasso Regression

Supervised Optimization (7) with λ2 = 0 simplifies to β̂
(LASSO)

λ1
= β̂

(ENET)

λ1,0 , a well-understood
technique for incorporating variable selection when p is large and the columns of XL are
linearly independent (Friedman et al., 2010). The goal in this section is to use what is

already known about β̂
(LASSO)

λ1
to provide an understanding of the joint trained lasso β̂γ,(λ1,0)

from Problem (9). Denote the active set of some estimate β̂ by A ⊂ {1, . . . , p}, so
(
β̂
)
A

is its |A| × 1 vector of nonzero components and
(
β̂
)
Ā

= ~0 is (p− |A|)× 1. Also denote its

sign vector by s = sign
((
β̂
)
A

)
and the |L| × |A| sub matrix of X with labeled rows and
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active set columns by XLA. The active set A(SUP) and sign vector s(SUP) of the supervised
lasso at a given λ1 satisfy the constraint

XT
LA(SUP)XLA(SUP)

(
β̂

(LASSO)

λ1

)
A(SUP)

= XT
LA(SUP)Y L − λ1s

(SUP).

Estimates β̂
(LASSO)

λ1
are a differentiable function in λ1 with a finite number of exceptions.

This function is continuous, but not differentiable when the active set changes.
The joint trained lasso β̂γ,(λ1,0) has properties similar to the supervised lasso by Opti-

mization (9), because it’s a lasso estimator with unlabeled imputations Y U = ~0 and modified
X. Unlike joint trained ridge and joint trained least squares from Sections 4.1 and 4.2, the
joint trained lasso coefficients are not always a linear combination of the supervised lasso,
and this complicates its ensuing interpretation. There are 2p + 2p+ 1 active-set/sign-vector
combinations for any p ≥ 2. For example, when p = 2, there are nine combinations, i.e.,
22 = 4 quadrants, 2× 2 = 4 axial directions, and 1 origin. Each active-set/sign-vector com-

bination has a set of reference coefficients
(
β̂

[j]

λ1

)
Aj

=
(
XT

LAjXLAj

)−1 (
XT

LAjY L − λ1sj

)
and

(
β̂

[j]

λ1

)
Āj

= ~0 for j = 1, . . . , 2p + 2p + 1. These reference coefficients have important

properties. First, β̂
[j]

λ1
are independent of XU . Second, there exists a j ∈ {1, . . . , 2p+2p+1}

such that β̂
(LASSO)

λ1
= β̂

[j]

λ1
. Third, sign

((
β̂

[j]

λ1

)
Aj

)
does not necessarily equal sj . Next, the

path of the joint trained lasso as a function of γ1 at a given γ2 is studied. Let the finite set
{ai}ki=1 be the finite values of γ1 where the active set of the joint trained lasso changes and
define a0 = 0 and ak+1 = ∞. Also define the subsequence j1, . . . , jk such that Aji and sji
correspond to the joint trained lasso for any γ1 ∈ [ai−1, ai), so this subsequence tracks the
evolution of the joint trained lasso’s active set and sign vector. Thus, for all γ1 ∈ [ai−1, ai),(

β̂γ,(λ1,0)

)
Aji

=
(
XT

LAji
XLAji + γ1X

(γ2)T

UAji
X

(γ2)
UAji

)−1
XT

LAji
XLAji

(
β̂

[ji]

λ1

)
Aji

, (23)

and shrinking of regression coefficients on the active set looks very much like Display (14).

i 1 2 3 4

Aji {1, 2} {2} {1, 2} ∅
sTji (−1, 1) (0, 1) (1, 1) -

γ1 [0, 0.004) [0.004, 0.008) [0.008,∞) ∞

Table 1: Block extrapolation active-set, sign-vector combinations are listed as a function of
γ1 for the joint trained lasso coefficients β̂γ,λ from Figure 5(c) with λ = (0.01, 0)
and γ2 = 308.

Figure 5(b) plots paths of vectors β̂γ,(λ1,0) by γ2 as a function of γ1 at λ1 = 0.01 for the
block extrapolation example. The semi-supervised path starts at the supervised estimate

β̂
(LASSO)

λ1
when γ1 = 0. Equation (23) establishes a local property of the joint trained lasso.

The approach has the same active set and sign vector as the supervised coefficient for a
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small region γ1 ∈ [0, a1), where a1 > 0. This local property of the joint trained lasso, which
was mathematically verified in this section, is stated as a key assumption while deriving the
general performance bounds in Section 5. An example is the highlighted path with γ2 = 308
from Figure 5(b) shown in Figure 5(c). This candidate path of semi-supervised regression
coefficients visits four active-set, sign-vector combinations as a continuous function of γ1

at given λ1 and γ2. These visited combinations are listed in Table 1 along with their
corresponding values γ1. Figure 5(c) also includes dashed reference curves based on the right
of Equation (23) as a function of γ1 for each non-empty active-set/sign-vector combination
visited by the approach, i.e., i = 1, 2, 3. The candidate semi-supervised estimates follow
along a reference path until the active set changes, and then the path switches to the
reference path with the new active set and sign vector. This continues until the path
terminates at the origin when γ1 =∞.

4.4 Joint Trained Elastic Net Regression

A general view of Problem (9) when all four tuning parameters are finite and positive comes
from stringing concepts from Sections 4.2 and 4.3 together. In particular,(

β̂γ,λ

)
Aji

=

(
X

(λ2)
LAji

T
X

(λ2)
LAji

+ γ1X
(γ2)
UAji

T
X

(γ2)
UAji

)−1(
X

(λ2)
LAji

T
X

(λ2)
LAji

)(
β̂

[ji]

λ

)
Aji

,

where Aji and sji depend on (γ,λ) and

(
β̂

[ji]

λ

)
Aji

= (1 + λ2)

(
X

(λ2)
LAji

T
X

(λ2)
LAji

)−1 (
X

(λ2)T

LAji
Y L − λ1sji

)
.

The order of operations are important: substitute XLAji for XL and then apply Equation

(21) to get X
(λ2)
LAji

, and similarly, XUAji for XU to then get X
(γ2)
UAji

from Equation (8).

Increased γ1 and γ2 puts more emphasis on shrinking unlabeled fits. Increased λ2 and/or
decreased γ2 results in the labeled and/or unlabeled directions being better approximated by
an |Aji |-sphere, and increased λ1 for presumably more stringent variable selection. Cross-
validation often selects the joint trained elastic net with strictly positive lasso λ1 > 0 and
ridge λ2 > 0 tuning parameter values in practical applications, so the joint trained elastic
net is showcased later through its performance on numerical examples (i.e., simulated and
real data sets) in Section 6.

4.5 Geometric Extrapolation Examples

The purpose of this section is learn more about the properties of our semi-supervised adjust-
ment through additional geometrical examples of joint trained least squares from Section
4.1. Recall the joint trained least squares example in Figures 1, 2, and 4 for the heav-
ily studied block extrapolation example. The first row of Figure 6 motivates additional
discussion by simply changing the unlabeled feature data as follows.

• “Pure” – Extrapolations of larger magnitude are roughly in-line with the 2nd principal
component, so supervised and semi-supervised shrinking are in similar directions at
varying degrees.
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ĉ
(γ

2
)

1
w

(γ
2
)

1

β1

β2

β̂
(OLS)

θ

θ

Semi-Supervised
�
�
��

●●

●●

●●

●

Supervised
�
�
��

S
em

i-S
u
p

erv
ised

�

β1

β2

Figure 6: An additional geometrical example of joint trained least squares is displayed in
each column. Row 1: Only the unlabeled feature data XU from the “working”
block extrapolation example from Figures 1, 2, and 4 were changed. Row 2:
Ellipses (12) and (13) intersect at a point on the semi-supervised extreme. Row
3: Paths β̂γ are plotted by γ2 varying γ1. The gray circle is the supervised ridge
solution from Figure 4(a).

• “1D” – The unlabeled marginal distribution is more volatile in one dimension x2.

• “Same” – Minor discrepancies arise naturally in empirical distributions when taking
independent samples from the same distribution.

• “Hidden” – Components x1 and x2 have roughly the same marginal distributions in
both sets, but unlabeled extrapolations are hidden in the bivariate distribution of
(x1, x2).

• “Labeled” – Only the labeled feature data deviate substantially from the origin.

Broader sets of candidate β̂γ are entertained in the block, 1D, and same extrapola-
tion examples. On the other hand, directions of extrapolations are roughly the principal
components in the pure, hidden, and labeled extrapolation examples, and these exam-
ples have smaller candidates sets β̂γ as a result. In general, such smaller candidates sets
are expected whenever the semi-supervised eigenvector directions of shrinking based on(
XT

LXL

)−1
X

(γ2)
U

T
X

(γ2)
U are approximately those in supervised ridge regression based on

3201



Ryan and Culp

τ
(γ2)
i Block Pure 1D Same Hidden Labeled

τ
(γ2)
1 95.1 662.5 11.2 4.2 38.0 0.30

τ
(γ2)
2 22.6 1.3 0.3 1.2 0.1 0.01

Table 2: The eigenvalues of M (γ2) with γ2 =∞ are listed.

XT
LXL, but this does not imply that supervised and semi-supervised ridge techniques are

approximately the same (see Remark 8).

The block and pure examples emphasize profoundly different directions of extrapola-
tion, but have eigenvalues of large magnitude in Table 2. Extrapolations are on separate
manifolds, and the approach shrinks predictions much more in these two examples at a
given γ1 > 0, by Equation (16). The semi-supervised extreme path closely maps the sides
of its bounding parallelogram from Proposition 4 in the pure and hidden examples because

their τ
(γ2)
i in Table 2 are of different orders of magnitude. This phenomena is not present

in the block and same examples when eigenvalues are of the same order of magnitude. The
semi-supervised extreme in the 1D example is of special note. Its labeled feature data are
negatively correlated, so the extreme emphasizes x1 to shrink the influence of the component
x2 which is volatile in the unlabeled data.

Figure 7 is a 3D example. In the semi-supervised extreme, the shrinking matrix M (γ2)

has eigenvalues τ
(γ2)
i = 2090, 21.3, 1.08, so shrinking of regression coefficients is much more

heavily focused in direction w
(γ2)
1 because these eigenvalues differ in magnitude. The 1st di-

rection of extrapolation is based on the other p − 1 = 2 directions of coefficient shrinking

w
(γ2)
2 and w

(γ2)
3 and is defined as the set of all feature vectors that are orthogonal to both of

these directions. The desired effect of using the unlabeled data to shrink unlabeled extrapo-
lations more is achieved through Equation (16) at any γ1 > 0. Semi-supervised predictions

are xT0 β̂
(OLS)

/(1 + γ12090) if x0 is a feature vector on the 1st direction of extrapolation;

xT0 β̂
(OLS)

/(1 +γ121.3) if x0 is on the 2nd direction; and xT0 β̂
(OLS)

/(1 +γ11.08) if x0 is on the

3rd direction. Candidate vectors β̂γ in Figure 7(b) form a curved surface between supervised
and semi-supervised extreme.

Remark 8 Even if supervised and semi-supervised candidate sets β̂ are approximately
equal, semi-supervised training with the unlabeled feature data XU may pick a very dif-
ferent (and hopefully more advantageous) estimate β̂ within the candidate set during cross-
validation. In general, whether or not such apparent “parameter redundancies” exist, we
always advocate the use of supervised regularization (λ 6= ~0) together with semi-supervised
regularization (γ 6= ~0), especially when p is large. Many parameter redundancies noted in
the p = 2 examples are not present in large p applications. If one briefly backs up to the
case of p = 1, all candidate paths from Section 4.1 essentially start on the number line at
the OLS estimate and then shrink to zero. When p = 3, one could overlay β̂γ,(0,λ2) for all

γ ∈ [0,∞]2 at fixed λ2 > 0, and this in-fact adds a distinct layer to the 3D surface in Figure
7(b). The key point is to broaden the choices in an intelligent manner as needed so that a
most desirable β̂ can be selected for the purpose of unlabeled prediction.
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Figure 7: A p = 3 extrapolation data set is displayed. (a) The feature data along with
the three extrapolation directions in the semi-supervised extreme of γ2 =∞ are
plotted. Each direction of extrapolation is a line that equals the intersection of
two planes by Proposition 5. (b) Candidate paths β̂γ by γ2 varying γ1 have a
nonlinear compromise between supervised ridge and the semi-supervised extreme.

5. Performance Bounds

A general sufficient condition is given in this section for when a semi-supervised adjustment
improves expected unlabeled prediction performance for a large class of linear supervised
approaches. Assumption 1 on the class of supervised approaches is a necessary but not
a sufficient condition for the elastic net; this generality was intentional. Assumption 2
characterizes a local property of our semi-supervised adjustment that follows from its Section
4 geometry.

Assumption 1: The supervised estimate β̂
(SUP)

λ is unique for data (XL,Y L) and some
λ. Let φ = {λ,A, s} and q = |A| denote its fixed properties.

Assumption 2: ∃ δ > 0 such that ∀ γ1 ∈ [0, δ) semi-supervised estimates β̂
(φ)

γ1
have

the supervised active set A and sign vector s, and(
β̂

(φ)

γ1

)
A

=
(
I + γ1M

(λ2,∞)
A

)−1 (
β̂

(SUP)

λ

)
A
, where

M
(λ2,γ2)
A =

(
X

(λ2)
LA

T
X

(λ2)
LA

)−1

X
(γ2)
UA

T
X

(γ2)
UA .

Assumptions 1 and 2 always hold for the Joint Trained Optimization Problem (6) when
λ2 > 0 or rank(XL) = p. For example, consider the joint trained lasso example from Figure
5(b) and Table 1. Assumption 1 holds with φ = {(0.01, 0), {1, 2}, (−1, 1)}, and Assumption
2 holds with δ = 0.004 from Table 1.
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Results to come focus on the impact of semi-supervised learning with γ2 = ∞, so

Propositions 3-6 are applied to β̂
(φ)

γ1
andM

(λ2,∞)
A . Let

{(
w

(φ)
i , τ

(φ)
i

)}q
i=1

be an eigenbasis of

M
(λ2,∞)
A such that

∥∥∥X(λ2)
LA w

(φ)
i

∥∥∥2

2
= 1 and

(
β̂

(SUP)

λ

)
A

=
∑q

i=1 ĉ
(φ)
i w

(φ)
i generalize Equation

(15). Assumption 2 implies that Equation (16) generalizes to(
β̂

(φ)

γ1

)
A

=

(
1

1+γ1τ
(φ)
1

)
ĉ

(φ)
1 w

(φ)
1 + · · ·+

(
1

1+γ1τ
(φ)
q

)
ĉ(φ)
q w(φ)

q . (24)

Assume the linear model with E[Y ] = Xβ and Var(Y ) = σ2I and project

βA = c
(φ)
1 w

(φ)
1 + · · ·+ c(φ)

q w(φ)
q . (25)

If small c
(φ)
i correspond to large τ

(φ)
i , a performance improvement on the evaluation function∥∥∥XUA

(
βA −

(
β̂

(φ)

γ1

)
A

)∥∥∥2

2
appears likely by Equations (24) and (25). If τ

(φ)
i is large for

a small subset i ∈ Ω ⊂ {1, . . . , p} and small otherwise, then semi-supervised performance
is expected to be better over a larger percentage of the possible directions for the true
β. Such high performance circumstances occur when a low dimensional manifold of XUA
concentrates away from that of XLA and the true coefficient vector β emphasizes directions
dominated by labeled extrapolations. Assumption 3 helps establish a general transductive
bound for when semi-supervised learning is better than supervised on evaluation function

E
[∥∥∥XU

(
β̂

(φ)

γ1
− β

)∥∥∥2

2

∣∣∣∣φ].
Assumption 3: E

[
ĉ

(φ)
i

∣∣∣φ] = µi <∞ and Var
[
ĉ

(φ)
i

∣∣∣φ] = σ2
i <∞ ∀i ∈ {1, . . . , q}.

Let Ā = {1, . . . , p}−A be the supervised non-active set and defineXU∅β∅ = ~0. Theorem
9 provides a sufficient condition on parameters

(
β, σ2

)
for when semi-supervised outperforms

supervised given the feature data and φ.

Theorem 9 Let Assumptions 1-3 hold. Also, let q ≥ 1, τ
(φ)
1 > 0, and pi

(
τ (φ)

)
=

τ
(φ)2

i σ2
i∑q

j=1 τ
(φ)2

j σ2
j

. If
∑q

i=1 pi
(
τ (φ)

)µi

(
c
(φ)
i +u

(φ)T

i XUĀβĀ/

√
κ

(γ2)
i

)
−µ2

i

σ2
i

 < 1, then

E
[∥∥∥XU

(
β̂

(φ)

γ1
− β

)∥∥∥2

2

∣∣∣∣φ] < E
[∥∥∥XU

(
β̂

(SUP)

λ − β
)∥∥∥2

2

∣∣∣∣φ] .

As stated earlier, Assumptions 1 and 2 hold for the general λ joint trained elastic net
regression of Section 4.4. In the case of λ = ~0 least squares, it is also easily verified that µi =

c
(φ)
i and σ2

i = σ2 for Assumption 3. The mathematical form of the extreme version of joint
trained least squares in Equation (14) is equivalent to that for generalized ridge regression.
Corollary 10 in conjunction with Casella (1980) shows that joint trained least squares is
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Figure 8: The five examples with p = 2 from Figure 6 are revisited. Row 1: Theoretical
bound σ2 − σ2

LB (β(ϑ)) is plotted against ϑ. Darker curves correspond to larger
σ2 ∈ [0, 1]. Row 2: The corresponding differences RMSE(SUP)

U − RMSE(SEMI)

U are
plotted against ϑ.

asymptotically minimax with respect to loss function E
[∥∥∥XU

(
β̂ − β

)∥∥∥2

2

]
as |L| → ∞. In

the case of ridge regression, µi = c
(φ)
i − λ2w

(φ)
i

T
β and σ2

i = w
(φ)
i

T
XT

LXLw
(φ)
i σ2 for any

i ∈ {1, . . . , p} are also straightforward to derive, so Theorem 9 reduces to Corollary 11.

Corollary 10 Joint trained least squares with γ2 = ∞ dominates supervised least squares

in prediction on XU if q ≥ 1 and τ
(φ)
1 > 0.

Corollary 11 The extreme version of joint trained ridge regression dominates supervised

ridge regression in prediction on XU if q ≥ 1, τ
(φ)
1 > 0, and

σ2
LB(β) =

 p∑
i=1

pi

(
τ (φ)

)(
c
(φ)
i −λ2w

(φ)
i

T
β

)(
λ2w

(φ)
i

T
β

)
w

(φ)
i

T
XT
LXLw

(φ)
i


+

< σ2.

The block feature data from Figure 1 were used to construct Figure 3 and introduce the
reader to the semi-supervised ridge bound σ2

LB(β) earlier in Section 2.2. The analog of that
figure for the five examples from Figure 6 is given in this section by Figure 8. A technical
explanation of how these figures were constructed precedes the qualitative discussion of
their interpretations in the next paragraph. First, note that σ2

LB(β(ϑ)) from Corollary 11 is
independent of σ2. It was computed for all β (ϑ) = (sin(ϑ), cos(ϑ))T over a fine grid of ϑ ∈
[0, π], and the σ2

LB(β(ϑ)) were compared to a fine, equally spaced grid of σ2 ∈ [0, 1]. Only
the right half of the unit circle was considered for β because σ2

LB(β(ϑ)) = σ2
LB(β(ϑ + π)).

Also, σ2
LB(rβ(ϑ)) = r2σ2

LB(β(ϑ)), so the same trend results from the scaled parameters
rβ(ϑ) with σ2 ∈ [0, r2]. The ridge parameter was set to the “best” supervised attempt
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of λ
(opt)
2 minimizing E

[∥∥∥XL

(
β(ϑ)− β̂

(RIDGE)

λ2

)∥∥∥2

2

]
. Interest was in identifying ϑ’s when a

semi-supervised adjustment helps, i.e., when σ2 − σ2
LB (β(ϑ)) > 0.

Angles ϑ corresponding to lucky β(ϑ) and to reductions in RMSE due to semi-supervised
learning line-up vertically across the rows of Figure 8 (i.e., ϑ with a positive vertical co-
ordinate in row 1 also have a positive coordinate in row 2 and vice versa). Row 2 is the
magnitude of the improvements, and the examples with the largest magnitude (i.e., the
pure example and the block example from Figure 3(b)) are those with the largest eigen-
values in Table 2 as expected. The labeled example with the smallest improvements also

has the smallest eigenvalues. Direction w
(φ)
2 (eyeballed from the row 1 of Figure 6) should

be compared to row 1 of Figure 8. In each example, the center for potentially large im-

provements is roughly β(ϑ) ∝ w(φ)
2 , and the center for little to no potential improvement

is roughly β(ϑ) ∝ w(φ)
2

⊥
. The generalization to p ≥ 2 in Proposition 12 below extends this

interpretation to that given back in Section 2.2. That is, if β is orthogonal to an unlabeled

manifold, then β̂
(φ)

γ1
has an unlabeled prediction advantage over β̂

(RIDGE)

λ2
, whereas β parallel

to the unlabeled manifold yields no theoretical advantage.

Proposition 12 If τ
(φ)
1 > 0 and βi ∈

⋂
j∈{1,...,p}−{i}w

(φ)
j

⊥
is unit length, then the joint

trained ridge performance bound from Corollary 11 satisfies σ2
LB (βi) ≥ λ2pi

(
τ (φ)

)
for

i ∈ {1, . . . , p} and σ2
LB (βi) ≥ σ2

LB

(
w

(φ)
j /

∥∥∥w(φ)
j

∥∥∥
2

)
if j ≥ i.

Given a lasso estimate β̂
(LASSO)

λ1
, response Y L ∈ YL(φ) =

{
y ∈ IR|L| : β̂

(LASSO)

λ1
has φ

}
,

and the sets YL(φ) partition IR|L| at fixed λ = (λ1, 0). If we additionally assume a normal
theory linear model, Y L|φ has a truncated normal distribution on YL(φ), so means µi and
variances σ2

i also depend on
(
β, σ2

)
. Although the extreme versions of the lasso and elastic

net are intractable, the interpretation of Theorem 9 still applies.

6. Numerical Examples

In this Section, both simulated and real data scenarios are presented for the Joint Trained
Elastic Net (JT-ENET). The simulation is run with both lucky and unlucky β examples.
For the ridge regression version of our estimator, the theoretical bound from Proposition
12 implies that a lucky β is perpendicular to the unlabeled centroid and a unlucky β
is parallel to the unlabeled centroid. The result in Theorem 9 presumably extends the
generality of this concept. The simulation was designed in part to assess whether the notion
of lucky versus unlucky β extends to the JT-ENET. The real data sets provide covariate
shift applications, so the JT-ENET should have some advantage over supervised learning
in terms of a prediction focused objective function on the unlabeled set. It is important to
note that only XL, XU , and Y L were used during training throughout this section.

In all cases, comparisons were made to the supervised elastic net using the R package
glmnet (Friedman et al., 2010; R Core Team, 2015). This particular implementation is
optimized for estimating λ1 + 2λ2 with 10-fold cross validation given λ1/(λ1 + 2λ2). First,
the supervised elastic net was implemented by varying λ1/(λ1 +2λ2) ∈ [0, 1] over an equally
spaced grid of length 57 to optimize parameters λ.
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Second, the semi-supervised JT-ENET was implemented by estimating its parameters
(λ,γ) simultaneously. Calls to the glmnet with data augmentations from Proposition 2
were used for all low-level fittings. Parameter λ1 + 2λ2 was estimated using 10-fold cross-
validation given λ1/(λ1 + 2λ2), γ1, and γ2. Parameter λ1/(λ1 + 2λ2) was optimized over
the grid {0, 0.25, 0.5, 0.75, 1, â}, where â was the optimal supervised setting for this pa-
rameter. Fixed grids γ1 ∈ ν−1 and γ2 ∈ ν were used for the other parameters, where
ν = {0.1, 0.5, 1, 10, 100, 1000, 10000,∞} and ν−1 = {1/r : r ∈ ν}. For K-fold cross-
validation in the semi-supervised setting, the L cases were partitioned into K folds, {Lk}Kk=1.

Let β̂
(−k)

γ,λ be the estimate from labeled data L−Lk and unlabeled data U ∪Lk, and let the

K-fold cross-validated variance be σ̂2
K =

∑K
k=1

∥∥∥Y Lk −XLk β̂
(−k)

γ,λ

∥∥∥2

2
/|L|. The JT-ENET

estimate β̂γ̂,λ̂ minimized σ̂2
3 over the grid for λ1/(λ1 + 2λ2), γ1, and γ2.

Our objective function was the RMSE on the unlabeled set. The RMSE of XU β̂
from XUβ was computed within simulations, but was computed from the withheld re-
sponses Y U in the real data examples. Let ENET and JT-ENET represent this unlabeled
set RMSE for the supervised elastic net and our proposed method using the true β for
the simulations and their empirical versions in real data examples. Percent improvement
%JT-ENET = ENET−JT-ENET

ENET × 100% was used to assess semi-supervised performance.
A baseline comparison to the theoretical best parameter settings for the semi-supervised
technique was also computed in the simulations, and its percent improvement is denoted
by %BEST. Two regression based covariate shift competitors were also applied to the real
data examples: adaptive importance-weighted kernel regularized least-squares (AIWKRLS)
(Sugiyama et al., 2007) and plain kernel regularized least-squares (PKRLS) (Kananmori
et al., 2009). The caret package in R (Kuhn, 2008) was also used to fit the SVM with a
polynomial kernel on the real data examples.

6.1 Simulations

Same and extrapolated feature data distributions were constructed to study three, high-
dimensional scenarios. Each scenario had |L| = |U | = 100, p = 1, 000, true active set

T = {1, . . . , 10}, (XL)ij
i.i.d.∼ N(0, 0.4), and Y L = XLβ + ε with ε ∼ N

(
~0, σ2I

)
. De-

fine indicator vector µ(A) ∈ IRp with entries µj(A) = I{j∈A} for some active set A,

β(unlucky) = 5µ(T )/
√

10, and β(lucky) = 5 (µ(T1)− µ(T2)) /
√

10 with T1 = {1, . . . , 5} and
T2 = {6, . . . , 10}. The three scenarios were

1. Same Distribution: (XU )ij
i.i.d.∼ N(0, 0.4) and β = β(lucky)

2. Extrapolation (Lucky β): (XU )ij
ind∼ N

(
10µj(T ), 0.4

)
and β = β(lucky)

3. Extrapolation (Unlucky β): (XU )ij
ind∼ N

(
10µj(T ), 0.4

)
and β = β(unlucky).

If the truth XUβ is large, any type of shrinking may be detrimental, so shrinking methods
(supervised or semi-supervised) should struggle in the extrapolation scenario with unlucky
β because β = β(unlucky) is parallel to the unlabeled data centroid µ(T ). On the other
hand, β(lucky) ⊥ µ(T ), so shrinking directions of extrapolation is more desirable. There is
an unlucky β direction, but a |T | − 1 or 9-dimensional vector space of lucky β directions.
Setting β = β(lucky) versus β = β(unlucky) is not critical in the same distribution scenario.
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Same Distribution Extrapolation (Lucky β) Extrapolation (Unlucky β)
σ2 ENET %JT-ENET %BEST ENET %JT-ENET %BEST ENET %JT-ENET %BEST

2.5 0.43 19.27 30.67 0.91 18.08 27.58 15.05 −2.55 2.06
0.03 3.41 3.63 0.08 3.50 3.65 0.11 0.83 0.65

5.0 0.69 31.88 46.67 1.25 26.10 38.73 15.19 −1.74 2.90
0.06 4.88 4.43 0.12 4.32 4.43 0.14 0.96 0.86

7.5 0.93 35.36 54.63 1.61 33.49 46.98 15.30 −1.47 4.75
0.09 5.68 4.58 0.17 4.53 4.50 0.21 1.44 1.25

Table 3: Unlabeled root mean squared error performance is summarized on high-
dimensional (p = 1, 000), simulated data sets: supervised elastic net (ENET),
percent improvement over ENET with the joint trained elastic net (%JT-ENET),
and the hypothetical maximum of %JT-ENET based on “cheating” with the “an-
swers” XUβ while picking the point (λ,γ) in the cross-validation grid (%BEST).
Fifty data sets were generated per level combination of scenario (i.e., same, lucky,
and unlucky) and model error variance σ2 = 2.5, 5.0, 7.5. Cell entries are the
sample mean (top) and standard error (bottom).

These probability models were used to conduct simulations studies in the following manner.

Model matrix X was generated once and fixed by scenario, and 50 independent response
vectors Y L were generated from the assumed linear model for each level combination of
scenario = 1, 2, 3 and σ2 = 2.5, 5.0, 7.5. Cross-validation took an average of 3.5 minutes
per data set on a 2.6 GHz Intel Core i7 Power Mac. The supervised ENET is best suited
for the same distribution prediction task, and its RMSEs are smallest in this scenario.
The significant performance advantage due to our semi-supervised adjustment in the same
distribution scenario relates to the curse of dimensionality, because extrapolations are likely
in a high-dimensional empirical distribution. There was also substantial improvement in
the extrapolation with lucky β scenario, while both approaches struggled at extrapolation
with unlucky β.

The %BEST values reported in Table 3 correspond to the best possible points (λ,γ) in
the cross validation grid and provide at least two points of useful discussion. First, values
%BEST increased with σ2, and this is consistent with what one might expect given the
factorization of the bound in Corollary 11. Its left hand side is a nonnegative number that
is independent of σ2, and a semi-supervised improvement is possible when σ2 exceeds this
nonnegative number. The values %BEST in Table 3 supports that a similar concept holds
with the bound in Theorem 9 that applies to the JT-ENET. Second, most points in the
cross validation grid corresponded to negative percent improvements, and some of these are
the largest in magnitude. Thus, while the method of cross validation is not getting the very
best point in the grid, its performance is competitive.

6.2 Real Data Examples

The 10 tests listed in Table 4 were constructed using 8 publicly available data sets and a
simulated toy extrapolation data set. Each is expected to have a covariate shifted empirical
feature data distribution either because the characteristic used to define the labeled set is
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Data Set (n, p) Labeled Set L Response y Data Set Source

Toy Cov. Shift (1200, 1) Training Set sinc(x) + ε Sugiyama et al. (2007)
Auto-MPG (398, 8) P1: Domestics Fuel (mpg) Lichman (2013)
Auto-MPG (398, 8) P2: ≤ 4 Cyl. Fuel (mpg) Lichman (2013)
Heart (462, 8) No History

√
Sys. BP Hastie et al. (2009)

U.S. News (1004, 19) Private Schools SAT.ACT ASA Data Expo ‘95
Auto-Import (205, 24) Low Risk Cars Price Lichman (2013)
Blood Brain (208, 135) Cmpds. 1-52 log(BBB) Kuhn (2008)
Eye (120, 200) Rats 1-30

√
Express Scheetz et al. (2006)

Cookie (72, 700) Training Set Water Osborne et al. (1984)
Ethanol (589, 1037) Sols. 1-294 Ethanol Shen et al. (2013)

Table 4: These ten covariate shift tests are used to establish benchmarks in Table 5.

Data Set p |L| |U | ENET SVM AIWKRLS PKRLS JT-ENET %JT-ENET

Toy Cov. Shift 1 200 1000 0.527 0.186 0.103 0.129 0.169 67.83
Auto-MPG (P1) 8 149 249 5.361 5.272 5.974 8.459 4.341 19.02
Auto-MPG (P2) 8 208 190 8.296 13.478 15.374 39.570 6.723 18.96
Heart 8 192 270 0.789 0.790 0.795 0.802 0.788 0.13
U.S. News 19 640 364 1.738 1.724 1.928 1.918 1.684 3.11
Auto-Import 24 113 92 4995 4223 6292 6376 4201 15.89
Blood Brain 135 52 156 1.684 6.424 0.797 0.815 0.649 61.46
Eye 200 30 90 0.019 0.425 0.027 0.027 0.016 15.79
Cookie 700 40 32 0.388 0.580 1.466 1.309 0.342 11.86
Ethanol 1037 294 295 1.461 1.422 2.626 2.625 1.391 4.79

Table 5: Empirical unlabeled root mean squared errors are listed for the ten covariate shift
tests defined by Table 4 and a field of five competitors: the supervised elastic net
(ENET), a support vector machine (SVM), adaptive importance-weighted ker-
nel regularized least-squares (AIWKRLS), plain kernel regularized least-squares
(PKRLS), and joint trained ENET (JT-ENET). The top performer is in bold.
The final column is percent improvement of JT-ENET over its supervised ENET
alternative with positive values in bold.

associated with other variables in the model matrix, because of the curse of dimensional-
ity, or because the simulated toy data were generated from a model with covariate shift.
Since covariate shift is our focus, randomized subsetting of the data (i.e., MCAR) was not
performed. When p is larger in the blood brain, eye, cookie, and ethanol applications, the
unlabeled set is likely to contain extrapolations. In all cases, the bounds from Section 5
together with the Section 4 geometry of the JT-ENET are at play here behind the scenes.
The U.S. News & World Report data required preprocessing. SAT scores were transformed
to their ACT equivalent, and the new variable with either transformed SAT, ACT, or their
average was used instead. Median imputation was used for all other missing values across
the board. In the Toy Covariate Shift example, we forced λ = ~0 for both the ENET and
JT-ENET to make comparisons consistent with Sugiyama et al. (2007).
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RMSEs for the various approaches and the empirical percent improvement for JT-ENET
are reported in Table 5. The JT-ENET appears to have worked in the ideal manner inde-
pendent of what caused the empirical covariate shift. In their toy covariate shift example,
competitors AIWKRLS and PKRLS performed strongly, but their edge went away with
increased p. AIWKRLS and PKRLS are principled on estimating empirical density ratios,
and this can be a challenging task in practical applications with large p. The SVM and
ENET are very close competitors for most of the examples. The results provide further
evidence that the JT-ENET is achieving the goal of out-performing the ENET in covariate
shift problems.

The JT-ENET fit fairly quickly on a 2.6 GHz Intel Core i7 Power Mac. Thus, if the range
of possible improvements is from roughly none to substantial in any given prediction focused
application, the associated computational overhead of the JT-ENET appears worthwhile.
In addition, it is embarrassingly parallel. Just consider the fixed 6× 8× 8 grid search over
(λ1/(λ1 + 2λ2))× γ1× γ2 in our implementation. Effective times can essentially be divided
by 6 if one sends 1× 8× 8 grid searches to each of 6 computers or divided by 48 with grids
of 1× 1× 8 to 48 computers.

7. Discussion

This work provided a clear and succinct mathematical framework for semi-supervised lin-
ear predictions of the unlabeled data. Our joint trained elastic net has two pairs of tuning
parameters: supervised λ = (λ1, λ2) and semi-supervised γ = (γ1, γ2). Adjusting the semi-
supervised parameters has an interpretable, geometrical effect on the unlabeled predictions.
Furthermore, we provided theoretical bounds for when this interpretable adjustment guar-
antees a performance improvement under the standard linear model, and this main theme
of these theoretical results was validated with simulated data. This practical approach was
also competitive with existing approaches throughout a set of challenging, high-dimensional,
real data applications, where the unlabeled data contained extrapolations. Extrapolations
in the unlabeled set are expected to occur often in practice, due to the curse of dimension-
ality with large p or practical constraints that result in covariate shift applications, and
our method is unique among existing approaches in its direct and effective accounting for
these circumstances. Simultaneous estimation of the supervised and semi-supervised tuning
parameters was feasible in the high-dimensional examples we tested.
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Appendix A. Proofs

Proofs of Propositions and Theorems follow.

A.1 Joint Training Framework

Proposition 2 If γ2 > 0, then rank(XU ) = rank
(
X

(γ2)
U

)
and a solution β̂γ,λ to Opti-

mization Problem (9) is a partial solution to Optimization Problem (6).

Proof Clearly, rank (XU ) = rank
(
X

(γ2)
U

)
whenever γ2 > 0 by Equation (8). Based on

Objective (6), the optimal α at any β is α =
(
XT

UXU + γ2I
)−1

XT
UXUβ and does not

depend on γ1 > 0. The derivative with respect to β of the objective is proportional to
−γ1X

T
UXU (α − β) as a function of the unlabeled data, and after plugging-in the optimal

α it simplifies to

−γ1X
T
UXU (α− β) = −γ1X

T
UXU

{(
XT

UXU + γ2I
)−1

XT
UXU − I

}
β

= γ1X
(γ2)
U

T
X

(γ2)
U β, (26)

where X
(γ2)
U

T
X

(γ2)
U = γ2X

T
UXU

(
XT

UXU + γ2I
)−1

used in Equality (26) holds because

γ2X
T
UXU = γ2X

T
U

(
XUX

T
U + γ2I

)−1 (
XUX

T
U + γ2I

)
XU

= X
(γ2)
U

T
X

(γ2)
U

(
XT

UXU + γ2I
)
.

Thus, the optimal β̂γ,λ from Problem (6) must also solve Problem (9) by Identity (26).

A.2 Geometry Results

Proposition 3 Any eigenbasis of the possibly non-symmetric matrix M (γ2) is real with

eigenvalues τ
(γ2)
1 ≥ · · · ≥ τ (γ2)

p ≥ 0. Furthermore, τ
(γ2)
i = 0 iff i > rank(XU ).

Proof Let XT
LXL = OLDLO

T
L be the eigendecomposition, assume rank(XL) = p, and

define the linear transformation
w̃ = D

1/2
L OT

Lw (27)

that changes the coordinate basis to OL and then rescales by D
1/2
L . The symmetric matrix

M̃
(γ2)

= D
−1/2
L OT

LX
(γ2)
U

T
X

(γ2)
U OLD

−1/2
L (28)

has an orthonormal eigenvector decomposition
{(
w̃

(γ2)
i , τ

(γ2)
i

)}p
i=1

, so M (γ2) has the real

eigendecomposition
{(
w

(γ2)
i , τ

(γ2)
i

)}p
i=1

by the reverse of Transformation (27) because

τ
(γ2)
i w̃

(γ2)
i = M̃

(γ2)
w̃

(γ2)
i ⇐⇒ τ

(γ2)
i w

(γ2)
i = M (γ2)w

(γ2)
i .
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Furthermore, τ
(γ2)
i = w̃

(γ2)T

i M̃
(γ2)
w̃

(γ2)
i = w

(γ2)
i

T
X

(γ2)
U

T
X

(γ2)
U w

(γ2)
i = 0 iff τ

(γ2)
i = 0.

Proposition 4 The path β̂γ as a function of γ1 ≥ 0 is bounded within a p-dimensional

parallelotope with corners at each binary linear combination of
{
ĉ

(γ2)
1 w

(γ2)
1 , . . . , ĉ

(γ2)
p w

(γ2)
p

}
.

Furthermore, the terminal point as γ1 →∞ is the corner
∑p

i=1 I{i>rank(XU )}ĉ
(γ2)
i w

(γ2)
i with

indicator I{·}.

Proof Decomposing β̂
(OLS)

in Equation (15) onto the real eigenbasis
{
w

(γ2)
i

}p
i=1

from

Proposition 2 and then applying Equation (14) to establish Equation (16) are the main
steps. Path β̂γ goes to the terminal point as γ1 → ∞ because the probability weights

1/
(

1 + γ1τ
(γ2)
i

)
in Equation (16) have limits of 0 or 1 when τ

(γ2)
i > 0 or τ

(γ2)
i = 0. Next,

consider the set of all vectors within the p-dimensional parallelotope defined by each binary

linear combination of
{
ĉ

(γ2)
i w

(γ2)
i

}p
i=1

and those for the p-dimensional rectangle defined

by each binary linear combination of
{
ĉ

(γ2)
i w̃

(γ2)
i

}p
i=1

, where
{
w̃

(γ2)
i

}p
i=1

are orthonormal

eigenvectors of Matrix (28). Transformation (27) is a bijection from the parallelotope to

the rectangle. This bijective mapping replaces the w
(γ2)
i on the right of Equation (16) with

w̃
(γ2)
i , and so β̂γ 7→D

1/2
L OT

Lβ̂γ is clearly within the rectangle.

Proposition 5 The span
(
X(γ2)TX(γ2)w

(γ2)
i

)
=
⋂
j∈{1,...,p}−{i}w

(γ2)
j

⊥
∀i ∈ {1, . . . , p}.

Henceforth, the line span
(
X(γ2)TX(γ2)w

(γ2)
i

)
is called the ith extrapolation direction ∀i ∈

{1, . . . , p}.
Proof If

{
w̃

(γ2)
i

}p
i=1

are orthonormal eigenvectors of the Symmetric Matrix (28),

w
(γ2)
i

T
XT

LXLw
(γ2)
j = I{i=j} (29)

w
(γ2)
i

T
X

(γ2)
U

T
X

(γ2)
U w

(γ2)
j = I{i=j}τ

(γ2)
i (30)

by Transformation (27). Let ν ∈ span
(
X(γ2)TX(γ2)w

(γ2)
i

)
. Summing Equations (29)

and (30) implies that νTw
(γ2)
j = 0 and hence ν ∈ w

(γ2)
j

⊥
for each j 6= i. Now, let

ν ∈
⋂
j 6=iw

(γ2)
j

⊥
⊆ IRp, so νTw

(γ2)
j = 0 for each j 6= i. There exists a unique sequence

{ak}pk=1 such that ν =
∑p

k=1 akX
(γ2)TX(γ2)w

(γ2)
k by the assumption rank(XL) = p, so

νTw
(γ2)
j = aj

(
1 + τ

(γ2)
j

)
by Equations (29) and (30). Thus, aj = 0 for each j 6= i and

ν ∈ span
(
X(γ2)TX(γ2)w

(γ2)
i

)
.

Proposition 6 If γ2 > 0, vectors
{
`

(γ2)
i

}1

i=p
and

{
u

(γ2)
i

}rank(XU )

i=1
are orthonormal bases

for the column spaces of XL and X
(γ2)
U , and u

(γ2)
i = ~0 if i > rank(XU ).

Proof The orthonormality holds by Definitions (17) and Identities (29) and (30). Note

u
(γ2)
i = ~0 if i > rank(XU ) by Identity (30). The column space result follows from Equation

(19) and the joint trained least squares assumption of rank(XL) = p.
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Proposition 7 For each i ∈ {1, . . . , p},

XT
L`

(γ2)
i =

1

1 + τ
(γ2)
i

X(γ2)TX(γ2)w
(γ2)
i

X
(γ2)
U

T
u

(γ2)
i =

τ
(γ2)
i

(1 + τ
(γ2)
i )

√
κ

(γ2)
i

X(γ2)TX(γ2)w
(γ2)
i ,

so X(γ2)TX(γ2)w
(γ2)
i , XT

L`
(γ2)
i , and X

(γ2)
U

T
u

(γ2)
i are parallel vectors in IRp.

Proof By Definitions (8), (14), and (17),

τ
(γ2)
i w

(γ2)
i = M (γ2)w

(γ2)
i

τ
(γ2)
i XT

LXLw
(γ2)
i = X

(γ2)
U

T
X

(γ2)
U w

(γ2)
i (31)

τ
(γ2)
i XT

L`
(γ2)
i =

√
κ

(γ2)
i X

(γ2)
U

T
u

(γ2)
i (32)(

1 + τ
(γ2)
i

)
XT

L`
(γ2)
i = X(γ2)TX(γ2)w

(γ2)
i . (33)

Hence, Vectors (31)-(33) are parallel, and the stated identities follow from Equations (32)
and (33).

A.3 Performance Bounds

Theorem 9 Let Assumptions 1-3 hold. Also, let q ≥ 1, τ
(φ)
1 > 0, and pi

(
τ (φ)

)
=

τ
(φ)2

i σ2
i∑q

j=1 τ
(φ)2

j σ2
j

. If
∑q

i=1 pi
(
τ (φ)

)µi

(
c
(φ)
i +u

(φ)T

i XUĀβĀ/

√
κ

(γ2)
i

)
−µ2

i

σ2
i

 < 1, then

E
[∥∥∥XU

(
β̂

(φ)

γ1
− β

)∥∥∥2

2

∣∣∣∣φ] < E
[∥∥∥XU

(
β̂

(SUP)

λ − β
)∥∥∥2

2

∣∣∣∣φ] .
Proof Let γ1 ∈ [0, δ) for δ > 0 from Assumption 2, and define u

(φ)
i = XUw

(φ)
i /

√
κ

(φ)
i ,

where κ
(φ)
i = τ

(φ)
i + I{i>rank(XU )} > 0 and hence κ

(φ)
i τ

(φ)
i = τ

(φ)
i

2
. Vectors

{
u

(φ)
i

}q
i=1

are

an orthonormal basis for the column space of XU by Proposition 6, and

XUA

((
β̂

(φ)

γ1

)
A
− βA

)
=

q∑
i=1

(
ĉ
(φ)
i

1+γ1τ
(φ)
i

− c(φ)
i

)
u

(φ)
i

√
κ

(φ)
i (34)

by Equations (24) and (25). Next, define loss function

Q =
∥∥∥XU

(
β̂

(φ)

γ1
− β

)∥∥∥2

2
= Q1 +Q2 +Q3, (35)

where Q1 =

∥∥∥∥∥XUA

((
β̂

(φ)

γ1

)
A
− βA

)∥∥∥∥∥
2

2

, Q2 = −2

((
β̂

(φ)

γ1

)
A
− βA

)T
XT

UAr, Q3 = ‖r‖22,

and r = XUĀβĀ. If γ1 = 0, the supervised estimator β̂
(SUP)

λ follows, so an improvement is
guaranteed if the gradient of E [Q|φ] with respect to γ1 evaluated at γ1 = 0 is negative.
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By Equation (34) and Assumption 3,

E [Q1|φ] =

q∑
i=1

E

[(
ĉ
(φ)
i

1+γ1τ
(φ)
i

− c(φ)
i

)2
∣∣∣∣∣φ
]
κ

(φ)
i

=

q∑
i=1

((
1

1+γ1τ
(φ)
i

)2 (
σ2
i + µ2

i

)
− 2 µi

1+γ1τ
(φ)
i

c
(φ)
i + c

(φ)
i

2

)
κ

(φ)
i , (36)

and the gradient of Equation (36) is

∂E [Q1|φ]

∂γ1
= −2

q∑
i=1

τ
(φ)
i κ

(φ)
i(

1 + γ1τ
(φ)
i

)3

(
σ2
i + µ2

i − c
(φ)
i µi − γ1µic

(φ)
i τ

(φ)
i

)
. (37)

Similarly for the second term Q2 on the right of Equation (35),

E [Q2|φ] = −2

q∑
i=1

(
µi

1 + γ1τ
(φ)
i

− c(φ)
i

)√
κ

(φ)
i u

(φ)T

i r

∂E [Q2|φ]

∂γ1
= 2

q∑
i=1

τ
(φ)
i

√
κ

(φ)
i µi(

1 + γ1τ
(φ)
i

)2u
(φ)T

i r. (38)

The third term Q3 on the right of Equation (35) is constant with respect to γ1 and thus
ignored, and the sum of Scores (37) and (38) with γ1 = 0 is negative whenever

−2

q∑
i=1

τ
(φ)
i κ

(φ)
i

(
σ2
i + µ2

i − c
(φ)
i µi − µiu(φ)T

i r/

√
κ

(φ)
i

)
< 0

q∑
i=1

τ
(φ)2

i

(
µi

(
c

(φ)
i + u

(φ)T

i r/

√
κ

(φ)
i

)
− µ2

i

)
<

q∑
i=1

τ
(φ)2

i σ2
i

q∑
i=1

pi

(
τ (φ)

)(
µi

(
c

(φ)
i + u

(φ)T

i r/

√
κ

(φ)
i

)
− µ2

i

)
/σ2

i < 1.

Proposition 12 If τ
(φ)
1 > 0 and βi ∈

⋂
j∈{1,...,p}−{i}w

(φ)
j

⊥
is unit length, then the joint

trained ridge performance bound from Corollary 11 satisfies σ2
LB (βi) ≥ λ2pi

(
τ (φ)

)
for

i ∈ {1, . . . , p} and σ2
LB (βi) ≥ σ2

LB

(
w

(φ)
j /

∥∥∥w(φ)
j

∥∥∥
2

)
if j ≥ i.

Proof The desired vectors are βj = X
(λ2)
L

T
`

(φ)
i /

∥∥∥∥X(λ2)
L

T
`

(φ)
i

∥∥∥∥
2

by Proposition 5, so

w
(φ)
i

T
βj = I{i=j}/

∥∥∥∥X(λ2)
L

T
`

(φ)
i

∥∥∥∥
2

(39)

by Equation (29). Constraints (39) imply that only term i = j of σ2
LB(βj) can be nonzero.

For any β ∈ IRp, β =
∑p

i=1 c
(φ)
i w

(φ)
i with c

(φ)
i = w

(φ)
i

T
X

(λ2)
L

T
X

(λ2)
L β by Equation (29), so
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c
(φ)
j =

∥∥∥∥X(λ2)
L

T
`

(φ)
j

∥∥∥∥
2

if β = βj . These facts can help simplify the bound to

σ2
LB(βj) = λ2pj

(
τ (φ)

)
1 + λ2

(
w

(φ)
j

T
w

(φ)
j − 1/

∥∥∥∥X(λ2)
L

T
`

(φ)
j

∥∥∥∥2

2

)
w

(φ)
j

T
XT

LXLw
(φ)
j


+

. (40)

Next, define G =

[
w

(φ)
i

T
w

(φ)
j

]p
i,j=1

as the Gram matrix of vectors w
(φ)
i . Let G(−j)

be the (p − 1) × (p − 1) sub matrix of G obtained by deleting the jth row and column,
and let Gj be the 1 × (p − 1) vector obtained by deleting the jth entry from the jth

row of G. Matrix G(−j) is positive definite by Proposition 3, and it can be shown that(
w

(φ)
j

T
w

(φ)
j − 1/

∥∥∥∥X(λ2)
L

T
`

(φ)
j

∥∥∥∥2

2

)
= GT

j

(
G(−j)

)−1
Gj ≥ 0 by Constraints (39). There-

fore, Bound (40) further reduces to

σ2
LB(βj) = λ2pj

(
τ (φ)

)1 + λ2

GT
j

(
G(−j)

)−1
Gj

w
(φ)
j

T
XT

LXLw
(φ)
j

 ≥ λ2pj

(
τ (φ)

)
. (41)

For the second part, define νij =

(
w

(φ)
j

T
w

(φ)
i

)2

∥∥∥w(φ)
i

∥∥∥2

2
w

(φ)
i

T
XT
LXLw

(φ)
i

≥ 0, so

σ2
LB

(
w

(φ)
j /

∥∥∥w(φ)
j

∥∥∥
2

)
=

λ2pj

(
τ (φ)

)
− λ2

2

∑
i 6=j

pj

(
τ (φ)

)
νij


+

. (42)

The result is trivial if Bound (42) is zero, and the difference of Bounds (41) and (42)

σ2
LB(βi)− σ2

LB

(
w

(φ)
j /

∥∥∥w(φ)
j

∥∥∥
2

)
≥ λ2

(
pi

(
τ (φ)

)
− pj

(
τ (φ)

))
+ λ2

2

∑
i 6=j

pj

(
τ (φ)

)
νij

is no less than the sum of two non-negative terms if Bound (42) is positive and j ≥ i.
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