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Research Article
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A microwave assisted green process has been developed for production of sugars through liquefying holocellulose catalyzed with
sulfonated char derived from the lignin-rich residue produced during pretreatment of lignocellulose. Various reaction parameters
including the hydrolysis temperature, hydrolysis time, catalyst content, and the ratio of water to feedstock were evaluated. The
maximum sugars yield of 82.6% (based on the dry mass of holocellulose) was obtained under the optimum reaction conditions.
The sulfonated char showed superior catalytic performance to that of dilute sulfuric acid in converting holocellulose into sugars
under microwave irradiation.

1. Introduction

Hydrolysis of holocellulose (cellulose and hemicellulose) is
a key technology to obtain the sugars which are pivotal
platform compounds for a range of industrially important
chemicals, such as ethanol, butanol, and hydrocarbon [1–
3]. Substantial effort has been made to develop appropriate
hydrolysis processes using liquid acids [4–6], enzymes [7,
8], supercritical water [9, 10], and solid catalysts [11–18] for
hydrolysis of cellulose. Although liquid acid hydrolysis has
received considerable attention and has been implemented
on relatively large scales, the process is energy-inefficient,
requiring separation, recycling, and treatment of the waste
sulfuric acid. Enzymatic hydrolysis has been proven to be
one of the most promising green hydrolysis technologies
and operated in commercial applications. However, the high
cost of enzymatic hydrolysis cannot be ignored. Supercritical
water treatment for holocellulose hydrolysis has also received
attention in recent years. The process, however, is carried
out at extremely high temperatures and short residence time,
causing partial degradation of the produced sugars [9, 10].

Themove towardmore environmentally benign processes
has stimulated the development of solid acid catalysts, which

are nontoxic and easy in separation and have a high strength
of acidity. Solid acid catalysts, including inorganic oxides [11],
zeolites [12], cation-exchanged resins [13], polymers [14], and
heteropolyacids [15], have been studied on the hydrolysis of
cellulose. However, these heterogeneously catalytic processes
show poor hydrolysis efficiency due to a mass transfer resis-
tance between solid acids and the insoluble cellulose in water.
Recently, Suganuma et al. [16], Wu et al. [17], and Gupta and
Lee [18] have developed a carbonaceous solid acid bearing
SO
3
H, COOH, and phenolic hydroxyl (OH) groups in the

framework of the amorphous carbon. This carbonaceous
solid acid was proved to be an excellent candidate for the
catalytic hydrolysis of cellulose. The amorphous carbon is a
solid Bronsted acid catalyst consisting of flexible polycyclic
carbon sheets with SO

3
H, COOH, and phenolic hydroxyl

(OH) groups in a three-dimensional network that can be
readily prepared by partial carbonization of natural organic
compounds, such as sugar, cellulose, and starch, followed by
sulfonation of the resulting amorphous carbon [19].

In this study, we developed an environmentally benign
hydrolysis approach for the saccharification of holocellulose.
As shown in Figure 1, the green and effective hydrolysis
process was catalyzed by a sulfonated char derived from
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Figure 1: Schematic route of the holocellulose hydrolysis catalyzed by sulfonated char derived from lignin-rich pretreatment residues.

lignin-rich pretreatment residues with a small amount of
water under microwave irradiation. After reaction, the cat-
alyst can be easily separated from the products by filtration
and effectively reused for further hydrolysis. This hydrolysis
approach may also be employed as the guidance for efficient
pretreatment and comprehensive utilization of lignocellu-
losic biomass.

2. Experimental

2.1. Materials. The hybrid poplar was collected from West
Virginia University Experimental Forest. The holocellulose
was separated from raw poplar particles and the composition
of holocellulose was analyzed (mass percent: cellulose 63.2%,
xylan 32.7%, and others 4.1%). Sulfuric acid and other chem-
icals (if applicable) were purchased from Sigma-Aldrich, Inc.

2.2. Preparation of Sulfonated Char. According to the typical
procedure [18], the carbonaceous catalyst with SO

3
H groups

was prepared from the poplar (Populus cathayana) pretreat-
ment residues (mass percent: lignin 65%, cellulose 25%, and
others 10%). In a typical preparation procedure [19, 20], 30 g
of the poplar pretreatment residue was heated for 5 h at 723K
under N

2
flow to produce a black solid, which was then

ground into powder using universal high-speed smashing
machine (QE-500, Zhejing Yili Industry and Trade Co. Ltd.).
10 g of the powder was then boiled in fuming sulfuric acid
(15 wt% SO

3
) at 353K under N

2
for 8 h. After cooling to room

temperature, the suspension was filtered using cellulose filter
paper (pore size of 30–50 𝜇m) to yield a black precipitate that
was washed repeatedly with hot distilled water (>353K) until
no sulfate ions could be detected.The washed precipitate was
dried at 383 k for 12 h to obtain a sulfonated char bearing
SO
3
H, OH, and COOH groups.

2.3. Characterization of Sulfonated Char. The specific surface
area of the sulfonated char was obtained by Brunauer Emmett
Teller surface analyzer (BET, ASAP2020M, Micromeritics).
Scanning electron microscopy (SEM) analysis was con-
ducted on a Hitachi 3400-1 electronic microscope work-
ing at 30 kv. FTIR spectrum was recorded on a Fourier
transform infrared spectroscopy (FTIR, I80, Nicolet) using
the standard KBr disc method. The samples were scanned
between 400 and 4000 cm−1 with a resolution of 0.4 cm−1.
X-ray diffraction (XRD) patterns were collected on a Bruker
D8 Focus Advance diffractometer using Cu K𝛼 radiation
(wavelength 𝜆 = 1.5406 Å). According to the FT-IR analysis
result, the sulfonated char possesses three functional groups:
SO
3
H, COOH, and phenolic OH. The amount of groups

was estimated by elemental analysis (EA, Thermo Scientific
Flash 2000 CHNS/O) and cation-exchange analysis [16]. The
densities of SO

3
H groups were estimated based on the sulfur

content determined from sample compositions obtained by
elemental analysis. The total SO

3
H+ COOH and SO

3
H+

COOH+ OH contents were estimated from the exchange of
Na+ in aqueous NaCl and NaOH solutions, respectively.

2.4. Hydrolysis of Holocellulose and Analysis of the Produced
Sugars. The holocellulose was separated from raw poplar
(Populus cathayana) particles [18]. In a typical experimental
run, 0.2 g oven-dried holocellulose powder and 0.2 g car-
bonaceous catalyst were mixed and milled for 10 minutes in
an agate mortar and then placed into a Pyrex tube. Distilled
water (3mL) was then added to the powdered mixture before
the Pyrex tube was sealed and placed in a microwave reactor
(CEM, Discovers). The mixture was stirred by a magnetic
stirrer during the reaction. After the desired reaction time,
the reactionmixturewas neutralizedwith 0.4mol/L ofNaOH
solution (10mL) and filteredwith filter paper (pore size of 30–
50 𝜇m).

The aqueous filtrate was analyzed using the Dionex
Capillary Ion Chromatography System (ICS5000 Thermo
Fisher) with a pulsed amperometric detector and a CarboPac
PA-10 (4mm) column. NaOH (18mM) aqueous solution was
used as elution solvent at a flow rate of 1.0mLmin−1. The
yield of total sugars (based on the dry mass of holocel-
lulose) was calculated using the following equation: Total
sugars yield (%) = [amount (g) of oligose + amount (g) of
monose]/amount (g) of holocellulose.

The catalytic performance of the sulfonated char was
examined by the microwave assisted hydrolysis of holocel-
lulose under various conditions. The experimental parame-
ters were evaluated as follows: hydrolysis temperature from
373K to 403K, reaction time from 20min to 100min,
catalyst/substrate (holocellulose) ratio from 0.25 to 1.5, and
liquid/solid (catalyst + holocellulose) ratio from 2.5 to 12.5.
The reusability of the sulfonated char was also studied and
the respective catalytic performance was compared with that
of dilute sulfuric acid.

3. Results and Discussion

3.1. Properties of the Sulfonated Char. The BET analysis
showed that the specific surface area of sulfonated char was
2m2 g−1, which is in the range of a typical lignin carbon
processed at similar temperatures [21]. The SEM analy-
sis (Figure 2(a)) showed that the sulfonated char particles
exhibited an irregular morphology with the particle size
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Figure 2: The SEM image (a), FTIR spectrum (b), and XRD pattern (c) for the prepared sulfonated char.

ranging from 30 to 100 𝜇m.The FTIR spectrum (Figure 2(b))
showed two vibration bands at 1040 cm−1 (SO

3
-stretching)

and 1377 cm−1 (O=S=O stretching in SO
3
H) which veri-

fied the existence of SO
3
H groups. The vibration bands at

1606 cm−1 (–OH) and 1715 cm−1 (C=O) can be assigned to
the –COOH groups in the sulfonated char. The broadband at
2300–2700 cm−1 suggested an overtone (Fermi resonance) of
the bending mode of strong hydrogen bond [16]. The XRD
pattern (Figure 2(c)) of the sulfonated char exhibited two
broad diffraction peaks at 22.5∘ and 42.0∘ of 2𝜃, which is
typical for amorphous carbon composed of aromatic carbon
sheets oriented in a considerably random pattern [22]. Ele-
mental analysis results (C 53.745; H 3.389; O 37.868; S 4.998)
and cation-exchange experiment revealed that the samples
composition is CH

0.757
O
0.528

S
0.034

and that the amounts of
SO
3
H, COOH, and phenolic OH groups bonded to the char

are 1.53, 0.30, and 1.69mmol g−1, respectively.

3.2. Hydrolysis of Holocellulose under Microwave Irradiation.
As shown in Figure 3, the sugar yield of holocellulose
increased with increasing reaction temperature in the first
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Figure 3: Effect of reaction temperature on the sulfonated char
catalyzed hydrolysis of holocellulose. Reaction conditions: 0.2 g
holocellulose, 0.2 g catalyst, 3mL H

2
O, and microwave irradiation

(300W) for 60min.
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Figure 4: (a) Effect of catalyst/substrate ratio on the sulfonated char catalyzed hydrolysis of holocellulose. Reaction conditions: 0.2 g
holocellulose, 3mLH

2
O, 393K, andmicrowave irradiation (300W) for 60min. (b) Effect of liquid/solid ratio on the sulfonated char catalyzed

hydrolysis of holocellulose. Reaction conditions: 0.2 g holocellulose, 0.2 g catalyst, 393 K, and microwave irradiation (300W) for 60min.

40 minutes of the reaction. However, it started to decrease
with longer reaction time, indicating thermal degradation of
monose at elevated temperature. The highest sugar yield of
82.6% was obtained when the holocellulose was treated at
393K for 60 minutes. This optimum reaction temperature
and reaction time were used in our studies on other reaction
parameters. The results indicated that saccharification of the
polysaccharides and thermal degradation of the produced
monose and oligose were taking place synchronously in the
reaction system.

The effects of catalyst/substrate (holocellulose) ratio and
liquid/solid (catalyst + holocellulose) ratio were evaluated
using the optimal reaction temperature and time. As shown
in Figure 4(a), the yield of monose and oligose increased
with increasing catalyst/substrate ratio up to 1.00. Increasing
the liquid/solid ratio significantly increased the sugar yield
when the ratio was lower than 5.0 as shown in Figure 4(b).
No further increase in the sugar yield was apparent for
liquid/solid ratios above 7.5.

To evaluate reusability, sulfonated char samples (reused
up to three times) were investigated by reacting a mixture
of 0.2 g catalyst, 0.2 g holocellulose, and 3mL water under
300W microwave irradiation for 60min. The unreacted
sulfonated char and those recovered once, twice, and 3
times were designated SC0, SC1, SC2, and SC3, respectively.
Additionally, the catalytic performance of the sulfonated char
was compared with that of dilute sulfuric acid. After the first
run at 393K for 60min, the sulfonated char was recovered
from the hydrolytic solution by filtration followed by washing
with distilled water. The recovered catalyst was reused by
directly mixing with fresh holocellulose and water. As shown
in Table 1, the catalytic performance of the sulfonated char
decreased with the recovery times, indicating reduced active
sites on the surface of the sulfonated char. It is possible that

Table 1: Comparison of the catalytic performance of reused sul-
fonated char and dilute sulfuric acid.

Yield/% SC0a SC1a SC2a SC3a H
2
SO
4

a H
2
SO
4

b

Monose 26.8 23.9 20.4 16.1 12.2 4.9
Oligose 55.8 54.6 52.5 49.1 10.3 27.2
Sugars 82.6 78.5 72.9 65.2 22.5 31.7
aReaction at 393 K; breaction at 423 K.

some active acid sites were blocked by the unreacted holo-
cellulose residues left in aqueous solution [18, 23]. However,
even after being recovered three times, the sulfonated char
still has much higher catalytic ability than dilute sulfuric acid
in hydrolysis of holocellulose.The poor performance of dilute
sulfuric acid in hydrolysis of holocellulose was attributed to
the low catalytic activity at 393K and the degradation of
produced sugars when high temperature (423K ormore) was
employed.

4. Conclusions

An environmentally friendly hydrolysis process alternative
to dilute sulfuric acid was developed to efficiently convert
holocellulose into useful sugars undermicrowave irradiation.
The catalyst, a sulfonated char, was produced from lignin-rich
residues from pretreatment of lignocellulosic biomass. The
catalyst showed excellent catalytic performance in hydrolysis
of holocellulose and low toxicity for microbial activity, which
is different from sulfuric acid. This approach may also be
exploited for the direct hydrolysis of lignocellulosic biomass
into sugars and other useful chemicals.
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