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Real-time information about the state (location, speed, and direction) of other vehicles in the system is critical for both safety and
navigation applications in future intelligent transportation systems.However, reliably obtaining this information overmultiple hops
in a capacity constrained, contention-prone wireless network poses a significant challenge. In this paper, we describe an algorithm
VCAST that addresses this challenge by exploiting a notion of distance sensitivity in information propagation, in which information
is forwarded at a rate that decreases linearly with distance from the source. By doing so, the required communication overhead
per node can be significantly reduced, thereby reducing channel contention, allowing higher information supply rates, and scaling
to larger network sizes. VCAST can be used to improve safety against collisions and to enable dynamic routing and navigation
techniques by providing aggregate traffic information in an extended neighborhood.The performance ofVCAST is validated using
extensive ns-3 simulations under different network sizes and densities with an IEEE 802.11b transmissionmodel and the advantages
of VCAST in comparison to non-distance-sensitive approaches are highlighted.

1. Introduction

Infrastructureless, vehicle-to-vehicle (V2V)wireless commu-
nication is expected to be the basis for both safety and
navigation applications in future intelligent transportation
systems [1, 2]. Examples of safety applications in transporta-
tion scenarios include collision warnings, guidance on lane
change and lane merge, and stopped vehicle alert. Examples
of intelligent navigation applications include dynamic travel-
time computations and rerouting based on real-time traffic
information. A building block for all these applications
is a real-time vehicular traffic mapping system on board
every vehicle, which portrays information about current
position of other vehicles in its vicinity and provides guidance
about accidents, approaching emergency vehicles and traffic
congestion over an extended neighborhood. In this paper,
we designVCAST, a scalable, infrastructureless, peer-to-peer
wireless network service for computing such a real-time
traffic map over a given region surrounding each vehicle
(This paper is a significant extension of a shorter version
that appeared in IEEE VTC 2012 [3]. The specific additions
are as follows. (1) Simulations are carried out in ns-3 using

an IEEE 802.11 b transmission model to quantify the impact
of network size, vehicular density, vehicular mobility, and
time-varying intervehicular separations on the achievable
staleness. (2) The average communication cost incurred by
each vehicle is quantified. (3) The performance is compared
analytically and using simulations with schemes that do not
incorporate distance sensitivity, and the significant impact on
scalability using VCAST is highlighted. (4) Complete proofs
are included for all lemmas and theorems).

We assume that vehicles are equipped with a differential
GPS that can estimate its location to an accuracy of about
1-2m. As a result, by advertising this information, vehicles
can learn about traffic within a one hop communication
range. However, estimating traffic maps over a large area
using multihop wireless communication is a much more
challenging task. (1) Firstly, we note that forwarding each
vehicle’s information over multiple hops at a constant rate
is unlikely to be scalable as it will cause the amount of
communication required at each vehicle to grow with the
number of vehicles in the region over which traffic infor-
mation is required. As a result, both the allowable broadcast
rate and the accuracy of the traffic map obtained at each
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vehicle will decrease as vehicular density and size of the
region increase. Hence effective forwarding algorithms need
to be designed to ensure that the system remains scalable
with vehicular density, information supply rate, and region
size. (2) Secondly, there exist tradeoffs in choosing the rate
and communication range of each broadcast. While higher
broadcast rates and range promise greater tracking accuracy,
in reality wireless channel contention can cause an adverse
effect in tracking accuracy as these levels exceed a certain
limit. Existing broadcast techniques for vehicular safety
systems have primarily focused on balancing transmission
rate and communication range to maximize the reliability
of single hop wireless communication. However, in such an
approach information about other vehicles is available only
when intervehicular distance is too small which may not be
enough to avert a collision [4] or to provide a timely re-
route in the presence of traffic congestion. On the other hand,
increasing the single-hop communication range or moving
to multihop forwarding techniques to learn about vehicles
in a larger area quickly decreases the achievable information
supply rate from each vehicle (even those at smaller dis-
tances). Hence, there remains a need formultihop broadcasting
techniques that are able to supply timely information over large
distances without compromising on data supply rates at smaller
distances.

Contributions. To address the above challenges and to ensure
scalability when providing traffic maps over large regions
in real time, we exploit a notion of distance sensitivity
in propagating individual vehicle information: information
about each vehicle is propagated at a rate that decreases
linearlywith the distance from the vehicle [5, 6].The rationale
behind exploiting distance sensitivity is that the reaction
time available to a vehicle for taking safety actions or for
computing new routes towards the destination is lesser with
respect to the state of nearby vehicles than that of farther
vehicles. VCASTmaps this distance-dependent reaction time
into delivery of information with quality that progressively
decays as a function of distance.

We use staleness in vehicular state information as ametric
for information quality as it reflects how old the current
information about a particular vehicle is and show that traffic
information in VCAST can be obtained with a worst-case
staleness that is bounded by 𝑂(𝑑

2
) where 𝑑 is the distance

from the source of the information. Thus, VCAST provides
traffic information with distance-sensitive precision in which
the error does not grow with the number of vehicles in the
region and is independent of traffic density and network
size. At the same time, the average communication cost (the
required transmission rate at each node) also is only bounded
by 𝑂(𝑝√𝑁), where 𝑝 is the broadcast rate at the source.
Lower communication overhead per node ensures lower
channel contention and higher source broadcast rates, thus
benefiting information supply at smaller distances. VCAST
can be used to propagate actual vehicle location as well as
to propagate aggregate traffic information such as average
speed and density of vehicles over individual traffic cells
inside a region. One possible scenario is to propagate actual
vehicle location up to a distance of 500–1000m and aggregate

C

A

D

Figure 1: Utilization of multihop vehicular information for
safety applications. The arrows indicate multihop information flow
towards car C. Knowledge of states of A and D will guarantee safe
lane change to left and right, respectively. Knowledge of congestion
will allow safe, timely reaction.

traffic information up to several miles. When propagating
only aggregate cell information, we note that the required
communication rate per node decreases further by a factor
𝑟
𝑐
, where 𝑟

𝑐
is the radius of each aggregation cell.

The performance of VCAST is validated using extensive
simulations in ns-3, a discrete event simulator for wireless
networks, under different network sizes, network densities,
source broadcast rates, and communication ranges. The
results of our evaluation show that, by using distance-
sensitive forwarding, VCAST is able to scale to larger
network sizes as well as support much higher broadcast
rates compared to non-distance-sensitive techniques. The
reason for scalability was shown to be the significantly lower
message overhead which reduces the channel contention in
the network. We have also characterized the performance of
VCAST under severe random mobility and studied informa-
tion staleness when aggregated data is transmitted as opposed
to individual vehicle information.
Impact. By forwarding traffic information over multiple
communication hops, we expect several advantages: (1)
vehicle location over a vicinity will be available even if
the communication range is extremely low because of high
density, thus improving vehicular safety, (2) information
about approaching emergency vehicles will be available, (3)
information about lane changing and merging vehicles will
be available even if they are outside a single communication
range, and (4) information about road blocks, accidents,
and impending congestion will be available from several
miles ahead, thus permitting higher level applications that
dynamically re-route based on this information. Some of
these scenarios, from a vehicular safety perspective, are
illustrated in Figure 1. To achieve scalability,VCAST provides
traffic information with an accuracy that degrades with
distance, but we expect this to be a reasonable condition
that is still sufficient for both vehicular safety and intelligent
navigation. Finally, we note that VCAST does not require any
special hardware or modification to vehicular transmission
standards; instead, it can simply piggyback on the proposed
Here I am communication [1, 2] for vehicular networks.
Outline of the Paper. In Section 2, we describe related work.
In Section 3, we describe our system model, the VCAST
algorithm, and provide an analysis for the expected accuracy
and communication cost. In Section 4, we evaluate the
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performance of our system in simulations. In Section 5, we
present conclusions and state future work.

2. Related Work

Thedesign of routing protocols for vehicular ad hoc networks
and more generally in mobile ad hoc networks is a well-
researched topic and a good survey of these techniques can
be found in [7–9]. Many of these protocols have focused on
delivering aperiodic, low bandwidth data such as emergency
vehicle information to either a single vehicle (unicast) or a
group of vehicles in a geographic region (geocast) with low
latency [10–17]. On the other hand, the focus in this paper is
on broadcasting information from each vehicle at high rates
to support the design of safety and navigation applications.

The design of wireless broadcast protocols has also
received a lot of research attention lately [1, 18–22] in the
context of vehicular safety applications. There have been
several recent papers that have focused on the problem of
balancing broadcast range and reliability so as to maximize
the number of successful receptions in close proximity of
the sender [18–21]. A common foundation in these papers
to handle the tradeoff is to reduce the communication range
in regions of high density so as to improve the reliability of
reception. However, these papers mainly focus on reliable
one-hop message reception and not on multihop propaga-
tion. As a result, the information about vehicles outside the
communication range is not available even when the range
has to be very low because of high density. The trade-off in
single-hop broadcast schemes is that a higher communica-
tion range causes larger staleness even for nearby vehicles,
while a lower communication range prevents information
availability from beyond that range. On the other hand, the
algorithm developed in this paper can be used to propagate
both individual vehicle information and aggregate traffic
information over several communication hops and yet retain
high data supply rates at smaller distances.

We also note that rate and power control algorithms
[1, 18–21] developed for a single hop vehicular broadcast are
complementary and can be used in conjunction with the
distance-sensitive multihop forwarding algorithm designed
in this paper. Thus decisions on source broadcast rate and
range can be made commensurate with traffic density using
the techniques proposed in [1, 18–21], and VCAST can be
used to aggregate and forward this information over multiple
hops.

Multihop broadcast algorithms [23–29] for vehicular
networks have mainly focused on the choice of optimal
forwarding vehicles and on the reduction of redundant
forwarding vehicles using one of several heuristics proposed
in [30]. A good survey of multihop broadcast techniques
in mobile ad hoc networks is presented in [31]. The idea
of distance-sensitive broadcasting rates developed in this
paper for ensuring scalable all-all information broadcast has
thus far not been explored in the context of mobile ad-hoc
and vehicular networks.The improvement in communication
overhead gained by exploiting distance sensitivity is charac-
terized in Section 3.3.

The concept of distance sensitivity has previously found
applications in several other networking fields in different
forms. For example, route aggregation in the Internet utilizes
this concept for efficiently distributing routing information
[32]. Fisheye routing [33] uses this idea to propagate routing
tables in mobile ad hoc networks. Fractionally cascaded
information [34] is a form of distance-sensitive key sharing
that iswidely used for speeding up traversal of data structures.
Distance sensitivity has also been used in wireless sensor
network based querying and tracking applications to model
communication latency and information quality as functions
of distance [35–38]. In the context of network-wide con-
tinuous broadcast of system states, an algorithm has been
designed in [39] for supplying global state information to
all nodes in a static sensor network with distance-sensitive
latency and error. In this paper, we show that distance sensi-
tivity is a valuable tool for efficient and scalable propagation of
state information even for networks of mobile nodes (vehicles).
Unlike the algorithm in [39], we design VCAST without
assuming an underlying clustering or routing structure, thus
avoiding the need for maintenance related communication.

3. System Description

In this section, we first state the system model and objective.
We then describe VCAST and analytically characterize its
accuracy and required communication rate.

3.1. System Model and Problem Statement. We model the
vehicular network as a large geographic area with multiple
traffic flows, each with potentially different traffic densities at
different places. Let 𝜌 denote the maximum density, that is,
the maximum number of vehicles per unit area at any time in
the whole region. Note that the geographic area will consist of
regions with no traffic flows (i.e., no roads), as well as regions
with high density traffic flows. When analyzing the impact
of aggregation, we assume that the region is partitioned into
geographic cells which allow representation of aggregated
traffic information for that cell. The cells need not be of the
same size, but for ease of explanation we assume that the
area of each cell is constant and equal to 𝐴

𝐶
with a radius

of 𝑟
𝑐
. In a realistic environment, these cells could be used

to model critical traffic links such as the traffic in a region
between two highway exits or traffic between two urban
streets. Let 𝑟

ℎ
denote the single hop communication range

for a vehicle. The objective of our system is to provide each
vehicle with information about all vehicles and all cells within
a radius 𝑅 around itself where 𝑟

ℎ
≪ 𝑅. We call this area of

radius 𝑅 around each vehicle the tracking zone (We note that
our system can also be specialized to propagate individual
vehicle information within a smaller radius than aggregate
cell information).

Let 𝑁 denote the maximum number of vehicles within
the tracking zone of each vehicle. Thus 𝑁 = 𝜌𝜋𝑅

2. Let 𝐿
denote the maximum number of cells in a radius of 𝑅 around
each vehicle. Thus 𝐿 = 𝑂(𝑅

2
/𝐴
𝑐
). Note that by using a two

dimensional model for the vehicular network, the bounds
on communication cost in our analysis are expected to hold
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for dense urban traffic scenarios as well as highway traffic
scenarios in which the number of vehicles is expected to be
lower.

Let 𝑝 denote the frequency at which each vehicle broad-
casts its own information. Let 𝑑(𝑖, 𝑗) denote the geographic
distance between vehicles 𝑖 and 𝑗. Let 𝑑

𝑐
(𝑖, 𝑗) denote the

distance between vehicle 𝑖 and cell 𝑗 in terms of the smallest
number of cells traversed to reach cell 𝑗 from 𝑖. In the
following subsections, we first describe VCAST assuming
that only vehicle location is propagated up to a distance
𝑅. Then we describe the required changes when aggregate
cell information is propagated. The communication cost and
accuracy for both these cases are characterized in Section 3.3.

3.2. Distance-Sensitive Broadcast Algorithm. A naive tech-
nique would be to require each vehicle to obtain information
about all vehicles in its tracking zone at a constant interval of
1/𝑝 seconds. However, in such a scenario each vehicle would
have to broadcast information about at most𝑁 vehicles at 𝑝
Hz, making the required communication rate at each node
per unit time 𝑂(𝑁𝑝). Note that the required communication
rate grows with the number of vehicles in the region and is
therefore directly proportional to the vehicle density and the
area of the region. Also if 𝐶 denotes the allowable wireless
channel transmission capacity at a node in bits per second,
we observe that the allowable broadcast rate 𝑝 is limited by
𝑝 < 𝐶/𝑁, that is, inversely proportional to the number of
vehicles. This in turn has an adverse effect on the latency
with which traffic information is obtained and as a result the
accuracy of the obtained traffic map information decreases
with increasing vehicular density, which is not desirable.

To address these drawbacks, we propose to forward
information about a vehicle at a rate that is proportional to
the distance from that vehicle. Also, in VCAST, a vehicle
suppresses forwarding of information about a vehicle in
an interval, if some other vehicle has already forwarded
information about the respective vehicle in that interval.
By doing so, we show that the communication cost can be
significantly reduced, leading to scalability. A more formal
description of VCAST is presented below. A pseudocode in
guarded command notation [40] is provided in Algorithm 1,
which shows the program at each vehicle in the form of
⟨𝑒V𝑒𝑛𝑡 → 𝑎𝑐𝑡𝑖𝑜𝑛⟩ pairs.

In VCAST, each vehicle 𝑗maintains a list 𝑗 ⋅ 𝑉 of vehicles
that are within a distance 𝑅 from itself. Associated with each
vehicle 𝑖 ∈ 𝑗 ⋅ 𝑉 is the location 𝑗 ⋅ 𝑋

𝑖
of 𝑖 as most recently

heard by 𝑗, a timestamp 𝑗 ⋅𝑇
𝑖
associated with the location and

𝑗 ⋅ ]
𝑖
which is the number of times information about 𝑖 has

been heard since the last broadcast interval. A timer is fired at
each vehicle every 1/𝑝 seconds for broadcasting information
and a randomness is introduced in this interval because of
CSMA based transmission. Let 𝜆 = 1, 2, . . . denote the timer
sequence at vehicle 𝑗. Let 𝑗⋅𝑉

𝜆
denote the set of vehicles whose

information is forwarded in the interval number 𝜆 at vehicle
𝑗. 𝑗 ⋅ 𝑉

𝜆
is initially set to be equal to {𝑗}. Thus information

about itself is broadcasted by a vehicle in every interval along
with the current time which serves as the timestamp for
this record. Node 𝑖 is added into the set 𝑗 ⋅ 𝑉

𝜆
only if 𝜆

mod 𝑑
ℎ
(𝑖, 𝑗) = 0 and if information about 𝑖 has not been

broadcasted by any other vehicle within 𝑗’s range in the last
𝑑
ℎ
(𝑖, 𝑗) intervals. This ensures that information about nodes

at a distance of 𝑘 communication hops is broadcasted at most
once every 𝑘 interval in each communication neighborhood.
In the presence of channel interference, we note that nodes
may occasionally duplicate the transmission of information
of a vehicle within a neighborhood. But we expect this to
cause a much smaller overhead when compared with all
nodes transmitting. Finally, whenever information about a
vehicle 𝑖 is heard by a node 𝑗, it is added to the list 𝑗 ⋅ 𝑉 if the
timestamp of the incoming record is more recent than 𝑗 ⋅ 𝑇

𝑖
.

For the case where aggregate traffic information is to
be propagated, each vehicle computes summary information
such as density and average speed for the cell in which it
resides based on the information it possesses about vehicles
within its communication range.This summary is then prop-
agated in a distance-sensitive manner: information about a
cell at distance 𝑑

𝑐
is forwarded at a rate of 𝑝/𝑑

𝑐
Hz.

3.3. Analysis

Theorem 1. The average amount of data communicated per
unit time by each node in VCAST to obtain information about
all vehicles within a distance of 𝑅 from itself is bounded by
𝑂(𝑅𝑝/𝑟

ℎ
).

Proof. Let 𝐵 denote the average amount of data communi-
cated per unit time, by each node in VCAST. We discretize
distance in intervals of 𝑟

ℎ
(the communication range), as

information forwarding rate decreases linearly after each time
a vehicle’s information is forwarded. The number of vehicles
at a distance of at most ℎ𝑟

ℎ
away from a vehicle is bounded

by 𝑂(𝜌ℎ2𝑟2
ℎ
). The number of vehicles at a distance of at most

(ℎ − 1)𝑟
ℎ
away from a vehicle is bounded by 𝑂(𝜌ℎ

2
𝑟
2

ℎ
). As

a result, the number of vehicles between a distance of ℎ𝑟
ℎ

and (ℎ − 1)𝑟
ℎ
away from a vehicle is bounded by 𝑂(𝜌ℎ𝑟

2

ℎ
).

Let us denote this as the distance interval ℎ from the vehicle
in terms of the communication range. Note that information
about vehicles between a distance of ℎ𝑟

ℎ
and (ℎ − 1)𝑟

ℎ
is

broadcasted only at 𝑝/ℎ Hz. Thus the total amount of data
to be communicated about vehicles in the distance interval
of ℎ is 𝑂(𝜌𝑝𝑟2

ℎ
). Note that this information is broadcasted by

at most one vehicle in every area 𝜋𝑟2
ℎ
. Hence, on average each

node is responsible for communicating only𝑂(𝜌𝑝𝑟2
ℎ
/𝜌𝑟
2

ℎ
) bits

about vehicles at distance interval ℎ from itself. Summing up
over all distance intervals and by noting that each vehicle
broadcasts its own state at 𝑝Hz, we get

𝐵 = 𝑂(𝑝 +

(𝑅/𝑟ℎ)

∑

𝑖=1

𝜌𝑝𝑟
2

ℎ

𝜌𝑟
2

ℎ

) = 𝑂(
𝑅𝑝

𝑟
ℎ

) . (1)

Note that this result makes an assumption that informa-
tion about nodes at a distance of 𝑘 communication hops is
broadcasted at most once every 𝑘 intervals in each communi-
cation neighborhood. In the presence of channel contention
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Protocol: VCAST
Vehicle: 𝑗
Var:

𝑗 ⋅ 𝑉: List of vehicles within radius 𝑅
𝑗 ⋅ 𝑋
𝑖
∀𝑖 ∈ 𝑉: Location of 𝑖

𝑗 ⋅ 𝑇
𝑖
∀𝑖 ∈ 𝑉: Timestamp of 𝑖’s record

𝑗 ⋅ ]
𝑖
∀𝑖 ∈ 𝑉: Counter for 𝑖’s information

𝑗 ⋅ 𝜆: Sequence number of current interval
𝑗 ⋅ 𝑉
𝜆
: Forwarding list for 𝑗 ⋅ 𝜆

Actions:
⟨𝐴
1
⟩:: Initialization:→
𝑗 ⋅ 𝑉 = 𝑗; 𝑗 ⋅ ]

𝑖
= 0; 𝑗 ⋅ 𝜆 = 0;

Timer.start ( 1

𝑝
)

⟨𝐴
2
⟩:: Timer fired:→
𝑗 ⋅ 𝜆 = 𝑗 ⋅ 𝜆 + 1;
𝑗 ⋅ 𝑉
𝜆
= 𝑗;

∀𝑖 ∈ 𝑗 ⋅ 𝑉

if (𝜆mod 𝑑
ℎ
(𝑖, 𝑗) == 0)

if 𝑗 ⋅ ]
𝑖
< 2

Add 𝑖 to 𝑗 ⋅ 𝑉
𝜆

fi
𝑗 ⋅ ]
𝑖
= 0;

fi
∀𝑖 ∈ 𝑗 ⋅ 𝑉

𝜆

Send 𝑗 ⋅ 𝑋
𝑖
, 𝑗 ⋅ 𝑇
𝑖

⟨𝐴
3
⟩:: recv

𝑖
(𝑉) →

∀𝑘 ∈ 𝑖 ⋅ 𝑉

if ((𝑗 ⋅ 𝑇
𝑘
< 𝑖 ⋅ 𝑇

𝑘
) ∨ (𝑘 ∉ 𝑗 ⋅ 𝑉))

𝑗 ⋅ 𝑋
𝑘
= 𝑖 ⋅ 𝑋

𝑘
; 𝑗 ⋅ 𝑇
𝑘
= 𝑖 ⋅ 𝑇

𝑘
; 𝑗 ⋅ ]
𝑘
= 1;

fi
elseif (𝑗 ⋅ 𝑇

𝑘
== 𝑖 ⋅ 𝑇

𝑘
)

𝑗 ⋅ ]
𝑘
= 𝑗 ⋅ ]

𝑘
+ 1

fi

Algorithm 1: VCAST: protocol actions at vehicle 𝑗.

and hidden terminals, the assumption may be violated caus-
ing duplicate transmissions of vehicular information within a
communication neighborhood and an increase in the amount
of communication per node. The results of our simulation
will include the impact of channel contention and duplicate
transmissions.

Under a uniform distribution of vehicles in a 2d region, it
can be inferred from the results of the previous theorem that
the communication cost per node only grows as𝑂(𝑝√𝑁). In
contrast, without distance-sensitive forwarding the average
communication incurred per node is 𝑂(𝑁), as discussed
below.
Comparison with Multihop Broadcast Protocols without Dis-
tance Sensitivity. In order to analytically compare the bound
on communication cost with multihop broadcast algorithms
that do not incorporate distance sensitivity in message for-
warding, first consider an algorithm in which information is
simply flooded without suppression of redundant messages.
In this case, each node broadcasts information about all
nodes in the region at a rate of 𝑝 times every second
yielding a communication cost per node that is bounded

by 𝑂(𝜌𝑝𝑅
2
). This is clearly not scalable with the size of

the network, and such an approach is likely to yield severe
channel contention thus reducing the achievable broadcast
rate 𝑝. Several heuristics have been proposed to address this
broadcast storm problem so that redundant broadcasts of
the same message can be eliminated; that is, information
about every vehicle is broadcasted exactly once in every
communication neighborhood per interval. In this case,
the average communication cost reduces by a factor of
𝜌𝜋𝑟
2

ℎ
over a naive flooding approach, yielding an average

communication cost per node of𝑂(𝑝(𝑅/𝑟
ℎ
)
2
), that is,𝑂(𝑝𝑁).

Thus, by comparisonwithTheorem 1, we see that the effective
communication cost per node by applying distance-sensitive
forwarding rules reduces by a factor of √𝑁. Reducing the
amount of communication incurred by each node results in
smaller channel contention and allows a higher broadcast
rate at smaller distances. This is especially crucial when
forwarding information over large areas because it ensures
that information supply rates at smaller distances are not
penalized for having to forward information over multiple
hops.
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We now obtain a bound on how outdated the state
information possessed by a vehicle is because of distance-
sensitive forwarding. We refer to this as staleness in the
information possessed by a vehicle.

Definition 2 (staleness (j,i)). The staleness 𝑆(𝑗, 𝑖, 𝑡) in the state
of vehicle 𝑖 as possessed by vehicle 𝑗 at time 𝑡 is the time
elapsed since the timestamp of the state of 𝑖(𝑗 ⋅ 𝑇

𝑖
). Thus

𝑆(𝑗, 𝑖, 𝑡) = 𝑡 − 𝑗 ⋅ 𝑇
𝑖
.

Note that the staleness with respect to a vehicle is
initially equal to the message latency from the source when
information about the vehicle is received but continues to
rise until the next update from the vehicle is received. The
maximum staleness with respect to a vehicle thus occurs
just before fresh information about the vehicle is received.
Maximum staleness thus depends on the message latency as
well as on the update interval. Staleness can further increase
when messages containing information about a vehicle are
lost. The effect of message losses will be quantified using
simulations in Section 4.5.

Theorem 3. Themaximum staleness in the state of vehicle 𝑖 at
vehicle 𝑗 in VCAST is bounded by 𝑂(𝑑(𝑖, 𝑗)2/𝑝𝑟2

ℎ
).

Proof. Consider a vehicle 𝑗 at a distance between ℎ𝑟
ℎ
and

(ℎ−1)𝑟
ℎ
away froma vehicle 𝑖. Let us denote this by a distance-

interval ℎ from vehicle 𝑖 in terms of the communication range
𝑟
ℎ
. Thus ℎ = ⌈𝑑(𝑖, 𝑗)/𝑟

ℎ
⌉. Note that at a distance interval of

ℎ−1 from a vehicle 𝑖, information about 𝑖 is updated only once
every ℎ−1 broadcast interval. As a result, the maximum time
before which 𝑗 hears fresher information about 𝑖 from some
vehicle at distance interval ℎ−1 away from 𝑖 is bounded by (ℎ−
1)/𝑝 seconds. Likewise, the maximum time elapsed between
a vehicle at distance-interval ℎ − 2 receiving information
about 𝑖 and a vehicle at distance-interval ℎ − 1 obtaining the
same information is bounded by (ℎ−2)/𝑝 seconds. Summing
from a distance interval of 1 to ℎ, we get that the maximum
latency in communicating the state of vehicle 𝑖 to a vehicle 𝑗
is bounded by 𝑂(𝑑(𝑖, 𝑗)2/𝑝𝑟2

ℎ
).

FromTheorem 3, we note that the staleness at a distance
𝑑 from a vehicle does not depend on the vehicular density or
the region size, but only on the communication hop distance
and the initial broadcast rate at the source. Hence, we expect
that as the communication range increases the staleness
should decrease. However, as the communication range
increases, the interference within the vehicular transmission
also increases and this can adversely affect the network
reliability and system accuracy. In Section 4.5, we analyze the
performance of our algorithm in large scale simulation and
point out the impact of 𝑝 and 𝑟

ℎ
on the staleness at different

distances.
We now state the average communication rate and stale-

ness when aggregate cell information is propagated instead of
actual vehicle location information.

Theorem 4. The amount of data communicated by each node
in VCAST per unit time, when aggregate cell information is

propagated, to obtain information about each cell at distance
up to 𝑅 from itself is bounded by 𝑂(𝑅𝑝/𝜌𝑟

𝑐
𝑟
2

ℎ
).

Proof. Let 𝐵
𝐶
denote the average amount of data communi-

cated per unit time, by each node in VCAST when aggregate
cell information is propagated. Recall that 𝑑

𝑐
(𝑖, 𝑗) denotes the

cell distance between vehicle 𝑖 and cell 𝑗, that is, the smallest
number of cells traversed to reach cell 𝑗 from 𝑖. The number
of cells at a cell distance of at most 𝑑

𝑐
from a vehicle is

bounded by 𝑂(𝜌𝑑
2

𝑐
𝑟
2

𝑐
/𝜌𝑟
2

𝑐
), that is, 𝑂(𝑑2

𝑐
). As a result, the

number of cells at exactly distance 𝑑
𝑐
away from a vehicle

is bounded by 𝑂(𝑑
𝑐
). Information about cells at distance 𝑑

𝑐

away is broadcasted at 𝑝/𝑑
𝑐
Hz. Thus the total amount of

data to be communicated about cells at distance 𝑑
𝑐
away is

𝑂(𝑝). Note that this information is broadcasted by at most
one vehicle in every area 𝜋𝑟2

ℎ
. Hence, on average each node

is responsible for communicating only 𝑂(𝑝/𝜌𝑟
2

ℎ
) bits about

cells at distance 𝑑
𝑐
away from itself. Summing up over all cell

distances from 𝑑
𝑐
= 1 to 𝑑

𝑐
= 𝑅/𝑟

𝑐
, we get

𝐵
𝑐
= 𝑂(

𝑅/𝑟𝑐

∑

𝑖=1

𝑝

𝜌𝑟
2

ℎ

) = 𝑂(
𝑅𝑝

𝜌𝑟
𝑐
𝑟
2

ℎ

) . (2)

In comparison with the result from Theorem 1, we note
that the average communication rate reduces by a factor
equal to the number of vehicles in each cell (𝜌𝑟

𝑐
𝑟
ℎ
) because

only aggregate information about the cell is propagated with
distance-sensitive rate as opposed to propagating informa-
tion about each vehicle in the cell.

Theorem 5. The staleness in the state of cell 𝑧 at vehicle 𝑗

in VCAST, when aggregate cell information is propagated, is
bounded by 𝑂(𝑑

𝑐
(𝑗, 𝑧)𝑑

ℎ
(𝑗, 𝑧)/𝑝), where 𝑑

ℎ
(𝑗, 𝑧) denotes the

communication hop distance between 𝑗 and the closest vehicle
to 𝑗 in cell 𝑧.

Proof. Consider a vehicle 𝑗 and cell 𝑧. The lowest broadcast
rate about cell 𝑧 that is available for vehicle 𝑗 is𝑑

𝑐
(𝑗, 𝑧)/𝑝. Also

the number of communication hops between 𝑗 and the closest
vehicle in 𝑧 is 𝑑

ℎ
(𝑗, 𝑧). Hence, latency in forwarding informa-

tion about cell 𝑧 to vehicle 𝑗 is bounded by 𝑑
𝑐
(𝑗, 𝑧)𝑑

ℎ
(𝑗, 𝑧)/𝑝.

Also note that the subsequent update about cell 𝑧 will be
available within 𝑑

𝑐
(𝑗, 𝑧)/𝑝 seconds. The result follows.

4. Performance

We evaluate the performance of VCAST using simulations in
ns-3, a discrete event simulator for wireless, and mobile ad
hoc networks.
Network Models. We use an IEEE 802.11 b physical layer
communication model with a DSSS rate of 11Mbps at each
node. We first model vehicular traffic by considering vehicles
to be in grids of different sizes (28×28, 25×25, 20×20, and 15×
15) with uniform separation between the vehicles at all times
(i.e., travelingwith uniform speed). For the case of aggregated
data forwarding, we have also simulated a network size of
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3600 nodes which allows us to test over larger intervehicular
distances. We consider intervehicular separations of 60m,
50m, 40m, and 30m, thus simulating different densities.
Note that a uniform separation of 45m would correspond
to a headway time of 1.5 s at a speed of 70mph (and a pro-
portionately lower headway time at lower speed), which are
typically observed separations on roadways. We have chosen
densities that create vehicular separation around this range.
We also consider source broadcast rates of 1Hz, 5Hz, and
10Hz, and communication ranges of 75m, 100m, 125m, and
150m, which are within the range of expected transmission
rate and range values of Here I am messages for intelligent
transportation systems [1, 2]. These simulations characterize
the performance of VCAST when it is used to disseminate
vehicular state information to a network of the corresponding
size. The grid model allows us to emulate 2d network traffic
of different densities in a region and by simulating uniform
velocity, the relative distance between vehicles is maintained
during the course of the simulation allowing the clear
characterization of distance versus information staleness.
We use this model to compare VCAST with non-distance-
sensitive approaches and to systematically study the impact
of density, source broadcast rates, and communication range
on the performance. Next, we consider a 2dmodel of vehicles
with nonuniform mobility incorporated—the goal here is
to study if time varying densities impact the performance
and therefore we use a random waypoint model to simulate
mobility which generalizes possible vehicular traffic patterns.

Measurement Strategy. Each vehicle’s state information is
assumed to be 10 bytes long. In any given slot, a vehicle
may transmit a variable number of such records. At each
vehicle, we measure the maximum staleness with respect
to every other vehicle by measuring the time elapsed since
the information originated at the source, just before fresh
information about a vehicle is received. For information
aggregation, we consider the cell size to be equal to the com-
munication range of each vehicle, propagate only aggregate
cell information instead of individual vehicle information,
andmeasure themaximumstalenesswith respect to every cell
in the region. All simulations are run for 20 seconds except
simulations at 1Hz which are run for 40 second due to higher
staleness values.We then group themaximumstaleness based
on pairwise distances between vehicle-vehicle and vehicle-
cell, respectively. The average of these measurements over
multiple experiments is used in our evaluations.

4.1. Impact of Distance Sensitivity. The objective of this
section is to quantify the performance gains achieved by
using distance-sensitive forwarding as opposed to forwarding
information about all vehicles at the same rate.
Scaling in Number of Nodes. In Figure 2(a), we show the
maximum staleness as a function of intervehicular distance
for 𝑝 = 10Hz at a network size of 225 nodes for both
VCAST as well as non-distance-sensitive forwarding; that
is, information about all vehicles is forwarded at the source

broadcast rate by every node. Here, we observe that the non-
distance-sensitive scheme is able to keep staleness low at all
distances and the growth is linear with distance. On the other
hand, VCAST has low staleness at small distances while the
staleness is observed to grow as 𝑂(𝑑2) at higher distances, as
expected. However, at a network size of 625 (see Figure 2(b)),
the non-distance-sensitive approaches show much higher
staleness even at smaller distances. However, VCAST is
able to maintain low staleness at small distances while the
staleness is observed to grow as 𝑂(𝑑2) at higher distances.
Information within 400m is obtained in under 300ms using
VCAST while it takes about 3 seconds in the case of a non-
distance-sensitive approach.The reason is that as the number
of nodes increases, the channel contention increases at a
much higher rate in the non-distance-sensitive forwarding
causingmessage losses and consequently increase in staleness
(i.e., quantified in our analysis on message complexity).
By reducing channel contention, VCAST is able to achieve
scalability in number of nodes. In Figure 3, we show the
maximum staleness as a function of intervehicular distance
for𝑝 = 10Hzat a network size of 225, 400, 625, and 784nodes
for VCAST. We observe that staleness values are preserved at
corresponding intervehicular distances, irrespective of network
size.

Scaling in Source Broadcast Rate. In Figures 4(a) and 4(b),
we fix the network size to 784 nodes and vary the source
broadcast rate. In Figure 4(a), we observe that, at s source
broadcast rate of 1Hz, the-non-distance-sensitive scheme is
able to scale to large distances and has lower latencies at
larger distances compared with VCAST since there is no
staggered forwarding. However, when attempting to reduce
the staleness at smaller distances, by increasing the source
broadcast rate, non-distance-sensitive forwarding fails.This is
shown in Figure 4(b) for broadcast rates of 10Hz. The non-
distance-sensitive approaches show much higher staleness
even at smaller distances. On the other hand, VCAST is
able to deliver lower staleness at smaller distances even
at a network size of 784 nodes by increasing the source
broadcast rate and progressively increasing the staleness at
larger distances. This allows the network bandwidth to be
utilized where it is needed and to achieve scalability.

Message Complexity: The Reason Behind Successful Scaling in
VCAST. In Figures 5(a) and 5(b), we show the number of
vehicular records transmitted per second by every node for
varying network sizes and varying source broadcast rates,
respectively. These figures highlight the significantly lower
message complexity inVCAST which reduces the contention
even as network size and broadcast rates grow.

4.2. Impact of Communication Range, Source Broadcast Rate,
and Density. In this subsection, we evaluate the performance
of VCAST under different communication ranges, source
broadcast rate, and network densities. The aim is to highlight
the scalability of VCAST and identify the tipping point in
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Figure 2: Impact of network size: VCAST versus non-distance-sensitive forwarding. (a) Maximum staleness versus pairwise vehicular
distance: 𝑝 = 10Hz at 225 nodes. (b) Maximum staleness versus pairwise vehicular distance: 𝑝 = 10Hz at 625 nodes.
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Figure 3:Maximum staleness versus pairwise vehicular distance for
VCAST: 𝑝 = 10Hz, network sizes of 225, 400, 625 and 784 vehicles,
communication range 100m, separation 50m. Staleness values are
preserved at corresponding intervehicular distances, irrespective of
network size.

terms of each of these parameters forVCAST, that is, the point
at which channel capacity is exceeded.
Communication Range. In Figure 6, we plot the maximum
staleness in vehicle information against the intervehicular
distance for a 784 node network with 𝑝 = 10Hz at different
communication ranges. As range increases from 75m to
125m, we observe that staleness at larger distances decrease
(due to fewer number of hops), while the staleness at smaller

distances increase slightly due to increased contention. How-
ever, starting from a range of 150m, we observe that the
channel contention within a single hop starts increasing and
at a range of 200m, we observe a tipping point leading to
higher message losses and much higher staleness at smaller
distances (the corresponding plot is shown in red).
Source Broadcast Rate. In Figure 7(a), we plot the maximum
staleness in vehicle information against the intervehicular
distance for a 784 node network with a communication
range of 100m for different source broadcast rates. As rate
increases from 5Hz to 10Hz, we observe that staleness
decreases as expected. However, with a rate of 20Hz, we
observe that the channel contention starts increasing, leading
to disproportionate staleness values at smaller distances.
Figure 7(b) shows a zoomed-in version of Figure 7(a) at
smaller distances. Here, we observe that staleness values for
20Hz are higher than those at 10Hz due to higher channel
contention.

Network Density. In Figure 8(a), we plot the maximum
staleness in vehicle information against the intervehicular
distance for a 784 node network with a communication
range of 100m and rate of 10Hz for different intervehicular
separations.Note that, in Figure 8(a), the plots for separations
of 50m, 40m, and 30m only extend to 2, 1.7, and 1.2Km,
respectively, because these are the possible maximum inter-
vehicular distances at the corresponding densities for a given
network size of 784 vehicles. We observe that going from a
separation of 60m to 40m, the staleness at larger distances
decreases. This is because of fewer number of hops required
to reach a given distance. However, with a separation of 30m,
we observe that channel capacity is exceeded causing mes-
sage losses and higher staleness values (the corresponding
plot is shown in red). In Figure 8(b), we have shown the
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Figure 4: Impact of source broadcast rate: VCAST versus non-distance-sensitive forwarding. (a) Maximum staleness versus pairwise
vehicular distance: 𝑝 = 1Hz at 784 nodes. (b) Maximum staleness versus pairwise vehicular distance: 𝑝 = 10Hz at 784 nodes.
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Figure 5: Comparison ofmessage complexity:VCAST versus non-distance-sensitive forwarding. (a)Number of vehicular records transmitted
per second per node at different network sizes for 𝑝 = 10Hz and range 100m. (b) Number of vehicular records transmitted per second per
node at different source broadcast rates for 784 nodes and range 100m.

correspondingmessage complexity at different intervehicular
separations. Here we observe a drastic increase in messages
per second, at a separation of 30m which explains the
corresponding increase in message losses and information
staleness.

4.3. Impact of Time Varying Intervehicular Separations. The
aim of this subsection is to characterize the performance
of VCAST in the presence of time varying intervehicular
separations caused by nonuniformmobility patterns.Wenote

that there are potentially several traffic mobility patterns that
can arise in a real vehicular network scenario. Our goal
here is to analyze the scalability of VCAST and one of the
important underlying factors that can impact performance
in the context of these mobility patterns is the time varying
density. There could be instants when a vehicle has a lot of
neighbors within communication range and also instances
when there are no neighbors.Therefore, in this simulation, we
have chosen the random 2d walk mobility pattern with time
varying speeds in the range of 20m/s to 40m/s, a potentially
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Figure 7: Impact of source broadcast rate onVCAST: (a) maximum staleness versus pairwise vehicular distance with 784 vehicles, separation
50m, communication range 100m, source broadcast rates of 5Hz, 10Hz, and 20Hz. (b) Zoomed-in version at smaller distances.

severe form of mobility that captures the essence of time
varying separations and interference zone, caused in a traffic
scenario.

In Figures 9(a) and 9(b), we compare the information
staleness graphs for the random and uniform mobility
patterns at 5Hz and 10Hz source broadcast rates with
784 nodes. As seen from these figures, the graphs are
quite similar, highlighting that random mobility does not

significantly impact the performance. Staleness values at
larger distances are observed to be slightly higher for the
case of random mobility. However, the reason for this is
not higher communication cost but rather the fact that the
severe random mobility scenario often creates sparse and
disconnected regions within the network, thereby increasing
the number of hops traversed between two vehicles at a given
distance. This effect is more pronounced at larger distances.
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Figure 9: Impact of time varying randommobility pattern onVCAST: (a) maximum staleness versus pairwise vehicular distance for uniform
and random mobility with 784 vehicles, communication range 100m, source broadcast rate 5Hz. (b) Maximum staleness versus pairwise
vehicular distance for uniform and random mobility with 784 vehicles, communication range 100m, source broadcast rate 10Hz.

In Figure 10, we compare the average communication cost
for the random and uniform mobility scenarios. This graph
highlights the fact that communication costs do not increase
in the random mobility scenario—in fact a small decrease
is observed in the average communication cost over several
random patterns.

4.4. Impact of Aggregation. In this section, we evalu-
ateVCAST when aggregate information about a cell is trans-
mitted over multiple hops as opposed to individual vehicle
information. The region being simulated is divided into
square cells of equal size. The width of each cell is assumed
to be equal to the single hop communication range. In
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this evaluation, we have increased the network size to 3600

nodes, thereby allowing us to evaluate staleness over larger
distances. Figure 11 shows the information staleness graphs
with a communication range of 100m ad 150m, both with
a source broadcast rate of 10Hz. As seen in these graphs,
information up to 4Km can be obtained in less than 5

seconds, without the need for any infrastructure—while
still maintaining extremely low staleness values at smaller
distances.

4.5. Summary of Results. Our experimental results show
that by using distance-sensitive forwarding, VCAST is able
to scale to larger network size as well as support much
higher broadcast rates compared to non-distance-sensitive
techniques.The reason for scalability is the significantly lower
message overhead which reduces the channel contention
in the network. We also characterized the performance
ofVCAST under severe mobility and studied information
staleness when aggregated data is transmitted as opposed to
individual vehicle information.

From all of the above experimental evaluations, we
note that an ideal parameterization for VCAST is to set
communication range to a small value and increase the source
broadcast rate. By doing so, information at smaller distances
can be obtained at high rates with low contention due to the
small communication range. At the same time, information
to larger distances can be transmitted with progressively
increasing staleness. Moreover, by limiting the propagation
of individual vehicular information up to distances of about
500–1000m (for utilization by safety applications) and only
propagating aggregate information beyond that, we observe
that information from several miles ahead can be obtained
within a few seconds without the need for any communica-
tion infrastructure.

5. Conclusions

We have presented an algorithm,VCAST, for obtaining indi-
vidual vehicle location and aggregate traffic information over
a multihop wireless vehicular network without the need for
expensive roadside infrastructure, any special hardware, or
modification to vehicular transmission standards. To ensure
scalability in forwarding information over multiple hops,
traffic information is propagated at a rate that decreases
linearly with distance from the source. By doing so, the
required communication rate per node can be reduced when
comparedwith schemes that donot utilize distance sensitivity
in information forwarding. This results in lower channel
contention, thereby enabling higher source broadcast rates
and better information quality at smaller distances while
still being able to propagate information to large distances.
Despite staggered forwarding, traffic information can be
obtained with a staleness, which is a measure of error in
the traffic information that is bounded by 𝑂(𝑑

2
) where 𝑑

is the communication hop distance from the source of the
information.

The performance of VCAST was validated using exten-
sive ns-3 simulation under different network sizes, network
densities, source broadcast rates, and communication ranges.
The results of our evaluation showed that by using distance-
sensitive forwarding, VCAST is able to scale to larger net-
work sizes as well as support much higher broadcast rates
compared to non-distance-sensitive techniques. The reason
for scalability was shown to be the significantly lower mes-
sage overhead which reduces the channel contention in the
network. We also characterized the performance of VCAST
under severe mobility and studied information staleness
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when aggregated data is transmitted as opposed to individual
vehicle information.

In future work, we would like to integrate VCAST
with control algorithms for vehicular safety and navigation
that utilize information with distance-sensitive quality. We
would like to design optimal control laws for vehicular
acceleration under models of distance-sensitive information
availability that ensures the safety of the integrated control-
communication system. We would also like to integrate our
vehicular traffic mapping service with a navigation front end
for dynamic computation of alternate routes and evaluate the
impact of distance sensitivity on the quality of navigation
performance.
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