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Identical particle scattering from a weakly coupled Bose-Einstein condensed gas

A. Wynveen,1 A. Setty,2 A. Howard,3 J. W. Halley,1 and C. E. Campbell1

1School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455
2Department of Physics, West Virginia University, Morgantown, West Virginia 26506

3Department of Physics, Harvard University, Cambridge, Massachusetts 02138
~Received 28 January 2000; published 5 July 2000!

We calculate the scattering states and cross sections for a Bose-Einstein condensed dilute gas trapped in a
spherical square well of finite depth. The interactions are treated in the scattering length approximation. We
solve the Gross-Pitaevskii equation and the Bogoliubov equations for bound and scattering states. The results
show that there are transparency effects reminiscent of those conjectured to occur for strongly coupled systems.
When incident particle wavelengthsl are comparable to the well sizea, exchange induced transparency
enhancement is dramatic only for particular combinations of well depth, interaction strength, and particle
number. For particles with large momenta (a/l@1), however, exchange with the condensate results in en-
hanced transmission for all coupling strengths. We calculated the rate of decay of the scattering states to
leading order in anharmonic corrections to the Bogoliubov approximation and found the corresponding inelas-
tic cross sections to be extremely small.

PACS number~s!: 03.75.Fi, 05.30.Jp, 67.40.Db

I. INTRODUCTION

In previous work we have suggested that finite size Bose
systems in a Bose-Einstein condensed state may exhibit ef-
fective transparency to incident atoms indistinguishable from
those that are condensed, as a consequence of the presence of
the Bose condensation. Our suggestion was originally made
for liquid helium @1# but, by similar qualitative arguments, a
similar effect is to be expected for weakly coupled dilute
Bose systems. Though variational calculations on strongly
coupled helium have confirmed some aspects of our original
suggestion@2#, exact calculations of the scattering states of
the strongly coupled system remain out of reach. For this
reason, a calculation on a weakly coupled system, where the
approximations are better controlled, is desirable. Further,
the experimental creation of dilute Bose condensed systems
of alkali-metal atoms@3–6# and spin-polarized hydrogen@7#
gives rise to the possibility that an experiment like the one
we proposed for liquid helium could be carried out on them.

For these reasons we have carried out a calculation@8# of
the scattering states of a system ofN atoms in a finite spheri-
cal square well of radiusa. The main qualitative feature that
distinguishes this calculation from previous calculations
@9–12# is the finite depth of the well, which is of course
essential for a scattering problem for a system that is not
self-bound. The cross sections that we find do exhibit a trans-
parency effect, which, we will argue, arises from the same
qualitative physical effects that led us to anticipate a trans-
parency effect in liquid helium. When the wave vectork of
the incident particle is comparable to the inverse of the well
radius (ka&1) we find that the transparency effects are dra-
matic only for certain combinations of model parameters due
to effects of interference. However, forka@1 we always
find enhanced transparency due to exchange of the incident
particle with particles of the Bose condensed target. These
features are qualitatively consistent with our earlier sugges-
tions for the strongly interacting Bose-Einstein condensed
system.

II. MODEL AND CALCULATIONAL METHODS

The calculation is carried out in the standard way@13# for
a weakly coupled Bose system. The Hamiltonian is

H5E drWc†~rW !S 2\2¹2

2m
1V12m Dc~rW !

1
1

2E E drWdrW8c†~rW !c†~rW8!V~rW,rW8!c~rW !c~rW8!, ~1!

wherec(rW) is the wave operator for destruction of bosons at
rW, V1 is a confining potential,m is the chemical potential,
and V(rW,rW8) is the interaction between particles, for which
we use the scattering length approximation@14#

V~rW,rW8!5~4p\2as /m!d~rW2rW8!. ~2!

In the weak coupling limit@13# we proceed by writing
c(rW)5AN0c0(rW)1dc(rW), wherec0 is ac number which we
take to be real and equal to the square root of the density of
particles in the condensate at positionrW. Minimizing the en-
ergy as a functional ofc0(rW) to zeroth order in thedc(rW)
gives the Gross-Pitaevskii equation forc0:

S 2\2¹2

2m
1V11N0guc0~rW !u2Dc0~rW !5mc0~rW !, ~3!

whereg54p\2as /m. The eigenvaluem of this equation is
the chemical potential. To first order indc(rW) we obtain

i\
]dc

]t
5S 2\2¹2

2m
1V12m12gN0uc0~rW !u2D dc~rW !

1N0guc0~rW !u2dc†~rW !. ~4!

Expanding
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dc~rW,t !5(
n

@Un~rW !bne2 ivnt1Vn~rW !bn
†eivnt# ~5!

gives the Bogoliubov equations for the excited states:

S 2
\2

2m
¹21V12m12N0gc0

22\vnDUn~rW !1N0gc0
2Vn50,

~6a!

S 2
\2

2m
¹21V12m12N0gc0

21\vnDVn~rW !1N0gc0
2Un50,

~6b!

where n contains the quantum numbers specifying the ex-
cited states~three of them in three dimensions!. \vn is the
energy of the excited state measured relative tom. The en-
ergy of the excited state measured relative to the vacuum
zero is\vn1m.

The boundary conditions for these equations are as fol-
lows. For the Gross-Pitaevskii equation we require that
c0(r )→const3exp(2A2umum/\2r )/r for large r and that
c0→const at the origin. We consider only real, spherically
symmetric solutions of the Gross-Pitaevskii equation here.
For the Bogoliubov equations the boundary conditions de-
pend on whether\vn1m.0 or \vn1m,0, corresponding
to the continuum and the bound states, respectively. Because
the existence of a continuum is a relatively unfamiliar feature
of this calculation we provide a sketch in Fig. 1. We confine
attention to spherically symmetricV1 and define functions
ul ,nl

(r ) andv l ,nl
(r ) by the relations

Un~rW !5Yl
m~rW !ul ,nl

~r !/r , ~7a!

Vn~rW !5Yl
m~rW !v l ,nl

~r !/r . ~7b!

Then the Bogoliubov equations become

d2ul ,nl

dr2
2S v11 l ~ l 11!/r2116pN0asa

2c0
2

2
\v l ,nl

1m

\v0
D ul ,nl

28pN0asa
2c0

2v l ,nl
50, ~8a!

d2v l ,nl

dr2
2S v11 l ~ l 11!/r2116pN0asa

2c0
2

2
2\v l ,nl

1m

\v0
D v l ,nl

28pN0asa
2c0

2ul ,nl
50. ~8b!

We have expressed the equations in a dimensionless form by
dividing through by\v05\2/2ma, wherea is the well ra-
dius, r5r /a, andv15V1 /\v0 . nl labels solutions to these
equations with different numbers of nodes in the case of
bound states. In the case of the continuum,nl is replaced by
the energy. The boundary conditions are, if\v l ,nl

. umu
~continuum!,

ul ,nl
→r j l@kr1d l~k!# as r→`, ~9a!

v l ,nl
~r !→const3e2kr as r→`, ~9b!

where

k5A2m~\v l ,nl
1m!/\2

and

k5A2m~\v l ,nl
2m!/\2 .

On the other hand, if\v l ,nl
,umu ~bound states!,

ul ,nl
~r !→const3e2k8r as r→`, ~10a!

v l ,nl
~r !→const3e2kr as r→`, ~10b!

in which k85A2m(2\v l ,nl
2m)/\2. At the origin the

boundary condition isul ,nl
,v l ,nl

}r l 11. Notice that thev
component of the wave function is always bound, even in the
continuum. This makes excellent physical sense, because the
v component is to be interpreted as the amplitude for adding
a particle to the condensate and this can only be accom-
plished physically in the region where the system is dense.

FIG. 1. Energies in continuum and bound solutions of the Bo-
goliubov equations. For Bogoliubov states for which\v l ,nl

1m
.0, the allowed values of\v l ,nl

are continuous, and theul ,nl
com-

ponents are unbound whereas thev l ,nl
components are bound.

When\v l ,nl
1m,0, the allowed values of\v l ,nl

are discrete and
both Bogoliubov componentsul ,nl

and v l ,nl
are bound. The figure

also shows the locations of2\v l ,nl
1m, which may be regarded,

for some purposes, as the energy of thev component, in the con-
tinuum and discrete cases.
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We solve these equations numerically by integrating out
from the origin with specific initial conditions to achieve the
required behavior at larger. In the case of bound states
~which are not the primary focus of the present paper!, the
energy is adjusted along with the initial conditions of theu
andv components of the wave function such that these com-
ponents simultaneously approach zero for larger. Experi-
ments on Bose condensed alkali-metal vapors have con-
firmed @10,15,16# that the predicted bound states are quite
close to the observed ones. For continuum states, the initial
conditions of the wave function components are varied such
that thev component converges to zero. The phase shift is
determined by fitting theu component’s known form at large
r. ~We smooth the potentialV1 at the step by a small amount
for numerical reasons, replacing the step by a Fermi function
of a width that is larger than the step size but smaller than the
scale of the variation of the wave function. For our param-
etrization this turns out to be easy to achieve.! The results are
expressed in dimensionless form, measuring energy in units
of \v0 and lengths in units ofa. ~For alkali-metal experi-
ments, characteristic values ofa are of the order of 104 Å.
With this value, the range ofas /a chosen here spans realistic
values for alkali metals.! In interpreting the magnitudes of
the scattering lengths in these units, it is helpful to note that
the mean field energy per particle arising from the conden-
sate in this model is approximatelyNg/V whereV is the
size ~volume! of the condensate wave function andN is the
number of particles in the system~neglecting depletion in
this rough approximation!. In units of\v0 ~characteristic of
single particle kinetic energies in the spherical well! this is
Ng/V56N(as /a)\v0.

III. RESULTS

We present results forN51000 and a well depth of
38.44\v0. Since the mean field energy per particle can be
written as 6N(as /a)\v0, the scattering lengths are pre-
sented in the dimensionless form 6Nas /a with a range 0
,6Nas /a,32 such that mean field energies approaching

the well depth are probed. Values of the chemical potential
as a function of coupling strength are shown in Fig. 2. The
chemical potential is approaching zero as the coupling
strength approaches the end of the range considered. This is
because the repulsive interactions are making such a large
mean field that the particles could not be held in so shallow
a trap if the coupling were to be increased much more.

Turning to excited states, we exhibit cross sections, cal-
culated from

s l~k!54p~2l 11!sin2d l~k!/k2 ~11!

for the l 51 channel in Figs. 3 and 4. For comparison, we
show the cross section calculated by use of the modified
equation in which the term involvingv l ,nl

has been set to
zero so that the scattering problem is just the scattering of a
particle from the Hartree-like mean field due to the Gross
Pitaevskii condensate~Fig. 5!. The full solutions, by con-
trast, include thev l ,nl

, which corresponds physically to in-

FIG. 2. Chemical potential as a function of scattering length.
The depth of the well is 38.44\v0 andN051000.

FIG. 3. Cross sections for a series of scattering lengths. The well
width is a and the well depth is 38.44\v0.

FIG. 4. Cross sections near transparency. The well width isa
and the well depth is 38.44\v0.
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cluding the possibility that the scattered particle is ex-
changed with the condensate during the scattering process.
One finds that, at small coupling strengths, the scattering
cross section is almost entirely taken into account by
theHartree-like mean field effect, but that, as the scattering
length increases, the exchange effects are increasingly large
~but these effects do not change monotonically with the cou-
pling strength!. At 6Nas /a530 we see a huge effect, in
which the cross section almost disappears in thel 51 chan-
nel, corresponding to nearly complete transparency. How-
ever, for still larger couplings, the system becomes increas-
ingly opaque again. We can describe the conditions required
for this transparency to occur in terms of the dimensionless
quantitiesNguc0(0)u2a2 @whereuc0(0)u corresponds to the
amplitude of the Gross-Pitaevskii ground-state wave func-
tion at rW50# andv1 as shown in Fig. 6.

In the calculations reported above, in whichka was of
order unity, we observed exchange enhanced transparency
for specific coupling strengths. However, for other couplings
in the range of momenta shown in Figs. 3 and 4, we find that

the effects of exchange can result in cross sections larger
than those for the Hartree case. We attribute this nonmono-
tonicity in the effect of exchange on the cross section to
effects in which the internally reflected waves interfere with
each other in the target during the scattering process. On the
other hand, whenka@1, thel 51 cross sections that we find
when exchange is included in the calculation are always
smaller than those where there is no exchange. This is pre-
sumably because, at these larger momenta, interference ef-
fects are reduced since the incident particle wave vector is
much larger than the size of the system. Figures 7 and 8
show the condensate coupled and Hartree cross sections for a
scattering length corresponding to 6Nas /a512.7. Here the
condensate coupled cross section is larger than that for the
Hartree case for incident particles whenka;1. However, for
incident particles of larger momentum, the condensate
coupled cross section is smaller. We find that similarly for all
coupling strengths the exchange reduces the cross section at
large momentum: For largeka andl 51 we show the ratio of
the average condensate coupled cross section to the Hartree-

FIG. 5. Hartree and condensate coupled cross sections. Both
cross sections given for a scattering length of 6Nas /a529.7.

FIG. 6. Location of transparency for range of dimensionless
parameters. The value forc0

2 is taken wherer 50.

FIG. 7. Hartree and condensate coupled cross sections for a
scattering length corresponding to 6Nas /a512.7. For this incident
particle momentum range the Hartree cross section is on average
smaller than the condensate coupled cross section.

FIG. 8. Hartree and condensate coupled cross sections for a
scattering length corresponding to 6Nas /a512.7. For this incident
particle momentum range whereka@1, the condensate coupled
cross section is on average smaller than the Hartree cross section.
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cross section for two different momentum ranges as a func-
tion of scattering length in Fig. 9. The transmission is ex-
change enhanced for all couplings for incident particles with
momentaka@1.

As expected on physical grounds, the largest transparency
effect was seen in thel 51 channel. However, we found that
other contributing angular momentum channels also showed
the same effect, as shown in Figs. 10 and 11. As with thel
51 channel, we again observe exchange induced enhance-
ment forka@1 in these other channels~up to l 53) over the
same range of coupling strengths. As an example, Fig. 10
shows the Hartree and condensate coupled cross sections at
large incident particle momenta forl 52 at the coupling that
yielded transparency in thel 51 cross section.

We also determined the total cross section for the mo-
menta,ka;1, and coupling strength where transparency was
observed in thel 51 channel~Figs. 3 and 4!. Summing the
relevant partial cross sections up tol 54 ~larger values ofl

do not significantly contribute to the total cross section for
this range of momentum!, we find the total cross section
shown in Fig. 11. The total cross section including exchange
is seen to be smaller than that for the Hartree case over much
of this momentum range and exhibits a pronounced dip
where the large transparency occurs in thel 51 channel.

In Fig. 12 we show theu andv components of the wave
function of the scattering state corresonding to a scattering
length that gives a large transparency effect in thel 51 scat-
tering channel.v is seen to be large and nodeless, corre-
sponding to a perturbation of the spherical condensate very
nearly like a uniform translation. This is consistent with our
earlier suggestion that the incident atom would mix virtually
with a state corresponding to a boosted (N11)-particle
ground state, resulting in transparency.

These calculations were carried out assuming thatN
5N0 in the Bogoliubov equations, neglecting depletion. To
check this assumption, we calculated the depletion of the
condensate due to the interactions by use of the well known
relation

FIG. 9. Ratio of condensate coupled to Hartree cross sections.
The solid line corresponds to the ratio of the average cross sections
over a momentum range of 5,ka,25 for a series of coupling
strengths. The dotted line corresponds to the ratio of cross sections
over a momentum range of 20,ka,25, which is always smaller
than 1. This suggests that transmission, for all couplings, of larger
momentum incident particles is enhanced when there is exchange.

FIG. 10. Hartree and condensate coupled cross sections forl
52 and a scattering length of 6Nas /a529.7. As with thel 51
cross section, we again see a reduced cross section due to exchange
for other momentum channels.

FIG. 11. Hartree and condensate coupled total cross sections at
the coupling strength where transparency is seen forka;1. The
total cross section also displays an exchange induced enhanced
transmission like that for thel 51 partial cross section.

FIG. 12. u andv components of the wave function. Components
are shown corresponding toka53.1 and 6Nas /a529.7 where the
tranparency is seen.
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N2N05E drW^dc†~rW !dc~rW !&5(
n

uVnu2. ~12!

We found that the bound states contribute more to the deple-
tion than those in the continuum, but that for all coupling
strengths the depletion of the condensate was insignificant.
For example, the condensate fractionN0 /N for a scattering
length of 6Nas /a530 was approximately 0.995 and varied
from this value by only about60.002 over the entire range
of scattering lengths considered here. Thus, self-consistent
calculations that took account of depletion would not signifi-
cantly change the results reported here.

Several workers have suggested that the proposed trans-
parency effect in superfluid helium-4@1,2# would be masked
by inelastic scattering processes. In the context of the weakly
interacting model studied in the present paper, we can calcu-
late the effects of inelasticity in a controlled manner. To do
this, we considered the effect of higher order terms in the
deviation operatorsdc anddc† in the Hamiltonian Eq.~1!.
The rate of decay of the scattering states, up to third order of
the deviation operators, is given by

Ri→ f5 (
f inal

2p

\
z^ i uĤ3u f & z2d~Ei2Ef !, ~13!

where

Ĥ35AN0gE drWdc†~rW !c0* ~rW !dc~rW !dc~rW !1H.c. ~14!

Using the wave function components found in Eq.~8!, we
were able to compute~see the Appendix! the rate of decay
for the l 51 scattering state. The inelastic cross section can
then be easily determined by dividing the transition probabil-
ity rate by the flux of the incident particle,

s in5
Ri→ f

\k/m
. ~15!

Figure 13 shows the total inelastic cross section for thel
51 scattering state in the range of interest. As can be seen
from this graph, the inelastic cross section is about five or-
ders of magnitude smaller than the corresponding elastic
cross section at the scattering length that yields the transpar-
ency in thel 51 channel. This demonstrates that inelastic
effects play a very minor role in this scattering process and
have little effect on the transparency seen in the elastic cross
section.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we report results of a calculation of the
scattering of a Bose particle from a collection of identical
Bose particles interacting weakly repulsively in scattering
length approximation at zero temperature and confined by a
spherical well of finite depth. We find that the exchange
effects in the Bogoliubov equations, which arise from pres-
ence of the Bose condensate through processes in which the

wave function of the incident particle mixes quantum me-
chanically with states in the condensate, give rise to a re-
duced cross section~enhanced transparency! relative to the
case in which such exchange effects are absent, as long as
the wave vectork of the incident particle satisfieska@1. For
ka&1 we also find large effects due to exchange, but, pre-
sumably because of the effects of interference of the scat-
tered wave with itself, the effect of exchange can have either
sign ~enhanced or reduced transparency! depending on the
values ofk, the scattering length, and the depth and width of
the confining potential. For a Gaussian potential well, we
found little or no exchange induced transparency effect in
this ka&1 range.

By going beyond the Bogoliubov approximation, we cal-
culated the effects of anharmonicity leading to dissipation in
the present model and found that the inelastic cross section
was completely negligible in the present context. This means
that exchange enhanced transparency would not be masked
by dissipation in a weakly interacting system of this type.

We believe that these results are qualitatively consistent
with the ideas and calculations published earlier on strongly
coupled Bose systems,@1,2# in which we suggested that ex-
change enhanced transparency might be observed in such
systems. This consistency does not, of course, constitute a
proof that those ideas and calculations correctly predict the
expected transparency in strongly coupled systems, because
many approximations and assumptions were required to
make the earlier calculations. Nevertheless, the present re-
sults are encouraging to the strongly interacting program,
because it is possible to imagine that the weak coupling cal-
culations might have been inconsistent with the qualitative
results in the work on strongly coupled systems and they are
not.

It appears to us that it might be possible to carry out
experiments of the sort modeled here on Bose-Einstein con-
densed alkali-metal or hydrogen systems. Confinement in
Gaussian wells is well known and some control of the well
shape appears to be possible. The main unexplored aspect is
the production of a beam. Confinement of two clouds of

FIG. 13. Elastic and inelastic cross sections. Cross sections for a
coupling of 6Nas /a529.7 where transparency is observed.
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Bose-Einstein condensed alkali-metal gas has been achieved
and interference effects have been observed@17#. A version
of such an experiment in which one of the clouds was Bose
condensed and the other was more dilute and confined to a
smaller space before being released to impact the larger,
Bose condensed system would begin to approximate the con-
ditions modeled in the calculation reported here.
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APPENDIX: CALCULATION OF THE RATE OF DECAY
OF THE BOGOLIUBOV SCATTERING STATES

To calculate the transition probability rate of decay, we
first expand the deviation operators in the perturbing Hamil-
tonian Eq.~14!, using Eq.~5!. The components of the Bogo-
liubov expansion can in turn be written, again, as a product
of spherical harmonic and radial functions@Eq. ~7!# due to
the spherical symmetry invoked in the calculation.

Because of the form of the perturbing Hamiltonian, only
certain combinations of these components contribute to the
decay rate. After integrating over the solid angle, the transi-
tion probability rate of thel 51 scattering state reduces to

Ri→ f5
32N0\as

2

pm
(

l 8,m8,m
E dq8

Ak22q82
SA~2l 811!@2~ l 861!11#

4p~3!
^ l 8~ l 861!;m8~m2m8!u l 8~ l 861!;1m&

3^ l 8~ l 861!;00u l 8~ l 861!;10&E dr

r
c0uk,1uq8,l 8u(A2m/\2Aek2eq8) l 8611A~3!@2~ l 861!11#

4p~2l 811!

3^1~ l 861!;m~m82m!u1~ l 861!; l 8m8&^1~ l 861!;00u1~ l 861!; l 80&E dr

r
c0vk,1vq8,l 8u(A2m/\2Aek2eq8) l 861

1A ~3!~2l 811!

4p@2~ l 861!11#
^1l 8;mm8u1l 8;~ l 861!~m1m8!&^1l 8;00u1l 8;~ l 861!0&

3E dr

r
c0vk,1uq8,l 8v (A2m/\2Aek2eq8) l 8611A ~3!~2l 811!

4p@2~ l 861!11#
^1l 8;mm8u1l 8;~ l 861!~m1m8!&

3^1l 8;00u1l 8;~ l 861!0&E dr

r
c0uk,1vq8,l 8u(A2m/\2Aek2eq8) l 8611A~3!@2~ l 861!11#

4p~2l 811!

3^1~ l 861!;m~m82m!u1~ l 861!; l 8m8&^1~ l 861!;00u1~ l 861!; l 80&E dr

r
c0uk,1uq8,l 8v (A2m/\2Aek2eq8) l 861

1A~2l 811!@2~ l 861!11#

4p~3!
^ l 8~ l 861!;m8~m2m8!u l 8~ l 861!;1m&^ l 8~ l 861!;00u l 8~ l 861!;10&

3E dr

r
c0vk,1vq8,l 8v (A2m/\2Aek2eq8) l 861D 2

, ~A1!

where the^•••u•••& terms are Clebsch-Gordan coefficients. The integrals onr were evaluated numerically using the wave
functionsu andv which were determined from Eq.~8! as described in the text. The numerical calculation revealed that the
contribution to the decay rate due to largerl 8 values diminished quickly such that the sum onl 8 could be truncated at a value
of 4.
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