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P. Junga)

Department of Physics and Astronomy, Program for Condensed Matter and Surface Science,
and Program for Neurobiology, Ohio University, Athens, Ohio 45701

A. Cornell-Bell
Viatech Imaging, Ivoryton, Connecticut 06442

F. Moss
Department of Physics and Center for Neuroscience, University of Missouri, St. Louis, Missouri 63121

S. Kadar, J. Wang, and K. Showalter
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We discuss a novel type of spatiotemporal pattern that can be observed in subexcitable media when
coupled to a thermal environment. These patterns have been recently observed in several different
types of systems: a subexcitable photosensitive Belousov–Zhabotinsky reaction, hippocampal slices
of rat brains, and astrocyte syncytium. In this paper, we introduce the basic concepts of subexcitable
media, describe recent experimental observations in chemistry and neurophysiology, and put these
observation into context with computer simulations. ©1998 American Institute of Physics.
@S1054-1500~98!01203-8#

Pattern formation in spatially extended dynamic systems
is often described in terms of nonlinear partial differen-
tial equations for macroscopic variables. Fluctuations,
e.g., due to a finite number of molecules in chemical re-
actions, can usually be neglected. Here we discuss fluc-
tuations stemming from the coupling of the extended dy-
namic system to a fluctuating environment. They do not
scale with the size of the system and are therefore not
negligible. We show that these fluctuations become im-
portant close to the threshold of pattern formation,
where they indeed dominate the spatiotemporal behavior
of the system. Below, but close to the threshold, fluctua-
tions can maintain and control the geometric features of
large-scale patterns. This is demonstrated numerically
and experimentally with a photosensitive Belousov–
Zhabotinsky reaction. Well below the threshold of pat-
tern formation, noise can sustain locally coherent pat-
terns. The patterns exhibit a spatiotemporal fragmen-
tation statistics that is described by a power law. We re-
port evidence of such a behavior for calcium wave net-
works in interconnected brain cells.

I. INTRODUCTION

Since the early days of nonequilibrium statistical phys-
ics, noise has been recognized to play an important role in
the formation of ordered states far from thermal equilibrium.

Stochastic resonance1,2 represents an important mile-
stone in the theory of noise-induced phenomena. Here, the
noise enhances the response of a system to a weak time-

dependent external force by, e.g., synchronizing barrier
crossings between metastable states with the external force.
The archetype model for studies of SR is a Brownian particle
in a bistable potential driven by a homogeneous periodic
force ~see, e.g., the reviews3,4!. At a certain optimal noise
level, the noise-induced escape becomes synchronized with
the periodic modulation of the barrier height. The hopping of
the particle then exhibits a significant periodic component,
quantified by a variety of features of the power spectrum. SR
has been discussed also for coupled bistable systems that are
each driven by an identical periodic force~Refs. 5–10!. The
coupling can facilitate a significant enhancement of the peri-
odicity of the response of a single bistable element to the
periodic forcing, hence the termarray enhanced stochastic
resonance. This effect has been observed in a chain of
coupled diode resonators by Lo¨cher and Hunt.11

The conceptually different phenomenon ofspatiotempo-
ral stochastic resonance12,13 has been observed first in an
excitable medium below the threshold of pattern formation.
The medium is driven by a weakspatiotemporalforcing
such as a wave train or a single wave front and the spa-
tiotemporal response is enhanced in the presence of an opti-
mal dose of noise. Spatiotemporal stochastic resonance has
been studied theoretically since then in a variety of models.14

Experimental evidence has been recently reported in a pho-
tosensitive Belousov Zhabotinsky~BZ! reaction15 and in a
chain of unidirectionally coupled diode resonators.16

In Sec. II of this paper, we briefly review excitable dy-
namics by using the Fitzhugh–Nagumo equations as a work-
ing model for neuronal discharge dynamics. We then intro-
duce a dynamical model for the photosensitive Belousov
Zhabotinsky reaction, where the threshold of excitation can
be controlled by illumination. We then discuss a three-statea!Electronic mail: jung@helios.phy.ohiou.edu
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model for excitable dynamics and the role of fluctuations.
In Sec. III, we introduce the concept of subexcitable me-

dia, i.e., media that are excitable but not capable of maintain-
ing spatiotemporal patterns such as rotating spiral waves. We
discuss a model for the subexcitable photosensitive
Belousov–Zhabotinsky reaction that is based on a system of
coupled reaction-diffusion equations and a cellular model
that is based on a three-state model.

In Sec. IV, we discuss in detail the spatiotemporal pat-
terns of a subexcitable medium that is close but below the
threshold of pattern formation, obtained from computer
simulations of the cellular model introduced in Sec. III. The
global geometric features of these patterns can be controlled
by the noise level. We then show the corresponding experi-
mentally observed patterns in the subexcitable photosensitive
Belousov–Zhabotinsky reaction under similar slightly sub-
threshold conditions.

In Sec. V, we consider the case where the medium is
well below the threshold of pattern formation. Here noise
can still sustain patterns, but these patterns, although coher-
ent on a small scale, are disordered on a large scale~thermal
patterns!. Using the technique of coherent cluster analysis,
we then demonstrate that the thermal patterns exhibit some
features of avalanches discussed in models that show self-
organized criticality such as sandpile models.

In Sec. VI, we relate the thermal patterns, discussed in
Sec. V, to calcium waves in cultured networks of rat-
hippocampal astrocytes and hippocampal slices of rat brains.
Those calcium waves share a number of features with the
thermal patterns, including their quantitative statistical prop-
erties~obtained from the analysis of coherent clusters!. There
is experimental evidence that the cell-culture operates in a
self-organized critical regime.

II. EXCITABLE DYNAMICS

Excitability is an important paradigm for a quantitative
description of many systems in nature. An excitable system
is characterized by three states: the quiescent state, the ex-
cited state, and the recovery state. In this section, we discuss
zero-dimensional excitable systems, i.e., we neglect spatial
gradients of all observables. An example of an excitable sys-
tem is the Fitzhugh–Nagumo model17 for firing of neurons,
given by the two-dimensional dynamical system,

e v̇5v~a2v !~v21!2w,
~1!

ẇ5v2dw2b.

The variablev describes the membrane voltage, whilew
describes the slow (e→0) recovery process. The nullclines,
i.e., the curves wherev̇ andẇ vanish, are shown in Fig. 1 for
b50.0, a50.5, andd51. The stationary states are given by
the intersection of the nullclines. The two nullclines intersect
once atv50, w50 (S), where the intersection point repre-
sents a stable node. A small perturbation, which does not
bring the system beyondP, leads to a relaxation back toward
the stationary stateS. If a perturbation is large~beyondP!,
the system switches to the excited stateT1 ~it fires! and re-
turns to the stationary stateS only after a large excursion

(P→T1→T2→S). During the time interval when the system
approaches the stationary state, it is in the recovery state.

Another prominent example of excitable dynamics is the
BZ reaction. In dimensionless units, the reaction is described
by the three coupled differential equations for the dimension-
less concentrationu of HBrO2, w of Br2 and v of the
catalyst:18,19

u̇5
1

e
~qw2uw1u2u2!,

ẇ5
1

d
~f2qw2uw1 f v !, ~2!

v̇5u2v.

Equations~2! describe the time evolution of the homo-
geneous concentrations of the relevant chemical species in
the photosensitive BZ reaction under illumination. The pa-
rameterf is added to account for the bromide production
from irradiation.20,21 The light intensity controls the photo-
chemical production of Br2, an inhibitor of autocatalysis in
the BZ reaction. The parametersq, e, andd describe the time
scales of the three variables. The variablew is the fastest
variable, and can be eliminated adiabatically, yielding

u̇5
1

e S q2u

q1u
~ f v1f!1u2u2D ,

~3!
v̇5u2v.

Insights into the dynamical properties of the system of
differential equations~3! can be obtained by plotting the
nullclines u̇50 andv̇50. The nullclines are given by

v~u!5u,
~4!

v~u!5
1

f S q1u

q2u
~u22u!2f D .

The nullclines in Eq.~4! are plotted in Fig. 2 forf 51
and various values off. The nullclineu̇50 has an S-type
shape. The branch with the positive slope is unstable. For

FIG. 1. The nullclines of Eq.~1! are shown forb50, a50.5, andd51. The
intersection (S) of the nullclines atv50, w50 represents a stable node.
The arrows indicate the course of a large excursion if the threshold of
excitation (P) is crossed.
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0,f,4q, the two nullclines intersect in this unstable re-
gime, and the BZ reaction is oscillatory. Forf.4q, the
intersection is on a stable branch of the nullclineu̇50 and
represents a stable fixed point. In this regime, the system is
excitable. Small perturbations~e.g., noise! to f shift the
nullcline u̇50 up and down generating at occasions an un-
stable fixed point and thus the onset of the oscillatory reac-
tion. Operating the BZ reaction at a relatively large value of
f, the excitability is small~i.e., the threshold for excitation is
large!.

Based on the qualitative features of excitable systems,
one can construct a simplified version of excitable dynamics
modeled by a three-state system. The three states are the
quiescent stateQ ~corresponding to the stable fixed pointS!,
the excited stateE ~corresponding in Fig. 1 to the escape
from P to T1 , and the recovery stateR ~corresponding to the
state of slowly moving back toS!. The state of the system is
determined by an input variablev(t). Whenever the variable
v(t) crosses a threshold~corresponding toP in Fig. 1!, the
system switches from the quiescent to the excited state. After
some recovery time, the system eventually returns back into
the quiescent state. Such a simplified version of excitable
dynamics becomes useful for modeling excitable media,
since it greatly reduces computational demands in compari-
son to media based on the continuous models above.

Finally, in this section we discuss the role of noise in
excitable systems. In the presence of zero mean Gaussian
noisej(t), the Fitzhugh–Nagumo model can be written as

e v̇5v~a2v !~v21!2w1j~ t !,
~5!

ẇ5v2dw2b.

Most of the time the noise perturbs the system so weakly that
it fluctuates close to the stable fixed pointS. Occasionally,
however, the excitability threshold is crossed and the system
runs through a noise-induced large excursion. The rates at
which the threshold is crossed can be obtained by applying
standard methods in rate theory~for a review of reaction rate
theory, see Ref. 22!. These spontaneous events have been
observed in studies of neurons, emphasizing the role of fluc-
tuations for realistic neural modeling. Stochastic resonance
in the noise-driven Fitzhugh–Nagumo model and in other
zero-dimensional excitable systems, in general, has been
studied by Longtin,23 Wiesenfeldet al.,24 and Collins and

collaborators.25 The external noise has been shown to en-
hance periodic and aperiodic signals~aperiodic stochastic
resonance26! in a resonant fashion.

III. SUBEXCITABLE MEDIA

In this section we consider spatially extended excitable
systems, also known as excitable media. At each point in
space, the system is excitable as described in the previous
section. Due to the spatial coupling, excitation does not re-
main localized, but can spread through the medium, giving
rise to spatiotemporal patterns of excitation. The generic ex-
citation patterns are target waves~single circular wave
fronts! and rotating spiral waves~see, e.g., Ref. 27!.

Often, excitable media are described by reaction-
diffusion equations. In this paper, we consider two-
dimensional media with the spatial directionsx andy. In the
case of the Fitzhugh–Nagumo model~1! the membrane po-
tential v and the inhibitor variablew are considered as two-
dimensional scalar fieldsv(x,y,t) and w(x,y,t). Locally
they obey Eq.~1!, but there is also diffusional spread:

]v
]t

5v~a2v !~v21!2w1Dv ¹2v,

~6!
]w

]t
5v2dw2b1Dw ¹2w.

These equations are physiologically only meaningful along
one space dimension, describing the propagation of action
potentials along axons of neurons. In case of the BZ reaction
and its model, Eqs.~2!, various chemicals develop concen-
tration gradients and become scalar fields when the reaction
is not stirred. Here, the following reaction diffusion equa-
tions apply:15

]u

]t
5

1

e
~qw2uw1u2u2!1Du ¹2u,

]w

]t
5

1

d
~f2qw2uw1 f v !1Dw ¹2w, ~7!

]v
]t

5u2v.

Noise enters the system through the intensity of the in-
cident light on the reaction cell.15,21 The light intensity con-
trols the excitability threshold via the photochemical produc-
tion of the inhibitor Br2. This allows one to tune the medium
into the subthreshold regime, i.e., a regime where the thresh-
old is sufficiently large that a chemical wave cannot be main-
tained. This is thesubexcitable regime.

A discrete version of an excitable medium can be mod-
eled by using the three-state model mentioned in the previ-
ous section.12,13 We consider a square array of excitable
three-state elementsei j at the positionsxi j 5 iax̂1 jaŷ with
the unit vectorsx̂ and ŷ in x andy directions, respectively,
and the lattice spacinga. The firing threshold for each ele-
ment is denoted byb, and the input quantity that controls the
state of the element is denoted byv i j . The variablesv i j are
each thermally coupled to a heat bath and therefore undergo
fluctuations, described by the Langevin equations,

FIG. 2. The nullclines of Eq.~4! are shown atf50 ~a!, f50.08 ~b!, and
f50.10 ~c! at f 51 andq50.02. The intersection of the nullclines in~a!
represents an unstable fixed point indicating an oscillatory BZ reaction. In
~b! and ~c!, the intersection represents a stable fixed point and therefore an
excitable system.
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v̇ i j 52gv i j 1Agj i j ~ t !, ~8!

with Gaussian white noise,

^j i j ~ t !jkl~ t8!&52s2d~ t2t8!d~ i j !,~kl ! ,
~9!

^j i j ~ t !&50.

The constantg describes the rate at which fluctuations
decay ands2 denotes the spatially homogeneous variance of
the fluctuations. Integration of~8! over the finite time stepDt
yields the map

xi j ~ t1Dt !5xi j ~ t !exp~2g Dt !1Gi j , ~10!

where Gi j are Gaussian distributed random numbers with
variances2@12exp(22g Dt)#. When the elements (kl) fire,
the emittedd spikes are added to the input of the elements
( i j ) with weights depending on the spatial distancer ( i j )(kl)

between the elements (kl) and (i j ). Integration over time
yields the total contribution of the firing elements (kl) to the
input of element (i j ):

Dxi j ~ t1Dt !5K(
kl

expS 2l
r ~ i j !,~kl !

2

a2 D , ~11!

where l describes the interaction range andK a coupling
constant. Each element undergoes a recovery period after
firing. The proper scaling of this model is given byxi j

→xi j /b, t→gt, s2→s2/b2, g→g Dt, K→K/b. The value
of the threshold is normalized to unity.

It has been demonstrated12 that this model shows for
large couplingK ~in the absence of noise! the typical exci-
tation patterns of excitable media, i.e., rotating spiral waves
or target waves, usually described in terms of reaction-
diffusion equations with two species.27 In the presence of
noise, the typical excitation patterns can still be observed,
but they exhibit rough wave fronts and—depending on the
noise level—more serious imperfections such as the breakup
of wave fronts and collisions with noise-nucleated waves.
The overall picture in the large coupling regime is the coex-
istence of multiple finite-size cells with coherent patterns.

For weak couplingK, however, different phenomena
can be observed. To maintain a firing pattern, the couplingK
has to exceed a critical valueK0 which is approximated for
small l by28

K0~g!'Al

p

1

exp~2l!1exp~g!(n52
` exp~2ln22ng!

.

~12!

In thesubexcitable regime, whereK,K0 , waves cannot
be maintained in the absence of fluctuations.

IV. NOISE SUSTAINED SPATIOTEMPORAL
PATTERNS IN SUBEXCITABLE MEDIA

As discussed in the previous section, spatiotemporal pat-
terns cannot persist in subexcitable media in the absence of
fluctuations. In the presence of a small amount of noise,
however, the excitation threshold will be surmounted along
sufficient fractions of the wave front to allow an excitation
wave to propagate. The randomness in the selection of ele-

ments that are carrying the wave creates a certain roughness
in the wave front. When the variance of the noise becomes
larger, more pronounced imperfections can occur, such as
breakup and eventual fracturing of the wave front. Such an
effect has been demonstrated by numerical simulation of the
above discrete subexcitable medium. The spatiotemporal be-
havior has been simulated for a coupling constant slightly
below the critical couplingK0 . Initially, a strip of elements
has been excited and a refractory layer has been added to
avoid propagation of excitation to the left~see Fig. 3!.

In Figs. 4, we show a series of snapshots of firing activ-
ity in the absence of noise as times elapses. These images
show that the excitation wave initially propagates, but then
shrinks and eventually disappears.

In Figs. 5, three time-lapse snapshots of the array are
shown for the variance of the noise,s250.08. The wave
now no longer shrinks, but evolves into a rotating spiral
wave ~only the core is shown!. In contrast to the conven-

FIG. 3. The square denotes a 201* 201 array of excitable three-state ele-
ments. The initial preparation is a strip of excited elements, and attached to
the left a strip of elements in the recovery state. The strip of elements in the
recovery state is placed to avoid the propagation of excitation to the left.
Additional propagation to the left would interfere with the rotating spiral
wave that develops from propagation to the right. In systems with noise, this
artificial symmetry breaking is not necessary since noise-induced breakup of
wave fronts creates open ends that subsequently curl up to rotating spiral
waves in the same way as the initial preparation above.

FIG. 4. The formation of a spiral wave in an array of 400* 400 threshold
elements out of an initially excited column of elements forK50.151,
g50.5, andl50.1. A layer of refractory elements was attached to the left
side of the initially excited column. The frames from the left to the right
represent snapshots of firing patterns of threshold elements at positions (i , j )
with i , j 51,...,400 as time evolves. The dots denote firing elements. This
sequence of snapshots has been obtained in the absence of noise.
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tional superthreshold spiral waves, the wave front is fuzzy
and the core migrates randomly through the array.

In Fig. 6, the variance of the noise is increased tos2

50.13. The evolving rotating spiral wave now has a larger
curvature and more of the wave is now visible in an array of
the same size. The breakup of wave fronts and fracture of the
waves at high noise levels is demonstrated in Fig. 7 fors2

50.15.
The snapshots in Figs. 4–7 demonstrate the ambiguous

function of noise in subexcitable media. At low noise levels
~in comparison to the excitation threshold!, noise aids the
propagation of wave fronts and the formation of rotating
spiral waves. The noise also critically controls the features of
the spiral waves~Ref. 12!. At higher noise levels, the wave
fragments develop turbulent-like behavior~spiral turbu-
lance!.

In a recent experiment, traveling subexcitable waves
have been observed in a photosensitive BZ reaction.15 As
described in Sec. II, the light intensity controls the chemical
production of Br2, that controls the excitation threshold of
the BZ reaction. The experiments were carried out with thin
layers of silica gel in which ruthenium~II !-bipyridyl, a light
sensitive catalyst for the BZ reaction, was immobilized.29

The gel was continually bathed with fresh catalyst-free BZ
reagents in a Plexiglas reactor in order to maintain the sys-
tem in an unvarying nonequilibrium state. Gels were exposed
from below to spatially homogeneous light transmitted from
a video projector through a 460 nm bandpass filter. The light
intensity was adjusted to an appropriate reference level for
maintaining the system slightly below the excitability thresh-
old. The illumination field consisted of an array of square
cells, with the intensity in each adjusted at equal time inter-
vals to random values above or below the reference level.
The random intensities were Gaussian distributed with the
mean amplitude centered at the reference intensity.

The effects of noise on wave propagation are shown in
Figs. 8, where superimposed snapshots depict the evolution

of a single wave segment at equal time intervals. In Fig. 8~a!,
we show superimposed snapshots of the wave in the absence
of noise. The noise level~the standard deviation! is increased
from panel~a! to ~d!. In ~d! the noise is at the maximum
level possible, which is determined by the reference inten-
sity. A typical noise pattern is shown in Fig. 8~e!.

The area of imposed noise in the illumination field con-
sists of an array of square cells with the intensityI in each
adjusted at equal time intervals to random values according

to I 5I 0@11( 1
2)G(x,s)# with uxu,2s, whereI 0 is the ref-

erence intensity andG(x,s) is a Gaussian distribution with a
standard deviation ofs. The noise level, given by the value
of s, was varied between 0 and 1.0. The intensity was varied

FIG. 7. The same as in Fig. 4, but with variance of the noises250.15.
FIG. 5. The same as in Fig. 4, but with variance of the noises250.08.

FIG. 6. The same as in Fig. 4, but with variance of the noises250.13.

FIG. 8. Images of wave segments traveling through a BZ medium, per-
turbed by~a! 0, ~b! 0.3, ~c! 0.6, and~d! 1.0 of the maximum noise level
permitted by experimental conditions, and an example of the imposed noise
array~e!, with an adjacent excitable region~black! for initiating waves and
the surrounding boundary~gray! at the subexcitable reference intensity. The
superimposed snapshots show stroboscopically the behavior at 20.1 s inter-
vals; the noise array was updated at 6.7 s intervals.
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on an eight-bit gray scale between 0 and 255. The cell size in
these images was 434 pixels (0.33 mm30.33 mm). Images
were collected during a 50 ms interval between successive
updatings of the imposed noise patterns. The composition of
the BZ reaction was 0.27 M NaBrO3, 0.05 M malonic acid,
0.15 M bromomalonic acid, and 0.15 M H2SO4. The silica
gel medium (0.3 mm320 mm330 mm) was prepared by
acidifying a solution of 10%~w/w! Na2SiO3 and 0.5 mM
Ru(bpy)21 with H2SO4.

Waves were generated in the adjacent region, with a
lower light intensity~and higher excitability!, at the left-hand
side. In the absence of noise, waves entering the subexcitable
region became shrinking wave segments@Fig. 8~a!#. Below
the excitability threshold, free wave ends simply recede
rather than form the rotating spiral waves typically observed
in excitable media.12,13 Propagation failure occurs when the
receding wave disappears, as shown in the final frame of the
overlaid images. A slight enhancement of wave propagation
is observed with low-level noise@Fig. 8~b!#, in which the
propagation failure occurs about one frame later. At higher
noise levels@Fig. 8~c!#, the wave segment no longer shrinks
but propagates through the entire medium. At still higher
levels of noise@Fig. 8~d!#, fragmentation of the waves oc-
curs.

The computer simulations of the discrete three-state
model show qualitatively similar behavior. The reference
states in both the experiment and the simulation are slightly
below the excitability threshold. The three-state model at the
value of the coupling used here generates noise-sustained
spiral waves, while curling of the free ends of the waves is
not observed in the experiments. Curling of the wave ends is
also suppressed for a smaller coupling constantK in the
numerical simulations.

V. THERMAL WAVES

Both the experiments with the BZ reaction and the simu-
lation of the three-state model described in the previous sec-
tion were carried out at an operational point, where the sys-
tems were below, but very close to, the threshold for
sustained wave propagation.

In this section, we consider the three-state model in situ-
ations when the coupling is substantially below the threshold
for pattern formation, i.e.,K,K0 . An initial preparation
consisting of a strip of excited elements does not give rise to
a large-scale wave sustained by the noise, but rather it frag-
ments and disappears. After the initial excited strip has de-
cayed, elements in the array fire in a random and unorga-
nized fashion for a transient time. At later times, regardless
of the initial conditions, a remarkable reorganization of the
firing events sets in across the array, which manifests itself
by the formation of clusters of firing elements. A sequence of
snapshots is shown in Fig. 9 forg51 and K50.07,K0

'0.09. In Fig. 9~b!, one can observe the spontaneous forma-
tion of a curved wave front, which resembles the core of a
spiral wave. In the subsequent snapshots, we see the propa-
gation of the front and its eventual disappearance@Fig. 9~d!#.
These waves have been coinedthermal waves,28 since they
are sustained only by a thermal environment. They occur

when the dissipation rateg is small, or, equivalently, when
the local memory is long.

To quantitatively analyze the spatiotemporal properties
of thermal waves, we introduce a novel method based on the
analysis of coherent space–time clusters.28 In the first step,
we stack a temporal sequence ofNt snapshots of the me-
dium, taken at timestn5n Dt to obtain a large space–time
cube, which carries all the spatiotemporal information within
the time intervalNt Dt. In the second step, we draw small
cubes around each firing element with spatial side lengthsds

and temporal side lengthsdt . Overlapping small cubes inthe
time-forward directionform objects that we have termedco-
herent space–time clusters. If two thermal waves collide to
form one new wave, the coherent cluster corresponding to
one of the incoming waves is terminated at the collision. The
sizes of the coherent clusters, i.e., the number of firing ele-
ments whose small cubes build a cluster, is characterized by
the cluster-size distribution functionp(s,t). The time depen-
dence indicates that the distribution can change with time
before a steady-state distribution is approached. The particu-
lar choice of the spatial and temporal side lengthsds anddt ,
respectively, allows one to analyze the patterns on adjustable
scales. Here, we have chosen the spatial side lengthds such
that the cubes of neighboring firing elements in space are
overlapping, e.g.,ds51.3a. The temporal side length is cho-
sen such that only the cubes of those firing elements overlap
whose firingis likely to be causally related, e.g.,dt51 ~the
normalized time step!.

In Fig. 10, the cluster-size distributions are shown for
K50.07, g50.05, and s250.15. For small times,t
510,...,60~Nt550, filled squares!, the cluster-size distribu-
tion decays exponentially with increasing cluster sizes, indi-
cating statistical independence of firing events. At later times
~empty squares!, regardless of the initial conditions, a re-
markable reorganization takes place, which manifests itself
by the formation of large clusters and a cluster-size distribu-
tion that scales like a power law, i.e.,p(s)}s2a.

The exponenta of the cluster-size distribution is almost
independent of the variance of the noise within a wide range.
The observed variations are within the accuracy of the simu-
lations. At a finite value of the dissipation rateg, there is a
critical noise strengthsc

2(g), below which neither thermal

FIG. 9. Snapshots of evolving patterns are shown forK50.07, s250.15,
g50.05. The snapshots have been taken after a transient time of about 1000
time steps with 8 time steps between each consecutive snapshot. Time in-
creases from~a! to ~d!. The array consists of 1003100 elements.
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patterns nor power-law scaling of the cluster sizes can be
observed. Furthermore, the power-law scaling of the cluster
size distribution is corrupted at large noise by an exponential
cutoff, where the cutoff size is smaller than the system size.
With a decreasing dissipation rate (g→0), however, the
critical noise strengthsc

2(g) approaches zero and the power
law is limited only by the finite system size~see Fig. 11!. For
decreasingg, the exponenta approachesa052 from above.

VI. THERMAL WAVES AND CALCIUM WAVES IN
CULTURED NETWORKS OF HIPPOCAMPAL
ASTROCYTES

An expanded view of astrocyte physiology includes a
role in the maintenance of neuronal microenvironments, but
also implicates the astrocyte syncytium in long distance sig-
naling based on propagating intercellular calcium
waves.30–35 Calcium waves have been studied in hippocam-
pal slice preparations and cultures of astrocytes.36–38

The main function of astrocytes in brain tissue is to ab-
sorb neurotransmitter~kainate! out of the synaptic cleft after

neural activity. As kainate binds to the astrocyte, Na1 enters
the cell. The Na1 imbalance in the underlying cytoplasm
builds over a period of 100–200 s, eventually triggering a
reversal of the Na1/Ca21 exchanger. Reversal of the ex-
changer favors exchange of extracellular Ca21 for intracellu-
lar Na1. The influx of Ca21, indicating the state of chemical
imbalance, can be visualized using fluorescent dyes. The
state of local imbalance can propagate wave-like along the
surface of the astrocyte~calcium waves!. Fluorescent imag-
ing reveals space- and time-resolved information on propa-
gating calcium waves.

In Ref. 39, cultured networks of hippocampal rat brain
astrocytes~astrocyte syncytium! are exposed to various con-
centrations of kainate~to pretend neural activity!. After an
initial time interval, spontaneous formation of calcium waves
can be observed under the microscope. The wave fronts are
fuzzy and their shapes are fairly irregular. The waves start
spontaneously at apparently random sites, indicating that
their formation is similar to the noise-sustained thermal
waves discussed in the previous section. Another feature
similar to thermal waves is their spontaneous decay and their
distribution of lifetimes. In the upper panel of Fig. 12, we
show a sequence of time-lapse snapshots of the calcium ac-
tivity of astrocyte syncitium with 10 mM kainate. Subse-
quent images taken with a CCD camera have been subtracted
from each other and coded in gray scale. High calcium ac-
tivity is denoted by a darker gray. We observe mostly local
calcium activity with very little spreading of the activity.

At 50 mM kainate~see the lower panel of Fig. 12!, we
have selected a time-lapse sequence of frames depicting the
core of a spiral wave with a significant spread before the
wave disappears. In Fig. 13, we show a comparison of time-
lapse snapshots of the calcium activity and snapshots of
simulations of the three-state model~active sites are denoted
by black dots!.40 Darker gray in the experimental figures
indicates a higher calcium activity. The similarity is striking.
In both sequences, we can observe the formation of a spiral
core, its rotation and spread, and its eventual decay.

To apply the coherent cluster analysis to the calcium
waves, we first have to apply a binary filter to identify cal-
cium activity. The images furthermore are coarse grained to
1003100 cells, where each cell represents its average cal-
cium activity. The binary filtered data have been analyzed39

with the coherent cluster method. The cluster-size distribu-
tions clearly show, much like the numerical data, a power-
law decay~see Fig. 14!. The exponent is—consistent with
those of the models—slightly larger than 2.

The agreement of the qualitative features of the calcium
waves and the thermal waves observed in the simulations
permits us to conclude that the calcium waves are actually
sustained by the fluctuations in the cell network.

VII. DISCUSSION AND CONCLUSIONS

We have demonstrated that noise can enhance spa-
tiotemporal patterns in subexcitable media. This is a gener-
alization of the notation of stochastic resonance to spatially
extended systems. As SR in simple bistable systems requires
a subthreshold signal, spatiotemporal stochastic resonance

FIG. 10. Cluster size distributions are shown forK50.07, s250.15, and
g50.05 during the initial interval of the first 50 time steps~filled squares!
and a later time interval~between 800 and 850 time steps!, where the system
has reached its steady state~empty squares!. The lines through the symbols
~actual simulation results! represent an exponential fitp(s)}exp(2s/s0) for
the initial-time interval and a power law fitp(s)}s2a for the steady-state
interval. The array used for the calculations consists of 2003200 elements.

FIG. 11. Normalized cluster size distributions are shown for several dissi-
pation ratesg at constant variance of the noises250.2. For g50.005
~crosses! and 0.05~circles!, we have fitted a power law through the points at
small cluster sizes. The deviations from this line at large cluster sizes~cut-
off! is visible atg50.05. The line through the points forg50.1 ~squares!
represents an exponential fit. The array used for the calculations consists of
2003200 elements.
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~STSR! requires that the system is below the threshold of
sustained pattern formation. An appropriate dose of noise
allows the formation of patterns and the propagation of
waves. Slightly below the threshold, noise can maintain
large-scale patterns and determine their geometric features,

as, for example, the curvature of spiral waves. Well below
the threshold, noise maintains thermal waves, i.e., waves that
appear spontaneously, spread for a statistical lifetime and
then spontaneously disappear or collide with other waves.
Locally, thermal waves show well-defined curved wave
fronts, but on a larger scale they are turbulent.

Noise sustained waves have been observed in the photo-
sensitive BZ reaction15 and in cultured networks of hippoc-
ampal astrocytes~calcium waves!. The experiments with the
photosensitive BZ reaction have demonstrated that noise can
support the propagation of large-scale spatiotemporal pat-
terns in subexcitable media, close to but below the threshold
of excitation. A possible application of the subexcitable pho-
tosensitive BZ reaction is a novel design for detectors of
moving objects when the image of the object is strongly
obscured by environmental noise. Using some features of
stochastic resonance in threshold-controlled systems,40 it has
been demonstrated41 for a computer model of such a detector
that the effective detection of images does not require more
than a signal-over-noise ratio of about unity. Calcium waves
in cultured networks of hippocampal astrocytes show many
features~qualitative and quantitative! of thermal waves, i.e.,
noise maintained locally coherent but globally turbulent
wave patterns. Especially interesting is the spatiotemporal
organization of wave fragments reflected by the power-law
distributions of the cluster sizes~including spatial extent and
lifetime!. Power-law distributed fragments indicate statistical
self-similarity across the scales. The occurrence of larger
clusters with a higher probability then just by chance~would
yield an exponential distribution! indicates the possibility of
statistically facilitated longe-range signaling between astro-
cytes. More concrete physiological meaning~in the context
of brain pathologies! is currently investigated by the authors.
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