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Scale and Unit Specification
Influences in Harvest Scheduling with
Maximum Area Restrictions

Alan T. Murray and Andrés Weintraub

ABSTRACT.  This article examines alternative approaches for representing a forest region to be
scheduled for harvesting, where the primary concerns are maximizing return and imposing a maximum
contiguous area of disturbance restriction. One approach assumes that any two adjacent management
units exceed a regulated maximum area of disturbance. An alternative approach recognizes that
management units may be substantially smaller than the maximum area restriction, so simultaneously
disturbing two neighboring units does not necessarily represent a maximum area violation. The
distinguishing feature of these two approaches is the way in which a forest is spatially represented.
A single time period, 351 management unit harvest scheduling problem is utilized to investigate
whether analysis results are subject to manipulation when forest representation, and associated
modeling, is interpreted in different ways. Empirical results highlight significant economic and spatial
variation in harvest schedules when maximum area restrictions are imposed using alternative
approaches. For. Sci. 48(4):779–789.
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problem.
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HARVEST SCHEDULING continues to be an important
component in the overall forest management pro-
cess. It is at this level of analysis that public and

private concerns typically collide. On one hand, the public
supports sustaining our natural resources. That is, forests and
other natural resources are the sources of inputs necessary in
our everyday lives (e.g., timber, oil, coal, etc.), but they must
be accessible for multiple uses, and they need to be in a
healthy state. On the other hand, private companies are driven
toward maximizing economic productivity when using natu-
ral resources. This is often viewed as being counter to either
preservation or sustainability of natural resources. However,
the continued viability of our natural resources is in the best
interests of both private and public constituents. Harvest
scheduling models have come to be an important part of
forest planning, because they may be used to balance produc-
tivity and preservation considerations.

Harvest scheduling involves operational decisions associ-
ated with where forestry activities will occur and the extent
of their impact (Thompson et al. 1973, Kirby et al. 1986,
Lockwood and Moore 1993, Snyder and ReVelle 1997).
While the driving factor in commercial harvest scheduling is
maximizing the return in treating a region, careful environ-
mental management of such activity is of major importance.
Specific constraining conditions have become the defining
characteristic of harvest scheduling. Some of these condi-
tions involve spatial limitations on harvest activity and are
usually referred to as maximum area restrictions. As such,
harvest activity in a contiguous area is restricted from ex-
ceeding a specified bound. Limiting spatial disturbance has
become standard practice in the management of public and
private forest lands (Jones et al. 1991, Barrett et al. 1998,
American Forest and Paper Association 2000). Further, spa-
tially constrained harvest scheduling models are regularly
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780 Forest Science 48(4) 2002

used to construct logging and management plans at local and
regional scales. This article is interested in the ways in which
maximum area restrictions may be imposed in harvest sched-
uling modeling and the compatibility of alternative approaches
for modeling this planning problem.

There are two basic modeling approaches for imposing
maximum area restrictions in harvest scheduling (Murray
1999, Barrett and Gilless 2000). The classic approach is to
assume that any two adjacent management units exceed a
regulated maximum area of disturbance (Thompson et al.
1973). As an example, the Sustainable Forestry Initiative
stipulates that average clearcuts should not exceed 120 ac, or
48.56 ha (American Forest and Paper Association 2000,
Boston and Bettinger 2001). If our management units are
greater than 25 and less than 48.56 ha in size, then it would
not be possible to simultaneously harvest two neighboring
units without violating the 48.56 ha maximum. Murray
(1999) terms the imposition of this condition for harvest
scheduling as the unit restriction model (URM). The key to
the URM being applicable is that management units are
defined appropriately (e.g., units are 25–48 ha in size if the
maximum area restriction is 48.56 ha). This enables adja-
cency constraints to be structured and imposed in either an
exact (Thompson et al. 1973, Kirby et al. 1986, Murray and
Church 1996, Snyder and ReVelle 1996,1997) or heuristic
solution approach (O’Hara et al. 1989, Daust and Nelson
1993, Murray and Church 1995, Hoganson and Borges 1998).
The second approach categorized in Murray (1999) is where
management units are substantially smaller than the maxi-
mum area restriction, so that simultaneously disturbing two
neighboring units does not necessarily represent a spatial
violation (Hokans 1983). Relating this to our previous ex-
ample, let the management units now range between 10–25
ha in size. In this case, there could potentially be up to four
neighboring units simultaneously treated. Murray (1999)
terms this approach to harvest scheduling as the area restric-
tion model (ARM). Structuring and imposing area restric-
tions of this sort has been accomplished using heuristic
(Hokans 1983, Lockwood and Moore 1993, Barrett et al.
1998, Barrett and Gilless 2000, Clark et al. 2000, Richards
and Gunn 2000, Boston and Bettinger 2001) and exact
solution approaches (Barrett and Gilless 2000, McDill and
Braze 2000).

The existence of alternative approaches for imposing
spatial restrictions in harvest scheduling raises numerous
practical and theoretical issues. The purpose of this article is
to examine these issues. Important considerations are spatial
scale and unit specification implicitly distinguishing the
URM and ARM. Another issue is the mathematical com-
plexities related to solving either the URM or ARM. The
URM has seen the most widespread use and application over
the past 30 yr, but with greater access to more spatially
detailed information this has necessitated a change. Here we
wish to compare and contrast the URM and the ARM using
a simplified forest application. This will enable us to assess
the URM and ARM in relation to the maximum area restric-
tion. The next section provides the background context of this
research in forest modeling and discusses variation in spatial

representation. This is followed by the structuring of the two
modeling approaches. The study design using a forest in
northern California is then detailed. Application results are
presented that highlight differences between the URM and
ARM approaches. The article ends with a discussion and
conclusions.

Background
Harvest scheduling has long been recognized as an impor-

tant component of the forest planning process. Broadly
defined interest in harvest scheduling includes work on
hierarchical or multiscale modeling attempting to integrate
strategic and operational (harvest scheduling) level plans
(Hof and Baltic 1991, Kent et al. 1991, Nelson et al. 1991,
Weintraub and Cholaky 1991, Jamnick and Walters 1993,
Church et al. 2000). This work has focused on reconciling
plans across forests and regions in order to ensure that
established targets and commitments are feasible on the
ground. For example, a strategic plan may identify total land
dedicated to different uses and specific quantities of different
timber types to be harvested. At this level of planning,
however, there is typically no attention paid to the exact
geographic location where these activities will occur (Kent et
al. 1991, Jamnick and Walters 1993). Alternatively, the
operational level of planning focuses on where and when
treatment, harvesting, preservation, etc., are to be prescribed
or scheduled. The analysis framework responsible for linking
these different levels is known as a planning hierarchy, where
different decisions and issues are addressed at different
levels, both spatial and organizational, of forest management
processes (Hof 1993, Church et al. 2000). As such, hierarchi-
cal forest planning deals with varying spatial scales of analy-
sis (bio-regions, forests, watersheds, stands, etc.). The intent
of this area of research is to link decisions being made at the
different levels of planning.

Another way in which scale of analysis may vary is
through land aggregation or classification (Jamnick et al.
1990, Chong and Beck 1991, Daust and Nelson 1993, Murray
1999). Consider the 351 units shown in Figure 1. Assume for
the moment that inventory information, vegetation structure,
timber valuation, etc., is known for each of these units and
maintained in a digital format. If we further stipulate that no
finer level of spatial information exists for this region, this
means that this information represents the most spatially
detailed information that is available for analysis, provided
that all necessary attributes are included. Given this delinea-
tion of spatial units, any aggregation of these units that
produces less spatial units (<351) represents a change in
scale. So, we are still looking at the same region, but have
changed the number of units representing the region through
the combination of one or more units, presumably with their
neighboring units. This is the scale of analysis issue of most
interest in this paper. There has in fact been forest research
focused on the impacts and influences of changing regional
scale, particularly with respect to harvest scheduling. Jamnick
et al. (1990) found significant economic impacts when scale
was altered by land unit aggregation in harvest scheduling
analysis using linear programming. However, spatial restric-
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Figure 1.  Northern California forest.

tions were not evaluated. Related to this, Daust and Nelson
(1993) examined the impacts of adjacency restrictions on
harvested timber volume for different scales of analysis
associated with unit aggregation.

There are currently at least two general approaches for
determining area restriction-based harvest schedules using
mathematical modeling. The fundamental difference distin-
guishing these two approaches is unit aggregation oriented
scale of analysis. The URM has been the more commonly
utilized approach in harvest scheduling, since its basic intro-
duction by Thompson et al. (1973), and continues to be the
focus of research aimed at improving solution capabilities
(Weintraub et al. 2000). Alternatively, the ARM, first dis-
cussed in Hokans (1983), has been less relied on for harvest
scheduling because of its inherent computational complexity
(Murray 1999). Compared to the URM, there has been little
research and development thus far on effective techniques for
solving the ARM. Given these two approaches for imposing
area restrictions in harvest scheduling, a number of important
questions may be asked. Are there differences between the
URM and ARM? What is the nature of these differences, if
they exist? Both models have the same basic goals, but the
distinguishing characteristic is the issue of scale and spatial
unit representation. No previous forest research has attempted
to explore this harvest scheduling issue, yet answers to the
above questions are essential for understanding the appropri-
ateness of models imposing maximum area restrictions.

Further highlighting the importance of this proposed com-
parison is geographic work on scale and unit specification.
Aggregation based scale of analysis is a component of the
modifiable areal unit problem (MAUP), a discussion of
which may be found in Openshaw and Taylor (1981). In
geographical modeling and analysis, one is typically faced
with choosing an appropriate spatial unit of representation,
given a defined geographic study region. This is a scale of
analysis issue dependent on whether the planning/manage-
ment focus requires fine or coarse spatial resolution. For
example, suppose that we are examining a national forest and
have detailed information for the ranger districts within this
national forest. Is this suitable for our analysis objectives and
intent or do we need information at a sub-ranger district
level? We are still examining the national forest, but our
spatial units used to report forest details may vary depending
upon our needs. This example is representative of aggrega-
tion based variation in scale, because the sub-ranger district
units (i.e., compartments) are combined to summarize the
ranger district to which they belong. A related issue is unit
specification. Given a particular scale of analysis, it is neces-
sary to decide how to delineate (or partition) the region being
considered. Are there naturally defined spatial units associ-
ated with a particular problem of interest? If not, then there is
flexibility in the choice of how to structure spatial units.
Forest stands are typically defined based upon vegetation,
timber characteristics, existing roads and streams, topogra-
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phy, and ownership (Barrett and Gilless 2000). Such units
may be too small for analysis and modeling purposes. It then
becomes necessary to aggregate (or block) them in order to
create larger spatial entities. While there may be some limits
on how units may be combined due to timber characteristics,
topography, etc., it is likely that there would be many differ-
ent ways aggregation could be accomplished. As an example
of unit specification variation, suppose that we need to
represent the region shown in Figure 1 using only 100 blocks,
rather than the 351 units currently depicted. If we further
require the reduced number of reported areas to be spatially
contiguous combinations of our original 351 units, then we
can consider numerous realizations of the 100 blocks that
could be produced, as detailed in Barrett (1997). The MAUP
reflects the ability to spatially define a given region, poten-
tially, an infinite number of ways, through varying scale or
block delineation.

Of most significance for harvest scheduling is that there
are recognized analytic consequences of the MAUP
(Openshaw and Taylor 1981, Fotheringham and Wong 1991).
In particular, Openshaw and Taylor (1981) note that common
statistical measures and spatial analytic models have been
shown to vary significantly merely by altering geographic
representation. What this means is that one may find a
correlation between two forest attributes at the ranger district
level, as an example, but when examining these attributes at
the sub-ranger district level, the correlation is not found. The
statistical test is the same and the variables have not changed.
The only change is in spatial representation. This is, of
course, problematic, because the validity of the analysis
becomes questionable and subject to manipulation. Evidence
of scale and/or unit specification effects in harvest schedul-
ing is reported in Jamnick et al. (1990) and Daust and Nelson
(1993), where economic and harvest flow rates, respectively,
were found to change when scale varied. Such findings are of
general concern given the relative ease with which a forest
analyst can alter spatial representation using commercial
geographical information system (GIS) software. If data
have been aggregated, we cannot easily establish confidence
in reported findings unless sensitivity analysis has been
carried out. Further, given the existence of alternative ap-
proaches for structuring and solving a harvest scheduling
problem with area restrictions (URM vs. ARM), potential
MAUP effects may not be readily evident.

Tobler (1989) discusses potential MAUP effects in spatial
analysis and gives further motivation for examining ARM
and URM differences. Suggested in Tobler (1989) is that if a
particular method of analysis is subject to manipulation
based on a change of geographical scale or unit specification,
then the method is inappropriate. Tobler (1989) issued a call
for frame independent spatial analysis approaches. Such
approaches would give consistent results irrespective of the
scale or unit definition relied on. This would effectively
eliminate MAUP issues. While the focus of discussion in
Tobler (1989) was directed at statistical analysis, there are
implications for harvest scheduling models. We have at least
two approaches for addressing harvest planning subject to
maximum area restrictions. Does either of these models

better reflect the notion of frame independence? If the answer
is yes, then one approach would likely be less susceptible to
MAUP effects. It is recognized in geographical research that
one must explicitly test for MAUP effects in order to under-
stand the behavior of a model (or models) with respect to
changes in scale or unit definition. If sensitivities are found,
then two choices exist for an analyst: (1) use the most
disaggregate information available, which is the typical re-
sponse to MAUP effects; or (2) look for a more appropriate
spatial model as suggested by Tobler (1989), if one exists. If
sensitivity is not found, then the approach is frame indepen-
dent as called for by Tobler (1989).

It is clear that MAUP effects and frame independence are
important to assess in spatial analysis, including harvest
scheduling. Based on previous forest research, harvest sched-
uling results are known to be sensitive to variation in scale
(Daust and Nelson 1993). However, this is only one compo-
nent of the MAUP. The other component is unit specification,
where a region may be delineated in different ways. This has
not been explored in harvest scheduling subject to maximum
area restrictions. With respect to frame independence, there
have been few attempts to date to compare alternative ap-
proaches for imposing maximum area restrictions in harvest
scheduling.

Structuring Maximum Contiguous Area
Restrictions

The major difference between the URM and ARM is how
maximum area restrictions are structured. In order to fully
appreciate this distinction, reviewing the mathematical speci-
fication of both models is helpful. Without loss of generality,
temporal considerations will be excluded from the present
discussion. If xi is our harvesting decision variable for spatial
unit i, then xi = 1 represents a decision to harvest unit i and  xi
= 0 indicates a decision to leave unit i untreated. We can also
define αi as the economic benefit of harvesting unit i. Note
also that we could readily view αi as a measure of environ-
mental benefit. With this notation, the typical objective of a
harvest scheduling model is:

Maximize Z xi i
i

 = ∑α (1)

Given this objective along with the binary decision vari-
ables (xi = {0.1}), the major constraining condition of interest
is the maximum disturbed area limitation. If we assume that
a URM representation is appropriate, then a possible con-
straint would be of the following form (see Murray and
Church 1996):

x x i j Ni j i+ ≤ ∀ ∈1 , (2)

where Ni = set of units adjacent to unit i.
The constraint structured in (2) will prohibit simultaneous

treatment in two adjacent units. Of course the assumption in
the URM is that the combined area of units i and j exceeds the
maximum allowable contiguous area of disturbance.

As mentioned previously, an alternative interpretation
of this constraining condition in harvest scheduling is
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where the spatial units are considerably smaller than the
maximum area restriction. Because spatial units are smaller,
two or more neighboring units may not violate the maxi-
mum allowable contiguous area of disturbance (Hokans
1983). In this case, the ARM would be required for harvest
scheduling. A linear constraint for imposing maximum
area restrictions in the ARM was suggested in Barrett and
Gilless (2000), using subgraph adjacency, and McDill and
Braze (2000), based on enumerating area violations. This
constraint is structured as follows:

x C kj
j C

k

k∈
∑ ≤ − ∀1

(3)

where Ck = set of units representing a maximum contiguous
area violation.

So, the ARM is comprised of objective (1) subject to
constraint (3) and integer restrictions on the decision vari-
ables. The use of this constraint form in the ARM requires one
to devise an approach for identifying all potential violations
of the maximum contiguous area restriction. Effectively it
necessitates an enumeration scheme, but the spatial nature of
the restriction is such that total enumeration is avoided. There
may, however, be circumstances where the computational
complexity is too great, and identifying the necessary con-
straints would not be feasible. Nevertheless, constraint (3)
provides an approach for mathematically structuring the
ARM.

It is important to note at this point that extensions to the
URM and ARM are possible. Most harvest scheduling appli-
cations do in fact build on these basic models. Potential
extensions include temporal considerations (multiple time
periods), upper/lower total harvest output in each time pe-
riod, bounds on economic return, road building and mainte-
nance associated with accessing harvest units, green-up con-
ditions, etc.

An appealing feature of the URM is its straightforward
problem formulation and structure. As a result, a range of
proven techniques exist for solving this model using exact
and heuristic approaches. In terms of exact approaches,
the clique constraints structured in (2), and higher ordered
cliques, have been utilized to successfully solve medium-
to-large problem instances on a personal computer (Murray
and Church 1996, Snyder and ReVelle 1996). The ability
to solve the URM by exact methods has arguably furthered
heuristic solution development for the URM as well. In
essence, heuristics have been developed for the URM
which have been demonstrated to perform exceptionally
well (Murray and Church 1995). Unlike the URM, solu-
tion technique development has only recently focused on
the ARM. Heuristics have been the major approach thus
far for solving the ARM (Hokans 1983, Lockwood and
Moore 1993, Barrett et al. 1998, Barrett and Gilless 2000,
Clark et al. 2000,Richards and Gunn 2000). Barrett and
Gilless (2000) and McDill and Braze (2000) proposed an
exact approach for solving the ARM. The effectiveness of
this formulation for general application remains to be
proven, however.

The existence of exact techniques for solving both the
URM and ARM optimally make it possible to carry out an
empirical assessment of these alternative approaches. This
will allow MAUP effects to be examined and frame indepen-
dence evaluated. In addition, it will be possible to investigate
relative computational considerations in the application and
analysis of the URM and ARM for harvest scheduling.

Comparison
In order to highlight the practical issues and operational

differences between the URM and ARM approaches, the
forest shown in Figure 1 will be utilized for application.
There are 351 management units in this forest, averaging 10
ha in size. Each unit may be harvested; the maximum allowed
disturbance for a contiguous area is 48.56 ha. We have
elected to isolate the two fundamental characteristics of this
particular harvest scheduling problem: economic return and
maximum contiguous area limitation. Only a single time
period with no additional constraints will be considered in
this assessment. The most important aspects of this compari-
son are objective function performance, spatial distribution
of harvests, and computational effort.

The analysis was carried out on a Pentium III/600 personal
computer. ArcView version 3.2 was utilized to manage and
manipulate the spatial representation of this forest. Using
ArcView, an Avenue script generates the associated URM
optimization problem file. The problem is then solved exter-
nally to ArcView using CPLEX version 6.53. A result file is
exported from CPLEX and read into ArcView for subsequent
display and analysis. For the ARM, the addition of a Fortran
program, coded by the first author, was needed to generate the
required area restrictions specified in constraint (3).

The ability to make a comparative assessment of the URM
and ARM is needed if we are to examine MAUP effects,
frame independence, and computational considerations. An
obvious basis for comparison is to examine objective func-
tion performance between the URM and ARM. After all, both
models have exactly the same objective function, but differ
only with respect to the underlying spatial representation. As
a start we first explore the application of the URM. One
approach is to apply the URM to this region using the
disaggregated spatial units shown in Figure 1. Of course the
average unit size is only 10 ha and the maximum area
restriction is 48.56 ha, so clearly the URM results in this case
are overly restricted. In fact, this gives a lower bound on the
return possible in harvesting this region. Another approach
using the URM would be to create larger planning units (or
blocks), so that any two neighboring blocks exceed the 48.56
ha maximum. Doing this provides the context in which
MAUP effects associated with scale and unit specification
may be evaluated.

Spatial unit aggregation (or blocking) approaches have
been and continue to be of interest in spatial analysis
(Goodchild 1979, Jamnick et al. 1990, Fotheringham and
Wong 1991, Murray and Gottsegen 1997). Recent research in
forestry may be found in Barrett (1997). We have chosen two
spatial aggregation approaches to include in this research.
The first is referred to as the Thiessen approach (equivalent
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to the S-mosaic in Goodchild 1979 and the Voronoi tessella-
tion method in Barrett 1997). This method combines spatial
units by first selecting at random a specified number of
“seed” units. The number of seeds selected is generally a
function of desired block size. All spatial units are then
combined with their closest seed unit to form a block. This
must be followed by an a posteriori analysis to ensure that
generated blocks do not violate maximum area restrictions.
The randomization component in selecting seed units means
that if a different set of seed units is utilized, an entirely
different set of aggregated units (or blocks) will result. Thus,
the Thiessen aggregation approach enables us to assess unit
specification effects associated with the MAUP, because
numerous different blockings (aggregations) may be created
for an individual forest region.

The second aggregation approach utilized is referred to as
Block Building, and is discussed in Goodchild (1979) and
Murray and Gottsegen (1997). The process involves the
following steps:

1. Consider all units unblocked

2. Randomly select a unit not yet merged in a block

3. Aggregate unmerged neighbors (randomly) to form a
block until the size limit is reached

4. If all units are not a member of a block (or merged), return
to step (2)

The Block Building aggregation scheme represents a
diffusion process where an initial unit is selected and then it
is merged with neighbors, neighbors of neighbors, etc., until
the maximum area of disturbance is reached. The randomiza-
tion element, as with the Thiessen approach, means that an
entirely different aggregation of units (or blocks) will be
produced if the process is run multiple times with different
seed units, so numerous different blockings (aggregations) of
the forest may be created by this process. Differing from the
Thiessen approach, however, the use of the Block Building
approach enables us to assess both scale and unit specifica-
tion issues associated with the MAUP in this analysis. The
reason for this is that a variable number of blocks is likely to
be created using this approach, whereas the Thiessen ap-
proach creates a specified number of blocks. This feature of
varying numbers of created blocks is similar to the strategies
proposed in Borges and Hoganson (1999).

In this research, 100 aggregation instances were generated
using each approach. The 100 Thiessen aggregation in-
stances were produced using a random seeding of 80 units.
This results in the creation of 80 blocks in the aggregation
process for each new forest representation. Of course there
will be 100 different representations of our forest region
using the Thiessen approach. Average block size for the
Thiessen instances is 44.5 ha. For the URM applied to these
forest representations, the implication is that two neighbor-
ing blocks violate the 48.56 ha maximum. For the Block
Building approach, 100 aggregation instances of the forest
region were also created. The number of resulting blocks
using the Block Building approach ranged between 113–127
for the 100 aggregation instances. Average block size for the

Block Building instances ranged between 28–31.6 ha, so that
two neighboring blocks would likely violate the 48.56 ha
maximum. Collectively there are 201 data realizations for the
forest region—the original 351 unit instance, the 100 aggre-
gation instances produced using the Thiessen approach, and
the 100 aggregation instances generated using the Block
Building approach.

Application Results
The URM was initially applied to the original 351 unit

problem instance shown in Figure 1. The resulting objective
function value was 5854.25, which required 0.26 seconds to
solve using CPLEX (591 iterations and zero branches). This
is the lower bound on the best possible harvest scheduling
objective function value. The spatial configuration of this
solution is displayed in Figure 2. The relatively small dis-
turbed areas (10 ha on average) are distributed throughout the
forest. If one is interested solely in limiting the spatial extent
of harvest activity, this is clearly an effective approach.
However, economic production considerations suggest that
harvesting such small areas would be prohibitive with respect
to fixed costs in this case.

The URM was next applied to each of the 100 Block
Building aggregation instances. These individual prob-
lems required less than 0.2 seconds to solve using CPLEX.
The objective value performance of the URM using the
100 Block Building instances ranged from a low of 6218.00
to a high of 7231.86, with an average value of 6700.99.
The best URM solution found for the 100 Block Building
instances, with an objective of 7231.86, is displayed in
Figure 3. In contrast to Figures 1 and 2, the spatial units
(blocks) in Figure 3 are substantially larger. The result of
these larger blocks is that harvest activity is more concen-
trated in local areas. Further, undisturbed areas are also
more concentrated in Figure 3.

The URM was then applied to the 100 Thiessen aggre-
gation instances. These individual problems also required
less than 0.2 seconds to solve using CPLEX. The objective
value performance of the URM for the 100 Thiessen
instances ranged from a low of 6004.19 to a high of
8139.57, with an average value of 6935.88. The best URM
solution found for the 100 Thiessen instances, with an
objective of 8139.57, is displayed in Figure 4. As in Figure
3, the blocks in Figure 4 are considerably larger than the
units shown in Figure 2. The result is again a concentration
of harvest activity as well as a concentration of nonactivity.
In comparing scheduled harvests in Figures 3 and 4 to that
shown in Figure 2, it is fairly easy to see why objective
value performance has increased in the latter two cases.
Much more activity appears to be taking place in Figures
3 and 4 across the forest, which means that the economic
return is likely to be higher (and it is in both cases). In fact,
the lowest values found for the Block Building and Thiessen
approaches, 6218.00 and 6004.19 respectively, are both
higher than the objective value of 5854.25 associated with
applying the URM to the original 351 units.

The best solution found for the 201 applications of the
URM had an objective function value of 8139.57 (see
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Figure 3.  URM solution using Block Building approach to aggregate spatial units.

Figure 2.  Solution for URM applied to original 351 units.
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Figure 4). This provides a basis for comparison to the
ARM. Given that the original 351 units of the forest shown
in Figure 1 average approximately 10 ha in size and that a
maximum area of contiguous disturbance is limited to
48.56 ha, we need to structure and solve the ARM. Using
the Fortran program described previously, 64,034 con-
straints of the form specified in (3) were found to be
necessary for this single time period problem. It required
35.76 hr of processing time to identify these constraints.
[The Fortran program enumerated all unique contiguous
spatial violations. This involves numerous levels of
subloops and verification of uniqueness when violations
are found. It is conceivable that other programming lan-
guages, such as C++, might be considerably more efficient in
carrying out this enumeration process.] CPLEX was used to
solve this ARM, but a considerable optimality gap existed
after 19.43 hr (equating to 959,793 iterations and 17,208
branches). The best found feasible solution had an objective
function value of 9482.41 and is shown in Figure 5. The
optimality gap at termination was 15.22%, so this solution
may be characterized as being within 15.22% of the optimal
solution. An interesting comparison may be made between
the results shown in Figure 5 to those displayed in Figures
2–4. The spatial extent of harvest activity in Figure 5 is more
sizeable than that found in Figure 2, but this is expected.
Interestingly, the concentrated patterns shown in Figures 3
and 4 are not unlike the spatial patterns found in Figure 5.

Discussion
One striking finding is that none of the 201 different

spatial representations of this forest region solved as a URM
application could be interpreted as being a competitive ARM
approximation. The best ARM solution found was 16.50%
higher than the best URM solution. In terms of economic
return, this is a significant difference. Figures 2–5 illustrate
substantial differences in the spatial extent of harvest activi-
ties as well. Based on these results, one cannot expect to
easily or readily solve a derived URM (by blocking or
otherwise) that is equivalent to an associated ARM. The
differences between the two approaches would likely be less
when constraining the models further through the addition of
time considerations, volume flows, road building/mainte-
nance, etc.

A major motivation for this research was to assess
MAUP effects in harvest scheduling subject to maximum
contiguous area restrictions. Previous research has shown
that URM results are influenced by changes in geographic
representation (Daust and Nelson 1993) and different
blocking strategies (Borges and Hoganson 1999). The
analysis using the Block Building aggregation instances
of the forest region supports, to some degree, sensitivity of
the URM to altered scale, because the number of blocks
generated varies between 113 and 127 and the associated
objectives range between 6218.00 and 7231.86. The more
significant contribution, however, is the finding that unit

Figure  4.  URM solution using Thiessen approach to aggregate spatial units.
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specification is very influential in the application of the
URM. Using the Thiessen aggregation approach, 100
aggregation instances of the forest region were generated.
Each instance contained 80 blocks by aggregating (or
combining) the original 351 units in a spatially contiguous
manner. If the URM were not sensitive to unit specifica-
tion effects (change in blocking), we would expect to get
the same objective value for each problem instance. How-
ever, we found a range of objective function values, from
6004.19 to 8139.57 with an average (6935.88) much lower
than the maximum. This is at best 14.16% less than the best
ARM solution found, but could end up being more than
36%, depending on which aggregation instance was uti-
lized in the analysis using the URM. The URM results
using the Block Building aggregation instances support
this finding as well. Clearly, the URM is highly influenced
by scale and unit specification (blocking) variation, both
characteristics of the MAUP. In contrast to the URM, the
ARM does not need a priori spatial unit aggregation
(blocking) in order for it to be applied in the context of the
maximum area restriction. Thus, it is technically free from
MAUP effects because it can rely on the most disaggregate
spatial data available. The URM typically cannot, and
must be subject to blocking (or aggregation). Neverthe-
less, if the ARM is applied to aggregate data, then it will
be sensitive to MAUP effects. The basis for this conclu-
sion is given in Murray (1999), who showed that the URM
is mathematically a special case of the ARM.

Another issue of importance in this work was the assess-
ment of frame independence. As noted previously, Tobler
(1989) called for spatial analysis approaches that were frame
independent. The ARM would appear to be somewhat scale
invariant, at least in comparison to the URM. The reason is
that we clearly find MAUP effects in the application of the
URM, whereas the ARM may be applied to the most disag-
gregate data available. Tobler’s point is particularly relevant
in the evaluation and comparison of these two approaches for
harvest scheduling subject to maximum area restrictions.
Further, this highlights that one should always be looking for
alternative representations of spatial models and problems.
Doing so could help to ensure better management efficiency
as well as long term viability in natural resource use. The
empirical analysis supports this in that a timber company
could reduce harvest volume output targets, thereby decreas-
ing the total regional impact of harvest activities, using the
ARM and still be able to achieve as good or better returns than
any of the URM plans.

The solvability of the ARM is, however, an issue, even for
the relatively small 351 unit forest utilized in this research.
Recall that 64,034 constraints were found to be necessary and
required over 35 hr to identify. Further, only a feasible
solution could be identified for the ARM after nearly 20 hr of
processing using CPLEX. The resulting optimality gap was
15.22%. The structure of constraint (3) is not tight or integer-
friendly in the sense that constraint (2) has been shown to be
(Murray and Church 1996), which explains why we were not

Figure 5.  Best ARM solution found.
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successful in solving the ARM exactly. It would be unrealis-
tic to expect to solve more difficult problems (either larger in
terms of the number of spatial units, multiple time periods,
volume bounds or roading considerations) when this simpli-
fied problem instance cannot be optimally solved. More work
is clearly needed on exact approaches for the ARM in order
to address larger problems with multiple time periods and
other constraining conditions. Clearly, heuristic solution
approaches are essential at this point in time. While there has
been some progress made in the development of heuristics for
the ARM (Murray and Snyder 2000), there is no work
demonstrating the superiority of any one approach.

A final comment is that the ARM is an important problem
and represents a frame independent approach. However, the
spatial implications/impacts appear to be much more pro-
nounced (see Figure 5) when compared with the URM
schedules shown in Figures 3 and 4. Given this, questioning
whether this is a desired intention seems reasonable. In fact,
the URM may be more appealing in this regard, but it is highly
susceptible to MAUP effects.

Conclusions
Limiting spatial disturbance is a significant consideration

in natural resource management. In this article, we have
evaluated two representation and modeling possibilities for
generating harvest schedules in forest management. Both
approaches attempt to maximize associated return while
restricting spatial activity. The unit restriction model (URM)
assumes that two neighboring spatial units violate estab-
lished maximum contiguous area limitations. The area re-
striction model (ARM), on the other hand, imposes limits
only with respect to total contiguous area, rather than make
an assumption regarding spatial unit size. The issue of scale
and unit definition, the modifiable areal unit problem (MAUP),
was shown to be fundamental in distinguishing these two
approaches. The empirical assessment provided comparative
results (based on solving 202 different optimization prob-
lems) associated with objective function performance, spa-
tial impact, and computational effort for the two approaches.
The URM was found to be influenced by MAUP effects.
While the URM may be more easily solved, the identified
harvest schedules do not favorably compare with the best
found ARM results as measured by objective function perfor-
mance. In addition, the ARM has the added benefit of being
frame independent. Nevertheless, the appropriateness of the
URM and/or the ARM would depend on the application
intent and underlying management goals. This research fur-
ther highlights differences in the two approaches, both con-
ceptually and computationally. Further, this work also dem-
onstrates that exact techniques for the ARM are currently
limited.

The general implication of these findings is that there is a
definite need for continued research on the ARM. Not only is
this justified by the empirical results, but this makes sense
given trends in spatial information sciences. The information
age has witnessed the availability of plentiful digital informa-
tion on where people live, their shopping habits, and our
natural resources. Detailed, reliable spatial information will

be the standard in the near future, reflecting the significant
investments in creating forest inventories and further integra-
tion of remote sensing technologies. Modeling approaches
capable of application to spatially explicit, fine resolution
information is needed now, and more so in the future.
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