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ABSTRACT

Analytical studies have raised the concern that a mysterious expulsion of magnetic field lines by a rapidly spinning
black hole (dubbed the black hole Meissner effect) would shut down the Blandford–Znajek process and quench the
jets of active galactic nuclei and microquasars. This effect is, however, not seen observationally or in numerical
simulations. Previous attempts at reconciling the predictions with observations have proposed several mechanisms
to evade the Meissner effect. In this paper, we identify a new evasion mechanism and discuss its observational
significance. Specifically, we show that the breakdown of stationarity is sufficient to remove the expulsion of the
magnetic field at all multipole orders, and that the associated temporal variation is likely turbulent because of the
existence of efficient mechanisms for sharing energy across different modes. Such an intrinsic (as opposed to being
driven externally by, e.g., changes in the accretion rate) variability of the electromagnetic field can produce the
recorded linear correlation between microvariability amplitudes and mean fluxes, help create magnetic randomness
and seed sheared magnetic loops in jets, and lead to a better theoretical fit to the X-ray microvariability power
spectral density.

Key words: galaxies: active – galaxies: jets – galaxies: magnetic fields

1. INTRODUCTION

Building on the work of Goldreich & Julian (1969),
Blandford & Znajek (1977; BZ) proposed a mechanism that
extracts the rotational energy of spinning black holes through a
Penrose-like process, which has since become one of the most
widely accepted contenders for explaining the energy source of
outflowing jets seen in active galaxy nuclei (AGNs) containing
supermassive black holes and microquasars containing stellar
mass holes. For example, the measured jet power’s dependence
on the black hole spin is consistent with BZ predictions
(Narayan & McClintock 2012; Steiner et al. 2013). In order to
operate effectively, the BZ mechanism requires the near-
horizon region to be sufficiently and appropriately magnetized.
From the Penrose process point of view, the magnetic field
lines should thread through the infinite redshift surface
enclosing the ergosphere, while with the membrane paradigm
description (Thorne et al. 1986) of the BZ process, one would
need them to thread through the event horizon.

Astrophysically, the magnetic field surrounding black holes
is expected to be a largely poloidal one confined by external
matter (Begelman et al. 1984), which can be approximated as
being asymptotically uniform when studying the vicinity of the
black holes. The simplest and frequently invoked prototype
solution for such a configuration is the Wald solution (Wald
1974) to the vacuum (without charge or current) Maxwell
equations. When it is observed that as the black hole spin
approaches extremality, the magnetic field lines of this solution
are “expelled” from the horizon (see King et al. 1975; Bicak
et al. 2006 and Figure 1), instead of penetrating it as in the case
of slow spin. Concerns naturally arise that the fast-spinning
black holes will not be adequately magnetized, so the BZ
process shuts down, and the jets are quenched.

Although the complete expulsion of the field lines is only at
extremality, the effect does bleed into the entire high-spin
regime, causing a severe suppression of the jet power PBZ from
the BZ process, which is proportional to the quadrature of the

magnetic flux across the horizon. Substituting in the Wald
solution, we obtain PBZ as a function of the dimensionless spin
a as (Bicak & Janis 1985)
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which is plotted in Figure 2. The a appearing in the bracket is
from the magnetic flux density contribution, and we see that
power suppression sets in after a 0.8~ , which is well within
the possible astrophysical range. Theoretical computations by
Thorne (1974) show that thin accretion disks can spin a black
hole up to a 0.998~ (although the numerical experiment by
Gammie et al. (2004) shows that lower equilibrium values at
around 0.9 for particular magnetohydrodynamic (MHD)
models are also possible). Within the BZ process, a near-
extremal spin is also assumed when discussing the collimation
of extracted energy into jets by an ion-supported torus (Rees
et al. 1982; Begelman et al. 1984). Observationally, high spins
have been reported for many systems, using a variety of
measurement techniques. For example, the Fe K line profile
implies a 1» for XTE J1650500 (Miller et al. 2002; Miniutti
et al. 2004), while McClintock et al. (2006), Gou et al. (2011),
and McClintock et al. (2013) have measured spins in excess of
0.95 for the primaries in black hole X-ray binaries Cygnus X-1
and GRS 1915+105 through a continuum fitting method.
Furthermore, when it comes to spin distribution among large
populations, high spins are not rare. Summarizing X-ray
reflection spectroscopy results, Reynolds (2013) concluded that
a significant number of supermassive black holes have a 0.9> .
With a radiation efficiency study, Wang et al. (2006) estimated
that the spins of essentially all black holes in quasars within the
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redshift range of z0.4 2.1< < are close to 1. Via a
consideration of the quasar contribution to the X-ray back-
ground, Elvis et al. (2002) also arrived at the conclusion that
“most supermassive black holes must be rapidly rotating.”

The expulsion of the magnetic field by rapidly spinning
black holes (named the black hole Meissner effect in analogy
with superconductors) is therefore likely more than just a
theoretical curiosity and has to be examined carefully if we
want to understand real celestial objects. One would of course

suspect that this effect is an esoteric feature only of the Wald
solution. However, subsequent studies by Bicak & Dvorak
(1976), King (1977), Bicák & Dvorák (1980), Bicak & Janis
(1985), Bicak & Karas (1989), Karas & Vokrouhlický (1991),
Chamblin et al. (1998), Karas & Budinova (2000), Bičák et al.
(2007), Gibbons et al. (2013), Bičák & Hejda (2015), and
Hejda & Bicak (2014) have greatly generalized the Wald
solution to arbitrary axisymmetric solutions, to models
containing the back-reaction of the electromagnetic field on
spacetime, to higher dimensions, and so on, and this Meissner
effect persists. A precise characterization of this effect is given
by Bicak & Janis (1985), that black holes in extremality (in
spin, charge, or a combination of both) expel external
axisymmetric, stationary magnetic fields. One may also ask
the question that if the energy extraction process occurs in the
ergosphere, would that render the Meissner effect irrelevant?
Penna (2014) argued that the magnetic horizon flux density is
required to ensure a clear passage for the negative-energy
components in the Penrose-like BZ process to cross the horizon
and thus remains a necessity. Pan & Yu (2015) further showed
that, when a perfectly conducting plasma is present, the
magnetic field lines crossing into the ergosphere must also
intersect with the horizon, so the Meissner effect would in fact
expel the field lines all the way out of the ergosphere.
Despite the analytical predictions, numerical, general

relativistic MHD simulations see no sign of this effect
(McKinney & Gammie 2004; McKinney et al. 2012;
Tchekhovskoy et al. 2012; Contopoulos et al. 2013; Penna
et al. 2013). Observationally, systems like microquasar GRS
1915+105 (spin 0.98) do not exhibit signs of jet quenching:
their jet power is consistent with an a2 scaling, showing no
additional a-dependent suppression in magnetic flux density
(Narayan & McClintock 2012; Steiner et al. 2013). Therefore,
mechanisms for evading the Meissner effect are needed, and
several are already proposed. While examining arbitrary
stationary solutions, Bicak & Janis (1985) pointed out that
solutions that are not axisymmetric do not experience the
Meissner effect (briefly reviewed in Section 2 below). Later,
Penna (2014) further identified the (split) monopole configura-
tion as being able to evade it.1Takamori et al. (2011) also
found that currents carried by plasma in magnetospheres enable
higher multipole magnetic fields to penetrate the horizon in the
case of extremally charged (but nonspinning) black holes. On
the other hand, if one allows an extremally spinning black hole
to be charged, an induced magnetic dipole field can thread
through the horizon (Bicák & Dvorák 1980).
The remaining obvious loophole to exploit is the breaking of

stationarity, which has escaped close scrutiny in previous
studies concentrating on exact analytical solutions, due to the
technical difficulty in handling fully dynamic electromagnetic
fields in a curved spacetime. In Section 3 below, we utilize
semianalytic arguments to show that intrinsic temporal
variability (ITV) in the electromagnetic field can indeed serve
as another route for the evasion of the Meissner effect.
Furthermore, ITV may be a feature of prevalence among real

Figure 1. (a) The Wald solution in the cylindrical version of the Boyer–
Lindquist coordinates for spin a=0. The event horizon is represented by the
black semicircle. (b) The Wald solution in the Boyer–Lindquist coordinates for
spin a=0.99999. (c) The Wald solution in the cylindrical version of the
ingoing Kerr coordinates for spin a=0.99999; the coordinate transformations
from Boyer–Lindquist do not affect the z,( )r plane projection of the field lines.
(d) The Wald solution in the Kerr–Schild coordinates for spin a=0.99999.
The event horizon is still represented by a semicircle, but we have also shown
an orange contour of the projection of the magnetic field onto the normal to the
event horizon. The contour pieces straddle zero (the darker region corresponds
to smaller projection values), so the flux density across the horizon actually
vanishes, even though graphically it appears that the magnetic field lines thread
through the horizon at places.

Figure 2. Power extracted from the black hole through the BZ process as
predicted with Equation (1), setting black hole mass M=1 and the asymptotic
magnetic field strength B=1.

1 As is noted in Penna (2014), the infinite extremal Kerr throat argument
utilized to elucidate the Meissner effect there is observer/coordinate dependent.
We point out that Jacobson (2011) is a good reference that explains this issue.
Also, the throat argument only requires the magnetic field lines to penetrate the
horizon radially in the Boyer–Lindquist coordinates, saying nothing about their
density’s angular dependence. So while the monopole offers the simplest
complying configuration, the results of Penna (2014) do not prohibit additional
evasion mechanisms activating higher multipoles.

2

The Astrophysical Journal, 818:82 (15pp), 2016 February 10 Zhang



astrophysical systems. From an observational perspective, we
know that AGN and microquasar emissions are variable, so the
electromagnetic fields surrounding astrophysical black holes
are not stationary. From an energetics point of view, ITV brings
about a more effective extraction of the black hole rotational
energy, some of which would become available to fuel further
dynamic behavior. So ITV may have a tendency to self-
enhance (given the right conditions; see the end of Section 6 for
more discussions) until an equilibrium with dissipation is
reached (alternatively, if stable equilibrium is difficult to
achieve, cycles of active and quiescent periods may alternate,
causing ITV to appear intermittent). Together with the
rotational energy, the angular momentum of the black hole is
also extracted, so ITV can help prevent the astrophysical black
holes from overspinning into naked singularities (or simply
reaching extremality, which Aretakis (2012, 2013) and Lucietti
& Reall (2012) have suggested to be nonlinearly unstable), thus
serving as an enforcer for cosmic censorship. In short, ITV may
be an integral part of a self-consistent picture of astrophysical
systems containing rapidly but subextremally spinning black
holes.

Assuming this, it is then interesting to examine what kind of
more detailed associations can be made between ITV and
observations. One feature of ITV is that when it enhances the
horizon magnetic flux, the additional energy extracted would
go equitably into many sibling modes of differing angular
quantum numbers (see Section 4). Thus an efficient “mode-
coupling” mechanism exists to promote the development of
turbulence in the electromagnetic field, and subsequently ITV
may be closely related to the stochastic microvariability of
AGNs and microquasars. In Section 5, we discuss several
potential applications to this observation.

1. (Section 5.1) ITV naturally produces a linear correlation
between microvariability amplitudes and short-term mean
fluxes, which has been recorded in numerous studies.

2. (Section 5.2) ITV possesses properties that make it useful
in modeling the magnetic field structure observed in jets
by polarization studies.

3. (Section 5.3) Using ITV and a photon leakage scheme, it
is possible to obtain an improved theoretical fit to the
X-ray microvariability power spectral density (PSD).

Finally, we conclude in Section 6. The derivations below are in
geometrized units with c G1= = , unless otherwise specified.

2. THE MEISSNER EFFECT

We begin by reviewing the essential arguments of Bicak &
Janis (1985) that led to the observation of the Meissner effect
being generic for any arbitrary, axisymmetric, stationary field
configuration with l 1 . We will then adapt them to the case
of temporally variable configurations in the next section and
show that they also evade the Meissner effect, in much the
same fashion as the rotationally asymmetric ones do. We will
specialize to spin and not charge extremality, anticipating
possible astrophysical applications. In addition, we will also
restrict ourselves to vacuum (without plasma) solutions in the
near-horizon regime, but allow arbitrary source charges and
currents farther away, just as the original computation in Bicak
& Janis (1985) assumed. This is mostly to ensure that the
calculations remain tractable. On the other hand, the derivation
of the BZ process included the presence of a so-called force-
free plasma, in which the inertia of the charged particles is

neglected because their stress-energy tensor is subdominant to
that of the electromagnetic field. In reality, the particles do have
mass and will not be able to travel at the speed of light and stay
on the event horizon (a null surface by definition), so the
particles sufficiently close to the horizon are on their way in,
plausibly generating largely radial currents that do not greatly
alter the radial component of the magnetic field and
subsequently the horizon flux density, as compared to those
in a very thin vacuum layer sourced by the same current and
charge distribution outside (as the vacuum solutions examined
below only need to satisfy horizon boundary conditions and we
specialize to their limits when approaching the horizon, the
vacuum layer can be very thin).
The arguments of Bicak & Janis (1985; and Bicak & Dvorak

1976 that they rely on) are based on the Newman–Penrose
formalism. The underlying spacetime metric is that of Kerr:

ds dt a d dr d
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where t r, , ,{ }q f are the Boyer–Lindquist coordinates, a is the
dimensionless spin parameter, M is the black hole mass, and r+
is the radius of the event horizon. A particularly nice Newman–
Penrose null tetrad (a basis to decompose vectors and tensors
into their components) exists in this spacetime, namely the
Kinnersley tetrad (Kinnersley 1969; see also, e.g., Zhang et al.
2012 for its properties), whose basis vectors are (expanded in
the coordinate basis dt dr d d, , ,{ }q f )
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Under this tetrad, the Faraday tensor can be decomposed into
three complex Newman–Penrose scalars 0F , 1F , and 2F ,
representing the ingoing wave, Coulomb background, and
outgoing wave pieces of the electromagnetic field, respectively,
with the reconstruction formula being

F n l m m

l m m n

4 4

4 4 . 4
ab a b a b

a b a b

1 1

2 0

¯
( ) ( ¯ ) ( )

[ ] [ ]

[ ] [ ]

= F + F
+ F + F
R I

R R

The magnetic flux across the horizon at r r= + is simply the
integral (Bicak & Janis 1985)

F d d , 5r r
EH

∣ ( )ò q fqf = +

and the local flux density is thus essentially F r r∣qf = + (aside from
a r sin2 q+ factor from the integration measure). An examination
of the Meissner effect is then a computation of F r r∣qf = + (when
we and the broader literature talk about vanishing flux in this
context, it is really the flux density, not the total integral
through the entire horizon, that is intended).
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Although we have used the Boyer–Lindquist coordinates for
concreteness, we note that the tetrad is a geometrical construct
that can be used in other coordinate systems as well. More
importantly, F r r∣qf = + is the same in Boyer–Lindquist as in Kerr
coordinates (Bicak & Dvorak 1976), so we are at liberty to
compute it in the Boyer–Lindquist system, which is more
convenient, but the result will nevertheless apply to horizon-
penetrating coordinate systems.

In the extremal limit, r- and r+ become identical, and
x r r1 2= D = - + becomes a measure of the distance to the
horizon. To study whether the horizon flux density vanishes,
one can then examine the leading order (lowest power)
dependence of 0F , 1F , and 2F and the tetrad basis on x, and
in turn that of Fqf through Equation (4). The relevant tetrad
scaling behavior can be read off directly from Equation (3),
which are

l l x n n x

m x m x

0, , 0, ,

, , 6

0 2

0 0 ( )
= ~ = ~

~ ~
q f q f

q f

so in order to achieve a nonvanishing horizon flux density, we
need any of the three complex scalars to drop at or slower than

x x x, , . 70
2

1
0

2
0 ( )F ~ F ~ F ~-

Note that because of the singular behavior of the Kinnersley
tetrad on the horizon, 0F is allowed to diverge without causing
Fab to also become singular. On the other hand, the condition
for 2F conflicts with the horizon regularity conditions (see, e.g.,
Brennan et al. 2013)

x x x: , : , : , 80
2

1
0

2
2( ) ( ) ( ) ( )  F F F-

so it will not ever be satisfied; that is, no wave can come out of
the black hole.

The generality of the Meissner effect as revealed by Bicak &
Janis (1985) boils down to the conclusion that the stationary
axisymmetric solutions obey

x x x, , . 9l l l
0

1
1 2

1 ( )F ~ F ~ F ~- +

So for l 1 , Fqf vanishes on the horizon. To get this result, one
solves the vacuum Teukolsky equation in the extremal and
stationary limit, getting

y e S , 10
l m

lm
im

lm2
2

,

2
1 ( ) ( )år qF = f

-

with M r ia cos2 2 2( )r q= - and S1- being the spin-
weighted spheroidal harmonics (which are simply the spin-
weighted spherical harmonics in the stationary case). The
important term in Equation (10) is

y e x l l
im

x
1 , 2 ;

2
, 11lm

im x l2 1 ( )⎜ ⎟⎛
⎝

⎞
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where m is the azimuthal quantum number and ξ is the
confluent hypergeometric function.2 After enforcing axisym-
metry by setting m=0, both the exponential phase factor and ξ
in Equation (11) reduce to constants, and we recover the
scaling in Equation (9) for 2F . And to get to the other
Newman–Penrose scalars from 2F , derivatives against x are

taken, at most once for 1F , twice for 0F , and thus the sequence
of powers in Equation (9).
One immediately sees a way to evade the Meissner effect,

namely through the breaking of axisymmetry. When m 0¹ is
allowed, the confluent hypergeometric function becomes a
polynomial up to x1 l 1- , so as far as the lowest power in x is
concerned, all of the different l choices contribute at x2 in
Equation (11), rather than starting at higher powers of x (thus
more ignorable) for higher l values, as in the m=0 case. This,
however, is insufficient in itself for creating a nonvanishing
flux at extremality, as x2 is at the same order as the l=1
contribution when m=0, and we have seen that a dipole is not
capable of creating nonvanishing fluxes in that situation. The
key is the activation of the exponential phase term e im x- .
When we hit e xim x p- with x¶ , we get by the product rule a
term x x ep im x2( )µ - when the derivative acts on the
exponential. This gives a x p 2- rather than a simple x p 1- , as
a derivative on the polynomial part would otherwise produce,
which makes it possible to create a scaling with sufficiently low
power of x to satisfy Equation (7). For example, with l=3,
m=3, we have

y e
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so the first derivative, and subsequently 1F , contains an x0 order
term, while the second derivative, and subsequently 0F ,
contains an x 2- order term, both capable of giving rise to a
nonvanishing horizon flux density (see Equation (7)). This is
technically why the Meissner effect only turns up in
axisymmetry.
Finally, it is interesting to note that l=0 is not included in

the derivation above and can serve as another way to evade the
Meissner effect (Penna 2014). This corresponds to a magnetic
monopole, which can be made more physical by placing a
plasma-supported current sheet on the equatorial plane (so the
magnetic field does not need to be continuous across it),
splitting the spacetime into two halves with magnetic field
configurations corresponding to oppositely charged monopoles
on either side (the so-called split-monopole configuration of
Blandford & Znajek 1977). It is, however, worth noting that in
the case of broken axisymmetry (and broken stationarity
below), Fqf from both 0F and 1F contributions can be
nonvanishing on the horizon, while in the monopole case,
only that from 1F is allowed to do so (the lowest multipole
order for electromagnetic waves is dipole, so there is no
ingoing monopolar wave). This means that if 0F as the ingoing
wave is required for the energy extraction process (e.g., as the
carrier of negative energy down the black hole), then the split-
monopole configuration may not suffice (note that although one
of the original solutions in Blandford & Znajek (1977) is called
a split-monopole solution, because it is obtained by perturbing
a monopole in Schwarzschild, the actual energy-extracting
solution for slowly spinning Kerr that came out in the end has a
nonvanishing 0F ).

2 We note that l=1 corresponds to a pole of the confluent hypergeometric
function ξ. Nevertheless, taking the limit of l 1 from other nearby values, we
see that the solution remains valid in this case, so this result of Bicak & Janis
(1985) is valid for l 1 .
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3. EVASION THROUGH DYNAMIC EVOLUTION

Dependence on the azimuthal coordinate f is not the only
way to produce an exponential phase term. In the Kerr
spacetime, the temporal dimension has a fair amount of
similarities with the azimuthal direction. For example, t¶ and ¶f
are both Killing vectors of the underlying spacetime (the
electromagnetic field does not need to possess all of the
symmetries of the spacetime though, so it can break either
axisymmetry or stationarity or both), and both t and f enter
through simple exponential terms in the separation of variables
expression for 2F 3:

d e e S R r . 13
l m

i t im
lm lm2

2

,
1

2( ) ( ) ( )òår w qF = w f
w w

-
-

Therefore, one is naturally led to the expectation that the
breaking of stationarity may also result in an evasion of the
Meissner effect.

The relevant equation now is the time-dependent version of
the radial Teukolsky equation (Equation (4.9) of Teukolsky
1973):
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when a l l 12 2 ( )w + is small (see Equation (2.14) of Yang
et al. 2013). We will make the small ∣ ∣w assumption below in
order to obtain exact solutions, but we present numerical
experiments and physical reasoning to argue that the important
Meissner-effect-evading properties should be preserved for
larger ∣ ∣w cases as well. Concentrating on a single constituent
under the summation and integral signs of Equation (13), and
dropping the subscripts for brevity, the extremal limit of
Equation (14) for m=0 (we concentrate on evading the
Meissner effect without breaking axisymmetry in this section)

is explicitly
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We immediately notice that the structure of Equation (17) is
similar to that of the stationary and m 0¹ case (e.g., it has a
complex coefficient to R2 that is also present in the stationary
m 0¹ case, but not the m=0 case), which is

x R x R x l l x m m ix1 2 0. 184 2 2 2( ) ( )[ ( ) ( )] ( ) + - + + - =

With Equation (18), a change of variable in the following form

R x e
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D x, , 19
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z

with the choice of D im2= - turns it into a confluent
hypergeometric equation

l l2 2 0, 20( ) ( ) ( ) ( ) ( )zh z z h z h z-  + - - ¢ + =

whose solution appropriate for the near-horizon region is
(Bicak & Dvorak 1976)

D e l l1 , 2 ; , 21l l2 1 2 1 ( ) ( )( )h z x z= - - -z+ - +

where the constant factor D l2 1+ is introduced for convenience.
With Equation (17), the same transformation (19) with the
choice of D i4 w= leads to
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where we have expanded in the small quantity ω. Keeping to
the lowest order in ω, we recover Equation (20). Therefore, the
solution for the slowly varying time-dependent case is simply

d e x S
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whose x-dependent terms are the same as those in Equation (11)
with the simple replacement of m 2w - , so exactly the same
mechanism for evading the Meissner effect applies. Specifi-
cally, the confluent hypergeometric function boosts the scaling
contribution to 2F from all l 1 multipoles from xl 1+ to x2,
and then the phase factor contributes additional x1 2 boosts
once derivatives against x are taken, allowing 1F and 0F to
satisfy condition (7).
To probe the large ∣ ∣w behavior of Equation (17) (and to

provide a visual example), we now turn to numerical solutions.
We pick l=4 and 2w = - for demonstration, so that
a l l 1 1 52 2 ( )w + = is still small and Equation (16) can be
used but higher powers of ω itself are no longer negligible. The
numerical solution to the full Equation (17) (without ignoring
higher powers of ω) with these parameters, together with
analytical (from Equation (11)) stationary m=0 and m 0¹

3 As we are examining the effects of the fast oscillatory temporal variations
here, and not the secular growth or decay that requires an accompanying energy
change in the electromagnetic field, we concentrate on energetically steady
evolutions with w Î . Nevertheless, we point out that when 0w ¹I and if its
value is oversimplified as compared to the real astrophysical situation, e.g.,
when we have a secular decay at a constant rate lasting for an unlimited
duration, pathological behaviors such as a diverging amplitude in the infinite
past may appear and may inject well-known unphysical pathologies into the
horizon-limiting properties of 2F depending on the coordinate choice (see
Jacobson (2011) and Section II C in Yang et al. (2015)). Furthermore, note that
as we allow arbitrary currents and charges (including current sheets) outside the
vacuum layer, we do not have the restrictive matched asymptotic expansion
conditions seen for everywhere vacuum quasinormal modes that quantize ω
(Teukolsky & Press 1974).
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solutions as references, is plotted in Figure 3. To obtain the
numerical solution, we need to specify R x2 ( ) and R x2 ( )¢ values
at some x x0= as boundary conditions and then integrate
Equation (17) away from there. The criteria for the admissi-
bility of any particular boundary condition choice is that the
resulting R2 should satisfy the horizon regularity condition (8),
or in other words, R2∣ ∣ should scale as x2( ) . Looking at

Equation (22), we notice that the higher powers of ω tend to be
accompanied by higher powers of x. So at very small x values,
one expects that even in the case of large ∣ ∣w , the solutions to
Equation (22) may be reasonably approximated by Equa-
tion (23). Therefore, we can try using Equation (23) to set the
boundary conditions at some small x0. We note that x0 cannot
be pushed all the way to the origin because Equation (22) is
singular at x=0, due to the coefficient of the highest
derivative term in it vanishing there. This also bleeds numerical
issues into the exceedingly small x regime (x 0.01< ), making
the acquisition of a reliable numerical solution difficult there
(e.g., violent and unpredictable dependence on the working
precision of the numerical routine is seen). Nevertheless, there
is no problem with picking x0=0.01 and then integrating
away from the horizon. The solution thus obtained turns out to
be reasonable, demonstrating a horizon-regularity-consistent x2

scaling for R2∣ ∣ (Figure 3(a)). It also contains a phase oscillation
with increasing frequency as we approach the horizon
(Figure 3(b)). Furthermore, after a numerical derivative, R2 ¢
is explicitly seen to scale as x0 (Figure 3(c)), just as in the
stationary but rotationally asymmetric case.
Our numerical experiment thus suggests that the important

Meissner-effect-evading ingredients of R2 are not spoiled by
large ∣ ∣w . Aside from the technical observation that Equa-
tion (23) appears to provide reasonable, approximate large ∣ ∣w
solutions in the important small x regime (so a better—but not
rigorously proven—characterization for Equation (23) is
perhaps that it is valid when either ∣ ∣w or x is small), we can
also make physical arguments as to why it should be so. For
example, the x2 scaling for R2∣ ∣ even when l 1> is not
surprising because it is the minimal requirement for the horizon
regularity condition (8) to be satisfied, so it is the least special
or restricting and should be generic among field configurations
that are not severely constrained by, for example, multiple
symmetries. Equivalently stated, further restricting the field to
satisfy (8) beyond the minimal order is unnecessary and
wasteful as far as horizon regularity is concerned, so such
restrictions, if they exist, have to come from other considera-
tions. More importantly, the physical meaning of the oscillatory
phase factor in the time-dependent case is even more apparent
than in the rotationally asymmetric case. This factor simply
enforces an ingoing-wave boundary condition at the event
horizon as demanded by causality:

R e , 24i t r v2 ( )( )*µ w- +

where v 0> is the radial velocity, and r* is the tortoise
coordinate that can be seen as a function of x defined by
dr dx r a2 2( )* = + D, which is approximately x2 2 near the
horizon, and so r x2* ~ - with an appropriate integration
constant. Specifically for a rotating black hole, R2 asymptotes
to (see, e.g., Yang et al. 2013)

R e e , 25i m r i t2 H ( )( ) *µ w w- - W -

on the horizon, where HW is the horizon angular velocity.
Setting m=0, Equation (25) gives us the phase factor in
Equation (23). In addition, because the ingoing-wave condition
(25) is generic for all solutions of the original unsimplified
radial Teukolsky equation, the same factor should also appear
in R2 even when ∣ ∣w is large. On the other hand, setting 0w =
and noting that 1 2HW = at extremality, Equation (25)
reduces to e im x- , agreeing with Equation (11) for the

Figure 3. Radial component R2 of 2F for the cases with and without
axisymmetry and stationarity (the solution to the time-dependent Equation (17)
is obtained numerically). (a) In this log–log plot, the slope of the lines
corresponds to the power indices of power-law scalings. For l1 4< = , the
two stationary solutions do not share the same scaling behavior for R2∣ ∣. The
axisymmetric case with m=0 scales as x5, while the rotationally asymmetric
case with m=4 has a scaling of x2. The blue curve at small x values coincides
with, and is covered by, the purple one. Therefore the time-dependent R2∣ ∣ also
scales as x2. (b) Plotted are the R2( )R values. The breaking of either
axisymmetry or stationarity produces oscillations with increasing frequency as
we approach the horizon, symptomatic of a x1 -dependent phase factor. (c)
The first derivative of R2 shows that, just like the m 0¹ case, the time-
dependent solution has a nonvanishing R2 ¢ in the horizon limit.
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stationary and rotationally asymmetric case discussed in
Section 2.

4. MODE COUPLING VIA ENERGY INJECTION

Within our discussion, force-free currents, which are non-
linear functions of the electric and magnetic fields, should be
present outside the boundary layer and have the potential to
bring about coupling between time-dependent perturbations
characterized by different angular quantum numbers l (abbre-
viated to “modes” below) and induce turbulence when given
the right conditions. Analytical studies (Goldreich & Sridhar
1995) and numerical simulations (Cho 2005; Zrake & East
2015) in the flat spacetime show that force-free turbulence
possesses a Kolmogorov energy spectrum with power index

5 3- . However, for freely decaying MHD (not magnetically
dominated) turbulences, Zrake (2014) and Brandenburg et al.
(2015) have measured indices closer to −2.

Aside from such direct nonlinear couplings, there may be
indirect energy-injection effects that are also capable of
“coupling” the modes, in the sense that a single seeding mode
can excite siblings. Essentially, the spherical harmonic content
of the electromagnetic perturbation appearing in the Newman–
Penrose scalars are not faithfully reflected in the horizon flux
density because, in order to reconstruct the Faraday tensor
according to Equation (4), one has to involve the Newman–
Penrose basis vectors, which are themselves functions of θ. For
concreteness and some variety in coordinate choice, let us
consider ingoing Kerr coordinates t r, , ,(˜ ˜ )q f , which share the
same r and θ with the Boyer–Lindquist coordinate system,
while the relationship for the temporal and azimuthal
coordinates are

t t r r
a

r r

r r

r r
, ln . 26˜ ˜ ( )* f f= + - = +

-
-
-+ -

+

-

The metric is now given by
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Using Equation (26), it is straightforward to compute the
Jacobian for the coordinate transformation and subsequently
the expressions for the Kinnersley tetrad in the ingoing Kerr
coordinates; then using Equation (4), we obtain that for a, e.g.,

0F perturbation to the Wald solution, the horizon flux density is
given by (setting M= 1 for brevity)

F
r r

r i
2 2

2 16 sin

4 cos
, 29

2

0
(( ) ) ( )˜

⎛
⎝⎜

⎞
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q
q

=
- +

-
Fqf R

where the extra θ-dependent term multiplying onto 0F makes it
clear that even when 0F contains a single solitary l

contribution, the horizon flux density will in general contain
both higher and lower l values.
Fundamentally, both the Newman–Penrose scalars and F ˜qf

are components of the Faraday tensor, but under different
tetrads, with the former being associated with the Kinnersley
tetrad and the latter under the coordinate tetrad
dt dr d d, , ,{ ˜ ˜}q f . The θ-dependent transformation between the
tetrads then causes a mismatch between the harmonic
decompositions of the tensor components in these respective
bases. This mismatch has physical consequences. Because the
Maxwell equations are separable only in the Kinnersley tetrad,
it is the l of the Newman–Penrose scalars that should be used to
label the electromagnetic evolution modes. On the other hand,
PBZ is proportional to flux squared, so it supplies energy
according to the harmonic components in F ˜qf. There is no
reason to expect this alteration in harmonic contents to get
exactly reversed when the extracted energy is fed back into the
electromagnetic variation modes, that is, for the energy to
simply proportionally enhance the original seeding mode.
Although a rigorous analytical proof for this energy-extraction
detail is not currently available4, we note that for the extracted
energy to leave the horizon, outgoing 2F must be involved even
when the seed field is purely ingoing containing only 0F , so the
field configuration has to change more than just an overall
amplitude. Therefore, energy most likely gets pumped into
other sibling modes that may not be present initially. This
sequence then repeats, and energy cascades and inverse-
cascades into a broad range of available length scales,
eventually establishing a steady turbulent spectrum.
For a more visual demonstration, consider an ingoing

perturbation in 0F of the simple toy form

e

r r
Y

1

2
, , 30

i t r
l m

0 2 1
, 0

( )
( ˜ ) ( )

(˜ )
q fF =

-

w- +

+

=

on top of a background Wald solution, where Yl m
1

, are the spin-
weighted spherical harmonics (we choose 0.01w = so
a 1w  , and the spherical harmonics are good approximates
to the spheroidal harmonics, for which we do not have simple
analytical expressions). Note that Equation (30) satisfies the
ingoing boundary condition (25) (noting t r t r˜

*+ = + ), but
does not properly solve the radial Teukolsky equation every-
where (we do not have exact solutions for 0F in the dynamic
case). In any case, though, it is the angular behavior that
interests us in this section, so the radial part just needs to be
sufficiently large near the horizon. We then use Equation (4) to
reconstruct the Faraday tensor and plot the perturbed magnetic
field lines in Figure 4. We can also estimate the spherical
harmonic components in the horizon flux density, which is
plotted in Figure 5 and shows that higher l values are
generically present even when the initial perturbation consists
of only l=1. In this case, there are not many modes with even
lower l, so the “leaking” is asymmetric. In contrast, high initial
l perturbations generate both lower and higher l components in
the flux density fairly symmetrically (although the lower l side

4 Even the stationary monopole-like BZ solution for rapidly spinning black
holes is still not known analytically, although its power should remain
proportional to magnetic flux density squared on dimensionality grounds
because even though correction terms with higher powers of a may appear, a is
itself dimensionless, so we still need magnetic field squared to create an
energy-density-like coefficient.
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is still cut off at l= 0). As it is reasonable to expect more
patchy energy patterns from higher l components in F ˜qf to be
better matched and thus absorbed by corresponding higher l
modes of the electromagnetic field, this flux density harmonic
decomposition pattern can be seen as an approximate surrogate
for the mode excitation pattern, and the overall trend is a
spreading of energy among different l values.

Although this energy-injection effect looks fairly different
from the usual direct mode-couplings (if we view our modes as
driven oscillators, then they are coupled through the driving
force’s dependence on other modes), it nevertheless represents
a robust and efficient mechanism for cascading and inverse-
cascading energy throughout the entire spectrum, exciting
previously absent modes to establish rich angular structures in

the electromagnetic field that evolve with even richer
dynamics. On the other hand, we also have dissipative
processes that are likely more prominent in a high l
environment.5 We do not know of the quantitative details of
the energy injection and dissipation processes, or how large the
contributions from other coupling mechanisms are in compar-
ison, but if we assume that in a steady turbulent state (in which
the aforementioned energy gains and losses are balanced), the
energy spectrum is only a function of the variation frequency ω
and the rate of energy dissipation per unit volume, then one can
argue for a Kolmogorov 5 3- power-law dependence on ω on
dimensional grounds. In reality, the situation may be more
complex, with the power index not being exactly 5 3- , or the
steady state being only quasi-steady, exhibiting boom-and-bust
cycles when the energy injection or dissipation process
temporarily overpowers the other. Sophisticated numerical
simulations are needed to produce a more accurate
characterization.

5. OBSERVATIONAL IMPLICATIONS

There are several alternatives for evading the black hole
Meissner effect associated with extremal spin: the (split)
monopole configuration (if its lack of 0F poses no problem),
the breaking of axisymmetry, having the black hole carry
electric charge, ITV, and possibly others. We will discuss some
potential observational consequences of ITV, but note that
other evasion mechanisms would likely be present simulta-
neously. Of those, the monopole configuration may be the more
common because astrophysical black holes are expected to be
electrically neutral, and there is no obvious reason to expect
their spin axes to be systematically misaligned with the
magnetic field (Penna 2014). We further note that although
monopoles are not natural for jet formation, gradual collimation
occurring farther away from the black hole horizon can
possibly compensate (Junor et al. 1999).
On the other hand, as mentioned in Section 1, we expect ITV

to be rather ubiquitous among systems powered by rapidly
spinning holes. In what follows, we will restrict our discussion
to AGNs of this character (amounting to most of them,
according to the estimates of Reynolds (2013), Wang et al.
(2006), and Elvis et al. (2002)). Furthermore, black hole X-ray
binaries such as Cygnus X-1 are assumed to have much the
same energy generation and emission processes as AGNs and
are as such named microquasars. Our discussion below will
apply to microquasars the same way it does to AGNs, and we
will utilize either class of objects depending on available
observational data.
There are a plethora of different AGN categories defined

according to their observational signatures, but schemes have
been devised to combine them into a single unified picture. One
leading contender is based on the orientation of the jets
(Bregman 1990; Antonucci 1993; Urry & Padovani 1995).
Specifically, most or all AGNs contain jets, an accretion disk,
and an axisymmetric dusty torus. The disk material heats up
and radiates thermally in the optical to ultraviolet bands.
Furthermore, a corona of hot material above the disk can
inverse-Compton scatter softer photons up to X-ray energies.
The jet also radiates, from radio to gamma-ray bands through
synchrotron and inverse-Compton processes, so the radiations
are nonthermal. When a jet is pointed close to our line of sight
(as in the case of blazars), we can see much nonthermal
radiation produced inside the jet, in addition to that originating

Figure 4. Perturbed magnetic field lines in the cylindrical counterpart to the
ingoing Kerr coordinates, and with t 0˜ = , 0.01w = , and a=0.99999: (a)
Adding an l m1, 0( )= = mode 0F to the Wald solution introduces a change
in the magnetic field line directions, which now thread through the horizon
while originally flowing around it as in Figure 1(c). (b) Higher l=10
perturbing mode in 0F also causes the field lines to thread through the horizon.
However, more lines become closed, emerging and returning to the horizon,
rather than extending out to infinity.

Figure 5. Inner product of the flux density across the horizon (resulting from an
l = 1 or l = 10 seed perturbation in 0F , as depicted in Figure 4) with spin-
weighted spherical harmonics Yl

1
,0

- (appropriate for 2F that carries energy
outward). A significant presence of higher l modes is seen in the flux even
when the initial perturbation contains only l=1. With initial perturbation of a
higher l=10, harmonic contributions leak into both higher and lower l values
in a more symmetric fashion. The inner product values are normalized, so
contributions from all of the modes for, say, the l=1 seed, add up to unity.

5 We expect the emergence of a great many current sheets (where electric
field accelerates charges, leading to a transfer of the electromagnetic field
energy into thermal energy) when the magnetic field lines become highly
fragmented, as large curl in B encourages growth in E. This expectation
appears to be verified by Zrake & East (2015), who saw a reduction in the rate
of dissipative losses when energy is transferred to larger length scales.
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from the disk and corona. For example, X-ray continuum
emissions from the jet and the corona share a common
scattering origin, while radio signals are considered to be from
the jet alone. On the other hand, if the jet is pointed elsewhere,
thermal radiations from the disk become more prominent, and
we also need to be careful about scattering by the dusty torus.

A particularly interesting aspect of AGNs and microquasars
is that they exhibit luminosity variations. Despite the current
poor understanding of the underlying mechanism for this
phenomena (Wold et al. 2007), it is considered to be of great
importance as it may help diagnose the fundamental physics
behind the various emission activities (Hook et al. 1994). Of
the many constituents of the central core of AGNs and
microquasars, previous explanations for variability have largely
concentrated on the disk in order to take advantage of its rich
dynamics. Black holes, on the other hand, are rather unlikely to
spontaneously vary because radiating away its time dependence
through quasinormal ringing appears to be the norm. There is,
however, another constituent that has been subjected to less
scrutiny: the electromagnetic field threading the black holes,
which is quite capable of having its own intrinsic nontrivial
dynamic evolution in a curved spacetime (the dynamics can
initially be triggered by other processes though). In other
words, variabilities driven by ITV are an enticing possibility.

An ITV-based explanation would corroborate with the
assertion that variability is an important tool for probing
AGN and microquasar energetics because ITV ties in to the
very core of the black hole rotational energy extraction process
and directly regulates the extraction efficiency, which also
means it is capable of generating the type of large variation
amplitudes seen observationally. In addition, features of the
electromagnetic field naturally travel at the speed of light and
are thus capable of creating the extremely short timescales that
are on the order of light-crossing times. Indeed, it is due to the
prevalence of such short timescales (not only in the variations
themselves, but also in lags between different wavebands, and
so on) that Gaskell (2004) speculated that the mechanism
underlying variations should be electromagnetic in nature
(although it is electromagnetic processes in the disk, rather than
in the vicinity of the black hole, that are envisioned there). In
the next three sections, we propose several possible links
between ITV and observations in the context of variability and
other related issues.

5.1. Variability–Flux Correlation

Perhaps the most straightforward prediction of ITV is that,
because it is invoked to increase the energy-extraction
efficiency of the BZ process, one can expect AGNs and
microquasars to become more luminous during those periods of
pronounced variation. Furthermore, as ITV occurs in the core
region in the vicinity of the black holes, the relevant timescale
is the light-crossing time across a Schwarzschild radius (around
1 hr for a M108

 supermassive black hole), so we expect that
the microvariability6 is the most relevant for our discussion.

Uttley & McHardy (2001), Uttley et al. (2005), Superina &
Degrange (2008), Dhalla et al. (2010), Vaughan et al. (2003),

and Gaskell (2004) indeed observed a positive correlation
between the root mean square amplitude of the microvariations
and the average flux during the variation periods (not the long-
term secular brightness, which would be a different study
unrelated to the present discussion) for Seyfert galaxies and
microquasars in the X-ray band. In particular, Uttley &
McHardy (2001) recorded a strikingly clean positive linear
correlation for Cygnus X-1 (spin 0.95> ; see Figure 1 therein,
reproduced in Figure 6 below), with a positive intercept on the
mean flux axis, corresponding to a variability-independent
component amounting to about a quarter of the maximum flux
value.
For other scenarios, similar linear correlations are also

recorded in blazars by Giebels & Degrange (2009) and Gaur
et al. (2010), again in the X-ray band. However, in this case,
the data points are much more scattered (due to the inherent
difficulty in detecting such relations in blazars because they are
faint with large Poisson noise and sampled intensely only
during flaring events (Giebels & Degrange 2009)), and we do
not know if the correlation is still linear.
In the optical bands, Lyutyj & Oknyanskij (1987) observed a

linear correlation for Seyfert galaxy NGC 4151, which is also
very clean (see Figure 5 therein) and with a positive intercept
on the flux axis. For blazar W2R1926+42, Edelson et al.
(2013) reports a very strong linear relationship (Figure 6
therein), and once again a positive flux axis intercept is seen. In
the gamma-ray emissions, Degrange et al. (2008) also observed
a linear correlation for the microvariability of blazar PKS 2155-
304 (Figures 7 and 8 therein).
For the sake of completeness, we note that another way to

examine whether there is a positive correlation between fluxes
and variation amplitudes is through the shape of the
distribution for the latter. Modeling the flux F exhibiting
microvariations as a stochastic process,

F
dF dt dW

1
, 31

p
( )m s= +

Figure 6. Mean flux vs. root mean square variation plot for the Cygnus X-1
microvariability. The blue dots are the observational data, which are taken from
Figure 1 of Uttley & McHardy (2001). The dashed red line is the fitting result
using Equation (35), and the thin black line (beneath the red line) represents the
best linear fit. The top-left inset displays curves derived from Equation (35)
with Fc=0 and 0m ¹ . Those associated with larger m values are farther to
the top-right. The bottom-right inset depicts the magnetic flux density variation
profile f tcos( ( )) as given by p value choices of 0 (black), 0.28 (red, thick, and
the same value used for the red line in the main figure), and 1 (blue). The
horizontal axis for the bottom-right inset is time.

6 Variability categories are long term (on a timescale of several years), short
term (months to weeks), and micro (hours to minutes; see, e.g., Gupta et al.
2008). One may also distinguish between the longer term and microvariabilities
according to whether the bluer-when-brighter feature is seen in the variations
(Sasada et al. 2008), in which case microvariability also includes shorter-period
multiday cases. It is this latter, more physical definition that we will adopt here.
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where μ is a long-term drift, σ is the short-term volatility, and
W is the Wiener process; then a positive correlation
corresponds to p 0> . In particular, if p=1 (linear correla-
tion), the distribution for F will be lognormal (see Figure 5 in
Edelson et al. 2013), while for more general p 0> , we will
have a distribution skewed toward higher F, as signified by a
positive skewness (third cumulant over the 3/2 power of the
second cumulant). This method would produce more apparent
results when the variance v of the data is large. For example,
with a lognormal distribution, the skewness is

e e1 2 . 32v v( ) ( )- +

This means that it may be difficult to obtain reliable results
through this type of integral measurements when fluctuation
amplitudes are small (a possible contributing factor to the
inconclusive or negative results in some studies looking for
lognormal distributions, e.g., Mocanu & Sándor 2012), in
which case an alternative measurement through binning data
and plotting the standard deviation versus mean in each bin
would likely be more effective and is indeed adopted by most
studies mentioned above.

We show now that the ITV-induced variability naturally
produces such linear-looking correlations. Recall that the
power from the BZ process is proportional to the magnetic
horizon flux density squared (see, e.g., Equation (1) and
footnote 4), and assume that the energy flux reaching Earth is
ultimately traced back to a region on the horizon, whose
average flux density is approximated by the illustrative toy
model (we will generalize later):

t f tcos , 33m t( ) ( ( )) ( )   w= +

where m is the monopole contribution, and t is the
magnitude of the ITV contribution that we can vary to
represent different microvariability amplitudes (we can also
add in more ITV components with different frequencies, which
will not change the qualitative features below). The function f
provides flexibility to the profile of temporal variation (as it is
not necessarily sinusoidal). Specifically, we assign it the simple
form

f x
x

x
x , 34p( )

∣ ∣
∣ ∣ ( )=

so when p=0, t( ) jumps between two discrete values, while
larger p provides smoother transitions. Now the average flux
(over one or more oscillation periods) and root mean square
(rms) variation (not rms of flux; we take away the mean from
the flux before the rms computation to match Uttley &
McHardy 2001) are given by
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where  is a constant depending on the black hole mass and
spin as well as the latitude (θ) of the region under

consideration, Γ is the Euler gamma function, and Fc represents
a steady (time-independent) flux contribution from non-BZ
processes, such as the disk-driven one in Blandford &
Payne (1982).
Equation (35) possesses the following properties that are

used to produce the fitting to observational data in Figure 6.

1. The relationship between Favg and Vrms is approximately
linear (regardless of p choices) when t is large as
compared to m , but not so when t is small, so an
adjustment to the linear intercept can be expected (see the
top-left inset in Figure 6, where curves farther to the top-
right correspond to larger m and show greater
adjustments).

2. The external Fc simply shifts the entire Vrms versus Favg

curve toward the larger Favg side. On the other hand, the
monopole contribution m not only shifts the curve
horizontally, but also vertically, so the curve always
touches the V Frms avg= bisection line (see the top-left
inset in Figure 6). Subsequently, using m alone, we
cannot give the linear approximation to the curve a
positive intercept on the Favg axis, as is demanded by the
data. Therefore, during fitting, we have used only Fc as a
variable and simply set 0m = , while noting that future
observational data in the very low Favg regime are needed
to ascertain whether m is in fact present.

3. The power p in Equation (34) determines the slope of the
Vrms versus Favg curve at large t , with p=0 correspond-
ing to a vanishing slope, and p=1 to a slope of 1 2 .
For the observational data in Figure 6, p=0.28
provides the best fit. The f tcos( ( )) with aforementioned
choices of p are shown in the bottom-right inset of
Figure 6.

4. There is a degeneracy between  and t , so we simply set
1 = and use t alone for the fitting. The result is the red

dashed line in Figure 6, which is indistinguishable from
the best linear fit (solid black line).

Note that although we have used an oversimplified, determi-
nistic temporal evolution profile for t( ) for demonstration, the
appearance of linear correlation does not depend on this choice.
The essence is that the same process for generating the
variation is responsible for creating (a part of—we will ignore

m and Fc below for brevity) the mean flux, which is always
true with ITV, so both are proportional to the same amplitude
parameter, which is t

2 in our case. For example, if we let
t g tt( ) ( ) = with g t 2( ) be some fundamental stochastic

process in time (more appropriate for a turbulent ITV) so it has
fixed mean and variance for each—and across—data binning
periods of equal duration (different periods can of course differ
in their “volatility” t ) and let ·á ñ represent averaging over a
binning period, then we have

F g t

V g t g t

,

. 36

t

t

avg
2 2

rms
2 2 2 2

( )

[ ( ) ( ) ] ( )





= á ñ

= á - á ñ ñ

So clearly we still have a linear relationship between Favg and
Vrms, with the slope determined by the cumulants of g t 2( ) (their
counterparts in the deterministic case earlier are adjustable
with p).
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5.2. Manifestation in Jet Emission

The jets of AGNs and microquasars are complicated objects
involving much as-yet-unknown physics (Hardee 2008), but
their polarized nonthermal radiation allows for examination of
the magnetic field structure within (Begelman et al. 1984;
Wardle 2013), to which ITV in the electromagnetic field may
be relevant. Indeed, the magnetic field structure of the
quiescent (without the shocks of Blandford & Königl (1979)
that are often invoked to explain long-term variabilities) jet
flow appears to be highly nontrivial. On the one hand, an
ordered magnetic field may be required for maintaining the
jets’ structural integrity (see e.g., Rosen et al. 1999). On the
other hand, observations such as those on the inhomogeneous
linear polarization in radio signals (Jones 1988) are consistent
with there being many randomly oriented magnetic cells
(Hughes 2005; Hughes et al. 2011). Therefore, one expects
both ordered and random components of the magnetic field to
be present.

The orderliness and randomness are intertwined, but a
general trend can be gleaned from observational data. The
existence of an ordered toroidal component to the magnetic
field is supported by rotation-measure gradient records (Wardle
2013). A possibility is that a largely toroidal field surrounds the
jet, stabilizing it against disruptive Kelvin–Helmholtz instabil-
ities through magnetic tension. Such a toroidal field can be
produced by currents flowing along the jet and the backflow
(Figure 14 of Begelman et al. 1984). In the jet spine (middle in
the transverse direction), some polarization measurements have
demonstrated that the dominant magnetic field direction is
along the jet (Wardle 2013), although it is unlikely to be
unidirectional (Begelman et al. 1984). A possibility is then that
inside the toroidal field and in the jet spine, we have sheared
magnetic loops produced by a plasma velocity gradient
transverse to the jet direction, stretching loops frozen in the
plasma into elongated shapes along the jet, thus enhancing the
poloidal fields (see Figures 12 and 13 of Begelman et al. (1984)
for a visual depiction). The magnetic field in the spine is
otherwise random, as suggested by fractional linear polariza-
tion measurements that quantify magnetic randomness. Speci-
fically, the expression for fractional polarization α is (Wardle
et al. 1994; Wardle 2013)

3 sin

2 3 sin
, 37

2 2

2 2
( )a

i q
i q

=
¢

+ ¢

where ι is the ratio of the uniform over random magnetic field
strengths, and q¢ is the angle between jet and observer in the
rest frame of the jet material. Using such measurements,
Gómez et al. (2008) showed that the magnetic field is indeed
quite disordered ( 5%a ~ ) in the central spine region of the jets
(and more ordered at the edges with 15% 25%–a ~ ).

One is then faced with the question of what mechanism is
responsible for launching these magnetic loops and for creating
the disordered environment they reside in. A particularly
interesting observation is that the randomness in the magnetic
field decreases as we move outward along the jet (Wardle
2013), from an α of zero to a few percent near the base of the
jets to tens of percent at a few tens of beam widths away
(Pollack et al. 2003; Lister & Homan 2005; Gómez et al. 2008),
a trend that appears inconsistent with randomness induced by
jet flow instability. ITV turbulence provides an interesting
alternative, with the benefit of being already present in the

central engine. Aside from the turbulence in the electromag-
netic field, because ITV turns up and down the energy
extraction efficiency, it has the innate ability to produce
disturbances in the jet material’s radial velocity, encouraging
the plasma flow to also take up traits of turbulence right from
the beginning. The joint electromagnetic and fluid turbulences
not only provide a possible explanation for the microvariability
seen in jet emissions (randomness in the magnetic field
translates directly into that of the synchrotron radiation), they
are also beneficial for the random occurrences of magnetic
reconnection (i.e., they increase the rate of reconnection; see
Lazarian & Vishniac 1999), which would help birth field line
loops. ITV perturbations to the magnetic field also fragment
otherwise smooth or straight magnetic field lines, bending them
into preloops to be swept down the jet, so that the reconnection
results are more likely to be loops rather than redirected open
lines. Figure 7 depicts a couple of arbitrary magnetic field lines
of a Wald solution perturbed by a toy 0F as given by
Equation (30) (with l= 10). As more loops are formed and
subsequently sheared farther down stream, the magnetic field
becomes more ordered into the poloidal direction, producing
the aforementioned trend of decreasing randomness. Further-
more, this process occurs where energy extraction is the most
efficient, so it is not unreasonable that the resulting loops are
abundant in the more energetic spine of the jets. In contrast, if
loops are produced by kinetic instabilities, for example, they
would congregate near jet boundaries.
Finally, notice that in Figure 4(a), the perturbed field lines

are not symmetric against the equatorial plane, indicating that
ITV would likely feed energy into the two jets asymmetrically,
even causing jets to become intrinsically one-sided given the
right conditions. Observationally, one-sided or highly asym-
metric jets are not rare (see Begelman et al. (1984) and in
particular Spencer et al. (2001) and Russell et al. (2007) for
Cygnus X-1). Although relativistic beaming may help explain
the faintness of a mirror jet in some cases, some level of
intrinsic asymmetry can not be ruled out (see Section II A 4 of
Begelman et al. 1984). For example, interleaving regions of

Figure 7. (a) A couple of arbitrarily chosen magnetic field lines (red) for the
Wald solution perturbed by a 0F given by Equation (30) (l = 10). The gray
sphere represents the black hole horizon. The preloops can become properly
closed (if not already so) through magnetic reconnection later on within the jet.
Note that although these individual magnetic field lines are not axisymmetric,
there are others that are simple shifts of them in the azimuthal direction, so the
magnetic field as a whole is axisymmetric. (b) A similar field line for the
unperturbed Wald solution. The field line does not penetrate the horizon and
does not form a preloop.
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emission in jets on alternative sides have been seen in a number
of sources, suggesting a flip-flopping of an intrinsically one-
sided jet (Rudnick & Edgar 1984).

5.3. Manifestation in Disk Emission

Let us now turn to examine the detailed shape of the
microvariation PSD associated with X-ray observations. We
will formulate our arguments within the context of disk- or
corona-based inverse-Compton scattering (Bregman 1990), but
note that jet emission may also contribute (Grandi &
Palumbo 2004), and our discussion can be adapted to that
case as well. For concreteness, we take the very clean data
obtained for Cygnus X-1 and presented in Figure 2 of Uttley &
McHardy (2001), which we partially reproduce (we only take
their first flux quartile because the fourth quartile curve is
similar, and we do not need the error bars that are very small) in
Figure 8. The PSD exhibits a rich structure. For example, there
appears to be a break in the data at around 2w = Hz, marked
out with the black dashed vertical line in Figure 8. The points
to the right have a steeper linear fit than the points immediately
to the left, with slopes of s 1.51r = - and s 0.97l = - ,
respectively. And more importantly, we will have to find a
process to explain the PSD’s white-turning-into-red shape (van
der Klis 1995) to the left of the dashed line.

A leading explanation is the shot-noise model of Terrell
(1972), which we will describe in a little detail because we will
be using essentially the same mathematics. In this model, a
white noise background PSD is produced by uncorrelated shots
occurring within the disk or corona, which then decay away
over time. One possible physical realization of the shots is
spontaneously arising flares (e.g., the magnetic flares of
Poutanen & Fabian 1999) in the corona that die away
gradually. The effect of the decay is that it is a slower process
(as compared to the instantaneous leading edge of the shots)
that smears out the higher-frequency components of the shots,
resulting in a red/pink PSD for the emitted X-ray radiation at

higher frequencies, while leaving the lower frequencies
untouched and white. Mathematically, let the decay profile of
a flare occurring at t=0 be modeled by some f (t): then its
effect on the PSD is accounted for by a temporal convolution of
f(t) into the original flaring time series (a train of delta
functions), which translates into a frequency space multi-
plication by F ( )w , the Fourier transform of f(t). So the overall
PSD is multiplied by F 2∣ ( )∣w . In Terrell (1972), a decay is
“arbitrarily” chosen to be of an exponential form,
f t texpexp ( ) ( )l= - Q , where Θ is the Heaviside step function.

We see that its Fourier transform F i1 2exp [ ( )]p l w= -
naturally provides the desired flat plateau in Fexp

2∣ ∣ at lower
frequencies (see Figure 9(b)), so the choice is not entirely
arbitrary. Nevertheless, we note that other decay profiles, with,
for example, f t t t1p

p( ) ( ) ( )= + Q- , have the same general F 2∣ ∣
shape in the frequency domain, but possibly more smooth
transition regions (see Figure 9(b)). With all of these decay
profiles, however, the slope of F 2∣ ∣ at high frequencies is fixed
at −2, quite different from the s 1l » - and s 1.5r » - values.
This discrepancy is cited as the major shortcoming of the shot-
noise model. By using power-law generalizations, one can trick

Figure 8. Red dots are the microvariation PSD data for Cygnus X-1 presented
in Figure 2 of Uttley & McHardy (2001). The black dashed vertical curve
marks out the boundary between two “phases.” The blue and purple dashed
lines are local linear fits to segments of data close to the boundary, with slopes

1»- and 1.5»- , respectively. The thin blue curve is a fit using a shot-noise
model with a power-law decay function of power p=6.26. The thick black
curve is a fit with the new hot-band model having a leakage profile (38) and a
red underlying bombardment spectral density. The inset is a zoom-out of the
thick black curve (and the purple dashed line for reference), showing that it
returns to a power law at very low frequencies. In this figure, the frequency is
in units of Hz, and the power is in units of counts s Hz2 2 1- - .

Figure 9. (a) The leakage/decay profile f(t) in the time domain (see Figure 1 in
Kazanas et al. 1997) for the leakage flux f tL ( ) and the decays f texp ( ) (used in
the shot-noise model of Terrell 1972) and power law f t2 ( ). For f tL ( ), the
segments (A) and (B) correspond to the top and bottom lines in
Equation (38). (b) The frequency domain leakage profile FL

2∣ ( )∣w and its
decay counterparts Fexp

2∣ ( )∣w and F2
2∣ ( )∣w . The vertical dashed black line

corresponds to the one in Figure 8. For FL
2∣ ( )∣w , the three segments (C),

(D), and (E) correspond to the three pieces with different slopes in the inset
of Figure 8. When the power index in Equation (38) is increased from −1, as in
the case of FL

0.8 2∣ ( )∣w , for which the index is changed to −0.8, the profile
becomes similar to the decays. For the decays, the exponential decay profile
Fexp

2∣ ( )∣w has a flat plateau at low frequencies and a fixed slope of −2 at high
frequencies (see the black dashed fitting line). Power-law decay profiles (red
dashed curve) share the same general shape and the same slope of −2 at high
frequencies, but they can have a smoother transition region. For both figures,
the vertical axes are shifted arbitrarily so all curves fit into the same plot.
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the model to produce better fits to the data by placing the wider
and smoother transition regions of F 2∣ ∣ , instead of the steady,
steeply sloped region, over the observational data. The best fit
(to data on the left of the dashed line only; fitting to all data
leads to worse-looking results) is produced with p=6.26 (the
solid, thin blue curve in Figure 8). With this generalization, we
achieve a decent fit for the data points at low frequencies, but
the slope is unsurprisingly too high at higher frequencies.

Alternative generalizations introducing a wide range of
different decay timescales (Lehto 1989; Lochner et al. 1991)
can possibly achieve much better fits, as one would expect for
an increased number of available tunable parameters, but they
would also have a flat region extending all the way into
extremely low frequencies. In contrast, it has been observed
that (at least for galactic X-ray sources) a power-law PSD
resumes at frequencies much lower than the critical value at
which transition from white to red noises occurs in Figure 8, as
possibly hinted at by the uptick in the left-most data point in
Figure 8 (the extent of these data into low ω values is limited by
observation-duration constraints), so the flat region is only a
shoulder in the broader spectrum (Kazanas et al. 1997). In
addition, the standard shot-noise model (and some other
models such as self-organized criticality) is also incompatible
with the flux dependence of the variation amplitude discussed
in Section 5.1 (Gaskell 2004). We now introduce an alternative
proposal that achieves a tighter fit (with only one additional
physically motivated adjustable parameter) and a return to a
power law at very low frequencies.

Specifically, energy extracted from the black hole can travel
along magnetic field lines in the form of Alfvén waves7 (for
rapidly spinning black holes, the disk can get very close to the
horizon and so penetrate inside the magnetosphere, where
plasma waves are allowed to propagate). Since the field lines
thread through the accretion disk, energy flows would bombard
the disk and corona, heating them up to create hot bands. The
turbulent ITV would then cause not only a changing energy-
extraction rate at the source, but also a focusing and defocusing
of Alfvén waves by altering how tightly the field lines bundle.
The consequence is that the bombardment takes on a stochastic
appearance, with a PSD consistent with the electromagnetic
turbulence discussed previously. For this section, we take it to
be a Kolmogorov 5 3w- power law (but noting that making this
more flexible could result in even better fits to the data). Note
that the average high-frequency slopes of s 1.5r » - for
Cygnux X-1 and 1.55»- in similar PSDs for AGNs measured
by Lawrence & Papadakis (1993) are inconsistent with either
the standard shot-noise model (−2) or the traditional flicker
noise (−1), but are close to 5 3- .

The hot bands can then serve as sources for soft photons and
hot electrons, replacing the accretion shocks in the inhomoge-
neous hot cloud model of Kazanas et al. (1997). The hot cloud
model is constructed to explain the observed time lags between
hard and soft photons, as well as the power spectrum shape.
Specifically, Kazanas et al. (1997) propose a Comptonization-
based emission mechanism that requires the existence of large

hot clouds with most of the energy at the outer boundary (in
order to match the frequency dependence of the lags). This
model has been criticized on the grounds that such a peculiar
energy distribution is difficult to produce physically if one
assumes that the energy sponsor for the clouds is internal to the
disk. However, with our external energy source, it is natural for
hot bands or clouds to be more energetic on their boundaries
that are more exposed to bombardments. Since it takes time for
X-ray photons to escape the hot cloud (in particular, hard
photons need to experience more scattering inside the cloud to
pick up energy and thus emerge later), a leakage profile needs
to be overlaid on the energy bombardment profile to produce
the final radiation PSD, and the mathematical details become
similar to the shot-noise model (convolution in the time domain
translating into multiplications in the frequency domain), but
the underlying white shot-noise curve (also assumed for the
original hot cloud model; see below) is replaced by a red 5 3w-

power law, and a leakage profile replaces the decay profile.
For the photon leakage, simulations in Kazanas et al. (1997;

see Figure 1 therein) produced results mostly hugging the
f t t tL

1( ) ( )= Q- profile at small t. At larger t, the simulations
exhibit a transition from the power law into an exponential
cutoff that declines much faster. We denote the time when this
occurs as C1, so the leakage profile is

f t
At t C

At e t C

, 0 ,

, .
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In the frequency domain, we then have
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where γ is Euler’s constant, while Si, Ci, and Ei are the sine,
cosine, and exponential integral functions. Note we have
introduced a B factor multiplying onto ω, which makes it easier
to move FL ( )w across frequencies by hand to zero in on an
initial guess for the fitting. This corresponds to a rescaling of t
by multiplying it with B1 , resulting in the relationships

Bl l= ¢ and C BC1 1= ¢. We have also introduced an overall
cutoff at C C2 1¢ ¢ (i.e., f t 0( ) = exactly when t BC2> ¢),
which helps with the Fourier transformation routine but has no
physical effects because the exponential suppression factor has
already ensured that f t 0L ( ) » at t BC2= ¢, soC2¢ can be chosen
to have any arbitrary large value. Adjusting the remaining
parameters in Equation (39) via a simple, selective (accepting a
step only when it leads to an improvement), random-walk
procedure produces the best-fit PSD as the thick black curve in
Figure 8, corresponding to the parameter values (leaving out
the unimportant overall amplitude A¢, which is degenerate with
the amplitude of the underlying bombardment profile)

B C15.0, 4.98, 0.577, 401 ( )l» ¢ » ¢ »

translating into

C s0.333, 8.63 . 411 ( )l » »

The f tL ( ) and corresponding FL ( )w profiles with these
parameters are shown in Figure 9. We note in particular that
the C1 value in Equation (41) is consistent with the results of

7 The waves propagating inside a force-free magnetosphere abutting the thin
vacuum layer can be divided into two categories: the fast magnetosonic waves
and the Alfvén waves. A feature worth noting is that the Alfvén waves are good
candidates for carrying energy out of the central engine region (see Brennan
et al. 2013; Zhang et al. 2015 for an exact analytical solution that does so
efficiently) because their propagation is regulated to be along magnetic field
lines, rather than scattering randomly. Fast magnetosonic waves, on the other
hand, propagate more like vacuum electromagnetic waves.
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Kazanas et al. (1997), obtained using realistic astrophysical
parameters for Cygnus X-1.

We reiterate that although our leakage profile is similar to
those from the simulations of Kazanas et al. (1997), the power
to t in our f tL ( ) is precisely −1, which creates a more
interesting profile for FL ( )w , as shown in Figure 9(b). In the
log–log plots, the profiles of FL

2∣ ( )∣w and the bombardment
profile of 5 3w- (a straight line with slope 5 3- ) combine by
addition, so the three segments marked (C), (D), and (E) in
Figure 9(b) create three regimes of different slopes (see the
inset in Figure 8). Piece (D) neutralizes the bombardment
slope 5 3- , creating the flat shoulder, while segments (C) and
(E), being much flatter themselves, have less impact. In
contrast, Kazanas et al. (1997) had leakage profiles whose
power indices are close to but a little more positive than −1,
resulting in simpler FL

2∣ ( )∣w profiles (see the dashed blue curve
in Figure 9(b)), which in fact more closely resemble the decay
profiles like Fexp

2∣ ( )∣w . Therefore, those leakage profiles need
to be overlaid on a white-shot-noise profile in order to produce
a white-noise plateau, just as in the shot-noise model. In other
words, in either the shot-noise model or the original hot cloud
model, a white underlying shot noise has to be present in the
first place, which is responsible for the plateau, and is masked
at higher frequencies by shorter timescale phenomena related to
the evolution of each individual shot. At the other end of the
spectrum, there is no natural way to mask the white noise at
very low frequencies, so in order to return to a power law there,
one has to invoke new and separate mechanisms (such as
accretion-rate fluctuations that are due to variations in the
viscosity parameter (Lyubarskii 1997)). Our proposal works
quite differently. The bombardment profile is a red noise, and
nothing is intrinsically white, so the white-noise shoulder is
necessarily approximate and transient, and the morphology of
the entire PSD can be accounted for with a single mechanism.

6. CONCLUSION

We caution that most, if not all, of the observational
phenomena discussed above admit alternative explanations,
mostly involving more complicated disk and corona dynamics
(e.g., the existence of many different decay scales, fractal chain
of flares, and self-organized criticality in disk fluctuations),
and, indeed, multiple mechanisms are likely at work. The
particular proposal introduced here has some features that we
think are desirable and make it a useful candidate. First of all,
ITV is an integral part of the fundamental energy process and
propagates at the speed of light, so it is capable of producing
the observed large variations that evolve on a light-crossing
(and not viscous) timescale (Gaskell & Klimek 2003). It is also
common across different celestial objects with mass scales
spanning decades. Specifically, the ITV dynamics is largely
governed by the properties of the black holes, whose simplicity
(as exemplified by, e.g., no-hair theorems (Chrusciel 1994;
Heusler 1998) when the holes are in isolation) leads to simpler
scaling laws (an example is the numerical computation of
gravitational waveforms for binary black hole coalescences,
where only one simulation is needed, and then the resulting
waveform applies to different mass scales after a simple
rescaling of the axes), so ITV in AGNs is not expected to
qualitatively differ from that in microquasars and quantitatively
should scale proportionally according to black hole mass. One
commonality that jumps out immediately is that, although we
have taken Cygnus X-1 as an example in Section 5.3, the PSDs

for AGNs share remarkably similar features (see, for example,
Figure 1 of Romero et al. (2002) for blazar 0208–512). In
addition, the characteristic variation timescale indeed scales
with the black hole mass (Edelson & Nandra 1999; Gaskell &
Klimek 2003).
Although we have initiated our ITV discussions in the

context of evading the Meissner effect and thus have
concentrated on rapidly spinning black holes, we note that
ITV may nevertheless be present around more moderately
spinning holes as well. So long as it increases the horizon flux
as compared to the otherwise stationary background (not yet
known at the present time), the discussions in Section 5 still
apply. It is, however, likely that ITV is less violent when
teamed with lower spins. Tchekhovskoy et al. (2010) argues for
higher spin in radio-loud sources, and, on the other hand, the
variabilities of the radio-loud and radio-quiet objects tend to be
more violent and quiescent, respectively, especially on the
shorter timescales (Bregman 1990), which would at first sight,
at least, be consistent with more violent ITV for sources
powered by more rapidly spinning holes.
Finally, due to the difficulty in quantitatively solving joint

evolution systems containing electromagnetic, general relati-
vistic, fluid dynamic, and radiation microphysical ingredients,
some of the discussions are limited to a vastly simplified and
heuristic level. We hope that further studies in the future,
especially through numerical simulations, will provide more
concrete predictions to compare with data and perhaps reveal
more intriguing and unexpected properties of electromagnetism
near rapidly spinning black holes. In particular, the ITV
turbulence needs to be verified numerically and its energy
spectrum better characterized, through targeted studies with
sufficient accuracy to resolve small-scale features and the
ability to distinguish randomness caused by ITV and numerical
errors, so overzealous evolution-stabilization measures are not
triggered to artificially suppress ITV. The numerical code may
also need to be able to account for the important structures
surrounding a black hole in an astrophysical setting, to see if
energy flows reflected off, for example, the interstellar medium
or the ion-supported or dusty torus result in a black hole bomb-
like condition (see Press & Teukolsky (1972), but with the BZ
process replacing superradiance and the mirror becoming
possibly leaky and only partially enclosing), which would
benefit the self-sustainability of ITV.
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