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An Equilibrium Pricing for OTC Derivatives with 

Collateralization. Application of Economic Premium Principle

Kazuhiro TAKINO*

Abstract
  In this article, we propose an equilibrium pricing rule for the contingent claims by 

applying the economic premium principle initiated by Bühlmann (1980). The derivative 

markets in our model are over-the-counter (OTC) markets and have counterparty risks. 

We reconstruct the economic premium principle to explicitly handle the concrete form 

of the payoff function and the claim volume, and then we provide the equilibrium pricing 

rule for the OTC derivatives with the counterparty risks and the collateral agreements. We 

also demonstrate whether our pricing approach is consistent with an another equilibrium 

pricing rule in the point of the sensitivity of derivative prices.

JEL Classification: G10, G12, G13
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1. Introduction
In this article, we consider the OTC derivative pricing model with a collateral agreement. We 

especially provide a pricing rule by applying the economic premium principle. The economic 

premium principle was initiated by Bühlmann (1980) and some researchers have discussed this 

principle recently (Iwaki et al. 2001, Iwaki 2002, Karatzas and Shreve 1998 and Kijima et al. 2010). 

The concept of this pricing method is to determine the pricing kernel or state price density through 

the market equilibriums.

After the financial crisis in 2008, the counterparty risk has been in focus for many practitioners 

and researchers (Acharya and Bisin 2011, Duffie and Zhu 2011, Fujii and Takahashi 2013, Gregory 

2010 and Takino 2013a). The collateralization is one of the methods used to reduce such a risk as 

used in the money market. Recently, G20 in 2013 decided to make collateralization obligatory in 

the OTC swap market. The derivative pricing models with the collateralization have been studied 
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by some researchers. Johannes and Sundaresan (2007) examined the effects of the collateralization 

on the swap rate. They argued and showed that the collateralization increases the swap rate 

through the collateral cost. Fujii and Takahashi (2013) consider more practical model including 

the asymmetric and imperfect collateral agreement, and they showed that the derivative price is 

affected by the adjustment of the collateral cost arising from the imperfect collateral agreement. 

These pricing approaches are provided under the risk-neutral pricing method. 

An equilibrium pricing approach has been recently used to price the derivatives with collateral. 

Takino (2015b) derived the equilibrium pricing rule from the demand and supply function for 

the derivative and examined the effects of the collateralization on the derivative transactions. He 

showed that the effect of the collateralization on the option price and the swap rate are monotone 

and collateral amount increases the option price. He also argued that the impact on the swap 

rate is not significant rather than the option case because the counterparty risk bilaterally arises 

in the swap contract. The equilibrium rule in Takino (2015b) is determined by maximizing the 

investor's expected utility for her/his wealth, and then the collateralization affects the price through 

the demand and supply function influenced by the collateralization if the wealth is reflecting the 

collateral amount.

In contrast, there is the equilibrium pricing method without the demand and supply function 

in explicit. This approach was the so-called economic premium principle proposed by Bühlmann 

(1980), where the pricing kernel or state price density is determined from the market equilibrium. 

The method given by Bühlmann was extended to a multiperiod model by Iwaki et al. (2001) and 

the pricing approach, where the pricing kernel is derived from the utility maximization for the 

consumption (Iwaki 2002, Karatzas and Shreve 1998). Kijima et al. (2010) further applied this 

approach to evaluate the emission credit in the point of general equilibrium. The economic premium 

principle provides the linear pricing method like an arbitrage pricing theory. In this work, we 

consider the utility maximization problem for the wealth and the problem that explicitly treats the 

volume of the claims. We then provide the equilibrium pricing rule by determining the pricing 

kernel under the market equilibrium. This formation enables us to consider various derivative 

payoff formations, then we can construct the pricing rule that takes into account the counterparty 

risks and the collateralizations. Of course, our formula is able to accommodate the incomplete 

market models. In this study, we assume that the collateral amount is not accounted into the 

participant's  wealth to utilize the economic premium principle and to eliminate possibility of default 

for the delivery of the collateral. The agent can receive the collateral if the counterparty defaults. 

These settings enable us to identify the pricing kernel. Our pricing approach is the same as those 

provided in previous researches (Fujii and Takahashi 2013, Johannes and Sundaresan 2007) except 

that the change of measure (state price density) is given by the equilibrium criterion. Thus, our 
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study gives an another equilibrium pricing rule different from Takino (2015b), and verifies how 

the effects of the collateralization on the derivative price depend on the pricing rule included in the 

setting of the collateralization.

At this point, we have an interest in whether our equilibrium pricing rule is consistent with 

another equilibrium methods. Are the characteristics of the pricing rule given by former studies 

maintained in our approach? So, we examine the sensitivity analysis for both pricing approaches i.e., 

our formula and the pricing rule provided by Takino (2015b). As a result, we show that the effects of 

collateralization on the option price and the swap rate are almost the same as those demonstrated by 

Takino (2015b).

The remainder of the article is organized as follows: In the next section, we set the financial 

market model with the collateral agreement. In Section 3, we derive the equilibrium prices for 

derivatives after determining the pricing kernel. In Section 4, we examine the sensitivity analysis of 

the derivative prices with respect to the collateral amount. Section 5 summarizes this work.

2 Model and Collateralization

2.1 Financial Markets with Counterparty Risk
There are J market participants in our financial market, and we denote the set of market 

participants by J , i.e., J = {1, 2, . . . , J }. They, respectively, invest their money in the portfolio 

consisted of the risk free asset and the risky business and also trade the derivatives. The motivation 

to enter the derivative contract is to hedge or eliminate the business risk as considered in Kijima et 

al. (2010), for instance. We denote by S j
t the risky business value at time t (0 ≤ t ≤ T ) invested from 

the participant j ∈J where T denotes the maturity date of the derivatives introduced in the following. 

We assume that the risky business is traded in the large market and the agents can invest their 

money in the risky business at the unit price S j
t at time t. Note that, because we examine the partial 

equilibrium for the derivative contracts in this study, we suppose that the participant j can trade S j 

only for convenience. In order to extend the general equilibrium, the assumption is eased such that 

some or all market participants are able to invest their money into other businesses. The values of 

the risky businesses are correlated with a common asset price which is assumed to be nontraded in 

the market and the price process is denoted {Yt}0≤t≤T . This assumption is one of the incomplete 

market models and the asset Y corresponds to the price indices of the stock markets, the weather or 

energy indices (e.g., Bessembinder and Lemmon (2002), Cao and Wei (2004), Kijima et al., (2010), 

Lee and Oren (2009), Yamada (2007)) and so on. The market participants are also supposed to trade 

the European-type derivatives written on Y and its payoff function at maturity T is defined as follows:

H(T ) := H(T, YT ).
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We consider the call option and the swap contract and assume that those contracts are entered 

at time 0. We suppose that they behave as the price taker in the financial markets that included the 

derivative market like risky business markets. The remaining money is deposited into the bank 

account with the interest rate r (i.e., risk-free asset). The value of the bank account at time t is Bt = 

ert with B0 = 1. 

The counterparty risk in the derivative contract is the possibility that the participants fail 

to provide full payout of H(T ). We assume that the default event and payment depend on the 

counterparty’s business value at maturity as modeled by Henderson and Liang (2014). They 

modeled the counterparty risk with a so-called constructed form model as examined by Merton 

(1974). That is, the default event of agent j by 1D
j
 is represented by

1Dj = 1Sj
T<L

for a certain level L. The payment received by agent j ∈J is represented by ηi(S
i
T )H(T ) (i �= j)  when 

the counterparty i ∈ J defaults, where h
i
(・) is the recovery function for the participant i’s default. 

At this point, for the option contract, we suppose that the buyer of the option does not fail to pay the 

option fee when the contract is entered. Furthermore, there are possibilities for both counterparties 

to fail to pay for the swap contract. We express the long holder and the short holder of the 

derivatives by j = l and j = s, respectively.

2.2 Collateral Agreement
To hedge the loss due to the counterparty risk, the agent who has a positive exposure could 

receive the cash collateral from the counterparty with a negative exposure. We assume that the 

positive or negative exposure is determined at the marked-to-market (MtM) date, and the MtM is 

priced through the pricing rule, which is independent of the agent’s risk preference. We denote 

the value of the MtM at time t by Vt. If the MtM value of the derivative contract held by one market 

participant is positive, she/he could receive the collateral with the counterparty’s default. We also 

introduce the coverage ratio φ (≥ 0), and then the collateral amount is calculated by

C(φ) = φVt  (2.1)

where t means the MtM date. We finally suppose that the cash collateral is deposited into the 

account aside from the wealth accounts of the participants. This assumption implies that the 

collateralization does not affect the agent’s wealth.

2.2.1 Option Payoff with Collateral Agreement
The buyer (or long holder) of the option always has positive exposure. So she/he is entitled to 

receive the collateral at maturity when the seller of the option defaults. We set the MtM date by t = 0, 
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which is the contract date of the option. The collateral amount is then

C(φ) = φV0.

Under these conditions, we provide the payoff gopt(T) of the option subject to the collateral 

agreement at maturity. We formulate the value of g(T) from the point of the long holder, that is, 

gopt(T ) = H(T )(1− 1Ds) + (ηs(S
s
T )H(T ) + C(φ))1Ds  (2.2)

where 1Ds
 denotes the default indicator function for the option seller. The first term is the payoff of 

the option without defaults. The second term corresponds to the default payment of the option. If 

the participants default, the long holders have the default payments of ηs(Ss
T )H(T )  and additionally 

obtain the collateral amounts. For the short holder, the formula is given by adding minus sign to gopt.

2.2.2 Swap Payoff with Collateral Agreement
The counterparty risk arises from both sides in the swap contract unlike the option contract. 

The standard swap valuation determines the swap rate such that the present value of the contract 

equals to zero. This implies that the exposures of the derivative contract for both counterparties are 

vanished. As introduced in Johannes and Sundaresan (2003), we consider the two-period model.

We suppose that the MtM is done once for (0, T ) and the date of MtM is denoted by t ∈ (0, T).

Then, the collateral amount at the MtM date t is given by

C(φ) = φVt.

The payoff gswp(T) of this swap contract to the long holder is represented by

gswp(T ) = YT (1− 1Ds) + (ηs(S
s
T )YT + C(φ))1Ds −K(1− 1Dl

)− (ηl(S
l
T )K + C(φ))1Dl

.  (2.3)

We rewrite (2.3) as

gswp(T ) = gY (T )−Kg⊥(T )

where

gY (T ) = YT {1− (1− η(Ss
T ))1Ds}+ C(φ)(1Ds − 1Dl

),  (2.4)

g⊥(T ) = 1− �
1− ηl(S

l
T )

�
1Dl

.

The long holder (short holder) receives YT (K) if the seller does not default at maturity and obtain 

ηs(S
s
T )YT +C(φ) (ηl(S

l
T )K +C(φ))  if the seller defaults. The payoff function for the short holder is 

given by adding minus sign to gswp.

2.3 Participant’s Total Wealth
We derive the equilibrium price by solving the utility maximization problem for the terminal 

wealth which is constructed with the portfolio and the derivative positions. To this end, we set the 

wealth equation for the market participant.

Agent j ∈J has the initial wealth x j
0 and first allocates it to the risky business and the derivative 
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contract. The rest of the money is deposited in the bank account with a constant interest rate r. The 

money amount invested in the risky business by agent j ∈J is denoted by pj := pj(0). We assume 

that the agents do not change the position at all for (0, T]. The volume or the position of the claim 

which the participant j ∈J  is willing to trade, is denoted by δjkj (kj ≥ 0) . Where d j = 1 corresponds 

the case of the participant j = l, and d j  = －1 relates the case of j = s. Recall, l and s mean the long 

holder and the short holder, respectively. The unit price of the claim g is given by the formula

E[E(T )g(T )]  (2.5)

where E(T) is a pricing kernel or state price density at time T. We determine E through the market 

equilibrium.

The money w j
0 deposited into the risk-free asset for the participant j ∈ J  at time 0 is 

wj
0 = xj

0 − πj − δjkjE[E(T )g(T )].

And the terminal wealth is given by

Xj(T ) = wj
0BT +

πj

Sj
0

Sj
T + δjkjg(T ) = (xj

0 − πj − δjkjE[E(T )g(T )])BT +
πj

Sj
0

Sj
T + δjkjg(T )  (2.6)

for the claim g.

3 Equilibrium Price
In this section, we provide the pricing formula based on the economic premium principle 

(Bühlmann 1980). The pricing formula is given by (2.5), which is sufficient to determine the pricing 

kernel E.

We suppose that the preference of the market participant  j ∈J  is represented by the exponential 

utility function with the risk-averse coefficient γj , that is

Uj(x) = − 1

γj
e−γjx.

We denote the inverse function of U'j by Ij , that is,

Ij(x) = (U �)−1(x).

Agent j ∈ J maximizes her/his expected utility from the terminal wealth with respect to the claim 

volume. The objective for the participant j is then given by

E[Uj(Xj(T ))] −→ maximize w.r.t. kj

where Xj is given in (2.6).

    In order to derive the market equilibrium price, we need the clearing condition.

Definition 3.1.  The market equilibrium is represented by the following conditions:

1. 
�J

j=1(x
j
0 − πj) = R0

2. 
�J

j=1
πj

Sj
0

Sj
T = RT
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3. 
�J

j=1 δjkj = 0  (market clearing condition of the derivatives)

where kj ≥ 0 for all j.

Under Definition 3.1, we provide the pricing kernel.

Theorem 3.1. We suppose that our market satisfies the above assumptions and Definition 3.1. The 

terminal wealth of the participant j is given by (2.6). Under the equilibrium, the pricing kernel E is then 

given by

E(T ) = e−γRT

BTE[e−γRT ]  (3.1)

where 1γ =
�J

j=1
1
γj
.  

Proof. The first-order condition of the utility maximization is

E[U �
j(Xj(T ))g(T )] = E[U �

j(Xj(T ))]E[E(T )g(T )].

From this equation, we have

E(T ) = U �
j(Xj(T ))

E[U �
j(Xj(T ))]

=:
U �
j(Xj(T ))

Mj

where Mj is a constant. Thus it holds

(xj
0 − πj − δjkE[E(T )g(T )])BT +

πj

Sj
0

Sj
T + δjkjg(T ) = Ij(MjE(T ))  (3.2)

for j ∈J.

From Definition 3.1, under the market equilibrium, summing up (3.2) for all j leads

R0BT +RT =
J�

j=1

Ij(MjE(T )).  (3.3)

For the exponential utility case defined above, the inverse function Ij is

Ij(x) = − 1

γj
lnx.

(3.3) is then rewritten as

1

γ
ln E(T ) = M̄ −RT  (3.4)

where 
1
γ =

�J
j=1

1
γj  and M̄  are constants. So we have

E(T ) = eγ(M̄−RT ).  (3.5)

Taking expectation both sides of (3.5) gives

E[E(T )] = eγM̄E[e−γRT ].

Since E[E(T )] = B−1
T

, the constant 
1

γ
ln E(T ) = M̄ −RT  is given by
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M̄ =
1

γ
ln

�
1

BTE[e−γRT ]

�
.

Substituting this into (3.5) completes proof.

Theorem 3.1 with (2.5) immediately leads the equilibrium option price and swap rate respectively.

Corollar y 3.1. We suppose that there are one long holder and one short holder for the 

derivatives in our market, i.e., J = {l, s}. The equilibrium option price p(φ) with the coverage ratio  

φ is represented by

p(φ) = E[E(T )H(T ){1− (1− ηs(S
s
T ))1Ds}] + φV0E[E(T )1Ds ].  (3.6)

The equilibrium swap rate K(φ) with the coverage ratio φ is given by

K(φ) =
E[E(T )(YT {1− (1− η(Ss

T ))1Ds}] + φE[E(T )Vt(1Ds − 1Dl
))]

E[E(T ){1− (1− ηl(Sl
T ))1Dl

}] .  (3.7)

4 Sensitivity Analysis
In this section, we examine the effects of the collateralization on the derivative prices through the 

sensitivity analysis.

4.1 Option Case
We first consider the effect of the counterparty risk on the option price without the collateral. 

Substituting φ = 0 into (3.6) yields the equilibrium option price p(0) without the collateral

p(0) = E[E(T )H(T ){1− (1− ηs(S
s
T ))1Ds}].

The option price pwoc without the counterparty risk is given by

pwoc = E[E(T )H(T )].

From the fact that

1− (1− ηs(S
s
T ))1Ds ≤ 1,

it holds

pwoc ≥ p(0).

Therefore, the counterparty risk decreases the option price according to the recovery rate and the 

degree of the default risk.

Next we show the impact of the collateralization on the option price. From (3.6), we have

∂p(φ)

∂φ
= V0E[E(T )1Ds ] > 0.  (4.1)

(4.1) means that the option price increases with the increase of the coverage ratio. Thus, 

the collateralization increases the option price. From the above arguments, the effects of the 

collateralization on the option price are summarized as follows.
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Proposition 4.1. In the option contract, the collateralization affects the derivative price in the 

following ways:

1. The counterparty risk decreases the equilibrium option premium

2. The collateralization monotonically raises the option price

4.2 Swap Case
From (3.7), we have

∂K(φ)

∂φ
=

E[E(T )Vt(1Ds − 1Dl
))]

E[E(T ){1− (1− ηl(Sl
T ))1Dl

}] .  (4.2)

The sign of (4.2) is dependent on the difference between E[E(T )Vt1Ds ] and E[E(T )Vt1Dl
] because 

the denominator of (4.2) is a positive. However, (4.2) does not depend on the coverage ratio. This 

implies that the effect of the collateralization on the swap rate is a monotone as demonstrated by 

Takino (2015b). We also have an interest in whether our pricing approach is consistent with an 

another equilibrium pricing approaches. To check this, we consider the pricing formula of Takino 

(2015b) as an example and implement the price change. In the next section, we implement the signs 

for both formula under a certain model.

4.2.1 Numerical Result
We use the two-period multinomial tree model demonstrated by Takino (2015b), the model is 

based on Musiela and Zariphopoulou (2004).

Set two time periods t = 0, 1
2T, T  and suppose that the economy varies four states in a time period. Time 

t = 1
2T   is the MtM date. The finite probability space is defined by (Ω,F ,P)  with Ω = {ω1, ω2, ω3, ω4}  and 

F = 2Ω . The canonical probability measure of the state ωi (i = 1, 2, . . . , 4) is assumed

Pi := P(ωi).

The variations of prices S j
t ( j = l, s) and Y are modeled by a multinomial tree model. The variation of 

S j ( j = l, s) for a period is given by

ΔSl(ωi) =
Sl
t+Δt

Sl
t

=

�
ul, i = 1, 2,

dl, i = 3, 4,
ΔSs(ωi) =

Ss
t+Δt

Ss
t

=

�
us, i = 1, 4,

ds, i = 2, 3,

where Δt = 1
2T  and

uj = eσj

√
Δt, dj = e−σj

√
Δt

for j = l, s. And, the variation of Y is given by

ΔY (ωi) =
Y l
t+Δt

Y l
t

=

�
uY , i = 1, 3,

dY , i = 2, 4
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where

uY = eσY

√
Δt, dY = e−σY

√
Δt.

Next, we set the default events and the recovery rate. We use the constructed model to model the 

default event, that is, there exists threshold Lj(> 0) ( j = l, s), the agent fails to provide full payment 

of the claim if the terminal business value S j
T  is less than Lj . Then, the default indicator function is 

represented by

1Dj = 1Sj
T<Lj

for j = l, s. We also assume Sj
0d

2
j < Lj (j = l, s) .  The recovery rate is defined by

η(Sj
T ) = ηj

Sj
T

Lj

where ηj ∈ [0, 1] is a constant for j = l, s.

The MtM for the swap contract is priced by the arbitrage pricing method. The risk-neutral 

martingale measure Q  is obtained by ad-hoc way as follows: By solving
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4�
i=1

QiYΔt(ωi) = BΔtY0

4�
i=1

Qi = 1

where Qi := Q(ωi)  ( i = 1, 2, . . . , 4), we obtain the marginal probability

Q := Q1 +Q3 =
BΔt − dY
uY − dY

.

We use the parameters used in Takino (2015b), and these are as follows: P2 = 0.15, P3 = 0.05, S l
0 

= 100.0, σl = 0.1, γl = 0.0002, S s
0 = 100.0, σs= 0.4, γs = 0.0001, πl =－154048.32, πs = 26590.17, Y0 

= 100.0, σY = 0.2,  ηl = 0.5, Ll = 90.0, η s = 0.5, Ls = 90.0, r = rc = 0.05 and T = 1.0. We implement for 

various P4 such that

P1 = 1− (P2 + P3 + P4).  (4.3)

Under this parameter set, we implement the sensitivity to the swap rate of the collateral amount 

i.e., ∂K(φ)/∂φ   for both pricing formulae. We calculate ∂K(φ)/∂φ  for the pricing rule of (2015b) and 

E[E(T )Vt(1Ds − 1Dl
)] for our work. Note that, it is sufficient to check E[e−γRT Vt(1Ds − 1Dl

)]  only since 

E[e−γRT ]  is a constant. The result is presented in Table 1. The column of Takino (2015b) expresses the value 

of ∂K∗/∂φ  for the formula given in Takino (2015b). The column of EPP presents the value of 

E[e−γRT Vt(1Ds − 1Dl
)] .  From the table, we observe that signs of both models almost are equal. Therefore, 

there exists the case that the effects of collateralization on the swap rate are the same as the another 

equilibrium pricing approach.
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5 Summary
In this article, we have constructed an equilibrium pricing method for the pricing of the OTC 

derivatives with the collateralizations, and then have investigated the effects of collateralization 

on the derivative prices through examining the sensitivity analyses of derivative prices to the 

collateral amount. We especially examined whether the sensitivity results for our pricing rule have 

the same as those provided by the previous research. While the equilibrium pricing rule based on 

the demand and supply function has been used by some researchers, our study constructed an 

equilibrium pricing criterion based on the economic premium principle and provided the pricing 

rule with the pricing kernel. For the option contract case, we showed that the collateral amount 

monotonically increases the option price as shown in the previous research. For the swap contract 

case, our numerical results demonstrated that the sensitivities of the swap rate to the collateral 

amount under various parameters almost equal to those for previous approach. Therefore, our 

research showed that we are able to use different equilibrium pricing approaches to investigate the 

effect of collateralization on the derivative prices.

P4 Takino (2015b) EPP
0.00 0.6324 0.0000
0.05 0.2459 0.0001
0.10 - 0.0182 - 0.0002
0.15 - 0.2456 - 0.0097
0.20 - 0.4524 - 0.0524
0.25 - 0.6429 - 0.1686
0.30 - 0.8179 - 0.4222
0.35 - 0.9770 - 0.9205
0.40 - 1.1190 - 1.8605
0.45 - 1.2423 - 3.6364
0.50 - 1.3451 - 7.1177
0.55 - 1.4252 - 14.4509
0.60 - 1.4801 - 31.7709
0.65 - 1.5071 - 80.4210
0.70 - 1.5024 - 258.5313
0.75 - 1.4605 - 1243.5795
0.80 - 1.3715 - 9541.5459

Table 1: Sensitivity of swap rate for change in coverage ratio φ. The column of Takino (2015b) 
expresses the value of ∂K∗/∂φ  for the formula given in Takino (2015b). The column of EPP 
presents the value of E[e−γRT Vt(1Ds − 1Dl

)] .



72 季刊　創　価　経　済　論　集　　　　Vol. XLV, No. 1・2・3・4

References
[1] Acharya, V. and A. Bisin, 2011. Counterparty Risk Externality: Centralized versus Over-The- Counter Markets, 

Working Paper.

[2] Bessembinder, H. and M.L. Lemmon, 2002. Equilibrium Pricing and Optimal Hedging in Electricity Forward 

Markets, The Journal of Finance, 57, 1347-1382.

[3] Bühlmann, H., 1980. An Economic Premium Principle, Austin Bulletin, 11, 52-60.

[4] Cao, M. and J. Wei, 2004. Weather Derivatives Valuation and Market Price of Weather Risk, Journal of Futures 

Markets, 24, 1065-1089.

[5] Duffie, D. and H. Zhu, 2011. Does a Central Clearing Counterparty Reduce Counterparty Risk?, Review of Asset 

Pricing Studies, 1, 74-95.

[6] Fujii, M. and A. Takahashi, 2013. Derivative Pricing under Asymmetric and Imperfect Collateralization and CVA, 

Quantitative Finance, 13, 749-768.

[7] Gregory, J., 2010. Counterparty Credit Risk: The New Challenge for Global Financial Markets. Wiley, New York.

[8] Iwaki, H., M. Kijima, and Y. Morimoto, 2001. An Economic Premium Principle in A Multiperiod Economy, 

Insurance: Mathematics and Economics, 28, 325-339.

[9] Iwaki, H., 2002. An Economic Premium Principle in A Continuous-Time Economy, Journal of the Operations 

Research Society of Japan, 45, 346-361.

[10] Henderson, V. and G. Liang, 2014. A Multidimensional Exponential Utility Indifference Pricing Model with 

Application to Counterparty Risk, Working Paper.

[11] Johannes, M. and S. Sundaresan, 2007. The Impact of Collateralization on Swap Rates, Journal of Finance, 62, 

383-410.

[12] Karatzas, I. and S.E. Shreve, 1998. Methods of Mathematical Finace, Springer-Verlag, New York.

[13] Kijima, M., A. Maeda and K. Nishide, 2010. Equilibrium Pricing of Contingent Claims in Tradable Permit 

Markets, Journal of Futures Markets, 30, 559-589.

[14] Lee, Y. and S.O. Oren, 2009. An Equilibrium Pricing Model for Weather Derivatives in a Multi-cmmodity Setting, 

Energy Economics, 31, 702-713.

[15] Merton, R.C., 1974. On the Pricing of Corporate Debt: The Risk Structure of Interest Rates, Journal of Finance, 29, 

449-470.

[16] Musiela, M. and Zariphopoulou, T., 2004. A Valuation Algorithm for Indifference Prices in Incomplete Markets, 

Finance and Stochastics, 8, 399-414.

[17] Takino, K., 2015a. An Equilibrium Model for the OTC Derivative with the Counterparty Risk via the Credit 

Charge, International Journal of Financial Markets and Derivatives, 4, 97-121.

[18] Takino, K., 2015b. An Equilibrium Model for the OTC Derivatives Market with A Collateral Agreement, Preprint.  

Available at: http://ssrn.com/abstract=2669898

[19] Yamada, Y., 2007. Valuation and Hedging of Weather Derivatives on Monthly Average Temperature, The Journal of 

Risk, 10, 101-125.


