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Abstract

In the present note we demonstrate how to implement the Lee and Yu (2010) procedure
for fixed effects spatial panel data models available from the R (R Development Core
Team 2012) package splm (Millo and Piras 2012). Additionally, we also show how to
compute the impact estimates introduced by Kelejian, Tavlas, and Hondroyiannis (2006)
and formalized in LeSage and Pace (2009). Unlike Matlab (MATLAB 2011), there was no
R function specific to static panel data models for the calculation of the impact measures.
After receiving numerous requests from the users of splm, we decided to extend the cross
sectional functions available from spdep (Bivand 2013) to spatial panel data models.

Keywords: Spatial Panel Data Models, R, Computational Methods, Impact Measures.

1. Introduction

The present note has two objectives. On the one hand, we describe a recent addition to the
R package splm (Millo and Piras 2012) that implements the transformation that has been set
forth by Lee and Yu (2010) for fixed effects spatial panel data models. On the other hand,
we show how to implement the impact measures introduced by Kelejian et al. (2006) and
formalized in LeSage and Pace (2009) using the infrastructures available from two of the R
libraries: spdep (Bivand 2013) and splm.

Lee and Yu (2010) propose an alternative estimation method based on a transformation ap-
proach. Also in the spatial panel case, the “classical” approach to eliminate the individual
effects using the deviation from the time mean operator would generate residuals that are
linearly dependent over the time dimension. To avoid this, they propose a different transfor-
mation based on the orthonormal eigenvector matrix of Jp = (Ip — %LL’ ). Unlike the direct
approach, the orthonormal transformation yields consistent estimators with properly centered
distributions.

Additionally, the structure of dependence embedded in spatial regression models is more
complicated than other traditional models (LeSage and Pace 2009). A change in a single
observation associated with any of the explanatory variables produces a change in the ob-
servation itself (direct impact), as well as in all other observations (indirect impact). There
are methods available from spdep to calculate these impact measures, but splm did not in-
clude any additional functions specific for panel data. However, splm only deals with static
panel models. Cross sectional methods, available from spdep, can be extended very easily to
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the spatial panel data case. For the convenience of the users, we wrote a wrapper function
adapting the various panel objects in order to be able to apply the cross sectional methods
to them. In the second part of the present paper we demonstrate the steps that are needed
to undertake this task. We also compare the evidence obtained in the paper with available
codes from Matlab.

2. Preliminaries

To illustrate our examples we use the same dataset as in Millo and Piras (2012). The examples
in their paper are illustrated using the widely known Munnell (1990) data on public capital
productivity in 48 US states observed over 17 years, available from the R package Ecdat
(Croissant 2010).

Munnell’s model is a Cobb-Douglas production function that relates the gross social product
(gsp) of a given state in a given year to the input of public capital (pcap), private capital
(pc) and labor (emp). State unemployment rate (unemp) is meant to capture business cycle
effects. The model formula is defined at the end of the following script (after loading the
library and sourcing the data) and includes a constant term (that will be eliminated by the
fixed effects transformation).

R> library("splm")
R> data(Produc, package = "Ecdat")
R> fm <- log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp

The spatial weighting matrix based on binary contiguity for the US states is included in splm.
We also transform the weighting matrix into a 1istw object using infrastructure from the
spdep package, and the 1listw object into a sparse Matrix (Bates and Maechler 2013):

R> data(usaww)
R> lwstates <- mat2listw(usaww, style ="W")
R> sparse.W <- listw2dgCMatrix(lwstates)

3. Lee and Yu transformation approach

The model below illustrates a relatively new characteristic of splm, that is the implementation
of the asymptotic variance covariance matrix for a fixed effects model with both lags (i.e., the
spatial lag of the dependent variable as well as the spatially autocorrelated residuals). In fact,
the only available feature in the previous version of the package was the numerical Hessian,
and no asymptotic matrix was calculated for this case.! The results below are comparable to
those on pg. 13 of Millo and Piras (2012). While the coefficients are exactly the same, the
standard errors are slightly different. The standard errors below are obtained with an exact
calculation based on the asymptotic variance covariance matrix (setting the options LeeYu
and Hess to FALSE), while the standard errors in Millo and Piras (2012) were obtained by

! An asymptotic variance covariance matrix was calculated both for the fixed effects spatial lag and for the
fixed effects spatial error model.
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means of a numerical Hessian. As it can be observed, the difference is not substantial and no
changes in the statistical significance of the coefficients is apparent. This evidence confirms
the fact that the numerical Hessian implemented in R and used by previous versions of splm
is extremely reliable.?

R> Sarar_FEML_noLY <- spml(fm, data = Produc, listw = lwstates,
+ model = "within", spatial.error= "b", effect = "individual",
+ method = "eigen", lag = T, LeeYu = F, Hess = F)

R> summary(Sarar_FEML_noLY)

Spatial panel fixed effects sarar model

Call:

spml (formula = fm, data = Produc, listw = lwstates, model = "within",
effect = "individual", lag = T, spatial.error = "b", method = "eigen",
LeeYu = F, Hess = F)

Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-0.1340 -0.0221 -0.0032 0.0172 0.1750

Coefficients:

Estimate Std. Error t-value Pr(>|tl)
lambda 0.0885760 0.0263125 3.3663 0.0007618 ***
rho 0.4553116 .0425384 10.7036 2.2e-16 *x*x

log(pcap) -0.0103497
log(pc)  0.1905781

0
<
.02565345 -0.40563 0.6852418
.0242829 7.8483 4.219e-15 **x*
<
0

O O O O O

log(emp) 0.7552372 .0290385 26.0081 2.2e-16 **x
unemp -0.0030613 .0010315 -2.9678 0.0029998 *x*
Signif. codes: O '**xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

R> Sarar_FEML_noLY$sigma2
[1] 0.0009966284

To implement the Lee and Yu (2010) transformation which yields consistent estimator of the
variance parameter also when T is small, the option LeeYu should be set to TRUE, with Hess
equal to FALSE.® As noted in Lee and Yu (2010), the estimators for the other parameters
are the same as those obtained by the direct approach. The variance parameter is reported
after the model summary and is equal to 0.001058918. This number represents the correction

suggested by LeeYu and is simply %(}ELT where 53@ is the residuals variance. For large T,

2The numerical Hessian is implemented in the function fdHess available from nlme (Pinheiro, Bates, De-
bRoy, Sarkar, and R Core Team 2013).

3If Hess was set to TRUE, the estimate of the variance covariance matrix would have been based on the
numerical Hessian with the degrees of freedom correction.
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the ratio % limits to one, and the transformation approach has almost no effect on the

estimate of the error variance. Thus, when T is small, the transformation approach produces
a degrees of freedom correction.

R> Sarar_FEML <- spml(fm, data = Produc, listw = lwstates,
+ model = "within", spatial.error= "b",

+ lag = T, LeeYu = T, Hess = F)

R> summary (Sarar_FEML)

Spatial panel fixed effects sarar model
Call:

spml (formula = fm, data = Produc, listw lwstates, model = "within",
lag = T, spatial.error = "b", LeeYu = T, Hess = F)

Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-0.1340 -0.0221 -0.0032 0.0172 0.1750

Coefficients:
Estimate Std. Error t-value Pr(>|tl)
lambda 0.0885760 0.0271223 3.2658 0.001092 *x*
rho 0.4553117 0.0438475 10.3840 < 2.2e-16 **x*
log(pcap) -0.0103497 0.0263203 -0.3932 0.694158
log(pc) 0.1905781 0.0250302 7.6139 2.659e-14 x*x*x
log(emp) 0.7552372 0.0299322 25.2316 < 2.2e-16 *x**
unemp -0.0030613 0.0010633 -2.8792 0.003987 *x
Signif. codes: O 'xxx' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

R> Sarar_FEML$sigma2

[1] 0.001058918

R> Sarar_FEML$sigma2+* (length (unique (Produc$year))-1)/length(unique (Produc$year))
[1] 0.0009966284

The Matlab code available from Elhorst’s website,* produces the results reported in Table 1
for the one-way fixed effects spatial lag model.> In fact, Matlab does not contemplate the
estimation of the full model and, therefore, to have a real comparison, we need to estimate

the same model using the R function spml by simply setting the option spatial.error to
"none".

*http://www.regroningen.nl/elhorst/software.shtml

5The results obtained with Matlab can be reproduced using the script matlab_script.m associated with the
paper. Data and the spatial weighted matrix are also provided in a text format that can easily be read into
Matlab. All the codes are available from the author upon request.
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Table 1: Matlab results that can be obtained running the script associated with the paper.

Variables ‘Coefﬁcient Asymptot t-stat  z-probability

Inpcap —0.046677 —1.834784 0.066538
Inpc 0.186947 8.113548 0.000000
lnemp 0.624425 21.022303 0.000000
unemp —0.004478 —5.175262 0.000000
WHdep.var. 0.275965 11.738685 0.000000

Comparing the results obtained in R to those in Table 1 we note some minor differences in
terms of the estimated coefficients. These differences, however, are most likely due to the
use of different optimizers between the two softwares.5 With regard to standard errors, the
two implementations both return very similar figures. It is interesting that the coefficient
associated with the input of public capital in both cases is only significant at the 10% level.
The similarity of these results is very encouraging.

R> Lag FEML <- spml(fm, data = Produc, listw = lwstates,
+ model = "within", spatial.error= "none",

+ lag = T, LeeYu = T, Hess = F)

R> summary(Lag_FEML)

Spatial panel fixed effects lag model

Call:
spml (formula = fm, data = Produc, listw = lwstates, model = "within",
lag = T, spatial.error = "none", LeeYu = T, Hess = F)
Residuals:
Min. 1st Qu. Median 3rd Qu. Max.

-0.1510 -0.0191 -0.0025 0.0159 0.1770

Coefficients:

Estimate Std. Error t-value Pr(>|tl)
lambda 0.2746887 0.0235164 11.6807 < 2.2e-16 *xx*x
log(pcap) -0.0465819 0.0254425 -1.8309 0.06712 .
log(pc) 0.1874325 0.0230441 8.1336 4.166e-16 **x
log(emp) 0.6250902 0.0297044 21.0437 < 2.2e-16 *x**
unemp -0.0044816 0.0008653 -5.1792 2.228e-07 ***

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

6See e.g., Bivand and Piras (2013) for further details.
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4. Impact measures

In addition to the fitting, associated measures might be needed to assist in the interpretation
of model coefficients. Explicitly, we refer to the impact of changes in right hand side variables
in models including the spatial lag of the dependent variable.” Millo and Piras (2012) did
not mention how to perform this effects estimates in the panel data case. However, Millo and
Piras (2012) only deal with static panel models (i.e., to date no dynamic panels are estimated
with splm) and cross sectional methods, available from spdep, can be extended very easily
to the spatial panel data case. In essence, starting from the reduced form of the spatial lag
model the impacts estimates are related to the expression

S, (W) = (I, — \W) L, 3, (1)
In a static panel context, the previous equation corresponds to
S (W) = (Inr = AW) " ypf, (2)

where W = (I, ® W). Essentially, the only real difference from a computational perspective
is to create the matrix W.

After receiving numerous requests from the users of splm, we decided to extend the cross
sectional functions available from spdep (Bivand 2013) to spatial panel data models. For
the convenience of the users, we wrote a wrapper function (impacts.splm) adapting the
various panel objects in order to be able to apply the cross sectional methods to them. As
we mentioned, the only major change is applied to the spatial weighting matrix. The panel
library assumes that the spatial weighting matrix is constant over time and, therefore, the
input is always an n x n matrix (generally of class 1istw). Given the dimension of the data
in a panel (i.e., nT), we need to construct a block diagonal matrix (i.e., W) whose diagonal
blocks are the spatial weighting matrix itself. The users can choose to perform the calculation
outside or inside the wrapper function.

If the decision is to perform the computation outside, the first step would be to perform the
kronecker product of a diagonal matrix of dimension T x T" and the spatial weighting matrix,
as illustrated in the following example:

R> time <- length(unique (Produc$year))
R> s.lwstates <- kronecker(Diagonal(time), sparse.W)

Without going into detail, the function trW prepares a vector of traces of powers of the spatial
weighting matrix. The default values for the number of powers and the number of samples
used in the Monte Carlo simulation of the trace are, respectively, 30 and 16. The type =
"mult" compute the power of a sparse matrix. The other option available is to perform a
Monte Carlo simulation of the traces.

After preparing the numeric factor of traces, the calculation of the impacts is carried out with
the function impacts.splm, for which a summary method is available. The function takes
as arguments the object from the estimation of the spatial model, the vector of traces, and
an additional argument (R) that, if provided, determines the number of simulations that are
used to compute the distributions for the impact measures. The short summary displays the
results.

"Given the short character of the present note, we omit most of the discussion on the impacts. An extensive
discussion can be found in LeSage and Pace (2009).
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R> set.seed(12345)

R> trMatc <- trW(s.lwstates, type="mult")

R> imp <- impacts(Lag_FEML, tr = trMatc, R = 200)
R> summary(imp, zstats=TRUE, short=T)

Impact measures (lag, trace):

Direct Indirect Total
log(pcap) -0.047503680 -0.016719632 -0.06422331
log(pc) 0.191141532 0.067275126 0.25841666
log(emp) 0.637459782 0.224363523 0.86182330
unemp -0.004570274 -0.001608576 -0.00617885

Simulation results ( variance matrix):

Simulated z-values:

Direct Indirect Total
log(pcap) -1.709877 -1.709976 -1.717275
log(pc) 8.205119 5.848844 7.836458
log(emp) 19.575339 8.007296 16.551673
unemp -5.261708 -4.433847 -5.162641

Simulated p-values:

Direct Indirect Total
log(pcap) 0.087289  0.08727 0.085929
log(pc) 2.2204e-16 4.9500e-09 4.6629e-15
log(emp) < 2.22e-16 1.1102e-15 < 2.22e-16
unemp 1.4272e-07 9.2566e-06 2.4349e-07

The alternative would be to perform all the preliminary calculations inside the wrapper. In
this case, the user needs to provide the object 1listw and the number of time periods. Of
course, we would obtain identical results, as from the following script (where we set the seed
as in the previous example):

R> set.seed(12345)
R> imp2 <- impacts(Lag_FEML, listw = lwstates, time = time)
R> summary(imp2, zstats=TRUE, short=T)

Impact measures (lag, trace):

Direct Indirect Total
log(pcap) -0.047503680 -0.016719632 -0.06422331
log(pc) 0.191141532 0.067275126 0.25841666
log(emp) 0.637459782 0.224363523 0.86182330
unemp -0.004570274 -0.001608576 -0.00617885

Simulation results ( variance matrix):

Simulated z-values:
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Direct Indirect Total
log(pcap) -1.709877 -1.709976 -1.717275
log(pc) 8.205119 5.848844 7.836458
log(emp) 19.575339 8.007296 16.551673
unemp -5.261708 -4.433847 -5.162641

Simulated p-values:

Direct Indirect  Total
log(pcap) 0.087289  0.08727 0.085929
log(pc) 2.2204e-16 4.9500e-09 4.6629e-15
log(emp) < 2.22e-16 1.1102e-15 < 2.22e-16
unemp 1.4272e-07 9.2566e-06 2.4349e-07

Finally, we compare the previous results with those obtained by the corresponding Matlab
function.® Results are reported in Table 2. With regard to the estimate of the impacts
measure, direct, indirect, and total effects are very similar up to the third decimal digit.
Given that the coefficients estimates were very close between the implementations, this is not
very surprising. Some differences are noted on the inference of the various effects. However,
statistical inference for the impacts estimate is based on simulation results and, therefore, it
is quite normal to experience those differences.

Table 2: Matlab results of the estimation for the impacts measures.

Variables Direct t-stat  indirect t-stat total t-stat
Inpcap —0.0496 —1.9368 —0.0178 —1.8537 —0.0675 —1.9244
Inpc 0.1911 8.1871 0.0678 7.3996 0.2589 8.6569
Inemp 0.6370 22.2591 0.2268 9.5653 0.8637  22.5866
unemp —0.0045 —5.1904 —0.0016 —4.6041 —0.0062 —5.1781

5. Conclusion

In this note we showed how to perform the estimation of a fixed effect spatial panel data
model using the Lee and Yu (2010) transformation approach. The different transformation
put forth by Lee and Yu (2010) ensures the consistency of the error variance even if 7" is small.
Furthermore, we have shown how to implement the impacts measures using the infrastructure
available from spdep by mean of the wrapper function impacts.splm. Of course, the function
could be used with fixed as well as random effects panel data models estimated with both
maximum likelihood and the GMM approaches.
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