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Abstract In this paper we provide an applied example for calculating the so-called
effects estimates of LeSage and Pace (Introduction to Spatial, Econometrics, CRC
Press, Boca Raton, 2009) for partitions of the impacts over space. While the parti-
tioning of the impacts by orders of neighbors over space for the spatial autoregressive
model is a relatively straightforward procedure, care must be taken in the case of the
spatial Durbin model. The results from our empirical application regarding calcula-
tion of the partitioned effects over space for the spatial Durbin model corrects an error
in the LeSage and Pace (Introduction to Spatial Econometrics, CRC Press, Boca Ra-
ton, 2009) text. We provide an illustration of these calculations for both models using
a widely available data set on voter turnout for the 1980 United States presidential
election.

Keywords Spatial econometrics · Interpretation · Marginal/partitioned effects ·
Effects estimates

JEL Classification C31 · C18

1 Introduction

In their recent book, Introduction to Spatial Econometrics, LeSage and Pace (2009)
develop a methodology for correctly interpreting and summarizing the marginal im-
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pact of explanatory variables on the dependent variable in spatial econometric mod-
els. They refer to these marginal impacts as effects estimates and devote a substantial
portion of their book to the theoretical and interpretational issues surrounding them.
Spatial econometric models that include a spatial lag of the dependent variable, such
as the spatial autoregressive (SAR) and spatial Durbin (SDM) models, require great
care when making inferences based on estimated coefficients because the traditional
assumption of independence (as in the case of ordinary least squares, or OLS) is not
satisfied.1 In other words, the partial derivative of the dependent variable with re-
spect to an independent variable is not simply the coefficient estimate β , but a more
complicated expression involving a matrix of effects estimates.

By design, spatial econometric models exploit complicated dependence structures
that exist in geographically referenced data, such as counties, states, regions, or coun-
tries. This spatial dependence results in parameter estimates that contain a wealth of
information on the relationship between changes in explanatory variables and how
these changes affect the dependent variable. As noted by LeSage and Pace (2009,
p. 33), “. . . the ability of spatial econometric models to capture these interactions
represents an important aspect of spatial econometric modeling.” One aspect of these
effects estimates that may prove useful to applied practitioners is the ability to cal-
culate how they vary over orders of neighbors. As noted in LeSage and Pace (2009,
p. 40), “[i]t should be clear that impacts arising from a change in the explanatory
variables will influence low-order neighbors more than higher-order neighbors.” In
other words, the effect of a change in an explanatory variable declines as we move
over space.

The purpose of this paper is to point out the differences in the calculation of parti-
tioned effects over space for the SAR and SDM models and to correct an error regard-
ing the calculation of these effects over space for the SDM model in the LeSage and
Pace (2009) text. Section 2 provides a concise theoretical background for the SAR
and SDM models and shows how effects estimates are calculated and interpreted for
each case. Section 3 discusses how these effects estimates can be partitioned over or-
ders of neighbors and Section 4 provides results from an applied example using data
on voter participation in the 1980 presidential election. Section 5 concludes.

2 Spatial autoregressive and spatial Durbin model

The SAR model is used when theoretical considerations or the results of diagnostic
tests (e.g. Lagrange multiplier tests) suggest that spatial autocorrelation is present in
the dependent variable. This type of model can be represented as follows:

y = ρWy + Xβ + ε

ε ∼ MV N(0, σ 2In) (1)

where n is the number of observations, y is an n × 1 vector of observations on the
dependent variable, X is an n×k matrix of independent variables, ε is an n×1 vector

1In contrast, the coefficients from a spatial error model, or SEM, are interpreted in a similar manner as in
the OLS case.
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of i.i.d. errors, ρ is a scalar spatial autocorrelation parameter, β is a k × 1 vector of
regression parameters, and W is an n × n row stochastic spatial weight matrix.

To obtain the reduced form of the SAR model (i.e. the data generating process),
where the y term does not appear on the right hand side of the equation, we take the
following steps:

y = ρWy + Xβ + ε

y − ρWy = Xβ + ε
(2)

(In − ρW)y = Xβ + ε

y = (In − ρW)−1Xβ + (In − ρW)−1ε

Now, if we examine the partial derivative of y with respect to X, we obtain:

∂y/∂X = (In − ρW)−1β (3)

Note that (In − ρW)−1 is a matrix, which implies that we will get a matrix of
effects estimates for each of our independent variables. We can also formally express
the above ideas following the notation used in LeSage and Pace (2009):

(In − ρW)y = Xβ + ιnα + ε (4)

y =
k∑

r=1

Sr(W)xr + V (W)ιnα + V (W)ε (5)

where r represents the r th explanatory variable, Sr(W) = V (W)(Inβr), V (W) =
(In − ρW)−1, ιnα is the intercept term, and ε is the usual error term. We can express
the above idea in the following matrix:

⎡

⎢⎢⎢⎣

y1
y2
...

yn

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

Sr(W)11 Sr(W)12 · · · Sr(W)1n

Sr(W)21 Sr(W)22 · · · Sr(W)2n
...

...
. . .

...

Sr (W)n1 Sr(W)n2 · · · Sr(W)nn

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x1
x2
...

xn

⎤

⎥⎥⎥⎦ (6)

Given the above matrix representation of the effects estimates, we can now define
the own-partial derivative and the cross-partial derivative:

∂yi/∂xir = Sr(W)ii (7)

∂yi/∂xjr = Sr(W)ij (8)

The own-partial derivative is how a change in an explanatory variable in location
i affects the dependent variable in location i and the cross-partial derivative is how
a change in an explanatory variable in location j affects the dependent variable in
location i (where i �= j ).

The calculations of the matrix of effects estimates for the SDM model and the
resulting own- and cross-partial derivatives follow the same mathematical derivation
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with the exception that the Sr(W) term is replaced with the following:

Sr(W) = V (W)(Inβr + Wθr) (9)

where V (W) = (In − ρW)−1 still holds. The obvious difference is that we must take
into account the spatially weighted explanatory variables when calculating the effects
estimates for the SDM model.

Further details regarding the calculation of these effects estimates and their scalar
summaries are discussed by LeSage and Pace (2009, Chap. 2). Elhorst (2010,
pp. 18–22) provides a simplified example of how the effects estimates are calcu-
lated. We now turn our attention to the calculation of effects estimates over orders
of neighbors.

3 Calculation of effects over orders of neighbors

LeSage and Pace (2009, p. 40) note that we can now rewrite the expression for
(In − ρW)−1 as follows:

(In − ρW)−1 = In + ρW + ρ2W 2 + ρ3W 3 + · · · + ρqWq (10)

Thus, using the above expansion, we can calculate the impact associated with each
power of W for the SAR model:

(In − ρW)−1βr = Inβr︸︷︷︸
W 0 or In

+ρWβr︸ ︷︷ ︸
W 1

+ρ2W 2βr︸ ︷︷ ︸
W 2

+· · · + ρqWqβr (11)

The impact associated with each power of W can be calculated for the case of the
SDM model in a similar manner:

(In − ρW)−1(Inβr + Wθr) (12)

= (In + ρW + ρ2W 2 + · · · )(Inβr + Wθr) (13)

= (Inβr + Wθr) + ρW(Inβr + Wθr) + ρ2W 2(Inβr + Wθr) + · · · (14)

= (Inβr + Wθr)︸ ︷︷ ︸
W 0 or In

+ (
ρWInβr + ρW 2θr

)
︸ ︷︷ ︸

W 1

+ (
ρ2W 2Inβr + ρ2W 3θr

)
︸ ︷︷ ︸

W 2

+· · · (15)

The powers of the weight matrix within the expansion of (In − ρW)−1 corre-
spond to the different orders of neighbors: zero-order neighbors (or the In term),
first-order neighbors (W ), second-order neighbors (W 2), and so on. Using this expan-
sion, we can examine how the impacts of explanatory variables manifest themselves
over space for each of these two models.
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Table 1 Summary of SAR
effects estimates over space for
Education

W -order Direct Indirect Total

W0 (In) 0.2210 0.0000 0.2210

W1 0.0000 0.1295 0.1295

W2 0.0126 0.0633 0.0759

W3 0.0024 0.0421 0.0445

W4 0.0018 0.0243 0.0261

W5 0.0007 0.0146 0.0153

W6 0.0004 0.0086 0.0090

W7 0.0002 0.0051 0.0052

W8 0.0001 0.0030 0.0031

W9 0.0001 0.0018 0.0018

4 An applied example

The calculation of the effects estimates will differ based on the type of spatial econo-
metric model an applied researcher uses. We illustrate the calculation of the effects
estimates over space using an example from LeSage and Pace (2009) that contains
information for 3,107 counties in the United States on voter participation in the 1980
presidential election.2 The dependent variable is defined as those voting as a logged
proportion of those eligible to vote. The explanatory variables include the propor-
tion of the population over age 18 (Voting Pop), the proportion of the population with
college degrees (Education), the proportion of the population that own homes (Home-
owners), and median household income (Income). Note that all of the variables used
in this analysis are logged, which means that the computed marginal effects can be
interpreted as elasticities.

Since our main concern is the calculation of the effects estimates over space, we
present in Table 1 the partitioned effects for one of the explanatory variables, Educa-
tion. We expect ex ante that increases in the proportion of the population with college
degrees will lead to increases in voter turnout and that is indeed the case for this
particular explanatory variable. Results in Table 1 show that for all of the effects es-
timates, the effect of this covariate on the dependent variable declines as the order of
neighbors increases. Of particular note is the pattern of the effects estimates. For the
zero-order neighbors, the indirect effect is zero, which is always the case for the SAR
model. From the series expansion in (11), note that, by definition, the first term (i.e.
the “W 0 or In” term) contains zeros on the off-diagonal elements. For this reason,
the indirect effects for the zero-order term will always be equal to zero for the SAR
model. Similarly, the direct effects for the “W 1” term, or the neighbors as defined by
the spatial weight matrix W , are also zero because by definition the spatial weight
matrix W contains zeros on the main diagonal.

The SDM model, due to its increased complexity relative to the standard SAR
model, exhibits much different behavior in terms of the effects estimates over space.

2This data set originally appeared in a paper by Pace and Barry (1997) and is available in Jim LeSage’s
Econometrics Toolbox.
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Table 2 Summary of SDM
effects estimates over space for
Education

W -order Direct Indirect Total

W0 (In) 0.1352 0.0998 0.2351

W1 0.0110 0.1455 0.1565

W2 0.0124 0.0919 0.1043

W3 0.0042 0.0653 0.0696

W4 0.0028 0.0437 0.0464

W5 0.0014 0.0296 0.0310

W6 0.0008 0.0199 0.0207

W7 0.0005 0.0134 0.0139

W8 0.0003 0.0090 0.0093

W9 0.0002 0.0061 0.0062

Table 2 contains the partitioned effects for the Education variable using the SDM
model for estimation. As before, we expect ex ante that increases in the proportion of
the population with college degrees will lead to increases in voter turnout. The results
in Table 2 confirm this hypothesis as the direct, indirect, and total effects estimates
are all positive.

As in the case of the SAR model, we wish to pay particular attention to the di-
rect and indirect effects over space for the own (i.e. zero-order or W 0) and first-order
neighbor (i.e. W 1) relationships. Notice now that the indirect effects are not equal to
zero for the zero-order neighbors and that the direct effects for the first-order neigh-
bors are also not equal to zero. The reason for this discrepancy between the models
can be explained by examining the power series expansion of the Sr(W) term for the
SDM model as shown in (15).

The first term in (15), labeled “W 0 or In”, provides an expression for the zero-
order neighbor relationship. Instead of only having elements on the main diagonal
of this term, there are now non-zero values in the off-diagonal elements as well.
This is due to the presence of the W matrix associated with the spatially weighted
explanatory variables, which is an integral part of the SDM model. As can be seen in
Table 2, the indirect effect of the zero-order neighbors now contains a non-zero value.
Likewise, the first-order neighbors now exhibit direct effects because the second term
in (15), labeled “W 1”, contains a W 2 term. When the spatial weight matrix is taken
to the power of 2, elements on the main diagonal cease to be equal to zero. Therefore,
there are now direct effects associated with first-order neighbors.

LeSage and Pace (2009, p. 72), in their Table 3.5 entitled “Marginal spatial parti-
tioning of impacts”, show that the partitioned effects from an SDM model contain no
indirect effects for the zero-order neighbors and no direct effects for the first-order
neighbors. LeSage and Pace (2009, p. 72) note that “[d]irect effects for W 1 will equal
zero and the indirect effects for W 0 equal zero as discussed in Chap. 2.” However,
this is only true if the SDM model can be reduced to the SAR model, i.e. the spatially
weighted explanatory variables as a whole are not statistically different from zero. In
general, the zero-order indirect effects and the first-order direct effects for the SDM
model take on values that are different from zero. The magnitude of these effects will
depend on several factors as pointed out in LeSage and Pace (2009).
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5 Conclusion

Spatial econometric models such as the spatial autoregressive (SAR) and the spatial
Durbin models (SDM) allow for a much richer interpretation of empirical results than
previously thought. The work of LeSage and Pace (2009) has provided theoretical as
well as practical results regarding the so-called effects estimates and their interpre-
tation. LeSage and Pace (2009) also illustrate how one can calculate the marginal,
or spatially partitioned effects estimates from either a SAR or SDM model. These
partitioned effects estimates show how the effects of changes in explanatory vari-
ables change over space. The LeSage and Pace (2009) text notes that there are no
differences in the calculation of effects estimates over space for the SAR and SDM
model. However, our mathematical and empirical analysis illustrates that there will
be differences in these calculations and corrects the record regarding these calcula-
tions. The work of LeSage and Pace (2009) and LeSage and Dominguez (2010) has
demonstrated that care must be taken when interpreting the results from various spa-
tial econometric models. In this short paper, we show that the marginal, or spatially
partitioned effects estimates, must also be interpreted with care.
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