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ABSTRACT

Gravitational waves are predicted by Einstein’s theory of general relativity as well as
other theories of gravity. The rotational stability of the fastest pulsars means that
timing of an array of these objects can be used to detect and investigate gravitational
waves. Simultaneously, however, pulsar timing is used to estimate spin period, period
derivative, astrometric, and binary parameters. Here we calculate the effects that a
stochastic background of gravitational waves has on pulsar timing parameters through
the use of simulations and data from the millisecond pulsars PSR J0437–4715 and
PSR J1713+0747. We show that the reported timing uncertainties become underesti-
mated with increasing background amplitude by up to a factor of ∼ 10 for a stochastic
gravitational-wave background amplitude of A = 5×10−15, where A is the amplitude
of the characteristic strain spectrum at one-year gravitational wave periods. We find
evidence for prominent low-frequency spectral leakage in simulated data sets includ-
ing a stochastic gravitational-wave background. We use these simulations along with
independent Very Long Baseline Interferometry (VLBI) measurements of parallax to
set a 2–sigma upper limit of A ≤ 9.1 × 10−14. We find that different supermassive
black hole assembly scenarios do not have a significant effect on the calculated upper
limits. We also test the effects that ultralow–frequency (10−12–10−9 Hz) gravitational
waves have on binary pulsar parameter measurements and find that the corruption of
these parameters is less than those due to 10−9–10−7 Hz gravitational waves.

1 INTRODUCTION

Pulsars are highly magnetized, rapidly rotating neutron
stars that have spin periods ranging from seconds to mil-
liseconds. See Lorimer & Kramer (2005) for a full review
of pulsars and their applications. Pulsars can be separated
into two broad categories: normal pulsars and millisecond
pulsars (MSPs). Normal pulsars are characterized by large
periods and period derivatives (P ∼ 1 s and Ṗ ∼ 10−12, re-
spectively) and large magnetic fields (B ∼ 1012 G), whereas
MSPs have smaller periods and period derivatives (P ∼ 0.01
s and Ṗ ∼ 10−20, respectively) and smaller magnetic fields
(B ∼ 108 G). Pulsars are extremely accurate clocks and,
specifically, MSPs exhibit much better timing stability as
they do not show evidence of rotational instabilities such
as timing noise or glitches, which are prevalent in normal
pulsars. In fact, many MSPs rival atomic clocks in their
fractional stability (see Figure 24 of Lorimer 2008). Because
of this and the fact that many MSPs are in binary systems,
they are extensively used for tests of general relativity. The
first evidence for the existence of gravitational waves (GWs)
come from the precise timing of PSR B1913+16 in which the
decrease of the orbital period is in accordance with energy

loss due to gravitational radiation, as predicted by general
relativity (Taylor & Weisberg 1982).

Nearly three decades ago, it was first shown that pul-
sars could be used to directly detect GWs (Sazhin 1978;
Detweiler 1979) by using the pulsar timing residuals (fur-
ther discussed in Section 2) to look for a specific GW sig-
nature. Hellings & Downs (1983) showed that by exploiting
the known correlations that a stochastic GW background
(GWB) would induce in the pulsar timing residuals, one
can place an upper limit on the GWB. This work introduces
what is today known as the Hellings and Downs curve, which
is a main feature in many detection algorithms (see, e.g.,
Jenet et al. 2005; Anholm et al. 2009). The concept of a pul-
sar timing array (PTA) composed of the best timed MSPs
was first developed over two decades ago (Romani 1989;
Foster & Backer 1990). Today there are three main PTAs
in existence with the goal of GW detection using pulsars:
the European Pulsar Timing Array (EPTA; Janssen et al.
2008), the North American Nanohertz Observatory for
Gravitational waves (NANOGrav; Jenet et al. 2009), and
the Parkes Pulsar Timing Array (PPTA; Manchester 2008),
all of which are in collaboration to form the International
Pulsar Timing Array (IPTA; Hobbs et al. 2010).
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2 J. A. Ellis et. al.

1.1 Pulsar timing precision and parameter

uncertainties

While the high timing precision of MSPs has allowed the
precise measurement of many parameters and effects, pul-
sar timing suffers from the inherent fact that the noise
sources that contribute to the timing residuals are not well
understood. To first order, our timing residuals are com-
posed of noise that follows Gaussian statistics and that has
a white power spectrum. For each time-of-arrival (TOA),
the amount of receiver noise is estimated by the TOA un-
certainty, as determined from a least-squares fit to a high
signal-to-noise ratio template profile. It is, however, com-
mon for these uncertainties to be underestimated or for ad-
ditional sources of white noise to contribute to the timing
residuals. One reason might be self-standarding: in the pro-
cess of deriving an average TOA for an observation, the in-
tegrated pulse profile is correlated with a template profile.
If the template profile is generated from addition of many
observations, then at some low level the noise from the ob-
servation can correlate with the noise in the standard, lead-
ing to an underestimation of the TOA uncertainty. Also, the
cross-correlation method typically used has been shown to
underestimate TOA uncertainties in the high-noise regime
(Hotan et al. 2005). Poor selection of standard profiles can
underestimate the TOA uncertainty as well. All of these ef-
fects cause the pulsar timing parameters to be consequently
more uncertain than initially expected. Assuming these ef-
fects scale with the uncertainties they affect, one can at-
tempt to mitigate this underestimation by multiplication of
the TOA uncertainties by the square root of the reduced χ2

value of the timing residuals, as is commonly done in other
fields.

Underestimation of the white noise contribution is
not the only challenge in assessing pulsar timing param-
eters and their true uncertainties, though. The presence
of non-white noise in pulsar timing residuals is very com-
mon for young pulsars and, as timing baselines increase,
starts to become important in timing of some MSPs as well
(Shannon & Cordes 2010; Verbiest et al. 2008; Splaver et al.
2005). While the spectral properties and origins of non-white
noise in MSPs are as yet not understood because the white
noise is still too prominent to allow detailed analysis, it has
already been shown that the least-squares fitting performed
in pulsar timing reports underestimated uncertainties for
the parameters in the timing fit and may even corrupt the
parameter values themselves (Verbiest et al. 2008). A tech-
nique to improve the least-squares fitting process to mitigate
such effects has recently been proposed (Coles et al. 2011).

A third problem may be present in the form of signals
that are part of a non-white spectrum – such as GWs. Not
only does this type of signal affect the fitting process as
described above, through introduction of power at a very
specific frequency it has the potential to be fully absorbed
in the timing signature of periodic parameters in the pulsar
timing model, such as pulsar position, proper motion, par-
allax or many binary parameters. On the one hand this can
prove useful since independent measurement of parameters
such as parallax (by, e.g., VLBI) can be combined with the
pulsar timing measurement to place bounds on the amount
of corrupting noise present (see, e.g. Deller et al. 2008), but
on the other hand it is worthwhile to assess the amount of

influence such noise (especially predicted noise sources such
as the GWB) can have on pulsar timing parameters.

1.2 Pulsar timing and GWs

Low frequency (10−9–10−7 Hz) GWs are expected from su-
permassive black hole binary systems (SMBHBs), cosmic
strings, and GWs from the big bang and inflationary era
of the early universe. GWs from these sources can mani-
fest themselves in different ways. Single nearby SMBHBs
can produce resolvable waves with periods on the order of
years (Wyithe & Loeb 2003). SMBHBs and cosmic strings
can also produce GW bursts (Damour & Vilenkin 2001;
Siemens et al. 2007; Leblond et al. 2009) in which the du-
ration of the GW signal is much less than the observation
time. We also expect pulsar timing arrays to be sensitive to a
stochastic background of unresolvable sources. This stochas-
tic background can be described by a characteristic strain
spectrum hc(f) defined as a frequency–dependent power law
(Jenet et al. 2006)

hc(f) = A

(

f

yr−1

)α

. (1)

Here A is the dimensionless amplitude and α is the spectral
index. The power in the GWB can then subsequently be
written as

P (f) =
1

12π2

1

f3
hc(f)

2. (2)

In accordance with many cosmological theories, one can also
write Ωgw(f), the energy density per unit logarithmic fre-
quency interval, in terms of the characteristic strain spec-
trum as

Ωgw(f) =
2

3

π2

H2
0

f2hc(f)
2, (3)

where H0 is the Hubble constant. This paper will focus
primarily on a stochastic background of SMBHB sources
with a spectral index of α = −2/3 (Wyithe & Loeb 2003;
Jaffe & Backer 2003; Enoki et al. 2004). Recent work has
shown that this simple power law does not hold true at
higher frequencies (f > 10−8) due to the discrete number
of sources. At these frequencies the characteristic strain is
written as (Sesana et al. 2008)

hc(f) = h0

(

f

f0

)α (

1 +
f

f0

)γ

, (4)

where h0, f0, and γ are model-dependent parameters based
on specific SMBHB merger scenarios. The implications that
this result will have on our simulations will be discussed in
Section 4.3 where we test whether this broken power law
will make a significant difference to methods that use peri-
odic pulsar parameters with relatively high-frequency fitting
functions.

Although a direct detection of the GWB has not
been made to date, methods using pulsar timing resid-
uals have been used to disprove proposed SMBHB sys-
tems (Jenet et al. 2004) and to put limits on SMBHB co-
alescence rates (Wen et al. 2011) and on the dimensionless
strain amplitude (Stinebring et al. 1990; Jenet et al. 2006;
van Haasteren et al. 2011). The most stringent published
upper limit to date is A ≤ 1.1 × 10−14 (Jenet et al. 2006).
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Impact of GWB on pulsar timing parameters 3

They use a statistic sensitive to a red spectrum. In this pa-
per, we present a method which relies on the derived timing
(Verbiest et al. 2009) and VLBI (Deller et al. 2008) parame-
ters for individual pulsars. It involves adding simulated GWs
to pulsar timing parameters and refitting for the pulsar tim-
ing parameters to determine the effect of the induced GW.
This idea of using VLBI and timing parameters to place
limits on the stochastic background was first introduced in
Deller et al. (2008). In that work, the kinematic distance ob-
tained from timing measurements of Ṗb in the presence of a
GWB is compared to the VLBI measurement of the distance
to place an upper limit.

1.3 This paper

In this paper, we determine how strongly pulsar parame-
ters can be corrupted by a GWB and red noise in gen-
eral. We also use independent VLBI measurements to con-
struct upper limits on the stochastic GWB. This is an
important question because these corruptions shown here
through simulations could be confirmed by more accurate
VLBI measurements as well as other optical interferome-
try missions such as GAIA (Mignard & Klioner 2010). Fur-
thermore, many relativistic tests in the strong field regime
could be affected by using the corrupted values of the post-
Keplerian parameters Ṗb and ω̇.

This paper is organized as follows: in Section 2 we de-
scribe the basis of our simulations, including a brief review
of GW effects on the pulsar timing residuals and fitting pro-
cedures. In Section 3 we describe the observations used in
our simulations. In Section 4 we present the effect of GWs
on pulsar timing parameters and in Section 5 we summarise
our findings.

2 SIMULATION

All simulations and timing analyses for this paper were per-
formed using the Tempo2 software package (Hobbs et al.
2006). Full details of the timing model and algorithms em-
ployed by Tempo2 can be found in Edwards et al. (2006).

2.1 Pulsar timing theory

Here we will only briefly review the timing model and the
standard fitting procedure. TOAs for a specific pulsar are
produced at each epoch by a cross-correlation of the pulse
profile with a low noise standard template. This procedure
produces site-arrival-times (SATs), which are the times that
the average pulse reached the telescope. The SATs are then
converted to barycentric-arrival-times (BATs) using the So-
lar System Ephemeris DE405 (Standish 2004) which gives
accurate predictions of the locations and masses of Solar Sys-
tem objects and the position of the telescope at any point in
time. The timing model used in Tempo2 requires calculating
the time of emission at the pulsar

tpsre = tobsa −∆⊙ −∆IS −∆B, (5)

where tobsa −∆⊙ = tSSBa is the BAT, ∆⊙ includes all terms
that go into converting the observed TOA to the solar
system barycenter (SSB), (Roemer, Einstein, and Shapiro
delays etc.), ∆IS includes delays due to passage through

the interstellar medium, and ∆B includes delays related
to the pulsar’s binary motion. Following the notation of
Edwards et al. (2006), the subscript “a” represents an ar-
rival time and the “e” represents an emission time. In order
to calculate the timing residuals, the pulse phase φ(t) must
be calculated and compared to the nearest integer value.
The function φ(t) describes the time evolution of the pulse
phase and is written in terms of a power series in time

φ(t) = φ0 + ν∆t+
1

2
ν̇∆t2 +

1

6
ν̈∆t3 + ..., (6)

where ∆t = tpsre − t0 is the difference in the time of emission
from the pulsar and some reference epoch. From this it can
be seen that fitting for the pulsar frequency ν removes a
linear offset from the timing residuals and fitting for the fre-
quency derivative ν̇ removes a quadratic function. Although
φ(t) is expressed as a power series in ∆t, second order ap-
proximations are very good for MSPs since they have neg-
ligible ν̈. The fractional part of φ(t) is the “residual”. The
fitting procedure for this is a χ2 minimisation where

χ2 =
1

ν2

∑

i

(

φ(ti)−Ni

σi

)2

. (7)

Here Ni is the nearest integer to φ(ti), σi is the TOA uncer-
tainty, and ν is the pulse frequency. Since the fitting proce-
dure is a χ2 minimisation technique, the Tempo2-reported
uncertainty is just the corresponding statistical uncertainty
on the reduced χ2 fit for any given parameter (Press et al.
1992).

2.2 Basic GW simulations

Here we will give a brief review of the method through which
Tempo2 adds a stochastic GWB to the pulsar timing resid-
uals (see Hobbs et al. (2009) for full details). Tempo2 uses
a time domain method to inject timing residuals caused by
GWs. A stochastic background of GWs can be written as
a sum of plane waves originating from random positions on
the sky. The metric perturbation can then be written as

hµν = Re

[

N−1
∑

j=0

Aµνje
i(kj ·x−ωjt)

]

, (8)

where N is the number of GW sources and x, t, Aµν , kj ,
and ωj are the position vector of the source, time, amplitude,
wave number, and angular frequency of the jth GW source,
respectively. It then follows that the residual induced by this
sum of plane GWs is the fractional change in the frequency
of the pulse rate integrated over time

R(t) =− 1

2
Re

{

N−1
∑

j=0

i
k̂l
pk̂

m
p Almj

ωj

(e−iωjt − 1)

×
[

1− eiωjD(1−cos θj)

1− cos θj

]

}

.

(9)

Here repeated upper and lower indices indicate a sum over
spatial coordinates, k̂p is the unit vector in the direction of
the pulsar, D is the distance from the pulsar to the Earth, θj
is the angle between the direction to the pulsar and the jth
GW source, and Almj is the transverse-traceless complex
amplitude that takes the two GW polarisation states into
account.

c© 0000 RAS, MNRAS 000, 000–000



4 J. A. Ellis et. al.

2.3 Extended GW simulations

The basic algorithm used in this paper involves creat-
ing 1,000 sets of induced timing residuals for each of 200
GWB amplitudes for each pulsar, adding them to the ob-
served residuals and refitting for the full timing model
(Verbiest et al. 2008, 2009). Each amplitude is due to an
ensemble average of 1,000 individual sources distributed
isotropically on the sky. These sources are drawn from a
distribution that follows Equation 1. The end result of this
process is a distribution of the fitted parameters at 200
GWB amplitudes distributed logarithmically in the range
1 × 10−15–1 × 10−13. This range was chosen because it in-
cludes all previous upper limits and allows for lower back-
grounds. These distributions were then analysed in several
ways to calculate the effects of fitting for pulsar parame-
ters when a GW signal is present in the timing residuals
and to determine upper limits on the GWB amplitude. It is
likely that there already is a GW signal from the stochastic
background present in the pulsar timing data. Because we
could be adding simulated GWs to those already existing in
the data, any upper limits that we set could be, at worst,
underestimated by a factor of

√
2.

3 OBSERVATIONS

We used data for the pulsars PSR J0437–4715 and PSR
J1713+0747. These data were collected with the Parkes 64-
m radio telescope at 20 cm wavelength. A full description
of the data sets and observing systems can be found in
Verbiest et al. (2008, 2009) and references therein. These
pulsars were chosen for three reasons. Firstly, the timing
parallax measurements are consistent at the 1-σ level with
those from VLBI, giving us the ability to place upper lim-
its on the background by comparing the timing and VLBI
measurements. Secondly, both pulsars have low rms tim-
ing residuals, which lead to the best upper limits that can
be obtained using the methods described above. Finally,
these data sets have a relatively long time span, allowing
us to see effects of low-frequency GWs more readily in the
timing residuals. A summary of the timing characteristics
is given in Tables 1 and 2. For the VLBI parallax mea-
surements in this study we use an LBA parallax for PSR
J0437–4715 (Deller et al. 2008) and a VLBA parallax for
PSR J1713+0747 (Chatterjee et al. 2009).

4 ANALYSIS

4.1 Absorption of GW power in timing

parameters

Figure 1 illustrates how a GWB can be absorbed into certain
periodic timing parameters for PSR J0437–4715. Figure 1(b)
shows the timing residuals with a GWB with amplitude of
A = 5×10−13 added to the data. Figures 1(c) and 1(d) show
the timing residuals using the GW-induced (A = 5× 10−13)
values of parallax and proper motion, and Ṗb, ω, and ω̇, re-
spectively. A very large GWB amplitude was used for illus-
tration purposes, but this same effect takes place at smaller
amplitudes and is just not as visible by eye. We can see from

the figures that the GWB can induce both high and low-
frequency components in residuals. The problem with fitting
for these parameters is that, in effect, one is fitting out a sig-
nificant amount of the GW signal that is contributing to the
residuals. It is important to note that although a stochas-
tic GWB can induce large uncertainties in timing model
parameters that are sinusoidally varying at yearly and half-
yearly frequencies, a significant amount of the GW power
absorbed comes from the lowest frequencies in the data due
to spectral leakage. We have subsequently conducted addi-
tional simulations in which we only include GWs in a very
narrow frequency range around yearly and half-yearly fre-
quencies. In these simulations we see that the corruption to
the sinusoidally varying parameters is negligible even for a
very large background amplitude of A = 5 × 10−13. This
leads to the conclusion that the absorbed power in the ear-
lier simulations is indeed due to low-frequency spectral leak-
age and not absorption of power at these higher frequencies.
Nevertheless, absorption of high-frequency GW power still
occurs, however, the steepness of the GWB power spectrum
implies that for any realistic GWB this effect is fully covered
up by the radiometer (white) noise.

4.2 Impact on timing model parameters

In this section we will construct confidence intervals for the
fitted parameters at various GWB amplitudes and show that
these confidence intervals become larger as the GWB ampli-
tude increases. The method for calculating these confidence
intervals is quite straightforward. The main simulation dis-
cussed in Section 2.3 is used to obtain distributions of the
given fitted parameters at each amplitude. As we have seen
above, a GWB will cause excess low-frequency power to
be absorbed into timing parameters. Examples of the sub-
sequent corruption of the parameters can be seen in the his-
tograms of Figure 2. Since this simulation injects GWs with
random sky positions and random frequencies (within a cer-
tain range and with a given spectrum), the subsequent cor-
ruption of the fitted parameters caused by absorbing parts of
the GW spectrum will result in a Gaussian distribution cen-
tered around the unperturbed parameter values. It can be
seen from Figure 2 that the FWHM of the distribution and
therefore the confidence interval on the parameter increases
with increasing GWB amplitude. This increased spread in
potential parameter estimates is the GW-induced corrup-
tion that we aim to quantify in this paper. It must be noted
that at sufficiently high GWB amplitudes prominent low-
frequency power will be visible in the timing residuals. To
ensure phase-connection in our timing, we limited our simu-
lations to a maximumGWB amplitude of 1×10−13. We have
also used phase tracking to take the phase–wraps caused by
the injected GWB into account in our simulations. We also
note that towards the higher end of the simulated GWB
amplitude range, sufficient levels of low-frequency noise will
be present in the simulations to make the uncertainties re-
turned from the standard least-squares fit unreliable (see
e.g. Verbiest et al. 2008). However, since our analysis only
uses the best-fit and not its uncertainty, this has no effect
on our results.

These histograms can be used to directly study the ef-
fects that the presence of GWs has on the parameter esti-
mates resulting from the fit. This is done by plotting the

c© 0000 RAS, MNRAS 000, 000–000



Impact of GWB on pulsar timing parameters 5

ratio of the standard deviation of the fitted parameters and
the Tempo2-reported unperturbed error on the parameters
against GWB amplitude. The full list of fitted timing pa-
rameters along with their values and uncertainties are shown
in Tables 1 and 2 for the unperturbed case (Verbiest et al.
2008, 2009) and the case where a GWB with amplitude at
the current upper limit of A ∼ 1× 10−14 was added to the
data. The results are plotted in Figure 3. Firstly, it should
be noted that the fits to spin frequency and frequency deriva-
tive were by far the most affected by the GWB as can be
seen in Tables 1 and 2. However, these parameters are not
plotted here as this is expected since the spin frequency and
frequency derivative fit out a linear trend and a quadratic
trend respectively, thereby absorbing the lowest frequency
(highest power) part of the GWB spectrum. We see that
the orbital period derivative, Ṗb, is affected more for PSR
J1713+0747 than for PSR J0437–4715. This is likely due to
the difference of orbital periods for these pulsars (5.7 and
67.8 days for PSR J0437–4715 and PSR J1713+0747, re-
spectively). The larger orbital period for PSR J1713+0747
allows for lower frequency power to be absorbed resulting in
a larger overall effect by Equation 2.

Given that the parallax timing signature scales as
D−1 cosβ, where β is the ecliptic latitude andD is the pulsar
distance, one would expect the effect of a GWB on the par-
allax value will scale with the same factor. Using this scal-
ing relation and the known ecliptic latitudes of the pulsars
(30.87◦ for PSR J1713+0747 and −67.87◦ for PSR J0437–
4715), we expect that the effect of the GWB on the parallax
should be a factor of ∼ 3 times larger for PSR J0437–4715
than for PSR J1713+0747. However, from Tables 1 and 2
we see that this ratio is 4.7. We also expect the effect of the
GWB on the astrometric position to be stronger for PSR
J0437–4715 than for J1713+0747 because of the lower eclip-
tic of the former. However, we expect this difference to be
less than that seen in our simulations. To find the origin of
these discrepancies we created simulated data sets for the
two pulsars with uniform sampling and bi-monthly observa-
tions over 15 years. We then ran our GWB simulation on
these data sets and found that the parallax corruption is 3
times worse for PSR J0437–4715 than for PSR J1713+0747
and the astrometric position is slightly more affected for the
former, as expected. The reason that the parallax and astro-
metric position are not so heavily affected in the real data is
because of the irregular sampling, which leads to correlations
in the fitted parameters. To confirm this, we also simulated
data sets with irregular spacing and compared their covari-
ance matrices with those of the uniformly sampled data. We
found that the correlations between parameters are lower for
the evenly spaced data. Finally, it is also important to note
that, for both pulsars, the increase in uncertainty of these
parameters is approximately linear in GWB amplitude over
the region of interest of 1× 10−15 ≤ A ≤ 5× 10−14.

4.3 A limit on the GWB strength

As discussed in Section 1, many papers have been published
dealing with calculation of upper limits on the stochastic
GWB amplitude. While some calculate this upper limit us-
ing a method that is designed to detect the background
(van Haasteren et al. 2009, 2011), others use a statistic that
is exclusively designed for putting limits on the background

(Jenet et al. 2006). For example, Jenet et al. use a statistic
that is sensitive to a red power spectrum. By design, this
method relies on the noise having a very white power spec-
trum and thus any deviation from Gaussian noise is a prob-
lem for this test. Since some non-Gaussian noise may occur
in timing data, especially in long data sets, this method is
limited in applicability. However, it has thus far produced
the most stringent published limits.

The method discussed in this paper is also not a suit-
able candidate for detection but it does produce independent
upper limits that are consistent with previously published
limits. Before discussing specific methods, Figure 4 shows
some general results of this method. To obtain these plots,
we run the simulation as described in Section 2.3 and then
take the output at each GWB amplitude and make a his-
togram as shown in Figure 2. We calculate an upper limit
using this scheme by finding the amplitude for which 95% of
the simulations yield parameter values that lie outside of the
formal 2–σ errors on that parameter. Note here again that
the proper motion is significantly affected for both pulsars.
However, the orbital period derivative and astrometric po-
sitions are strongly affected for PSR J1713+0747 and PSR
J0437–4715 respectively, for reasons discussed in Section 4.2.
While this analysis could be seen as providing a limit on the
GWB amplitude, it depends on the timing value of these
parameters, which is not fully independent of the simulated
values. Therefore, we require an independent estimate of a
timing parameter, as can be provided by VLBI, for example.

We have shown that many astrometric parameters are
affected by a GWB. However, when comparing VLBI values
(Deller et al. 2008; Chatterjee et al. 2009) to timing values
(Verbiest et al. 2008, 2009), it is readily found that, with
the exception of parallax, all VLBI parameter estimates are
inconsistent with timing values at the many sigma level be-
cause of calibrator uncertainty in the VLBI method. With
the parallax method we repeat the procedure described in
the previous section for the timing parallax, but instead of
comparing against the unperturbed timing value and uncer-
tainty, we use the VLBI parameter and parallax . To accom-
plish this, we define an offset parameter

∆ =
|πVLBI − πT2|
σVLBI + σT2

, (10)

where πVLBI and πT2 are the VLBI and Tempo2 simula-
tion values of parallax, respectively and the denominator
is the sum of the formal uncertainties on the parameters.
The values of the VLBI parallaxes used in this paper are
π = 6.396±0.054 mas (Deller et al. 2008) and π = 0.95+0.06

−0.05

mas (Chatterjee et al. 2009) for PSR J0437–4715 and PSR
J1713+0747, respectively. It is important to note that we
compare the VLBI values with those published in the orig-
inal timing models (Verbiest et al. 2008, 2009), where the
reduced chi-squared was normalised through application of
backend specific error-multiplication factors. While previous
work has shown that a stochastic GWB will affect astro-
metric parameters (Gwinn et al. 1997; Kopeikin et al. 1999;
Jaffe 2004) measured by VLBI such as parallax, it is known
that the angular deflections expected are on the order of the
characteristic strain amplitude (see e.g. Book & Flanagan
2010). Because typical amplitudes are ∼ 10−15 these effects
are far less than the typical uncertainties on these astro-
metric parameters. Thus, we can treat VLBI measurements
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as unaffected by the stochastic GWB. To place a limit, we
determine the GWB amplitude in which 95% of the reali-
sations result in offset values in excess of 2. The factor of 2
is to ensure a 5% false negative rate. The results from this
method are shown in Table 3. It is clear from the table that
the upper limits obtained from PSR J0437–4715 are more
stringent than those obtained from PSR J1713+0747. This
is to be expected, because the background does not cor-
rupt the values of parallax as much for PSR J1713+0747, as
shown in previous sections. Though using this method pro-
duces upper limits that are ∼10 times less stringent than
the best published limits (Jenet et al. 2006) it provides an
independent confirmation and is still constraining.

4.4 Effects of the GWB spectral break

Recent work (Sesana et al. 2008) has shown that the stan-
dard power law given in Equation 1 for the GW strain only
holds for frequencies f < 10−8 Hz. Simulations were used to
numerically formulate Equation 4 which describes the GW
strain for frequencies f > 10−8 Hz. GW detection strate-
gies using pulsar timing are poised to detect the stochas-
tic background at the lowest possible frequencies (∼ 10−9

Hz), which is limited by the length of the data set, and
thus still in the single power-law domain. The parameters
f0, γ, and h0 in Equation 4 depend on different scenarios
for MBH formation and evolution and can be found in Ta-
ble 1 of Sesana et al. (2008). For clarity of our results here,
the four models used are VHM (Volonteri et al. 2003), KBD
(Koushiappas et al. 2004), BVRhf (Begelman et al. 2006),
and VHMhopk (Lodato & Natarajan 2006).

A Tempo2 plugin was developed to test whether this
broken power-law has any affect on pulsar timing parameters
or our upper limit calculations described in the previous sec-
tion. This plugin simulates a GWB using the simple power
law spectrum for frequencies below the cutoff frequency of
10−8 Hz and then switch to the broken power law spectrum
for frequencies greater than this cutoff. Since the param-
eters are model dependent, the plugin allows the user to
input which model to use thereby setting the values of f0
and γ; however, h0 was simply determined by requiring that
Equations 1 and 4 are continuous at the cutoff frequency.
This step is required because producing an upper limit re-
quires that we vary the value of the GW strain amplitude
A and thereby h0. The strain spectrum for the above men-
tioned MBH formation scenarios is plotted in Figure 5. It
is clearly visible from the figure that there is a significant
deviation from the power law strain spectrum. It also can be
seen that the choice of model can make a considerable differ-
ence in the strain spectrum. Figure 6 shows the strain of the
individual sources used to create a stochastic background
using the VHM model. Note the significant deviation from
power law strain spectrum (dashed line). It should be noted
here that we are using the average GW strain spectrum. In
reality the spectral break comes from the small number of
sources at higher frequencies, leading to a more jagged strain
spectrum at these higher frequencies. While this method is
sufficient for the work presented here, more realistic simula-
tions will be very valuable for future studies of the stochastic
GWB. However, such simulations are beyond the scope of
this paper. The simulation was run on the PSR J0437–4715
and PSR J1713+0747 data sets using the same method as

described above for all four models. The results are sum-
marised in Table 3. It is obvious that implementation of this
broken power law does not significantly change the resulting
upper limits. This is to be expected since the low-frequency
GW power dominates the corruption of the timing parame-
ters. In fact, the induced rms of a GWB at the frequencies
corresponding to the spectral break (∼ 10−8 Hz) is around
10 ns (Sesana & Vecchio 2010), which is a factor of ∼ 20
below our white noise level in both pulsars. We only include
these results to conclusively show that the GWB spectral
break has no effect on pulsar timing parameters.

4.5 Effects of ultralow–frequency gravitational

waves

Previous work (Kopeikin 1997) has shown analytically that
the secular variations of orbital period Pb and of the semima-
jor axis a projected onto the line of sight (x = a sin ι), where
ι is the inclination angle, can be used to set upper limits on
the energy density Ωgw in the ultralow-frequency (10−12–
10−9 Hz) regime. This work derives upper limits in terms
of the variance on the parameters Ṗb and ẋ indicating that
a stochastic GWB in the ultralow-frequency range would
significantly corrupt these parameters. To see if this propo-
sition is consistent with our simulations, we perform the
same steps described in Section 4.1 except now we constrain
the simulations to only the ultralow-frequency waves. Figure
7 show the results of these simulations. Although it is not
shown in the figure, as in the normal frequency case there is
no biasing of these parameter distributions. As shown in Fig-
ure 7, the effects of ultra-low-frequency GWs is substantially
smaller than that of low-frequency GWs. That notwith-
standing, the data sets affected by ultra-low-frequency GWs
were more severely affected by phase-wrapping, but this is
primarily because the simulated frequency range (f < 10−9)
implies that to first order, the GWB inserts a strong linear
slope into the timing residuals, which can easily cause phase
wraps (i.e. timing residuals beyond one pulse period). The
low-frequency background (f > 10−9) however, introduces
timing residuals that are more akin to a random walk and
while these typically have a strong linear component as well,
it is far less steep and therefore less likely to cause phase
wrapping. The analysis on these two pulsars suggests that
this method of placing upper limits on the GWB using the
variances of Ṗb and ẋ, respectively, is ineffective, or at best,
far less constraining than simply using the variances in the
low-frequency range.

5 SUMMARY

We have introduced a way to investigate the effects of low-
frequency noise in the form of a stochastic background of
GWs on pulsar timing parameters. While this work focuses
particularly on the stochastic GWB, the methods for inves-
tigating the noise/GW induced corruption of pulsar timing
parameters could apply to any low-frequency noise source.
This method involves a Monte-Carlo simulation over dif-
ferent possible GWBs, adding them into the pulsar timing
residuals, fitting for pulsar timing parameters, and produc-
ing distributions of various GW-affected pulsar parameters.
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These parameter distributions are then analysed to deter-
mine the overall effect that the GWB has on pulsar timing.
To summarise our results, we have:

• Replicated the Verbiest et al. (2008) results of red noise
leakage and how it affects parameter uncertainties, showing
that some pulsar parameters could be underestimated by
up to a factor of ∼ 10 for a GWB with an amplitude of
A = 5× 10−15.

• Expanded on the above work with another pulsar (PSR
J1713+0747), clarifying the importance of ecliptic latitude
and the reliability of astrometric parameter measurements.

• Shown that one can place upper limits on the stochastic
GWB by comparing VLBI derived astrometric parameters
to those obtained through pulsar timing.

• Demonstrated practically that the spectral break (or
its monochromatic components) are unlikely to affect pulsar
timing before the SKA era.

• Demonstrated that ultra-low frequency GWs have no
obvious effect on pulsar timing parameters.

• Demonstrated that even red noise at very low levels
can leak into higher frequency terms and cause parameter
corruptions. This lends a partial explanation for EFACs (a
multiplicative error factor that is used to normalise the re-
duced chi–squared in the fitting process), even in a seemingly
white data set.

Future work could investigate these timing effects on a
larger sample of pulsars, including normal (non-MSP) pul-
sars to check for corruption of pulsar parameters though
these effects should be smaller due to larger errors on the
timing parameters.
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Table 1. PSR J0437–4715 Timing Model Parameters

Parameter Name and Units Parameter Value Tempo2 Errora GWB Induced Errorb Error Ratio

Fit and Data Set

MJD range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50191.0–53819.2
Number of TOAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2847
Observation length, Tobs (yr) . . . . . . . . . . . . . . . . . . . . . . . . 9.9
rms timing residual (µs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.199

Measured Quantities

Right ascension, α (J2000.0) . . . . . . . . . . . . . . . . . . . . . . . . 04 37 15.8147635 3 57 19
Declination, δ (J2000.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -47 15 08.624170 3 60 20
Proper motion in α, µα (mas yr−1) . . . . . . . . . . . . . . . . . 121.453 1 13 13
Proper motion in δ, µδ (mas yr−1) . . . . . . . . . . . . . . . . . . -71.457 1 13 13

Annual parallax, π (mas) . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.65 7 98 14
Dispersion measure, DM (cm−3 pc) . . . . . . . . . . . . . . . . . 2.6443 4 24 6
Pulse frequency, ν (ms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173.68794618476804 3 2910 970
Pulse frequency derivative, ν̇ (10−15 s2) . . . . . . . . . . . . -1.7284079 3 585 195
Orbital period, Pb (days) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.74104646 108 216 2

Orbital period derivative, Ṗb, (10
−12) . . . . . . . . . . . . . . . 3.73 2 6 3

Epoch of periastron passage, T0 (MJD) . . . . . . . . . . . . . 52009.852429 582 582 1
Projected semi-major axis, x (s) . . . . . . . . . . . . . . . . . . . . . 3.36669708 11 11 1
ẋ (10−14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2c 3c 27c 9c

Longitude of periastron, ω0 (deg) . . . . . . . . . . . . . . . . . . . 1.2224 365 365 1
Periastron advance, ω̇ (deg yr−1) . . . . . . . . . . . . . . . . . . . 0.01600 430 862 2
Longitude of ascension, Ω (deg) . . . . . . . . . . . . . . . . . . . . . 207.8 23 92 4
Orbital inclination, i (deg) . . . . . . . . . . . . . . . . . . . . . . . . . . 137.58 6 24 4
Companion mass, m2 (M⊙) . . . . . . . . . . . . . . . . . . . . . . . . . 0.25 1 1 1
Orbital eccentricity, e (10−5) . . . . . . . . . . . . . . . . . . . . . . . . 1.9179 3 9 3

Set Quantities

Reference epoch for P , α, and δ determination (MJD) 52005
Reference epoch for DM determination (MJD) . . . . . . 53211

a Given uncertainties are 1 σ values in the last digits of the parameter values.
b 1 σ uncertainties for a simulated GWB with amplitude A = 1× 10−14.
c Not part of original timing model in Verbiest et al. (2009). The full timing model including ẋ was fitted in a separate simulation.
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Table 2. PSR J1713+0747 Timing Model Parameters

Parameter Name and Units Parameter Value Tempo2 Errora GWB Induced Errorb Error Ratio

Fit and Data Set

MJD range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49421.9–54546.8
Number of TOAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Observation length, Tobs (yr) . . . . . . . . . . . . . . . . . . . . . . . . 14.0
rms timing residual (µs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.198

Measured Quantities

Right ascension, α (J2000.0) . . . . . . . . . . . . . . . . . . . . . . . . 17 13 49.532628 1 6 6
Declination, δ (J2000.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +07 47 37.50165 3 12 4
Proper motion in α, µα (mas yr−1) . . . . . . . . . . . . . . . . . 4.924 5 35 7
Proper motion in δ, µδ (mas yr−1) . . . . . . . . . . . . . . . . . . -3.82 1 8 8

Annual parallax, π (mas) . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.94 5 15 3
Dispersion measure, DM (cm−3 pc) . . . . . . . . . . . . . . . . . 15.9915 1 3 3
Pulse frequency ν (Hz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218.8118404414362 2 1786 893
Pulse frequency derivative, ν̇ (10−16 s2) . . . . . . . . . . . . . -4.08379 2 134 67
Orbital period, Pb (days) . . . . . . . . . . . . . . . . . . . . . . . . . . . 67.825130963 9 27 3

Orbital period derivative, Ṗb, (10
−13) . . . . . . . . . . . . . . . 41 10 60 6

Epoch of periastron passage, T0 (MJD) . . . . . . . . . . . . . 54303.6328 4 8 2
Projected semi-major axis, x (s) . . . . . . . . . . . . . . . . . . . . . 32.3424236 2 4 2
ẋ (10−15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.6c 5c 35c 7c

Longitude of periastron, ω0 (deg) . . . . . . . . . . . . . . . . . . . 176.190 2 12 6
Longitude of ascension, Ω (deg) . . . . . . . . . . . . . . . . . . . . . 67 9 63 7
Orbital inclination, i (deg) . . . . . . . . . . . . . . . . . . . . . . . . . . 78.6 9 72 8
Companion mass, m2 (M⊙) . . . . . . . . . . . . . . . . . . . . . . . . . 0.20 2 12 6
Orbital eccentricity, e (10−5) . . . . . . . . . . . . . . . . . . . . . . . . 7.4940 3 18 6

Set Quantities

Reference epoch for P , α, and δ determination (MJD) 54312
Reference epoch for DM determination (MJD) . . . . . . 54312

a Given uncertainties are 1 σ values in the last digits of the parameter values.
b 1 σ uncertainties for a simulated GWB with amplitude A = 1× 10−14.
c Not part of original timing model in Verbiest et al. (2009). The full timing model including ẋ was fitted in a separate simulation.

Table 3. Upper limits on the stochastic GWB amplitude (measured in units of 10−13) at the 2–sigma level for different power law
models for pulsars PSR J0437–4715 and PSR J1713+0747.

Spectrum PSR J0437–4715 PSR J1713+0747

α = −2/3 0.91 1.3
VHM 0.91 1.3
BVRhf 0.91 1.2
VHMhopk 0.92 1.2

KBD 0.91 1.3
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Impact of GWB on pulsar timing parameters 11

Figure 1. Plots of pulsar timing residuals of pulsar PSR J0437–4715 (Verbiest et al. 2008) for different situations. Top left: no GWB
added. We see here that the rms is low and the noise is relatively white. Top right: post-fit residuals after adding a GWB with amplitude
A = 5× 10−13. Bottom left: no GWB added but using the GW-induced values of parallax and proper motion in our timing model. This
shows strong periodic structure at periods ∼ 1 yr. Bottom right: no GWB added but using GW-induced values of Ṗb, ω, and ω̇.
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Figure 2. Distribution of the timing-derived parallax for PSR J0437–4715 as a result of fitting a timing model to 1000 realisations of
residuals with a stochastic GWB added. Plotted here are the histograms (solid lines) of the fitted parameters as well as Gaussian curves
(dashed lines) produced from the amplitude of the histogram, the mean of the distribution, and the standard deviation. It can be seen
that a Gaussian fits the histogram very well. Here the histogram and Gaussian curve for the wider distribution is for a GWB amplitude
of A ∼ 5× 10−14 and the narrower distribution is for a GWB of A ∼ 1× 10−14.
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Figure 3. Plot of error ratio (ratio of standard deviation of distribution to the unperturbed error) vs. GWB amplitude for selected
timing model parameters, excluding spin period and spindown (see Tables 1 and 2) of PSR J0437–4715 and PSR J1713+0747. (Solid
line: parallax, Dashed line: proper motion in right ascension, Dot-dashed line: proper motion in declination, Dotted line: right ascension,
Dash-triple dot: declination.) It should be noted that the proper motion in right ascension and declination curves overlap for PSR
J0437–4715.
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Figure 4. Plot of detection significance vs. GWB amplitude for PSRs PSR J0437–4715 and PSR J1713+0747 with parameters assumed
to have the values listed in Verbiest et al. (2008, 2009). The method for obtaining these plots is described in the text. These plots
represent detection rates with false negative rates of 5% against GWB amplitude. Solid line: parallax, Dashed line: proper motion in
right ascension, Dot-dashed line: proper motion in declination, Dotted line: right ascension, Dash-triple dot: declination.)
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Figure 5. Plot of hc(f) against observed GW frequency. Here we show the naive power law spectrum from Equation 1 and the broken
power spectrum from Equation 4 using different SMBH assembly models. (Thick dashed line: Normal power law spectrum, solid line:
VHM model, dashed line: VHMhopk model, dash-dot line: KBD model, dotted line: BVRhf model.)

Figure 6. Plot of GW strain squared vs. GW frequency. The dotted line is the naive spectrum from Equation 1 for the GW strain
spectrum. The points are individual SMBH binary sources emitting at random frequencies in the range 10−9–10−7 Hz generated by
using Equation 4 and the VHM model. Note that there is a significant deviation in the spectrum around f & 10−8 Hz.
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Figure 7. Plot of error ratio vs. GWB amplitude for Ṗb and ẋ in the normal (10−9–10−7 Hz) and ultralow (10−12–10−9 Hz) frequency
ranges for PSR J0437–4715 and PSR J1713+0747. The departure from a linear trend, seen at the highest simulated amplitudes, is caused
by phase-wrapping that occurs when the simulated GW signature exceeds a few pulse periods. Such wrapping effectively randomises
the results from the least-squares fit and produces outlier results in the Monte-Carlo iteration in which it occurs. This in turn distorts
the statistics derived from that simulation and therefore corrupts the curves displayed here. We have used phase-tracking methods to
avoid such wraps, but towards A = 10−13 the effect becomes so large in certain Monte–Carlo iterations that phase-tracking is effectively
rendered useless.
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