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Triiodothyronine (T3) stimulates a 7-fold increase in
transcription of the acetyl-CoA carboxylase-a (ACCa)
gene in chick embryo hepatocytes. Here, we character-
ized an ACCa T3 response element (ACCa-T3RE) with
unique functional and protein binding properties.
ACCa-T3RE activated transcription both in the absence
and presence of T3, with a greater activation observed
in the presence of T3. In nuclear extracts from hepato-
cytes incubated in the absence of T3, ACCa-T3RE bound
protein complexes (complexes 1 and 2) containing the
liver X receptor (LXR) and the retinoid X receptor
(RXR). In nuclear extracts from hepatocytes incubated
in the presence of T3 for 24 h, ACCa-T3RE bound a
different set of complexes. One complex contained LXR
and RXR (complex 3) and another contained the nuclear
T3 receptor (TR) and RXR (complex 4). Mutations of
ACCa-T3RE that inhibited the binding of complexes 1
and 2 decreased transcriptional activation in the ab-
sence of T3, and mutations of ACCa-T3RE that inhibited
the binding of complexes 3 and 4 decreased transcrip-
tional activation in the presence of T3. The stimulation
of ACCa transcription caused by T3 was closely associ-
ated with changes in the binding of complexes 1–4 to
ACCa-T3RE. These data suggest that T3 regulates ACCa
transcription by a novel mechanism involving changes
in the composition of nuclear receptor complexes bound
to ACCa-T3RE. We propose that complexes containing
LXR/RXR ensure a basal level of ACCa expression for
the synthesis of structural lipids in cell membranes and
that complexes containing LXR/RXR and TR/RXR medi-
ate the stimulation of ACCa expression caused by T3.

When the intake of dietary carbohydrate exceeds the imme-
diate energy needs of the animal, excess carbohydrate is con-
verted to triacylglycerols, which can be used for energy during
periods of fasting. One of the enzymes that plays a pivotal role
in mediating this response is acetyl-CoA carboxylase (ACC).1

ACC catalyzes the ATP-dependent carboxylation of acetyl-CoA
to malonyl-CoA, which is the donor of all but two (v) of the
carbon atoms for the synthesis of long-chain fatty acids. This
reaction is the pace-setting step of the fatty acid synthesis
pathway (1, 2). There are two ACC isoforms that are encoded
by distinct genes. ACCa (260 kDa) is the principal isoform
expressed in tissues that exhibit high rates of fatty acid syn-
thesis such as liver, adipose tissue, and mammary gland. ACCb
(280 kDa) is the major isoform observed in heart and skeletal
muscle, where it is thought to function primarily in the regu-
lation of b-oxidation of fatty acids (3).

The concentration of ACCa in liver is subject to nutritional
and hormonal regulation. For example, in starved animals, the
concentration of hepatic ACCa is low; feeding a high carbohy-
drate, low fat diet stimulates an 8–20-fold increase in the
amount of the enzyme (4–7). The effects of nutritional manip-
ulation on ACCa concentration are mediated primarily by
changes in the rate of transcription of the ACCa gene (8).
Diet-induced changes in ACCa transcription are mimicked in
primary cultures of chick embryo hepatocytes by manipulating
the concentration of hormones and nutrients in the culture
medium. The addition of 3,5,39-triiodothyronine (T3) to the
culture medium stimulates a 7-fold increase in ACCa tran-
scription (9). Interestingly, a relatively long time (24 h) is
required to achieve maximal rates of ACCa transcription after
the addition of T3, suggesting that the accumulation of a rate-
limiting intermediate is involved in mediating this response.
The molecular mechanism by which T3 regulates ACCa tran-
scription remains to be determined.

ACCa transcription is initiated from two promoters, result-
ing in mRNAs with heterogeneity in the 59-untranslated region
(2). The more upstream promoter (promoter 1) flanks exon 1,
while the more downstream promoter (promoter 2) flanks exon
2. In livers of rats (10, 11) and chickens,2 the increase in total
ACCa mRNA abundance caused by the consumption of a high
carbohydrate, low fat diet is mediated by alterations in the
activities of promoter 1 and promoter 2, with the latter pro-
moter playing a quantitatively greater role in mediating this
response. Alterations in promoter 2 activity are also primarily
responsible for the T3-induced stimulation in total ACCa
mRNA abundance in chick embryo hepatocytes.2

Thyroid hormone action is initiated by the binding of T3 to
nuclear receptors. Nuclear T3 receptors (TRs) are members of a
superfamily of ligand-dependent transcription factors that in-
clude the receptors for steroid hormones, vitamin A deriva-
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tives, vitamin D3, oxysterols, prostanoids, and a large family of
receptor-like proteins with unknown ligands (orphan recep-
tors) (12, 13). TRs bind to DNA sequences denoted as T3 re-
sponse elements (T3REs). A wide diversity of T3RE structures
have been reported in T3-responsive genes (14). In general,
T3REs consist of multiple copies of a hexameric sequence re-
lated to a consensus RGGWMA arranged as inverted repeats,
everted repeats, direct repeats, or extended single copies of the
hexamer. The nucleotide sequence of the hexameric half-sites
and flanking DNA and the spacing of the half-sites influence
the binding of TR and its interactions with other proteins
(15–18). Consequently, the structure of the T3RE is an impor-
tant factor influencing the transcriptional activity of TR. TRs
can bind T3REs as monomers, homodimers, or heterodimers
with retinoid X receptor (RXR) (13, 14). TR/RXR heterodimers
are thought to be the principal species of TR bound to T3REs in
vivo, since this complex binds DNA with higher affinity and
modulates transcription more effectively than TR monomers
and TR homodimers (19–21). In addition to TR and RXR, other
members of the nuclear hormone receptor family can regulate
transcription by binding to T3REs. For example, the a and b
isoforms of the liver X receptor (LXR) heterodimerize with RXR
on an artificial T3RE composed of directly repeated half-sites
separated by a 4-bp spacer (22). Binding of LXR/RXR to this
T3RE causes a stimulation of transcription in the absence and
presence of ligands for LXR and RXR. Evidence that LXR/RXR
heterodimers modulate transcription through T3REs of native
genes is presently lacking.

TRs bound to T3REs exhibit two regulatory activities. In the
absence of T3, TRs repress transcription (23–26). The addition
of T3 causes a derepression of transcription and, in some in-
stances, a further activation of transcription above that ob-
served in the absence of TR (23). This dual regulatory activity
of TR arises, in part, from the ability of TR to recruit auxiliary
regulatory proteins referred to as corepressors and coactiva-
tors. In the absence of T3, TR binds to corepressors such as
silencing mediator for retinoic and thyroid hormone receptors
(27) and nuclear receptor corepressor (28). The presence of T3
causes the release of corepressors and the subsequent associa-
tion of TR with coactivators (29, 30). Examples of coactivators
of TR include CREB-binding protein (CBP) (31, 32), steroid
receptor coactivator-1 (33), CBP-interacting protein (34, 35),
and p300/CBP associated factor (36). Corepressors and coacti-
vators may mediate the transcriptional effects of TR by directly
interacting with the basal transcriptional machinery, by mod-
ulating interactions between TR and the basal transcriptional
machinery, and by modifying chromatin structure (13, 29, 37).

In the present report, we have investigated the mechanism
by which T3 regulates ACCa transcription in hepatocytes. A
strongly active T3RE in the 59-flanking region of ACCa pro-
moter 2 has been characterized. An interesting feature of this
ACCa T3RE that distinguishes it from T3REs of other T3-
responsive genes is that it activates transcription both in the
absence and presence of T3. In addition, this ACCa T3RE binds
multiple protein complexes in hepatic nuclear extracts, and
several of these complexes contain LXR/RXR heterodimers. We
also show that the T3-induced stimulation of ACCa transcrip-
tion in hepatocytes is closely associated with dramatic changes
in the binding of LXR/RXR complexes and TR/RXR complexes
to the ACCa T3RE. From these data, we propose that T3
regulates ACCa transcription by a novel mechanism involving
changes in the binding of nuclear receptor complexes to a
T3RE.

EXPERIMENTAL PROCEDURES

Reporter Plasmids—An 18-kilobase pair ACCa genomic clone was
obtained by screening a l chicken genomic library (CLONTECH) with a

polymerase chain reaction-generated DNA fragment extending from
21500 to 2855 bp relative to the start site of transcription of chicken
ACCa promoter 2. The sequence of the primers used to generate the
21500 to 2855 bp fragment was derived from the published ACCa
promoter 2 sequence (38). ACCa DNA fragments used to construct
reporter plasmids were named by designating the 59- and 39-ends
of each fragment relative to the transcription start site. To con-
struct p[ACC24900/1274]CAT (HindIII/XhoI), p[ACC22054/
1274]CAT (BamHI/XhoI), p[ACC2854/1274]CAT (PstI/XhoI),
p[ACC2391/1274]CAT (BsmI/XhoI), p[ACC2212/1274]CAT (MscI/
XhoI), p[ACC2136/1274]CAT (EagI/XhoI), and p[ACC294/1274]CAT
(BstEII/XhoI), ACCa restriction fragments indicated in brackets were
inserted upstream of the chloramphenicol acetyltransferase (CAT) gene
in KSCAT (39). To construct p[ACC2108/1274]CAT, p[ACC284/
1274]CAT, p[ACC259/1274]CAT, p[ACC241/1274]CAT, and
p[ACC230/1274]CAT, ACCa fragments were amplified by polymerase
chain reaction and inserted upstream of the CAT gene in KSCAT.
pBLCAT2 (pTKCAT) was obtained from B. Luckow and G. Schutz
(German Cancer Research Center) (40). The cryptic activator protein-1
site located 59 of the multiple cloning site in pBLCAT2 (41) was removed
by excising the NdeI/HindIII fragment from this plasmid followed by
religation. Fragments of the ACCa promoter/regulatory region were
inserted into SphI and SalI site 59 of the herpes simplex virus thymi-
dine kinase (TK) promoter in pTKCAT to form ACC/TKCAT constructs.
p[ACC2212/282]TKCAT, p[ACC2171/282]TKCAT, and p[ACC2212/
2108]TKCAT were constructed by first amplifying the indicated ACCa
fragments using polymerase chain reaction and then subcloning them
into pTKCAT. p[ACC2136/282]TKCAT, p[ACC2108/282]TKCAT and
pTKCAT constructs containing mutations in the 2108 to 282 fragment
were made by inserting annealed complementary synthetic oligonucleo-
tides into pTKCAT. Structures of reporter plasmids were confirmed by
restriction enzyme mapping and nucleotide sequence analyses.

The cDNAs for human RXRa and chicken TRa were provided by R.
Evans (Salk Institute) and H. Samuels (New York University), respec-
tively. D. Mangelsdorf (University of Texas Southwestern Medical Cen-
ter) provided the cDNAs for human LXRa and LXRb. Expression plas-
mids for RXRa, TRa, LXRa, and LXRb were developed by subcloning
the cDNAs for these receptors into pSV-SPORT1 (Life Technologies,
Inc.).

Cell Culture and Transient Transfection—Primary cultures of chick
embryo hepatocytes were prepared as described previously (42) and
maintained in serum-free Waymouth’s medium MD705/1 containing 50
nM insulin (gift from Lilly) and corticosterone (1 mM). Chick embryo
hepatocytes were incubated on 60-mm Petri dishes (Fisher) at 40 °C in
a humidified atmosphere of 5% CO2 and 95% air. Cells were transfected
6 h after plating, using 20 mg of Lipofectin (Life Technologies), 2.5 mg of
p[ACC24900/1274]CAT or an equimolar amount of another reporter
plasmid, and pBluescript KS(1) to bring the total amount of transfected
DNA to 3.0 mg/plate. At 18 h of incubation, the transfection medium was
replaced with fresh medium with or without T3 (1.5 mM). At 66 h of
incubation, chick embryo hepatocytes were harvested, and cell extracts
were prepared as described by Baillie et al. (43). CAT activity (44) and
protein (45) were assayed by the indicated methods. All DNAs used in
transfection experiments were purified using the Qiagen endotoxin-free
kit.

Gel Mobility Shift Analysis—Twenty hours after being placed into
culture, chick embryo hepatocytes were incubated in Waymouth’s me-
dium containing insulin and corticosterone with or without T3 for the
times indicated in the figure legends. Cells were harvested, and nuclear
extracts were prepared as described (46) except that the protease in-
hibitors, leupeptin (0.25 mg/ml), benzamidine (10 mM), aprotinin (8
mg/ml), and phenylmethylsulfonyl fluoride (0.5 mM) were added to the
extraction buffer at the indicated concentrations. Chicken TRa, human
LXRa, human LXRb, and human RXRa were translated in vitro using
the TNT SP6 coupled reticulocyte lysate system (Promega). To assess
the relative efficiency of synthesis of the different receptor proteins,
incorporation of [35S]methionine into receptor proteins was measured
in parallel reactions. Double-stranded oligonucleotides were prepared
by combining equal amounts of the complementary single-stranded
DNA in a solution containing 10 mM Tris, pH 8.0, 1 mM EDTA followed
by heating to 90 °C for 2 min and then cooling to room temperature. The
annealed oligonucleotides were labeled by filling in overhanging 59-ends
using the Klenow fragment of Escherichia coli DNA polymerase in the
presence of [a-32P]dCTP and/or [a-32P]dGTP. Binding reactions were
carried out in 20 ml containing 18 mM HEPES, pH 7.9, 90 mM KCl, 0.18
mM EDTA, 0.45 mM dithiothreitol, 18% glycerol (v/v), 0.3 mg/ml bovine
serum albumin, and 2 mg of poly(dIzdC). A typical reaction contained
20,000 cpm (0.1 ng) of labeled DNA and 10 mg of nuclear extract or 2 ml
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of in vitro translated proteins. The reaction was carried out on ice for 60
min. DNA and DNA-protein complexes were resolved on 6% nondena-
turing polyacrylamide gels at 4 °C in 0.53 TBE (45 mM Tris, pH 8.3, 45
mM boric acid, 1 mM EDTA). Following electrophoresis, the gels were
dried and subject to storage phosphor autoradiography. For competition
experiments, unlabeled competitor DNA was mixed with radiolabeled
oligomer prior to the addition of nuclear extract. For antibody super-
shift experiments, nuclear extracts were incubated with antibodies for
30 min at 0 °C prior to the addition of the oligonucleotide probe. Mono-
clonal antibody that recognizes the a, b, and g forms of RXR was
generously provided by P. Chambon (Strasbourg, France). Polyclonal
antibodies that recognized chicken ovalbumin upstream promoter-tran-
scription factor I (N19), the a and b forms of chicken TR (FL-408), and
the a and b forms of LXR (C19) were purchased from Santa Cruz
Biotechnology, Inc. (Santa Cruz, CA). The synthetic oligonucleotides
that were used as probes or competitors in gel mobility shift assays are
listed in Figs. 3A and 6C.

RESULTS

Identification of Sequences That Confer T3 Regulation on
ACCa Promoter 2—Results from RNase protection analyses
indicated that the T3-induced stimulation of ACCa expression
in chick embryo hepatocytes is mediated primarily by changes
in the activity of promoter 2 of the ACCa gene.2 Transient
transfection experiments were performed to identify the
T3RE(s) mediating this regulation. In our initial experiments,
chick embryo hepatocytes were transfected with a series DNA
constructs containing 59-deletions of ACCa promoter 2 linked
to the CAT gene. In hepatocytes transfected with the longest
construct, p[ACC24900/1274]CAT, T3 caused a 4.2-fold in-
crease in CAT activity (Fig. 1). Deletion of ACC-a sequences to
22054, 2854, 2391, and 2212 bp had no effect on T3 respon-
siveness. Deletion of ACCa sequences from 2136 to 2108 bp
caused a 2.1-fold increase T3 responsiveness, suggesting that
the region between 2136 and 2108 bp contains a sequence that
inhibits T3 responsiveness. Deletion of ACCa sequences from
2108 to 294 bp caused a marked decrease in promoter activity

in the absence and presence of T3. Because the extent of the
decrease in promoter activity was greater in cells incubated in
the presence of T3, T3 responsiveness was decreased by 83%.
Further deletion of ACCa sequence to a 59-end points of 284,
259, and 241 bp had no effect on residual T3 responsiveness
(about a 2-fold increase in CAT activity). Further deletion of
ACCa sequence to a 59-end point of 230 bp abolished promoter
activity in the absence and presence of T3 (data not shown).
These data suggest that the region between 2108 and 294 bp
overlaps with a T3RE or an accessory element that augments
T3 responsiveness. In addition, another T3RE of weaker activ-
ity is located downstream of 241 bp.

Analysis of 39-deletions of ACCa DNA in the context of
p[ACC294/1274]CAT indicated the presence of a T3RE or
T3RE accessory element between 1179 and 1151 bp.3 How-
ever, this T3 regulatory sequence was not detected in 39-dele-
tions containing the T3 regulatory sequence between 2212 and
294 bp. This observation suggests that sequences upstream of
the transcription start site mediate most, if not all, of the T3
regulation of transcription initiated from ACCa promoter 2.

To obtain additional data indicating the presence of a T3RE
in the 59-flanking region of ACCa promoter 2, chick embryo
hepatocytes were transfected with constructs containing ACCa
DNA fragments linked to the minimal promoter of the herpes
simplex virus TK gene. The TK promoter alone was unrespon-
sive to T3 in chick hepatocytes (Fig. 2). Appending an ACCa
DNA fragment from 2212 to 282 bp to the TK promoter caused
a 3.6-fold increase in T3 responsiveness. To further define the
location of the T3RE in the 2212 to 282 bp fragment, a series
of deletions of p[ACC2212/282]TKCAT were tested for their
ability to confer T3 responsiveness. Deletion of the 59-end to
2171 bp caused a 36% increase in T3 responsiveness. Further

3 Y. Zhang and F. B. Hillgartner, unpublished results.

FIG. 1. Effects of deletions of the 5*-flanking region of ACCa promoter 2 on transcriptional activity in the absence and presence
of T3. Chick embryo hepatocytes were transiently transfected with p[ACC24900/1274]CAT or equimolar amounts of other plasmids as described
under “Experimental Procedures.” After transfection, cells were treated with or without T3 for 48 h. Cells were then harvested, extracts were
prepared, and CAT assays were performed. Left, the constructs used in these experiments. The number at the left of each construct is the 59-end
of ACCa DNA in nucleotides relative to the transcription initiation site of promoter 2. The 39-end of each construct was 1274 bp. Right, CAT
activity of cells transfected with p[ACC2212/1274]CAT and treated with T3 was set at 100, and the other activities were adjusted proportionately.
The -fold stimulation by T3 was calculated by dividing the CAT activity for hepatocytes treated with T3 (1T3) by that for hepatocytes not treated
with T3 (2T3). The -fold responses were calculated for individual experiments and then averaged. The results are the means 6 S.E. of six
experiments. CAT activity of T3-treated hepatocytes transfected with p[ACC2212/1274]CAT was 320 6 42% conversion/h/mg of protein. a, the
-fold stimulation by T3 for p[ACC2108/1274]CAT is significantly higher than that of any other construct (p , 0.05).
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deletion to 2136 bp had no effect on T3 responsiveness. When
the 59-end was deleted to 2108 bp, T3 responsiveness increased
from 5.7- to 10.2-fold. This observation is consistent with data
from 59-deletion analysis in the context of p[ACC24900/
1274]CAT (Fig. 1), suggesting the presence of a T3 inhibitory
element between 2136 and 2108 bp. When the 39-end of the
2212 to 282 fragment was deleted to 2108 bp, T3 responsive-
ness was abolished. Thus, the sequence between 2108 and 282
bp contains a strongly active T3RE. Interestingly, this T3RE
confers T3 regulation by stimulating promoter activity both in
the absence and presence of T3, with a greater stimulation
observed in the presence of T3. These data support the results
from 59-deletion analysis in the context of p[ACC24900/
1274]CAT (Fig. 1) indicating the presence of a T3-dependent
and T3-independent enhancer element between 2108 and 294
bp.

Analysis of the sequences between 2108 and 282 bp re-
vealed the presence of four hexameric half-sites (Fig. 3A). Two
of these half-sites (sites 2 and 3) conform perfectly to the
consensus T3RE half-site sequence, RGGWMA. The other two
half-sites (sites 1 and 4) are degenerate copies of the consensus
half-site sequence. Half-sites 1 and 3 form an imperfect direct
repeat with a 4-bp spacer (DR4) on the coding strand, and sites
2 and 4 form an imperfect DR4 on the noncoding strand. These
putative DR4 elements partially overlap with each other. Other
combinations of half-sites could form inverted or everted repeat
structures. To investigate which of the putative T3RE half-
sites were involved in mediating T3 regulation, hepatocytes
were transfected with constructs that contained mutations of
individual half-sites in the context of p[ACC2108/282]TKCAT.
Mutating the first 3 bp of half-site 1 (mut 1) had no effect on T3
responsiveness (Fig. 3B). In contrast, mutating the first 3 bp of
half-site 2 (mut 2) or half-site 4 (mut 4) abolished T3 respon-
siveness. This effect was mediated by a decrease in promoter
activity in the absence and presence of T3, with a greater effect

in the presence of T3. The first 3 bp of half-site 3 also comprise
part of the spacer separating half-sites 2 and 4. Mutating these
3 bp (mut 3) caused a 72% decrease in T3 responsiveness. This
effect was mediated by a decrease in promoter activity in the
presence of T3. These data demonstrate that T3 regulation
conferred by the 2108 to 282 bp fragment is mediated by two
half-sites (sites 2 and 4) arranged as direct repeats on the
noncoding strand. Both of these half-sites are required for the
T3-dependent and T3-independent transcriptional activation
functions of this T3RE. The T3-dependent enhancer function is
also modulated by sequences in the spacer separating the two
half-sites.

Characterization of Nuclear Proteins That Bind the ACCa

FIG. 2. A strongly active T3RE is located between 2108 and
282 bp of the ACCa gene. Fragments of the ACC-a gene were linked
to the minimal TK promoter in pTKCAT. Hepatocytes were transiently
transfected with these constructs and treated with or without T3 as
described in the legend of Fig. 1 and under “Experimental Procedures.”
Left, constructs used in these experiments. Numbers indicate the 59 and
39 boundaries of ACCa DNA relative to the transcription initiation site
of promoter 2. Right, CAT activity in cells transfected with p[ACC2108/
282]TKCAT and treated with T3 was set at 100, and the other activi-
ties were adjusted proportionately. The -fold stimulation by T3 was
calculated as described in the legend to Fig. 1. The results are the
means 6 S.E. of four experiments. The CAT activity of extracts from
T3-treated hepatocytes transfected with p[ACC2108/282]TKCAT was
251 6 36% conversion/h/mg of protein. Significant differences between
means within a column (p , 0.05) are as follows. a, versus pTKCAT; b,
versus any other construct.

FIG. 3. Delineation of the sequences in the 2108 to 282 bp
ACCa fragment that confer transcriptional activation in the
absence and presence of T3. A, native and mutant sequences of
putative half-sites located between 2108 and 282 bp of the ACCa gene.
Underlined and overlined sequences in the native 2108 to 282 bp
fragment are motifs that are similar to the consensus T3RE half-site
(top). The half-sites are numbered 1–4. The arrows indicate the orien-
tation of the half-sites. Half-sites 2 and 3 conform perfectly to the
consensus T3RE half-site sequence, whereas half-sites 1 and 4 are
degenerate copies of the consensus sequence. Mutations were intro-
duced into individual half-sites in the context of p[ACC2108/282]TK-
CAT. mut 1 to mut 4 refer to the number of the half-site that was
mutated in each construct. Mutated sequences are boxed. B, CAT ac-
tivity of hepatocytes transfected with mutant reporter constructs.
Hepatocytes were transiently transfected as described in the legend of
Fig. 1 and under “Experimental Procedures.” After transfection, cells
were treated with or without T3 for 48 h. CAT activity in cells trans-
fected with p[ACC2108/282]TKCAT and treated with T3 was set at
100, and the other activities were adjusted proportionately. The results
are the means 6 S.E. of five experiments. The CAT activity of extracts
from T3-treated hepatocytes transfected with p[ACC2108/282]TKCAT
was 238 6 26% conversion/h/mg of protein. Significant differences be-
tween means within a column (p , 0.05) are as follows. a, versus
p[ACC2108/282]TKCAT treated without T3; b, versus p[ACC2108/
282]TKCAT treated with T3; c, versus p[ACC2108/282]TKCAT.
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T3RE between 2108 and 282 bp—Gel mobility shift analyses
were conducted to assess the binding of hepatic nuclear pro-
teins to the T3RE between 2108 and 282 bp. We will refer to
this T3RE as ACCa-T3RE. Nuclear extracts were prepared
from hepatocytes incubated in the absence and presence of T3
for 24 h. Incubation of nuclear extracts with a 32P-labeled DNA
probe containing ACCa-T3RE resulted in the formation of four
protein-DNA complexes designated 1–4 in the order of increas-
ing mobility (Fig. 4, A and B). The abundance of complex 1 and
complex 2 was markedly increased in nuclear extracts from
hepatocytes incubated in the absence of T3 relative to nuclear
extracts from hepatocytes incubated in the presence of T3.
Conversely, the abundance of complex 3 and complex 4 was
markedly elevated in nuclear extracts from hepatocytes incu-
bated in the presence of T3 compared with nuclear extracts
from hepatocytes incubated in the absence of T3. A 100-fold
molar excess of unlabeled ACCa-T3RE competed for the bind-

ing of complexes 1–4, suggesting that the binding of these
protein-DNA complexes was specific (Fig. 4A).

Antibody supershift experiments were performed to identify
the proteins that interacted with ACCa-T3RE. Antibodies di-
rected against a, b, and g isoforms of RXR completely disrupted
the formation of complex 3 and complex 4 (Fig. 4A). This result
was more readily observed in nuclear extracts from T3-treated
hepatocytes in which the abundance of complex 3 and complex
4 was elevated. RXR antibodies partially disrupted the forma-
tion of complex 1 and complex 2 in nuclear extracts from
hepatocytes incubated without T3. The disruption of complexes
1, 2, 3, and 4 by RXR antibodies was associated with the
appearance of a supershifted complex of high intensity. These
results suggest that most of the protein-DNA complexes that
interact with ACCa-T3RE contain RXR or a protein highly
related to RXR. Antibodies directed against the a and b iso-
forms of TR completely disrupted the formation of complex 4
but had no effect on the formation of complexes 1–3. The
disruption of band 4 by TR antibody was associated with the
appearance of a supershifted complex. Thus, complex 4 appears
to contain TR/RXR heterodimers. Other proteins that can het-
erodimerize with RXR on DR4 elements include the a and b

isoforms of LXR (22, 47). LXRa and LXRb are expressed abun-
dantly in liver (47–49). Preincubation of nuclear extracts with
antibodies directed against LXRa and LXRb partially dis-
rupted the formation of complexes 1 and 2 in nuclear extracts
from hepatocytes incubated without T3 and disrupted the for-
mation of complex 3 in nuclear extracts from hepatocytes in-
cubated with T3 (Fig. 4B). Thus, complexes 1–3 appear to
contain LXR/RXR heterodimers. The orphan receptor, chicken
ovalbumin upstream promoter-transcription factor (COUP-
TF), also has been reported to bind T3REs (50, 51). Antibodies
against COUP-TFI had no effect on protein binding to
ACCa-T3RE.

The ability of the ACCa-T3RE to bind heterodimers contain-
ing LXR/RXR and TR/RXR was confirmed by gel mobility shift
experiments employing in vitro synthesized receptors. Incuba-
tion of in vitro translated LXRa, LXRb, RXRa, or TRa with the
ACCa-T3RE probe resulted in little or no DNA binding activity
(Fig. 5A). Inclusion of RXRa in the binding reactions with
LXRa, LXRb, and TRa stimulated the formation of high affin-
ity protein-DNA complexes containing LXRa/RXRa, LXRb/
RXRa, and TRa/RXRa, respectively. Competition analyses in-
dicated that the affinities of LXRa/RXRa, LXRb/RXRa, and
TRa/RXRa for ACCa-T3RE were similar (Fig. 5B).

Results from DNA binding analyses suggest that complex 1
and complex 2 mediate the enhancer activity of ACCa-T3RE in
the absence of T3 and that complex 3 and complex 4 mediate
the increase in enhancer activity of ACCa-T3RE caused by the
addition of T3. To obtain further data supporting this hypoth-
esis, competition experiments were performed using unlabeled
DNA fragments containing native or mutant forms of ACCa-
T3RE. These ACCa-T3RE fragments were the same sequences
assayed in the transfection experiments described in Fig. 3.
Unlabeled ACCa-T3RE, ACCa-T3RE mut 1, and ACCa-T3RE
mut 3 were more effective than ACCa-T3RE mut 2 and ACCa-
T3RE mut 4 in competing for the binding of complexes 1 and 2
in nuclear extracts from hepatocytes incubated in the absence
of T3 and complex 3 in nuclear extracts from hepatocytes
incubated in the presence of T3 (Fig. 6A). Thus, ACCa-T3RE
mutants that abolished enhancer activity in the absence and
presence of T3 (i.e. ACCa-T3RE mut 2 and ACCa-T3RE mut 4)
bound proteins in complex 1, complex 2, and complex 3 with
reduced affinity. These findings are consistent with a role of
complexes 1 and 2 in mediating the enhancer activity of ACCa-
T3RE in the absence of T3 and a role of complex 3 in mediating

FIG. 4. ACCa-T3RE binds hepatic protein complexes contain-
ing LXR/RXR and TR/RXR. Gel mobility shift assays were performed
using nuclear extracts prepared from hepatocytes incubated with or
without T3 for 24 h. A double-stranded DNA fragment corresponding to
2108 to 282 bp of the ACCa gene (ACCa-T3RE) was labeled with
[a-32P]dCTP using the Klenow fragment of E. coli DNA polymerase. The
radiolabeled probe was incubated with 10 mg of nuclear protein as
described under “Experimental Procedures.” DNA and DNA-protein
complexes were resolved on 6% nondenaturing polyacrylamide gels. A,
nuclear extracts were incubated with antibodies against RXR and TR
prior to the addition of the probe. Competition analysis was performed
by mixing the labeled probe with a 20- and 100-fold molar excess of
unlabeled ACCa-T3RE prior to the addition of nuclear extract. B, nu-
clear extracts were incubated with antibodies against COUP-TFI and
LXR prior to the addition of the probe. Positions of the specific protein-
DNA complexes (arrows), nonspecific complexes (asterisk), and super-
shifted complexes (SS) are indicated. These results are representative
of four experiments employing independent preparations of nuclear
extract. NS, normal serum.
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enhancer activity in the presence of T3. The competition profile
for complex 4 was different from that of complexes 1–3. In
nuclear extracts from hepatocytes incubated with T3, ACCa-
T3RE and ACCa-T3RE mut 1 were more effective than ACCa-
T3RE mut 2 and ACCa-T3RE mut 3 in competing for complex
4 binding activity. Thus, the inhibition of T3-induced transcrip-
tional activity caused by ACCa-T3RE mut 2 and ACCa-T3RE
mut 3 is associated with a decrease in the binding of complex 4.
However, ACCa-T3RE mut 1 and ACCa-T3RE mut 4 exhibited
a similar ability to compete for the binding of complex 4 despite
the fact that these mutations caused markedly different effects
on T3-induced transcriptional activity. Thus, the elimination of
T3-dependent enhancer activity caused by mutation of the
more upstream half-site of the ACCa-T3RE (i.e. ACCa-T3RE
mut 4) is not associated with changes in the binding of TR/RXR.
Previous studies have shown that variations in the structure of
the upstream half-site of DR4-type T3REs can profoundly alter
T3-dependent enhancer activity without causing changes in
TR/RXR binding affinity (16). The mechanism mediating the
alteration in T3-dependent enhancer activity involves changes
in the conformation of TR/RXR heterodimers bound to DNA

(52). This mechanism may explain the effect of ACCa-T3RE
mut 4 on T3-dependent enhancer activity.

The major T3RE mediating the T3 regulation of the chicken
malic enzyme gene is a DR4-type element located between
23883 and 23858 bp and is referred to as ME-T3RE2 (39, 53).
In contrast to the transcriptional enhancer function of ACCa-
T3RE in chick embryo hepatocytes incubated in the absence of
T3 (Figs. 1, 2, and 3B), ME-T3RE2 functions as a strong re-
pressor of transcription in chick embryo hepatocytes incubated
under the same experimental conditions (53). Both ACCa-
T3RE and ME-T3RE2 activate transcription in hepatocytes
incubated in the presence of T3. The different activities of
ACCa-T3RE and ME-T3RE2 in hepatocytes incubated in the
absence of T3 may be due to differences in the binding affinities

FIG. 5. ACCa-T3RE binds LXRa, LXRb, and TRa as het-
erodimers with RXRa. Gel mobility shift assays were performed as
described under “Experimental Procedures” using in vitro synthesized
nuclear receptors and 32P-labeled ACCa-T3RE (2108 to 282 bp) as the
probe. A, equimolar amounts of in vitro synthesized LXRa, LXRb, or
TRa were incubated with the radiolabeled probe in the absence or
presence of RXRa as indicated. In lanes 8–10, receptor preparations
were incubated with antibodies against LXR or RXR prior to the addi-
tion of the probe. Positions of heterodimeric, homodimeric, monomeric,
and supershifted receptor complexes are indicated by arrows. Nonspe-
cific complexes are indicated by an asterisk. B, the radiolabeled ACCa-
T3RE probe was incubated with a 3-, 6-, 20-, and 100-fold molar excess
of unlabeled ACCa-T3RE or ME-T3RE2 prior to the addition of in vitro
synthesized LXRa/RXRa, LXRb/RXRa, and TRa/RXRa. The sequence
of ME-T3RE2 is shown in Fig. 6C.

FIG. 6. The ability of native and mutant T3REs to compete for
the binding of hepatic nuclear proteins to ACCa-T3RE. Gel mo-
bility shift experiments were performed as described under “Experi-
mental Procedures” using 32P-labeled ACCa-T3RE as a probe and nu-
clear extracts prepared from hepatocytes incubated with or without T3
for 24 h. Nuclear extracts were incubated with the ACCa-T3RE probe in
the presence of different concentrations of unlabeled competitor DNAs.
Each reaction contained 10 mg of nuclear protein. DNA and DNA-
protein complexes were resolved on 6% nondenaturing polyacrylamide
gels. Specific protein-DNA complexes are indicated by arrows. Bands 1
and 2 and bands 3 and 4 are the predominant protein-DNA complexes
observed with nuclear extracts from hepatocytes incubated in the ab-
sence of T3 and presence of T3, respectively. A, competition analysis
with native and mutant forms of ACCa-T3RE. The sequences of the
ACCa-T3RE competitors are shown in Fig. 3A. Unlabeled competitor
DNAs (6-, 20-, or 40-fold molar excess) were mixed with the radiolabeled
probe prior to the addition of nuclear extract. B, competition analysis
with the major T3RE of the chicken malic enzyme gene (ME-T3RE2).
Unlabeled ME-T3RE2 and ACCa-T3RE (3-, 6-, 20-, or 100-fold molar
excess) were mixed with the radiolabeled probe prior to the addition of
nuclear extract. C, comparison of the sequence of ME-T3RE2 with that
of ACCa-T3RE. The arrows indicate the position and orientation of the
half-sites. 2T3 NE, nuclear extracts from hepatocytes treated without
T3; 1T3 NE, nuclear extracts from hepatocytes treated with T3. These
data are representative of four experiments employing independent
preparations of nuclear extract.
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of these T3REs for complexes 1 and 2. To investigate this
possibility, we examined the ability of different concentrations
of unlabeled ME-T3RE2 to compete for protein binding to 32P-
labeled ACCa-T3RE. A 100-fold molar excess of ME-T3RE2
was not effective in competing for the binding of complex 1 and
complex 2 in nuclear extracts from hepatocytes incubated with-
out T3 (Fig. 6B). The inability of ME-T3RE2 to bind the pro-
teins in complex 1 and complex 2 is consistent with these
complexes functioning as activators of transcription in the ab-
sence of T3. To investigate whether common factors were in-
volved in mediating the T3-dependent enhancer activities of
ACCa-T3RE and ME-T3RE2, competition experiments were
performed using nuclear extracts from hepatocytes incubated
in the presence of T3. ME-T3RE2 was effective in competing for
the binding of complex 4 but was not effective in competing for
complex 3. This observation suggests that the proteins com-
prising complex 4 (i.e. TR/RXR heterodimers) mediate the T3-
dependent enhancer activities of both ACCa-T3RE and ME-
T3RE2. The inability of ME-T3RE2 to bind complexes
containing LXR/RXR heterodimers (i.e. complexes 1–3) was
confirmed by experiments demonstrating that ME-T3RE2 was
not effective in competing for binding of in vitro synthesized
LXRa/RXRa (Fig. 5B).

Previous work from our laboratory has shown that in hepa-
tocytes incubated in the presence of insulin, the stimulation of
ACCa transcription by T3 occurs in two phases (Fig. 7A) (9).
Incubating hepatocytes with T3 for 1 h causes a small increase
(1.9-fold) in ACCa transcription. Between 1 and 5 h of T3
treatment, there is no change in the rate of ACCa transcrip-
tion. After 5 h of T3 treatment, the rate of ACCa transcription
increases again. A maximal rate of ACCa transcription is
reached after 24 h of T3 treatment and is about 7 times the
transcription rate observed before the addition of T3. To inves-
tigate the temporal relationship between ACCa transcription
and the binding of nuclear proteins to ACCa-T3RE, the time
course of the effects of T3 on protein binding to ACCa-T3RE
was determined. Nuclear extracts from hepatocytes incubated
with or without T3 for different times were subjected to gel
mobility shift analysis using ACCa-T3RE as a probe. As ob-
served earlier in Fig. 4, ACCa-T3RE primarily bound com-
plexes 1 and 2 in nuclear extracts from hepatocytes incubated
in the absence of T3 (Fig. 7B). Incubation of hepatocytes with
T3 for 1 and 5 h had no effect on the pattern of protein binding
to ACCa-T3RE. Between 5 and 24 h of T3 treatment, the
binding of complexes 3 and 4 increased and the binding of
complexes 1 and 2 decreased. The pattern of protein binding to
ACCa-T3RE at 48 h of T3 treatment was similar to that at 24 h
of T3 treatment (data not shown). Thus, T3-induced alterations
in protein binding to ACCa-T3RE are closely correlated with
the large increase in ACCa transcription between 5 and 24 h of
hormone treatment. This observation provides further evi-
dence that alterations in the binding of complexes 1–4 are
involved mediating the T3-induced increase in ACCa

transcription.
Effects of Expression of Exogenous LXR, RXR, and TR on

ACCa-T3RE Function—Results of DNA binding analyses
(Figs. 4 and 5) suggest that complexes containing LXR/RXR
heterodimers mediate the transcriptional enhancer activity of
ACCa-T3RE in hepatocytes incubated in the absence of T3. To
obtain additional data supporting this hypothesis, we deter-
mined the effects of expression of exogenous LXRa, LXRb,
RXRa, LXRa plus RXRa, or LXRb plus RXRa on transcription
directed by the ACCa-T3RE. Chick embryo hepatocytes were
transiently transfected with p[ACC2108/282]TKCAT and ex-
pression plasmids containing or lacking the genes for LXRa,
LXRb, or RXRa. Overexpression of RXRa alone had no effect on

p[ACC2108/282]TKCAT activity in hepatocytes incubated in
the absence or presence of T3 (Fig. 8). In contrast, overexpres-
sion of LXRa or LXRb alone or in combination with RXRa
stimulated a 2.5–3-fold increase in p[ACC2108/282]TKCAT
activity in the absence of T3; overexpression of these receptors
had no effect on p[ACC2108/282]TKCAT activity in the pres-
ence of T3. When hepatocytes were transfected with a reporter
plasmid lacking the ACCa-T3RE (pTKCAT), overexpression of
LXRa, LXRb, RXRa, LXRa plus RXRa, or LXRb plus RXRa
had no effect on promoter activity in the absence or presence of
T3 (data not shown). These data are consistent with a role of
LXR/RXR heterodimers in mediating the enhancer activity of
ACCa-T3RE in the absence of T3.

We also investigated the effects of overexpression of TRa on
p[ACC2108/282]TKCAT activity in chick embryo hepatocytes.
In contrast to the results for LXRa and LXRb, overexpression
of TRa and TRa plus RXRa caused an 88 and 91% decrease in
p[ACC2108/282]TKCAT activity, respectively, in hepatocytes
incubated in the absence of T3; overexpression of these recep-
tors had no effect on p[ACC2108/282]TKCAT activity in hepa-
tocytes incubated in the presence of T3 (Fig. 8). These data
provide further evidence that TR/RXR heterodimers are not

FIG. 7. Time course for T3-induced changes in the binding of
hepatic nuclear proteins to ACCa-T3RE. A, previously published
data for the time course of the T3-induced increase in ACCa transcrip-
tion. Nuclear run-on assays were performed using nuclei isolated from
hepatocytes incubated in the absence or presence of T3 for the indicated
time periods. These data were taken from Hillgartner et al. (9). B, time
course for T3-induced changes in protein binding to ACCa-T3RE. Gel
mobility shift assays were performed using nuclear extracts prepared
from hepatocytes incubated in the absence or presence of T3 for the
indicated time periods. Nuclear extracts (10 mg of protein) were incu-
bated with 32P-labeled ACCa-T3RE as described under “Experimental
Procedures.” DNA and DNA-protein complexes were resolved on 6%
nondenaturing polyacrylamide gels. Specific protein-DNA complexes
are indicated by arrows. Nonspecific complexes are indicated by an
asterisk. These data are representative of four experiments employing
independent preparations of nuclear extract.
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involved in mediating the enhancer activity of ACCa-T3RE in
the absence of T3.

DISCUSSION

Previous studies analyzing the functional properties of TRs
in vivo and in vitro have shown that the unliganded form of TR
represses transcription and that the binding of T3 to TR re-
verses this effect and, in some instances, stimulates transcrip-
tion above that observed in the absence of TR (13, 23–26).
Accordingly, several native and artificial T3REs have been
shown to confer T3 responsiveness by repressing transcription
in the absence of T3 and activating transcription in the pres-
ence of T3 (53–56). In the present report, we have identified a
T3RE (ACCa-T3RE) with different functional properties.
ACCa-T3RE confers T3 regulation on ACCa promoter 2 in
chick embryo hepatocytes by stimulating transcription both in
the absence and presence of T3, with a greater stimulation
observed in the presence of T3. These transcriptional effects of
ACCa-T3RE were observed in the presence of endogenous cel-
lular proteins; overexpression of TR or other proteins was not
required to elicit a T3 response from transfected genes in chick
embryo hepatocytes. To our knowledge, this is the first report
describing a T3RE that functions as a T3-independent en-
hancer of transcription during physiological conditions.

Results from DNA binding (Figs. 4, 5, and 7), competition
(Fig. 6), and transient transfection (Fig. 8) analyses suggest
that the T3-independent enhancer activity of ACCa-T3RE is
mediated by protein complexes containing LXR/RXR het-
erodimers (complexes 1 and 2) and that the increase in ACCa-
T3RE enhancer activity caused by T3 treatment is mediated by
protein complexes containing TR/RXR heterodimers (complex
4) and LXR/RXR heterodimers (complex 3). This is the first
time that LXR/RXR heterodimers have been shown to play a
role in mediating the transcriptional activity of a physiologi-
cally relevant T3RE. The different LXR/RXR complexes that
bind ACCa-T3RE in hepatocytes may contain LXR and/or RXR
of different sizes. The binding of coregulatory proteins to LXR/
RXR heterodimers may also account for the different LXR/RXR
complexes.

LXRs were initially identified as orphan receptors by screen-
ing libraries for homologues of nuclear hormone receptors and
were subsequently shown to be bound and activated by natu-
rally occurring oxysterols at physiological concentrations (47–
49, 57). LXR/RXR binding sites have been identified in the
genes for cholesterol 7a-hydroxylase (58), cholesterol ester
transfer protein (59), and ABC1 (60, 61). These binding sites
resemble DR4 elements and confer transcriptional activation
in both the absence and presence of oxysterols, with a greater
activation observed in the presence of oxysterols. There are no
reports that the LXR/RXR binding sites in the genes for cho-
lesterol 7a-hydroxylase, cholesterol ester transfer protein, and
ABC1 confer T3 regulation of transcription. LXR has been
proposed to play a key role in the regulation of cholesterol
excretion in animals, as cholesterol 7a-hydroxylase, cholesterol
ester transfer protein, and ABC1 are proteins involved in the
regulation of reverse cholesterol transport. Conclusive evidence
supporting a role of LXRa in the regulation of cholesterol
catabolism has come from the characterization of the LXRa

knockout mice. LXRa ablation causes an accumulation of cho-
lesterol esters in liver as a result of an inability of cholesterol
7a-hydroxylase to be induced by dietary cholesterol (62). Stud-
ies with LXRa knockout mice also indicate that LXRa regulates
expression of genes involved in fatty acid metabolism. For
example, ablation of LXRa in mice causes a marked decrease in
the expression of fatty acid synthase and stearoyl-CoA desatu-
rase in liver (62); the molecular mechanisms mediating these
effects are not known. The results of the present study demon-
strating that LXR binds and activates the ACCa gene in hepa-
tocytes provide additional support for a role of LXR in the
regulation of lipogenic enzyme expression.

Previous work from our laboratory has shown that a rela-
tively long time (24 h) is required to reach maximal rates of
ACCa transcription after the addition of T3 and that most of
the increase in transcription occurs between 5 and 24 h of
hormone treatment (9). Comparison of the time course of T3-
induced changes in ACCa transcription with the time course of
T3-induced changes in ACCa-T3RE binding activity indicates
that the increase in ACCa transcription between 5 and 24 h of
T3 treatment is closely associated with an increase in the
binding of complexes 3 and 4 and a decrease in the binding of
complexes 1 and 2 (Fig. 7). This observation suggests that
regulation of ACCa transcription by T3 is mediated by novel
mechanism involving alterations in the composition of nuclear
receptor complexes bound to ACCa-T3RE. We propose the fol-
lowing model for the regulation of ACCa transcription by T3.
The small increase in transcription observed within 1 h of T3
addition is mediated by a ligand-induced stimulation of the
derepression/activation function of TR in complex 4. This ini-
tial stimulation of ACCa transcription by T3 is limited by the
low binding activity of complex 4 to the ACCa-T3RE relative to
that of complex 1 and complex 2. The large increase in ACCa

transcription between 5 and 24 h of T3 treatment is mediated
by the increase in binding of complex 3 and complex 4 and the
decrease in binding of complex 1 and complex 2. In this model,
complex 3 and T3-bound complex 4 are more potent activators
of transcription than complex 1 and complex 2. The relatively
long time (.5 h) required to detect T3-induced changes in
protein binding to ACCa-T3RE suggests that alterations in the
synthesis of a regulatory protein are involved in mediating this
effect. While the identity of this regulatory protein is not
known, it does not appear to be TR or RXR, since expression of
TRa, TRb, RXRa, and RXRg is not affected by T3 treatment in
chick embryo hepatocytes (63). Data from Western blot analy-
ses indicate that the concentration of LXRa and LXRb in chick
embryo hepatocytes is also not affected by T3 treatment.3 We

FIG. 8. Effects of expression of exogenous LXRa, LXRb, RXRa,
and TRa on transcription directed by ACCa-T3RE. Chick embryo
hepatocytes were transiently transfected with p[ACC2108/282]TK-
CAT (1 mg/plate) and pSV-SPORT1-based expression plasmids (0.1
mg/plate) expressing the genes for LXRa, LXRb, RXRa, and TRa. In
transfections containing two receptor expression plasmids, 0.1 mg of
each plasmid was transfected per plate. Empty expression plasmid
(pSV-SPORT1) was added to bring the total amount of expression
plasmid transfected per plate to 0.2 mg. Control transfections contained
0.2 mg/plate of empty expression plasmid. After transfection, cells were
treated with or without T3 for 48 h. CAT activity in cells transfected
with p[ACC2108/282]TKCAT plus empty expression plasmid (control)
and treated with T3 was set at 100, and the other activities were
adjusted proportionately. The results are the means 6 S.E. of three
experiments. The CAT activity of extracts from T3-treated hepatocytes
transfected with p[ACC2108/282]TKCAT and empty expression plas-
mid was 214 6 33% conversion/h/mg of protein. *, mean is significantly
different (p , 0.05) from that of cells transfected with p[ACC2108/
282]TKCAT plus empty expression plasmid (control) and incubated
without T3.
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speculate that T3 regulates the expression of nuclear receptor
accessory proteins that, in turn, modulate protein binding to
ACCa-T3RE. Such accessory proteins may regulate ACCa-
T3RE binding activity by physically interacting with complexes
1, 2, 3, and/or 4 or by altering the phosphorylation state of
these protein complexes.

In contrast to ACCa-T3RE, the major T3RE of the malic
enzyme gene, ME-T3RE2, functions as a potent repressor of
transcription in the absence of T3 (53). If complex 1 and com-
plex 2 mediate the T3-independent enhancer activity of ACCa-
T3RE in hepatocytes, then what are the factors that mediate
the T3-independent repressor activity of ME-T3RE2? In previ-
ous work, we have shown that ME-T3RE2 binds to four com-
plexes in nuclear extracts from chick embryo hepatocytes incu-
bated without T3 (63). In contrast to the protein binding profile
for ACCa-T3RE, all four complexes that interact with ME-
T3RE2 contain TR, and three of the four complexes contain
RXR. Thus, the T3-independent repressor activity of ME-
T3RE2 is likely to be mediated by one or more complexes
containing unliganded TR. This supposition is consistent with
previous studies demonstrating that unliganded TR functions
as a repressor of transcription (26). Interestingly, in chick
embryo hepatocytes incubated in the absence of T3, the tran-
scription rate of the malic enzyme gene as determined by
nuclear run-on analysis is 30% of that observed for the ACCa
gene.4 This difference in transcription rate between malic en-
zyme and ACCa is likely to be mediated, at least in part, by the
contrasting T3-independent activities of ME-T3RE2 and
ACCa-T3RE.

In theory, the ability of a T3RE to bind TR and repress
transcription in the absence of T3 serves to amplify the acti-
vating effects of T3 on transcription. Indeed, the robust T3-
induced stimulation of transcription conferred by ME-T3RE2
in chick embryo hepatocytes (.270-fold) (53) is consistent with
this hypothesis. What is the physiological significance of the
enhancer activity of ACCa-T3RE in the absence T3? In addition
to its role in energy homeostasis, ACCa is required for the
synthesis of structural lipids in cell membranes. Consequently,
a basal level of ACCa expression is observed under conditions
when the enzyme is not induced by hormonal and nutritional
factors. We propose that the ACCa-T3RE also has a dual phys-
iological role. In addition to mediating the hormonal regulation
of ACCa expression, ACCa-T3RE ensures a basal level of ACCa
expression for obligatory cellular processes. The latter function
of the ACCa-T3RE is mediated by the binding of LXR/RXR
complexes. ACCa-T3RE may also contribute to the basal ex-
pression of ACCa in extrahepatic tissues, as LXRb is expressed
in a wide variety of tissues (48, 49).

In summary, we have characterized a T3RE in the ACCa
gene with unique functional and protein binding properties. In
addition, we have developed data suggesting that the delayed
actions of T3 on ACCa transcription are mediated by a novel
mechanism involving alterations in the composition of nuclear
receptor complexes bound to the ACCa-T3RE. The observation
that the ACCa-T3RE co-localizes with a prominent DNase I-
hypersensitive site in chromatin from livers of intact chickens
supports a role for this cis-acting sequence in mediating the
regulation of ACCa transcription in vivo.2 Future experimen-
tation will be directed toward defining the mechanism by which
T3 modulates the binding of nuclear receptor complexes to the
ACCa-T3RE in hepatocytes.

Acknowledgments—We thank Drs. D. Mangelsdorf (LXRa and
LXRb), R. Evans (RXRa), and H. Samuels (TRa) for providing the

indicated cDNAs. We thank Dr. P. Chambon for providing RXR
antiserum.

REFERENCES

1. Hillgartner, F. B., Salati, L. M., and Goodridge, A. G. (1995) Physiol. Rev. 75,
47–76

2. Kim, K. H. (1997) Annu. Rev. Nutr. 17, 77–99
3. Ruderman, N. B., Saha, A. K., Vavvas, D., and Witters, L. A. (1999) Am. J.

Physiol. 276, E1–E18
4. Bianchi, A., Evans, J. L., Iverson, A. J., Nordlund, A. C., Watts, T. D., and

Witters, L. A. (1990) J. Biol. Chem. 265, 1502–1509
5. Fischer, P. W., and Goodridge, A. G. (1978) Arch. Biochem. Biophys. 190,

332–344
6. Kim, T. S., and Freake, H. C. (1996) J. Nutr. 126, 611–617
7. Pape, M. E., Lopez-Casillas, F., and Kim, K. H. (1988) Arch. Biochem. Biophys.

267, 104–109
8. Hillgartner, F. B., Charron, T., and Chesnut, K. A. (1996) Biochem. J. 319,

263–268
9. Hillgartner, F. B., Charron, T., and Chesnut, K. A. (1997) Arch. Biochem.

Biophys. 337, 159–168
10. Lopez-Casillas, F., Ponce-Castaneda, M. V., and Kim, K. H. (1991) Endocri-

nology 129, 1049–1058
11. Lopez-Casillas, F., Ponce-Castaneda, M. V., and Kim, K. H. (1992) Metabolism

41, 201–207
12. Samuels, H. H., Forman, B. M., Horowitz, Z. D., and Ye, Z. S. (1989) Annu. Rev.

Physiol. 51, 623–639
13. Zhang, J., and Lazar, M. A. (2000) Annu. Rev. Physiol. 62, 439–466
14. Desvergne, B. (1994) Mol. Cell. Endocrinol. 100, 125–131
15. Harbers, M., Wahlstrom, G. M., and Vennstrom, B. (1996) Nucleic Acids Res.

24, 2252–2259
16. Ikeda, M., Wilcox, E. C., and Chin, W. W. (1996) J. Biol. Chem. 271,

23096–23104
17. Leng, X., Blanco, J., Tsai, S. Y., Ozato, K., O’Malley, B. W., and Tsai, M. J.

(1994) J. Biol. Chem. 269, 31436–31442
18. Olson, D. P., Sun, B., and Koenig, R. J. (1998) J. Biol. Chem. 273, 3375–3380
19. Hallenbeck, P. L., Marks, M. S., Lippoldt, R. E., Ozato, K., and Nikodem, V. M.

(1992) Proc. Natl. Acad. Sci. U. S. A. 89, 5572–5576
20. Kliewer, S. A., Umesono, K., Mangelsdorf, D. J., and Evans, R. M. (1992)

Nature 355, 446–449
21. Leid, M., Kastner, P., Lyons, R., Nakshatri, H., Saunders, M., Zacharewski, T.,

Chen, J. Y., Staub, A., Garnier, J. M., Mader, S., and Chambon, P. (1992)
Cell 68, 377–395

22. Apfel, R., Benbrook, D., Lernhardt, E., Ortiz, M. A., Salbert, G., and Pfahl, M.
(1994) Mol. Cell. Biol. 14, 7025–7035

23. Damm, K., Thompson, C. C., and Evans, R. M. (1989) Nature 339, 593–597
24. Fondell, J. D., Roy, A. L., and Roeder, R. G. (1993) Genes Dev. 7, 1400–1410
25. Hillgartner, F. B., Chen, W., and Goodridge, A. G. (1992) J. Biol. Chem. 267,

12299–12306
26. Hu, I., and Lazar, M. A. (2000) Trends Endocrinol. Metab. 11, 6–10
27. Chen, J. D., and Evans, R. M. (1995) Nature 377, 454–457
28. Horlein, A. J., Naar, A. M., Heinzel, T., Torchia, J., Gloss, B., Kurokawa, R.,

Ryan, A., Kamei, Y., Soderstrom, M., Glass, C. K., and Rosenfeld, M. G.
(1995) Nature 377, 397–404

29. Glass, C. K., and Rosenfeld, M. G. (2000) Genes Dev. 14, 121–141
30. Lin, B. C., Hong, S. H., Krig, S., Yoh, S. M., and Privalsky, M. L. (1997) Mol.

Cell. Biol. 17, 6131–6138
31. Chakravarti, D., LaMorte, V. J., Nelson, M. C., Nakajima, T., Schulman, I. G.,

Juguilon, H., Montminy, M., and Evans, R. M. (1996) Nature 383, 99–103
32. Kamei, Y., Xu, L., Heinzel, T., Torchia, J., Kurokawa, R., Gloss, B., Lin, S. C.,

Heyman, R. A., Rose, D. W., Glass, C. K., and Rosenfeld, M. G. (1996) Cell
85, 403–414

33. Onate, S. A., Tsai, S. Y., Tsai, M. J., and O’Malley, B. W. (1995) Science 270,
1354–1357

34. Chen, H., Lin, R. J., Schiltz, R. L., Chakravarti, D., Nash, A., Nagy, L.,
Privalsky, M. L., Nakatani, Y., and Evans, R. M. (1997) Cell 90, 569–580

35. Torchia, J., Rose, D. W., Inostroza, J., Kamei, Y., Westin, S., Glass, C. K., and
Rosenfeld, M. G. (1997) Nature 387, 677–684

36. Blanco, J. C., Minucci, S., Lu, J., Yang, X. J., Walker, K. K., Chen, H., Evans,
R. M., Nakatani, Y., and Ozato, K. (1998) Genes Dev. 12, 1638–1651

37. Xu, L., Glass, C. K., and Rosenfeld, M. G. (1999) Curr. Opin. Genet. Dev. 9,
140–147

38. El Khadir-Mounier, C., Le Fur, N., Powell, R. S., Diot, C., Langlois, P.,
Mallard, J., and Douaire, M. (1996) Biochem. J. 314, 613–619

39. Hodnett, D. W., Fantozzi, D. A., Thurmond, D. C., Klautky, S. A., MacPhee,
K. G., Estrem, S. T., Xu, G., and Goodridge, A. G. (1996) Arch. Biochem.
Biophys. 334, 309–324

40. Luckow, B., and Schutz, G. (1987) Nucleic Acids Res. 15, 5490
41. Kushner, P. J., Baxter, J. D., Duncan, K. G., Lopez, G. N., Schaufele, F., Uht,

R. M., Webb, P., and West, B. L. (1994) Mol. Endocrinol. 8, 405–407
42. Goodridge, A. G. (1973) J. Biol. Chem. 248, 1924–1931
43. Baillie, R. A., Klautky, S. A., and Goodridge, A. G. (1993) J. Nutr. Biochem. 4,

431–439
44. Gorman, C. M., Moffat, L. F., and Howard, B. H. (1982) Mol. Cell. Biol. 2,

1044–1051
45. Sedmak, J. J., and Grossberg, S. E. (1977) Anal. Biochem. 79, 544–552
46. Ausubel, F. M., Brent, R., and Kingston, R. E., Moore, D. D., Seidman, J. G.,

Smith, J. A., Struhl, K. (1995) Current Protocols in Molecular Biology, John
Wiley & Sons, Inc., New York

47. Willy, P. J., Umesono, K., Ong, E. S., Evans, R. M., Heyman, R. A., and
Mangelsdorf, D. J. (1995) Genes Dev. 9, 1033–1045

48. Song, C., Kokontis, J. M., Hiipakka, R. A., and Liao, S. (1994) Proc. Natl. Acad.
Sci. U. S. A. 91, 10809–10813

49. Teboul, M., Enmark, E., Li, Q., Wikstrom, A. C., Pelto-Huikko, M., and4 F. B. Hillgartner and T. Charron, unpublished results.

Thyroid Hormone Regulation of Acetyl-CoA Carboxylase982



Gustafsson, J. A. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 2096–2100
50. Anderson, G. W., Larson, R. J., Oas, D. R., Sandhofer, C. R., Schwartz, H. L.,

Mariash, C. N., and Oppenheimer, J. H. (1998) J. Biol. Chem. 273,
16391–16399

51. Cooney, A. J., Leng, X., Tsai, S. Y., O’Malley, B. W., and Tsai, M. J. (1993)
J. Biol. Chem. 268, 4152–4160

52. Takeshita, A., Yen, P. M., Ikeda, M., Cardona, G. R., Liu, Y., Koibuchi, N.,
Norwitz, E. R., and Chin, W. W. (1998) J. Biol. Chem. 273, 21554–21562

53. Thurmond, D. C., and Goodridge, A. G. (1998) J. Biol. Chem. 273, 1613–1622
54. Desvergne, B., and Favez, T. (1997) Nucleic Acids Res. 25, 1774–1781
55. Ranjan, M., Wong, J., and Shi, Y. B. (1994) J. Biol. Chem. 269, 24699–24705
56. Taylor, A. H., Wishart, P., Lawless, D. E., Raymond, J., and Wong, N. C. (1996)

Biochemistry 35, 8281–8288
57. Janowski, B. A., Willy, P. J., Devi, T. R., Falck, J. R., and Mangelsdorf, D. J.

(1996) Nature 383, 728–731
58. Lehmann, J. M., Kliewer, S. A., Moore, L. B., Smith-Oliver, T. A., Oliver, B. B.,

Su, J. L., Sundseth, S. S., Winegar, D. A., Blanchard, D. E., Spencer, T. A.,
and Willson, T. M. (1997) J. Biol. Chem. 272, 3137–3140

59. Luo, Y., and Tall, A. R. (2000) J. Clin. Invest. 105, 513–520
60. Costet, P., Luo, Y., Wang, N., and Tall, A. R. (2000) J. Biol. Chem. 275,

28240–28245
61. Repa, J. J., Turley, S. D., Lobaccaro, J.-M. A., Medina, J., Li, L., Lustig, K.,

Shan, B., Heyman, R. A., Dietschy, J. M., and Mangelsdorf, D. J. (2000)
Science 289, 1524–1529

62. Peet, D. J., Turley, S. D., Ma, W., Janowski, B. A., Lobaccaro, J. M., Hammer,
R. E., and Mangelsdorf, D. J. (1998) Cell 93, 693–704

63. Fang, X., and Hillgartner, F. B. (2000) Mol. Cell. Endocrinol. 164, 41–52

Thyroid Hormone Regulation of Acetyl-CoA Carboxylase 983


	2001
	Thyroid Hormone Stimulates Acetyl-CoA Carboxylase-α Transcription in Hepatocytes by Modulating the Composition of Nuclear Receptor Complexes Bound to a Thyroid Hormone Response Element
	Yanqiao Zhang
	Liya Yin
	F. Bradley Hillgartner
	Digital Commons Citation


	tmp.1536249250.pdf.CUfK3

