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PHYSICAL REVIEW B

VOLUME 38, NUMBER 13

Mechanism for the occurrence of paramagnetic planes
within magnetically ordered cerium systems

Nicholas Kioussis,* Bernard R. Cooper, and Amitava BanerjeaT
Department of Physics, West Virginia University, Morgantown, West Virginia 26506
(Received 24 August 1987; revised manuscript received 23 May 1988)

Hybridization of moderately delocalized f electrons with band electrons gives rise to a highly an-
isotropic two-ion interaction. Previously it has been shown that such an interaction explains the ex-
perimentally observed unusual magnetic behavior of CeBi, yielding a phase transition from a
higher-temperature type-1 (1!) to a lower-temperature type-IA (11| !) antiferromagnetic structure.
If the hybridization-mediated interaction is the key to understanding the magnetic behavior of such
moderately delocalized f-electron systems, we should expect to be able to understand on this basis
the even more unusual magnetic behavior of CeSb. In CeSb, there is a sequence of magnetic struc-
tures in which the higher-temperature structures involve a periodic stacking of paramagnetic {001}
planes alternating with magnetically ordered {001} planes of [001]-moment alignment. In this pa-
per we show that such a coexistence of paramagnetic and magnetically ordered Ce’™ sites can be
understood on the basis of the hybridization-mediated interionic interaction when there are cubic
crystal-field (CF) interactions of comparable strength. The tendency to form paramagnetic planes is
found to increase with increasing CF strength (I'; ground state); and the stability of the up-down
paramagnetic plane arrangement at high temperatures is shown to arise from the reconciliation of
the magnetic ordering with the CF interactions. We also find that for a certain range of parameters
a different novel situation occurs, with a fully nonmagnetic (singlet) ground state for the Ce** ion.
This singlet state is not Kondo-like, and occurs in such a way that the system would be expected to
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fluctuate between two differently polarized states, one of which is the singlet state.

I. INTRODUCTION

Among cerium compounds, the Ce monopnictides,
CeX (X =N,P,As,Sb,Bi), provide a class of anomalous
compounds with highly unusual magnetic properties.' 3
In particular, the heavier monopnictides, CeSb and CeBi,
are characterized by a very large magnetic anisotropy
along the cube-edge direction of the NaCl lattice,*® a
large reduction of the crystal-field (CF) splitting from the
value expected from the point-charge model,® a complex
magnetic phase diagram containing unusual magnetic
structures,’~° and, finally, unusual magnetic excitation
spectra. '~ 12 These anomalous features of Ce monopnic-
tides are, moreover, distinct from those often found in
cerium compounds, and which are loosely characterized
as originating from an interaction of f electrons with 5d
conduction electrons giving rise to the so-called
“Kondo-like” (f-moment screening) behavior. 2

The large cube-edge anisotropy and consequent mag-
netic structural behavior were successfully explained by
Siemann and Cooper'® as arising from the hybridization
of moderately delocalized f levels with band electrons via
a mixing mechanism originally introduced by Cogblin
and Schrieffer (CS) (Ref. 14) for dilute cerium alloys. The
joint hybridization of a pair of Ce’* ions with band elec-
trons gives rise to a highly anisotropic interionic interac-
tion which is generically related to the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction, !> but where
the interaction with the band electrons is through the or-
bital rather than the spin part of the f-electron mo-
ment.'® The theory accounts well for the main features
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of the anisotropic magnetic equilibrium>!*® and excita-

tion'”!® behavior of CeBi, reproducing'® the first-order
transition from the high-temperature type-I antiferro-
magnetic (AF-I) structure (1!) to the low-temperature
type-IA antiferromagnetic (AF-IA) structure (1 111).

Among the cerium monopnictides, CeSb exhibits the
most complex phase diagram, containing at least 14
different magnetic structures for H <70 kOe.>®° CeSb
orders with a first-order transition at’> Ty ~16.2 K and
undergoes six additional first-order phase transitions in
zero field.? The high-temperature phases (> 8.5 K) (re-
ferred to as AFP here) are commensurate with the lattice
and correspond to a periodic stacking of nonmagnetically
ordered (P) and ferromagnetic (M) (001) planes with an
up or down magnetization along the [001] direction and a
close-to-saturation moment (~2.1ug).%° In zero field,
the nonmagnetic planes are isolated, i.e., they always
have neighboring up and down ferromagnetic planes, and
the distance between the P layers increases with decreas-
ing temperature. Below Ty~ Ty /2=8.5 K the nonmag-
netic planes disappear, giving a type-IA phase (t11]).
This is actually never fully established, because the wave
vector q=(2m/a)(0,0,q) is strongly sample dependent
and varies'® from ¢ =0.51 to 0.503.

In CeSb, the octahedral crystal field splits the Celt
free-ion J =2 multiplet into a I'; doublet and a 'y quar-
tet, with a CF splitting, Acg, of about 37 K in the
paramagnetic phase.?’ Thus the strength of the two-ion
(exchange) interactions in CeSb, as measured by the Néel
temperature, is of comparable order of magnitude to the
CF splitting; and consequently there is a strong competi-
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tion between hybridization-mediated two-ion interactions
and crystal-field effects. (On the other hand, for CeBi the
small CF splitting of about 8 K, compared to the order-
ing temperature of 25 K, indicates that the exchange in-
teraction dominates the CF interaction.) Transport mea-
surements?! on CeSb, and magnetization and neutron
scattering measurements'® on CeSb, __Te, solid solution
have clearly established that the CF ground state in CeSb
in the paramagnetic phase is the I'; doublet, even though
previous polarized neutron scattering experiments?? were
interpreted as yielding a I'y ground state. As far as the
nature of the nonmagnetic planes is concerned, i.e.,
whether these layers contain cerium ions in paramaganet-
ic (Kramers doublet) or Kondo (singlet) states, inelastic
neutron scattering studies'® of the magnetic excitation
spectra at high temperatures (14 K) strongly support the
view that the nonmagnetic planes are actually paramag-
netic planes with the same level structure as in the
paramagnetic phase, but with a larger CF splitting of
about 43 K. Specific-heat measurements?® on CeSb pro-
vide further confirmation of the para-nature (containing
Ce** ions in Kramers doublet states) of the nonmagnetic
layers, yielding an entropy value of kzIn2 for Ce** ions
in nonmagnetic planes. Moreover, resistivity measure-
ments®* on Ce.(Lag 74Y(4);_.Sb have shown that the
effect of diluting the Ce in CeSb with nonmagnetic
(Lag 76Y0.24) (keeping the lattice constant unchanged), is
to suppress the negative temperature slope anomaly of
the more concentrated samples above the ordering tem-
perature. This result contrasts with the rather simple
picture of a Kondo effect in cerium monopnictides.

In spite of the large amount of experimental data avail-
able for CeSb, only a few theoretical attempts®> 2% have
been made to explain, even qualitatively, its complex
magnetic phase diagram and especially the coexistence of
magnetically ordered and nonmagnetically ordered
planes, a unique feature. A preliminary discussion, along
the lines of the present work, involving competition be-
tween the two-ion anisotropic interaction, crystal-field
effects, and distortional effects is given in Refs. 3 and 13.
Theoretical calculations®>~!7 based on a phenomenologi-
cal one-dimensional spin- anisotropic Ising model with
competing nearest- and next-nearest-neighbor interac-
tions examined the zero-field phase diagram. However,
these theories failed to yield magnetic structures contain-
ing nonmagnetic planes. Takahashi and Kasuya,?® in a
theory based on the p-f mixing model, examined the
zero-temperature ground-state energies of various mag-
netically ordered structures in CeBi and CeSb. In that
work, the small difference in energy (0.25 meV) between
the AF-IA and (11]P) structures in CeSb indicates the
possibility of coexistence of the nonmagnetic and fer-
romagnetic planes. However, at nonzero temperatures,
assuming an entropy contribution to the free energy of
0.6kIn2 (Kondo singlet) from the nonmagnetic cerium
sites, they find the rather unrealistic result that the 11 (P
structure becomes more stable than the AF-TIA structure
only at temperatures above 26 K. (The experimental?
Neéel temperature of CeSb is 16.2 K.)

The aim of the present paper is not to fully reproduce
the exotic phase diagram of CeSb, but rather to address
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the question of whether one can understand the main
features of the magnetic equilibrium behavior of CeSb,
i.e., the coexistence of magnetic and nonmagnetic layers
at higher temperatures, within the framework of the pre-
viously developed® '3 model. This takes into account the
competing effects of the crystal-field and hybridization-
mediated two-ion exchange interactions, and does not in-
voke an additional proposed”® mechanism, namely the
effective suppression of the local Ce** magnetic moment
due to Kondo spin screening. (This last process would
give rise to®® a “superdense Kondo behavior.”) In Sec. II
we briefly review the model of hybridization-mediated in-
terionic coupling in the f! system (which has been
presented in detail elsewhere®). The effect of the aniso-
tropic hybridization-mediated interionic interactions on
the formation of Kramers doublets at the paramagnetic
sites in the absence of a crystal field is discussed in Sec.
IIT A. We then show in Sec. III B how a CF interaction,
comparable in strength to the hybridization-mediated in-
terionic interaction, helps to stabilize various magnetic
structures containing paramagnetic layers in the high-
temperature regime. Numerical results for the tempera-
ture dependence of the free energies of various magnetic
structures, the transitions between these structures, and
the variation of magnetization with temperature are also
presented in Sec. III B and compared with experiment.
We also discuss in that section how the large reduction of
the Ce* local moment due to the CF effects (off-diagonal
admixture) can be counteracted through the introduction
of a weak distortional term in the Hamiltonian. The
two-ion hybridization-mediated —interaction-induced
dressing""!® of the states of the paramagnetic sites, and
the resultant enhancement of the CF splitting in the or-
dered phase relative to its “bare” value in the paramag-
netic phase, as experimentally observed, are discussed in
Sec. IV. The question of whether the presence of
sufficiently strong CF interactions relative to the
hybridization-mediated exchange interactions could give
rise to a ground state which is fully paramagnetic (i.e.,
with all the Ce** states being Kramers doublets) is inves-
tigated in Sec. V. We also discuss in this section the oc-
currence of a new peculiar type of fully nonmagnetic
(singlet) ground state, which, however, is not Kondo-like.
Finally, a brief summary and statement of conclusions
are presented in Sec. VI.

3

II. THE MODEL

The treatment of hybridization between the quasilocal-
ized f electrons and band electrons was first developed by
Cogblin and Schrieffer!* for dilute cerium alloys, and was
later extended by Siemann and Cooper™®!? to develop the
hybridization-mediated anisotropic two-ion interaction in
cerium compounds. Here we briefly review the model.
Starting with the Anderson model®® for the single-
impurity problem, upon applying the Schrieffer-Wolff*°
transformation, Coqgblin and Schrieffer obtained an
effective Hamiltonian which represents the band-f hy-
bridization in terms of resonant scattering. When this
scattering Hamiltonian is treated in second-order pertur-
bation theory, one obtains an interionic interaction,
where the information between ions is transmitted by the
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scattered band electrons, as in the RKKY interaction,

although in this case the interactions are highly aniso-
tropic. In the f' case Cooper and Siemann® have shown
that the predominant two-ion coupling arises from the
m;=0 (with respect to the interionic axis) part of the
quasilocalized f wave function, corresponding to the pil-
ing up of charge along the interionic axis and hence to
preference for moment alignment perpendicular to the in-
terionic axis. (This result is true as long as the mixing po-
tential is spherically symmetric for free-electron-like
bands.? Calculations®! based on a realistic band structure
support this picture.) However, compromise forced by
the different directions of interionic axes may lead to
complex magnetic structures.

Upon transforming the wave functions |JM;) for the
Ce’* ions from many “bonding axis” coordinate systems
to one common crystalline coordinate system, the
hybridization-mediated interaction Hamiltonian takes
the form> !

ﬂCS_ ZEUEBEU 0 )el(u v+e— U)QSL(:VLEU , (1)

v
€,0

where i and j label cerium sites, 8;; and ¢,; are the angu-
lar coordinates of the interionic axis R;; with respect to
the axis of quantization chosen along the [001] direction
in the crystal, and u,v,€,0 label the single-ion states of
the z component M; of the angular momentum (J =3)
quantized along [001]. The standard basis (transition)
operators, 2 L ,}3, = |u){v|, transfer the Ce** ion on site
i from state |v) to state |u), the function B55(6;) is
given in terms of the matrix elements of the Jth (3th) ir-
reducible representation of the full rotation group, "33 and
finally E;; are phenomenological interaction range pa-
rameters, with E, giving the interaction strength with the
nth nearest neighbor.>!3

In addition to the hybridization-mediated interionic in-
teraction in Eq. (1), the quasilocalized f electrons are sub-
jected to a cubic crystalline electric field of the form>*

Hcer=B4 3 3 (n|[02+505] | vIL, , 2

iopv

where (u|O/™|v) denotes the matrix element of the
Stevens®® operator, O, between the single-ion states | u)
and | v) of J% and the CF interaction parameter, B, is
treated phenomenologically. For f! systems (J =3), the
CF splitting, Acp, between the I'; doublet (ground state
for positive B,) and the I'y quartet is given by
Acp=360B,.

To study the equilibrium magnetic behavior of a sys-
tem with the Hamiltonian of Egs. (1) and (2), we perform
a molecular field (MF) calculation. The thermodynamic
behavior of the different magnetic structures is deter-
mined as follows. First, we feed in trial MF states, | m )
of energy ¢,,, (lower-case Latin italic letters denote MF
states), for each sublattice of the structure (assuming that
all moments are identical within a given sublattice) so
that

Im)=3x,.|pn. 3)
u

We then determine the thermal average of the transition
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operators from the equation

(LyY=3(n Ly n)f,, @)
where
f,=exp(—e, /kyT) / S exp(—¢,, 7k T) (5)

is the thermal occupation of the nth MF state.

Upon treating the two-ion interaction in Eq. (1) within
the MF approximation, and subsequently diagonalizing
the sum of the resultant expression and the single-ion CF
term in Eq. (2), one finds a new set of (2J +1)-MF
eigenenergies, €,, and corresponding MF eigenstates,
| m), for each sublattice. This procedure is repeated
iteratively until one attains self-consistency. Usually,
self-consistency is obtained after only few iterations, ex-
cept for temperatures close to the ordering temperature
where the convergence is slower and a few hundred itera-
tions are needed.

III. NUMERICAL RESULTS FOR COEXISTENCE
OF PARAMAGNETIC AND MAGNETICALLY ORDERED
PLANES IN CERIUM COMPOUNDS

In this section it will be shown that the main features
of the unusual phase diagram of CeSb can be understood
in terms of a theoretical model which takes into account
two interactions that compete and that are comparable in
magnitude, i.e., the hybridization-mediated two-ion in-
teractions and the crystal-field interactions. These main
features are the occurrence of magnetic structures in the
high-temperature regime containing both magnetically
ordered and nonmagnetic sites, and the transition at
lower temperatures to structures containing solely or-
dered sites. The hybridization-mediated interionic in-
teraction tends energetically to favor the magnetically or-
dered sites with local moments along {001) and close to
saturation.>'®> On the other hand, as will be illustrated in
detail below, the crystal-field interaction (favoring (111)
moment alignment®) tends to favor the nonmagnetic sites,
which being paramagnetic (Kramers doublets) in nature,
do have a clear entropy advantage over the ordered sites
at higher temperatures. In addition, the presence of
crystal-field interactions introduces off-diagonal mixing
between the free-ion states |u ), and this reduces the lo-
cal moments on the ordered Ce3* sites. However, as will
be shown in Sec. III B, upon introducing a small distor-
tional term in the Hamiltonian, which tends to increase
the diagonal matrix elements, one can restore the local
moments to their saturated values. Thus the coexistence
of magnetic and nonmagnetic sites represents a sort of
compromise between crystal-field, distortional, and
hybridization-mediated anisotropic interactions. In Sec.
IITA we first discuss the effect of the anisotropic
hybridization-mediated two-ion interaction on the forma-
tion of Kramers doublets at the paramagnetic sites in the
AFP1 magnetic structure in the absence of CF interac-
tions; we then discuss how the anisotropic two-ion in-
teraction determines the free-energy contribution of the
ordered sites in the AFP1 phase. This enables us to dis-
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cuss the expected temperature dependence of the magnet-
ic structural behavior in the absence of crystal-field
effects. Then, in Sec. III B, we investigate the role the
crystal field plays in helping to stabilize various magnetic
structures containing paramagnetic layers in the high-
temperature part of the magnetically ordered regime.

A. Effect of two-ion interactions
on paramagnetic and ordered sites

The various low-field and high-temperature
(Ty /2 < T < Ty) magnetic structures in CeSb contain the
up (1), down (), paramagnetic (P) sequence of (001)
planes (AFP1) as the basic magnetic block unit.>®° The
paramagnetic site in this three-layer period structure has
two nearest- and two next-nearest neighbor planes with
ordered moments alternating in an up-down sequence. In
an isotropic interaction model such an arrangement
would yield zero net molecular field at the central
paramagnetic site, and corresponding eigenstates which
would be free-ion-like, i.e., sixfold degenerate. However,
for the hybridization-mediated anisotropic interaction
model in Eq. (1), the central paramagnetic site experi-
ences a net molecular field (see Fig. 2 and related discus-
sion in Ref. 3), yielding central site eigenstates which are
three Kramers doublets, each consisting of a mixture of
equal parts of up and down moment states.

This result can be understood by considering those di-
agonal matrix elements, {u | #cs|pn?, of the CS Hamil-
tonian in Eq. (1) which give the largest contribution.
Thus the ($|#cs|3) matrix element at the central
paramagnetic site, due to a pair of nth nearest-neighbor
equivalent ordered sites with saturated up and down mo-
ments ({Ls,,5,,)={L_s,, _s,,)=1), respectively, is
equal to B333/2(0)+Bs5;53%5°/%(68). For general 6
values this matrix element does not vanish because of the
strong asymmetry of B3/33/3 and B532;5°/? (see Fig. 1 of
Ref. 3), which follows from the fact that the magnetic
quantum numbers of the band and f electrons are ex-
changed in the scattering involved in the hybridization-
mediated mechanism. Moreover, due to the moment re-
versal symmetry of the interaction, one can easily show
that the ( —3 | #cs| —3) and (3| Hcs|3) matrix ele-
ments from a given pair of equivalent ordered sites are
equal, and consequently the up and down (paramagnetic
moment) states at the central paramagnetic site are dou-
bly degenerate. All of the other matrix elements behave
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in similar fashion, and thus the paramagnetic site devel-
ops three Kramers doublets interacting through hybridi-
zation with the magnetically saturated states at the
neighboring ordered sites. (As will be discussed in detail
in Sec. IV, in the absence of CF interactions, or in the
presence of weak CF interactions with B, >0, the
ground-state doublet of the paramagnetic sites is predom-
inantly of I'y character. Since experimentally the CF
ground state in the paramagnetic phase is'*?' T';, this
leads us to anticipate that the hybridization-mediated
two-ion interaction drastically modifies the states at the
paramagnetic sites in the magnetically ordered structures
compared to the cubic-crystal-field-split states above the
ordering temperature.) The formation of doublets at the
paramagnetic site leads to a ground-state energy below
the free-ion energy (E =0), so that it is advantageous for
the paramagnetic site to have Kramers doublet states at
low temperatures; as the temperature increases, the free
energy of the paramagnetic site decreases less rapidly
than that of the free-ion states, which have a clear entro-
py advantage, eventually crossing the free-ion energy at
the Néel temperature. Furthermore, in order to compare
the relative free energies of the pertinent magnetic struc-
tures without paramagnetic planes compared to that of
the AFP1 structure, we also have to consider the local
magnetic environment seen by the magnetically ordered
sites in the AFP1 phase. An ordered site in the AFP1
structure sees a sequence of nearest- and next-nearest
neighbor planes consisting of alternating paramagnetic
planes and ordered planes with reversed moments. Thus,
because (Ls,ys5,,)=(L _s5,, _s5,,)~+ at a paramagnetic
site, an ordered central site sees an effective number of +
and 3 nearest- and next-nearest neighbor planes with
parallel and antiparallel moments, respectively.

We now consider the relative free energies of the vari-
ous pertinent magnetic structures at zero temperature.
The way the zero-temperature free energy of an ordered
site varies with the hybridization-mediated two-ion in-
teractions E,, E,, and E; for the different magnetically
ordered structures, can be determined by evaluating the
contribution of the most dominant matrix elements to the
MF energy. In the case of the two-ion Hamiltonian in
Eq. (1) it has been shown>!3 that the most dominant con-
tribution to the MF energy arises from the diagonal ma-
trix elements corresponding to saturated moments. Thus
the T =0 MF energy of an ordered site with an up mo-
ment in the AFP1, AF-I, AF-IA, and ferromagnetic
(FM) structures, respectively, is given approximately by

Epppi(N)~—{E|[4B333/3(m/2)+ B35 y375(w/4)+ LBI333(m /4)]

+E,[4B373373(m/2)+ 3B 535, °/(0)+1B333/3(0)]

+E3[12B5557°2(8)+4B3/33/3(61)+ 6B 555, *7(6,)+2B33373(6,)1} (6)
Enpa(1)=—{4E|[B333/3(m/2)+2B 5557 (w /)4 2E,[2B3 333 (w/2) + B23/3(0)]

+8E;[2B535,,°%(0))+B333/3(6,)1)
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Eapia(N=—{4E\[B321A(m/2)+ B335 (n/4)+ B5555° H(m/4)]

+2E,[2B3333(n/2)+B5/5°2(0)]
+8E;[B3/33/3(6,)+B55%,°%(6,)+B

AR O, ®

Epm( 1)~ —{4E,[B3332(7w/2)+2B3232(m /4)1+2E,[2B3333(m/2)+B333/3(0)]

+8E;[2B3/33/3(0))+B3/3373(6,)1)
where 8, =cos~'(1/V'6) and 8,=cos~(2/V/6).

9)

Upon substituting the values of B3/33/3(0) and B3 375 >/%(6) (see Fig. 2 of Ref. 3) in Egs. (6)—(9), one obtains the ex-

pressions
E pgp(1)>~—(0.97E,+1.06E, —0.40E;) ,
Eppi(1)=—(0.98E,+1.06E,—1.13E,) ,
E p1a(1)~—(1.08E,+1.06E,+0.34E,) ,
Egpm(1)~—(1.17E, 4+ 1.06E,+1.89E;) .

(10
1y
(12)
(13)

Similarly, the zero-temperature MF energy of the paramagnetic site in the AFP1 is given approximately by the equa-

tion

E sgp(para)~ — (2E,[B3/33/3(m/2)+ B5 347 > 2 (m/2)+2B3 333 (w /4)+ 2B 5 55, > (m /4)]
+E,[B323A(m/2)+2B 55353 (m/2)+ B3332(0)+ B335 °7(0)]

+4E;[2B333/3(6,)+2B 555, °/%(6))+ B3/33/5(6,)+ BB 55,,°7%(6,)]} ,

which upon substituting the values of the B’s assumes the
simple form

EAFPl(para)z—(0.29E1+0.28E2+0.36E3) . (15)

Equations (10)-(15) show that the zero-temperature
free energy of the ferromagnetic and AF-IA structures
increases linearly with decreasing (i.e., more negative) E;,
whereas that of the AF-I structure decreases linearly as
E, decreases. On the other hand, the free energy of the
ordered site in the AFP1 structure decreases less rapidly
(by a factor of about 2.8) than that of the AF-I structure.
Moreover, it is important to note from Eq. (15) that the
zero-temperature free energy of the paramagnetic site in
the AFP1 phase decreases rather slowly with decreasing
E,, and is higher by a factor of about 3.5 than that of the
ordered site in AFP1 for a wide range of E,/E, values
(0<E, <E,). Thus the zero-temperature free energy of
the AFP1 structure,

E srp1 =3E arp1(1)+E sppi(para) ,

decreases with decreasing E;, but at a slower rate than
that of the AF-I structure; and consequently the AFP1
structure can never become the ground state of the
system at zero temperature. For the case of E, =E,, for
example, the ground state is ferromagnetic for
| E;| <0.057E,, AF-I for |E;| >0.06E,, and in the
narrow intermediate range, 0.057 < | E;/E, | <0.06, the
free energies of the ferromagnetic, AF-IA, and AF-I
structures cross.

This large variation (both in sign and magnitude) of the
energy of the ordered or paramagnetic site with E; in
different magnetic structures, is a direct consequence of

(14)

[

the highly anisotropic behavior of the matrix elements of
the B3/33/3(0) and B3,3’%;7>/(6) (which peak’ in the an-
gular region near 6=m/2) in combination with the
geometry of each magnetically odered structure. Thus,
for an ordered site with an up moment, upon decreasing
E;, the AFP1 structure, which has effectively % nearest-
neighbor (NN) and next nearest-neighbor (NNN) planes
down and § NN and NNN planes up, is less energetically
favorable than the AF-I structure, which has 2 NN
planes down and 2 NNN planes up; but it is more favor-
able than the AF-IA structure which has 1 NN plane up
and 1 NN plane down and 2 NNN planes down.

It should also be pointed out that because each of the
four paramagnetic second nearest-neighbor sites to the
central paramagnetic site within the para plane in the
AFP1 arrangement has doubly degenerate up and down
paramagnetic moment states, and because of the large
cancellation between the B3/33/3 and B335 >/ matrix
elements at 6=m/2, the coefficient of the term propor-
tional to E, in Eq. (14) is small, resulting in a variation of
the ground-state energy of the paramagnetic site with E,
which is slower by a factor of about 4 than of the ordered
site. Thus, in contrast to the case®!® of CeBi where the
ratio E,/E, was taken equal to unity in order to favor
magnetic structures containing no paramagnetic planes,
one must, in the case of CeSb, choose a smaller
E,/E, (0.4—0.5) value in order to reach an energy
compromise between the ordered and paramagnetic sites.
This reduction of the E,/E; value leads in turn to a
lowering of the zero-temperature moment by an amount
of about 10% compared to the free-ion value.

Above we have presented numerical results and physi-
cal arguments for the effect of the hybridization-mediated
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two-ion interactions on the ordered sites and on the for-
mation of Kramers doublets at the paramagnetic sites at
zero temperature in the absence of any crystal-field in-
teractions. At nonzero temperatures, the paramagnetic
sites, due to the formation of Kramers doublets, have a
clear entropy advantage over the ordered sites, and hence
one might have expected the AFP1 structure to have the
lowest free energy at high enough temperatures. Howev-
er, it turns out (for the same reasons as presented above),
that while the magnetic ordering temperatures of both
the FM and AF-IA structures decrease linearly as the an-
tiferromagnetic exchange interaction E; decreases, the
Neéel temperatures of both the AFP1 and the AF-I struc-
tures increase linearly with decreasing E;. Furthermore,
since only 2 of the sites are ordered in the T |P structure,
the rate of increase of Ty(1!P) is 2 of that of Ty(T{).
Consequently, the AFP1 structure becomes disordered
before it has the chance to cross the AF-I structure.
Thus, in the absence of crystal-field interactions the free
energy of the AFP1 is always higher than those of the
other magnetically ordered structures considered, which
contain no paramagnetic site.

B. Crystal-field effects on paramagnetic and ordered sites
and resulting stabilization
of magnetic structures containing paramagnetic planes

We next investigate the role of the CF in helping to
stabilize various magnetic structures containing
paramagnetic layers in the high temperature part of the
magnetically ordered regime. In particular, out of the six
low-field AFP structures experimentally observed, %!
we have considered for simplicity those two with the
smallest periods, namely the AFP3 (11lP11l) and the
AFP1 (11P) structures ( in the notation of Refs. 2 and
19), which are observed®!’ in the temperature range of
12.2-14.8 K and 15.4-16 K, respectively for CeSb, i.e.,
the temperature range immediately below Ty .

The matrix elements of the cubic CF interaction of Eq.
(2) in the free-ion basis-states representation are
(+3|Hep | £3)=60B,, (+3|Hcp|*3)=—180B,,
(£1|Hcp|£1)=120B,, (£3|Hcg| F1)=60V5B,,
and zero otherwise. The effect of the cubic CF interac-
tion of a sign (B, > 0) having the I'; doublet below the I'g
quartet (favoring a (111) easy axis>%) is then to increase
the diagonal |+3) and | +1) matrix elements, to de-
crease the diagonal | =3 ) matrix elements, and to intro-
duce additional off-diagonal mixing between the |+3)
and | ¥ 1) eigenstates of J*, which in turn reduces both
the ground-state moment (J?) and the quadrupolar
moment (09). Upon increasing the ratio
Acr/E;=360B,/E,, the zero-temperature expectation
values (with respect to the molecular field eigenstates) of
<L +5/2+5/2 ) and (L +5/2F3/2 ) decrease, that Of

L343, ) increases, and (L, ,,1,,,) is always van-
ishingly small. Consequently, the (£3+3), (£1|+1),
and (£ | ¥2) matrix elements of the MF Hamiltonian
increase, whereas the (+2 | +3) matrix element of the
MF Hamiltonian decreases as the magnitude of the crys-
tal field increases.

9137

The rate of change of the expectation values of the
(L #V) and of the molecular field Hamiltonian matrix ele-
ments with increasing crystal field, depends on whether
the site is ordered or paramagnetic and on the type of the
magnetically ordered structure. The net effect on the
paramagnetic site of turning on the “bare” CF interac-
tion, is to lower its ground-state energy from the value it
has in the presence of only hybridization-mediated two-
ion interactions by an amount of approximately
—240B,= —2A /3 (this is the “bare” CF energy of a
I'; ground state compared to the free-ion energy), i.e.,

E srpi(para,Acp) ~E zpp(para, Acp=0)—2Acg/3 ,
(16)

where E zgp,(para,Acg=0) is given by Eq. (15). This ex-
pression is exact in the high Acg/E,; region (Acg>E;)
due to the predominance of the CF interactions. In the
low Acg/E, region (Acp<E;), as will be discussed in
Sec. IV, the dominant hybridization-mediated two-ion in-
teractions dress the ground-state Kramers doublet at the
paramagnetic site so that it becomes I'g-like, and thus the
energy of the paramagnetic site decreases with A g by a
factor of about 1.5 less rapidly than that in Eq. (16). On
the other hand, for the ordered site the effect of turning
on the CF interaction is to raise its ground-state energy
in the low Acg/E, region (Acg < E ), due to the increase
of the (£ | +3) molecular field Hamiltonian matrix ele-
ment, which yields the most dominant contribution to the
MF energy. However, in the high A g/E; region
(Acg>E), the (+3 | £2) matrix elements are compara-
ble in size with the (£3 | £3) matrix elements, decreas-
ing more rapidly with Acp than (+3|+) increases.
The net effect is the lowering of the MF energy of the or-
dered site with Acg for Acg> E |, but at a rate of about
half that of the paramagnetic site. Thus, the presence of
the CF interaction tends to favor predominantly the
paramagnetic sites. Moreover, as will be discussed in
Sec. IV, increasing the “bare” CF interaction compared
to the hybridization-mediated two-ion interaction de-
creases the relative spacing between the two excited Kra-
mers doublets (approaching the I'y quartet behavior for
large enough CF interaction), and thus enhances the en-
tropy advantage of the paramagnetic sites in the high-
temperature region. These two complementary effects,
both of which arise from the presence of strong CF interac-
tions, are responsible for the stabilization of the AFP struc-
tures at high temperatures.

The effect of including the cubic CF interaction is
shown in Fig. 1, where the Néel temperature, Ty, of the
AF-I1 (11) and AFP1 (1 |P) structures, and the tempera-
ture, T,, at which the free energies of the AFP3 (more
stable at low T') and AFP1 (more stable at high T) struc-
tures cross, are plotted as function of the “bare” CF split-
ting, Acp, (in units of E;) with E,/E;=0.4 and
E,/E,=—0.28. The separation between the T (1!P)
and T, curves shows the range of temperatures for which
G(11P) is less than G(111P11]l) as one varies the CF
splitting. Also shown in Fig. 1 is the difference in free en-
ergies between the AFP1 and AF-I structures,
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FIG. 1. Néel temperatures of the AF-I (1l) and AFP1
(11P) structures, and transition temperature, T,, from the
AFP3 (111P11!) to the AFP1 structure (with increasing tem-
perature) in Ce>* systems as a function of the “bare” cubic
crystal-field (CF) splitting (I'; ground state), with E, =0.4E,,
and E;=—0.28E,. Also shown is the variation with crystal-
field splitting of the difference in free energies between the
AFP1 and AF-I structures, evaluated in the vicinity of Ty
(1IP)[at T—Ty (11P)=—0.005Ty (11 P)].

G(1lP)—G(1!l), evaluated in the vicinity of the Néel
temperature of the AFP1 structure [T —Ty(T1P)
=—0.005Ty(11P)], versus Acg. [We choose the Néel
temperature of the 1P instead of the 1| structure in the
evaluation of the G’s because Ty(11)> Ty(T1P) in the
whole Aqp range in Fig. 1.] In the low Acg/E, regime
(Acp< E,) the Néel temperature of the 1! structure is
substantially higher than that of the 1 | P structure (by an
amount of about 0.1E,, equivalent to about 14 K), indi-
cating that as the exchange interaction E; predominates
it favors magnetic structures containing solely ordered
planes. This result is further substantiated by the large
positive value (0.1E,) of G(1{P)—G(1!) in the vicinity
of Ty(1lP), clearly showing that the AF-I structure is
the stable structure in the whole temperature range below
Ty(11). In the high Acg/E, region (Acg>E|) on the
other hand, the difference both in Néel temperatures,
Ty(tL)—Ty(11P), and in free energies,
G(11P)—G(1]), decreases very rapidly with increasing
Acg/E,, and for sufficiently large crystal-field strength
the 1lP structure becomes the stable structure at high
temperatures. The crossover from the AF-I to the AFP1
structure at T —Tn(11P)=0.005Ty(11{P) occurs at
Acg=1.92E, (indicated by a vertical arrow in Fig. 1) for
E,=0.4E, and E;=—0.28E,. As was discussed above,
this crossover behavior is a consequence of the tendency
of the CF interaction to favor predominantly the non-
magnetic planes. For Acg=3E,, the system of Ce’* (f!)
local moments undergoes three first-order phase transi-
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tions with increasing temperature from an AF-I to AFP3
to AFP1 structure, and finally becomes paramagnetic at
the Néel temperature. (This is clearly illustrated in Fig.
2, which 1is discussed below.) However, when
Acg>3.02E,, the temperature 7, becomes higher than
Txn(11P), the AFP1 structure disorders before the AFP3
structure has the chance to cross it, and consequently the
system undergoes only two first-order phase transitions
with increasing temperature from an AF-I to an AFP3
structure which becomes disordered at T. Thus, small
perturbations on the delicate balance between hybridiza-
tion mediated and CF interactions can lead to entirely
different magnetic behavior.

The temperature variation of the free energy of the
AF-I, AF-IA, AFP1, and AFP3 structures is shown in
Fig. 2 for E,=0.4E, E;=—0.28E |, and Acg=3E,. For
comparison, also plotted in Fig. 2 is the temperature vari-
ation of the free energy of the paramagnetic (P) and or-
dered (M) planes in the AFP1 structure. At low temper-
atures (kzT <0.8E), even in the presence of strong CF
interactions, the free energy of the paramagnetic site is
substantially higher than that of the ordered site due to
the predominance of the exchange interactions which
tend to favor mainly the ordered sites. Consequently, in
the low-temperature region, the AF-I and AF-IA struc-
tures are more favorable than the AFP1 or AFP3 struc-
tures, and the AFP3 structure, containing a single para-
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FIG. 2. Variation of free energy with temperature for
different magnetic structures of Ce’* fcc systems, with E,
=0.4E,, E;= —0.28E,, and Acg=3.0E,. All structures are la-
beled as in Figs. 1 and 2. Also shown for comparison is the tem-
perature variation of the free energies of the paramagnetic (P)
and ordered (M) sites for the AFP1 structure. The model sys-
tem undergoes first-order phase transitions with increasing tem-
perature from the AF-I to the AFP3, to the AFP1 and finally to
the paramagnetic phase, at the transition temperatures denoted
by Ty, T,, and Ty, respectively.
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layer every seven layers, is more favorable than the AFP1
structure which contains one para-layer every three lay-
ers. Moreover, owing to the significant antiferromagnetic
exchange interaction, E;, which tends to stabilize AF
moment arrangements, the free energy of an up moment
site in the AFP1 structure (which effectively sees 2 NN
planes with moment down and 1+ NN plane up) is lower
than that for an up site in the AF-IA structure (with one
NN plane up and one NN plane down), and higher than
that for an up site in the AF-I structure (with two NN
planes down). With increasing temperature, the free en-
ergy of the AFP1 paramagnetic site decreases more rap-
idly than that of the ordered site because of the entropy
advantage (three Kramers doublets); and thus, as one can
clearly see in the inset of Fig. 2, the free energy of the
AF-1 structure, which is stable at low temperature,
crosses the energy of the AFP3 structure at
T,=1.089E, the latter energy crossing in turn that of
the AFP1 structure at T,=1.104E,, which becomes
finally paramagnetic at Ty, =1.12E, with a first-order
transition. Note that the (11{]) AF-IA structure, which
is usually the experimentally observed®® low-temperature
phase in CeSb, has higher free energy relative to the
(1471) AF-I structure over the whole temperature
range, becoming paramagnetic at 1.09E,. (In this regard,
it may be significant that for CeBi, which also usually has
an AF-IA structure at the lowest temperatures, the low
temperature magnetic structure is sample dependent and
can be® !0 AF-1.)

We could decrease |E;| (into the range —0.06
<E;/E|;<—0.05) and Acr (into the range 0.5
<Acr/E| <0.85) relative to E,, and obtain a ground-
state AF-IA magnetic structure in agreement with exper-
iment for CeSb. (This sensitivity of magnetic structure to
E; and A(g, as discussed above, is associated with the
highly anisotropic nature of the matrix elements giving
the exchange interaction, in combination with the specific
geometry of the various magnetic structures.) However,
as shown in Sec. IIT A, this choice of range parameters
and crystal-field strength would have decreased the or-
dering temperatures of both the AFP1 and AFP3 struc-
tures so that the system would disorder before either of
these became the stable magnetic structure. Thus, at-
tempting to bring the low-temperature part of the phase
diagram into better agreement with experiment, adverse-
ly affects the higher-temperature agreement with experi-
ment. If one stabilizes an AF-IA structure at low tem-
peratures, then with increasing temperature one has a
first-order transition to an AF-I structure before disor-
dering at T, i.e., behavior such as experimentally occurs
in CeBi. This discrepancy with experiment for the
ground-state magnetic structure of CeSb may arise from
the omission of the cubic part of the hybridization poten-
tial (taken as spherically symmetric in obtaining the
hybridization-mediated exchange) or of some weak in-
teraction which has not been included in our calculations
such as higher multipolar couplings between cerium ions
brought about when the hybridization-induced interac-
tions are treated to higher order in perturbation theory.

Our numerical results for the zero-temperature
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molecular-field energy levels (in units of E,) of the AF-I,
AF-IA, and AFP1 structures are shown in Fig. 3, for
E,=0.4E,, E;=—0.28E,, and Acg=3E,. For such a
relatively large CF splitting, the ordered site ground-state
energies in all three magnetic structures are almost iden-
tical (—2.9E,) and much lower than the paramagnetic
site energy of —2.1E,. Such a situation cannot occur in
CeBi, because the CF splitting ( ~8 K) is much smaller®®
than the Néel temperature ( ~25 K) which directly scales
with E,. In particular, for the same E,/E, and E;/E,
values and in the absence of a crystal field, the ordered
site ground-state energies of the AF-I, AF-IA, and AFP1
structures are —2.0E,, —1.7E,, and —1.87E, respec-
tively, compared to the rather high paramagnetic site
ground-state energy of —0.43E,. This illustrates the
statement made above, that upon increasing the CF
strength (I'; ground state) relative to the hybridization-
mediated exchange interactions, the paramagnetic site
ground-state energy decreases more rapidly than that of
the ordered site. In addition, because of the large CF
splitting the zero-temperature moments, {JZ), of the
AF-I, AF-IA, and AFPIl structures are greatly
suppressed from the almost saturated value (3), to the
values of 1.04, 0.28, and 0.60, respectively.

The large reduction of the Ce** local moment due to
the CF effects can be overcome by introducing a weak
single-ion term in the Hamiltonian which mixes free-ion
states that have the same magnetic quantum numbers.
Equilibrium lattice distortions associated with magnetic
ordering provide a single-site coupling mechanism be-
tween the magnetic ions and the lattice strain and give
such a single-site state mixing term. Even though one
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FIG. 3. Zero-temperature molecular-field energy level
schemes for AF-1, AF-IA, and AFP1 magnetic structures of fcc
Ce’t systems, with E,/E; =04, E,/E,=-—0.23, and
Acg=3.0E,. (AF-IA denotes the 11!l antiferromagnetic

structure; AF-I and AFP1 structures are labeled as in Fig. 1.)
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could in principle consider the general case of nonuni-
form strain, in order to keep the number of parameters to
a minimum, we consider for simplicity the case of a small
uniform [001] tetragonal distortion §=c¢ /a — 1, which in-
troduces in the Hamiltonian a magnetic ion-tetragonal
lattice strain coupling term and a harmonic elastic energy
term of the form>’

F 4 =xB,809 +k8%/2 , 17

where 09 is a Stevens operator equivalent,® x is a con-
stant of the order of 10% and k, is an effective elastic con-
stant. (A small [001} tetragonal distortion has indeed
been experimentally observed®® in the cerium monopnic-
tides.) Minimization of the total energy with respect to &
yields the expression

H,=—0(09)09+10(09)?, (18)

where the quantity Q =(xB,)*/k,, rather than k,, can be
treated as an independent phenomenological parameter.
The distortion & is related to Q by 6= —(Q/xB,){09).
However, besides increasing the local moments, the dis-
tortional term tends also to lower the ordered site
ground-state energy more rapidly than that of the
paramagnetic site, and consequently one has to readjust
the CF interaction. Thus, if Q =0.01E, then A must
be increased from E; to 1.1E, so as to reproduce a mag-
netic behavior similar to that in the absence of Q, but
with a saturated zero-temperature moment. Using a
value of Q corresponding to the experimental distortion’®
(—1.2X107%) increases the ordered moment to about
80% of the saturated value, considerably better agree-
ment with experiment than the values found without the
distortional term. The increase of moment slows down
for further increase of distortion, so that to essentially
reach moment saturation requires an increase of the dis-
tortion by about a factor of 10. For simplicity and to
keep the number of parameters to a minimum, the nu-
merical results reported throughout the rest of this sec-
tion are for the Q =0 case.

The variation of the average sublattice moment {J?),
normalized to its zero-temperature value with tempera-
ture, is shown in Fig. 4 for the AF-I, AFP3, and AFP1
structures, with E,=0.4E,, E;=-0.28E,, and
Acp=3E,, along with the experimental'® neutron scatter-
ing results per ordered Ce>* sites. For this parameter
set our model fcc Ce3* (f!) system undergoes three suc-
cessive first-order phase transitions from a type-AF-I
(0-16.7 K) to a type-AFP3 (16.7-(16.95 K) to a type-
AFP1 (16.95-17.18 K) structure and finally to the
paramagnetic phase. The value of E;=15.35 K is
chosen to match the experimentally observed'® Néel tem-
perature, Ty, =17.2 K; while A is taken as 46.04 K,
compared to the experimental high-temperature (above
Ty) CF splitting of 38+3 K, for CeSb. The Néel tem-
perature of 17.2 K we used in plotting Fig. 4 was ob-
tained from recent neutron scattering experiments (Fig. 4
of Ref. 19), and is slightly higher than the values of 16.2
K reported in Ref. 2. The neeed to choose a theoretical
Acr value higher than the experimental one is due to the
highly nonlinear dependence of the temperature variation
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FIG. 4. Variation of the average sublattice magnetic moment
of CeSb (normalized to its zero-temperature value) with temper-
ature. The solid circles denote the results from neutron-
scattering experiments (Ref. 19); the theoretical curve has been
obtained with E,=0.4E,, E;=—0.28E,, and Ac=3.0E,.
The fcc Ce’* system undergoes first-order phase transitions
from an AF-I (0-16.7 K) to an AFP3 (16.7-16.95 K) to an
AFP1 (16.95-17.18 K) phase. We have set E,=15.35 K to
match the experimental value of Ty=17.2 K, which yields
ACF=4’6-04 K

(especially in the vicinity of T ) of the free energies and
magnetization upon Acg, which does not allow one to
match exactly both the Ty and A values, and also to
reproduce the main features of the phase diagram. The
theoretical magnetization curve is in very good agree-
ment with experiment at all temperatures, even though
the experimental points in the temperature range of 8—15
K refer to various AFP-type structures and the theoreti-
cal ones for simplicity correspond to the AF-I structure.
For the theoretical moment in the AFP3 (lITPl11)
structure we have plotted the average of the moments of
the three ferromagnetically aligned planes. The moments
on the three planes in the |l 1P|{11 sequence are not
identical, but are symmetrically arranged with respect to
the central paramagnetic plane, i.e., the two inner planes
which are nearest neighbor to the paramagnetic plane
have the largest moment, with the moment decreasing
monotonically as one goes to the outer planes. The ratio
of the moment on one of the inner planes to that on the
two outer planes is about 1.3 and 1.6, respectively, at zero
temperature, but changes significantly as the temperature
is raised. The AFP3 and AFP1 structures have been ex-
perimentally observed® in the temperature range of about
12.2-14.8 K and 15.4-16 K, respectively. However,
thermal moment fluctuations, which are entirely neglect-
ed in our simple molecular field treatment, have a sub-
stantial effect on the free energies within the critical re-
gion, lowering the temperatures at which the transitions
occur.
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Although the magnetic moment (J?) is zero at the
paramagnetic sites in the AFP1 and AFP3 structures,
the thermal average of the quadrupole moment, (09 ), in
the absence of CF interactions, is fairly large (compared
to the saturated value of 10) at low temperatures and de-
creases rapidly with increasing temperature in contrast to
the rather slow temperature variation of (J?) at the or-
dered sites. Our numerical results for the variation of
(09) with temperature in the presence of the crystal
field (Acg=3E,) are displayed in Fig. 5 using the same
interaction parameter ratios as those used in Figs. 2 and 3
(E,/E;=0.4 and E;/E,=—0.28). It should be noted
that we have plotted the average sublattice quadrupole
moment (solid curve) for the AF-I, AFP3, and AFP1
structures, ie., (O3(T1P))=2(0%(1))+i(0%P))
which are the stable structures in the temperature range
of 0-1.089, 1.089-1.104, and 1.104—1.12 (in units of
E,), respectively. For comparison, also shown in Fig. §
is the temperature variation of {09 ) associated with the
paramagnetic (P) and ordered (M) planes (dashed curves)
of the AFP1 (1|P) structure, respectively, in the whole
temperature range, even though the flP structure is
stable only in a very narrow temperature window
(1.104-1.12, in units of E;). As one can see from Fig. 5,
the presence of the crystal field reduces the ground-state
quadrupole moment (as in the case of (J*)) at both
paramagnetic and ordered sites, and tends to decrease the
temperature variation of {09) over a wide range of tem-
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FIG. 5. Temperature variation of quadrupole moment for fcc
Ce’*  systems, with E,=0.4E,, E;=-—0.28E,, and
Acg=3.0E,. The average sublattice quadrupole moment has
been plotted for the AF-I, AFP3 and AFP1 phases over the
temperature range within which these structures have the
lowest free energy (solid curve). The structures are labeled as in
Fig. 1. Also plotted for comparison (dashed curves) is the tem-
perature variation of the ordered (M) and paramagnetic (P) site
quadrupole moment for the AFP1 structure.
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peratures. Furthermore, the large suppression of {(09)
at the paramagnetic sites in the AFP1 structure (~0.75
at low T) indicates that the paramagnetic layers would
participate rather weakly in a lattice distortion in the
presence of strong CF interactions.

IV. CRYSTAL-FIELD DRESSING

The “bare” point-charge-like cubic crystal field in Eq.
(2) is modified, or ‘“dressed,” by the hybridization be-
tween the quasilocalized ionic f states and the band.
This dressing arises through single-site’"3**® and two-
ion>!® hybridization interactions. The single-site hybridi-
zation has been shown’"3%% to be the predominant effect
responsible for the large reduction of the cubic CF split-
ting in the paramagnetic phase in CeBi and CeSb from
the values expected from the point-charge model. In par-
ticular, the single-site hybridization affects the I'y state
predominantly pushing it down in energy toward the I',
state, thus reducing the CF splitting in the paramagnetic
phase. Since in this paper we primarily concentrate on
explaining magnetic ordering effects, we shall be con-
cerned solely with the CF dressing arising from the aniso-
tropic two-ion interaction.

The effect that varying the “bare” CF splitting Acg
(with a ‘“bare” I'; ground state) has on the zero-
temperature molecular-field energies and wave functions
of the paralayers in the AFP1 structure is shown in Fig.
6, with E,/E;=0.4 and E;/E, =—0.28. Upon increas-
ing the ratio Acp/E, the relative spacing between the
two excited doublets decreases, with the doublets almost
merging into a single I'y quartet for large enough CF
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FIG. 6. Zero-temperature molecular-field (MF) energy levels
and eigenstates (Kramers doublets) for the paramagnetic planes
of the AFP1 (1lP) structure in fcc Ce’* systems, with
E,=0.4E,, E;=—028E,, and varying values of the “bare” cu-
bic crystal-field splitting (I'; ground state). The MF states are
expressed in terms of the angular momentum eigenstates quan-
tized along [001].
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splitting. It should be pointed out that for weak CF in-
teraction (Acg < E ) the ground-state doublet is predom-
inantly of g type (a nearly | %) state), clearly indicating
that the hybridization-mediated two-ion interaction,
which favors a (001) saturated moment alignment, has
significantly ‘‘dressed” the ground state, dramatically
altering its nature. (The ‘“bare” CF Iy states are
0.91|+3)+0.41| ¥3) and | £1); the “bare” I'; states
are 0.41|£3)—0.91| ¥2).) The degree of dressing of
the CF states of the paralayers depends, of course, on the
relative strength of the CF and two-ion exchange interac-
tion, decreasing as the ratio A-g/E increases.

As far as the position of the molecular field energy lev-
els is concerned, as can be seen in Fig. 6 for a given
Acg/E, value, the two-ion coupling predominantly
affects the two closely spaced excited doublets pushing
them up in energy (by an amount of about 0.35 in units of
E ) from their “bare” CF value of Acg/3 (in units of E, ),
whereas the ground-state energy is pushed slightly down
(by an amount of about 0.1 in units of E,) from its
“bare” CF value of —2Acg/3 (in units of E ). It is also
clear from Fig. 6 that the relative spacing between the
two excited Kramers doublets decreases as the “bare” CF
interaction increases (eventually almost merging into a
single I'y quartet for large enough CF strength), thus
enhancing the entropy advantage of the paramagnetic
sites in the high-temperature regime.

The dressed CF splittings, A} and Aj, respectively, be-
tween the ground state and the two excited doublets of
the paraplanes in both the AFP1 and AFP3 structures
are found to be temperature independent below the or-
dering temperature, T, within an accuracy of about 1%,
in agreement with experiment.?® Thus the net effect of
the two-ion dressing is an enhancement of the CF split-
ting in the ordered state relative to its high-temperature
“bare” value in the paramagnetic phase. This enhance-
ment of the CF splitting in the paraplanes has been ob-
served in inelastic neutron-scattering experiments, 19,20 yo.
vealing a CF splitting of 43+2 K at 7' =14 K relative to
the high-temperature value of 3742 K at T'=20 K and
hence an enhancement factor of about 1.16. Using the
same set of parameter values as that used in Fig. 2, and
matching the experimental® T, =16.2 K, which yields
E,;=14.4 K and a bare Acg=43.2 K, we find A} =48.2
K and Ay =48.8 K at T=14 K, and thus an enhance-
ment factor of about 1.12 in good agreement with experi-
ment. Even though our calculations yield a double-peak
structure, the splitting is small (~0.6 K), so it is not
surprising that experimentally one observes a single
broad inelastic peak.

V. FULLY NONMAGNETIC GROUND STATE

The results of our investigation into the role that the
crystal field plays in helping to stabilize the coexistence of
paramagnetic and magnetically ordered sites in CeSb in
the high-temperature part of the magnetically ordered re-
gion, motivated us to address the following question:
Can the presence of sufficiently strong crystal-field in-
teraction relative to a nonvanishing hybridization-
mediated two-ion interaction give rise to a new type of
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ground state which is fully paramagnetic, i.e., the ground
state at every site is Kramers doublet? [Note that this is
not a Kondo-like (singlet) state, i.e., not a state resulting
from the quenching of the local f moment by the spin po-
larization of those conduction electrons which, through
interacting with moderately delocalized 4f electrons,
form Kondo resonance states at the Fermi level.] Thus
we consider the case in which the Kondo temperature,
Ty, associated with the f! Ce®* ion is substantially
smaller than the temperature, Tg, associated with the
hybridization-mediated exchange interaction (Tg~E),
and consequently upon lowering the temperature the
state with nonzero ionic moment precedes the formation
of the singlet Kondo ground state. Since the rate of de-
crease of the ground-state energy of the ordered site with
B, is lower by a factor of about 1.6 relative to that of the
paramagnetic site for £ <Acg<3E,, we felt that it is
conceivable that for a still larger A-z/E,, the ground-
state energy of the paramagnetic site would eventually
cross that of the ordered site, provided that both varia-
tion rates did not change appreciably. However, as it
turns out, the rate of decrease of the ground-state energy
of the ordered site with B, increases and becomes equal
to that of the paramagnetic site (dE /dB,= —240) for
Acg>3E,, and thus for nonzero two-ion interaction the
ordered site remains always more favorable than the
paramagnetic site at zero temperature.

In the process of investigating the possibility of a total-
ly paramagnetic ground state we encountered a new and
interesting physical situation. As pointed out earlier in
Sec. III B, upon increasing Acg/E, (with B, > 0), the ex-
pectation value (L 5/, +5,,) decreases, {L3,,13,,) in-
creases, while (L., ,+,,,) is vanishingly small. Conse-
quently, at zero temperature the ordered moment for a
magnetic structure longitudinally polarized along [001]
decreases; whereas the ordered moment (transverse to the
modulation direction) for a transversely polarized struc-
ture increases due to the off-diagonal mixing. This can be
seen, for example, by considering a longitudinally polar-
ized moment pointing up a [001] modulation direction

(FN=3Ls 50 =L _3 32 - (19)

This decrease of moment for the longitudinal structures
is illustrated in Fig. 7 where the zero-temperature [001]
component of the moment is plotted as function of
Acg/E,| (with I'; ground state) for the type-I (1) and
type-IA (11!1) longitudinally polarized structures with
E,=E,=|E,| and E;=—0.3E,. Also shown in the
same figure is the variation of the corresponding ground-
state energy of the type-I and type-IA structures with
Ace/E,. Note that the rate of decrease of (J?) with
Acg/E, for the AF-IA magnetic structure is much more
rapid than that for the AF-I structure. Thus even though
the AF-I structure is the ground state for A-p <3.12E,
with a rather large value of the zero-temperature mo-
ment; when the AF-IA structure becomes the ground
state for Acg>3.12E,, the moment is extremely small.
Most interestingly, we find that for a value of A slightly
above the point (indicated by an arrow in Fig. 7) at which
the AF-IA becomes the ground state, its [001] moment
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FIG. 7. Ground-state energy for the type-I and type-IA lon-
gitudinally polarized structures (as labeled in Fig. 1) as function
of the crystal-field splitting (with I'; ground state) relative to the
nearest-neighbor hybridization-mediated two-ion interaction,
with E;=E, and E;= —0.3E,. Also shown is the variation
with Acp/E, of the zero-temperature longitudinal component
of the moment along the [001] direction of modulation for these
structures.

vanishes, yielding a totally nonmagnetic singlet ground
state, which, however, is not Kondo-like. (For a very
narrow range of Acr/E; values about this point the [001]
moment is vanishingly small.) Moreover, in the presence
of such a large Aq value, we find that the transversely
polarized [110] AF-IA structure (with moments along the
face diagonal transverse to the modulation vector along
the cube edge) with the rather large moment components
((J*)=(J”) ~0.77) has the same free energy as the lon-
gitudinally polarized structure over a wide temperature
range, i.e., for k3T <0.4E, (where the Néel temperature
is of the order of E;). Thus even though at high temper-
atures (kzT>0.4E,) the high-moment transversely po-
larized state has the lowest free energy, one encounters a
peculiar lower-temperature physical phenomenon where
the system fluctuates between two differently polarized
states of equal free energies but dramatically different
moment values. This suggests a different possible ex-
planation than a “Kondo lattice” for the nonmagnetic
singlet ground state in materials such as CeAl;, which ex-
hibits a large CF splitting (~54 K) and which has been
thought*! of as the prototype of nonmagnetic Kondo lat-
tices.
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VI. CONCLUSION

In order to understand the main features of the com-
plex phase diagram of CeSb, we have investigated the oc-
currence of commensurate magnetic structures in which
magnetically ordered and non-magnetically-ordered
{001} planes can coexist. We have used a microscopic
model which takes into account two strongly competing
mechanisms, the hybridization-mediated two-ion interac-
tion which favors {(001) moment alignment and the cu-
bic CF interaction (I'; ground state) which favors (111)
alignment. We have illustrated that when the two-ion ex-
change interactions predominate (Acp<E;), magnetic
structures containing only ordered sites are more favor-
able over the whole temperature range. The tendency to
form nonmagnetic planes increases as the ratio Acg/E,
increases, and for sufficiently large CF interaction the
magnetic structures containing nonmagnetic planes be-
come the stable phases at high temperatures. The non-
magnetic planes, even though strongly dressed by hybrid-
ization, are paramagnetic in nature, in agreement with re-
cent specific heat?® and neutron-scattering experiments. '°
On going to sufficiently low temperature, all cerium sites
become magnetically ordered. The presence of strong CF
interactions, however, leads to a substantial decrease of
the low-temperature ordered moment. This can be coun-
teracted if one introduces weak uniform tetragonal dis-
tortion effects which tend to restore the local moment.
(The ground-state magnetic structure for the situation
summarized by Fig. 2 is type AF-I rather than AF-IA as
is experimentally observed. This discrepancy may be due
to the omission of the cubic part of the hybridization po-
tential in the treatment leading to the hybridization-
mediated anisotropic exchange interactions or may arise
from some weak interaction which has not been included
in our calculations, such as higher multipolar couplings
between cerium ions corresponding to treating the
hybridization-induced interactions to higher order in per-
turbation theory.) Thus the coexistence of magnetically
ordered and paramagnetic planes in CeSb is the result of
a delicate balance between competing mechanisms, viz.,
hybridization-mediated interionic exchange, crystal field,
and distortional interactions. Furthermore, increasing
the crystal-field interaction still further relative to the
hybridization-mediated anisotropic interaction, gives rise
to a new and interesting low-temperature phenomenon
where the system apparently fluctuates between two
different states, one of which is a fully nonmagnetic sing-
let (but not Kondo-like) while the other state has a rather
substantial moment. This phenomenon may be pertinent
to the behavior of materials such as CeAl; which have
been labeled “Kondo lattices” or ‘“‘dense Kondo sys-
tems.”
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