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Fragmentation of Percolation Clusters at the Percolation Threshold

Mark F. Gyure ' and Boyd F. Edwards

Department of Physics, West Virginia University, Morgantovvn, West Virginia 26506
(Received 1 1 March l99l; revised manuscript received 6 3anuary 1992)

A scaling theory and simulation results are presented for fragmentation of percolation clusters by ran-
dom bond dilution. At the percolation threshold, scaling forms describe the average number of frag-
menting bonds and the distribution of cluster masses produced by fragmentation. A relationship be-
tween the scaling exponents and standard percolation exponents is verified in one dimension, on the
Bethe lattice, and for Monte Carlo simulations on a square lattice. These results further describe the
structure of percolation clusters and provide kernels relevant to rate equations for fragmentation.

PACS numbers: 82.20.—w, 05.40.+j, 05.70.Jk

Physical processes such as polymer degradation, col-
lisions, combustion, and grinding cause particles to break
into smaller particles. Recent interest in the fragmenta-
tion of random porous solids [1,2] provides motivation for
examining the fragmentation characteristics of simple
models of these materials. Perhaps the simplest model of
a spatially random solid is the bond percolation cluster,
and the simplest method of breaking such a cluster is by
removing a bond chosen at random. The consequences of
such fragmentation are intimately tied to the structure of
these clusters. This Letter describes new information
about the structure of percolation clusters obtained by ex-
amining their fragmentation characteristics.

The structure of percolation clusters has received con-
siderable attention in recent years because of the desire to
understand transport properties through random media.
For this reason, much of the recent eA'ort has focused on
the structure of clusters at and near the percolation
threshold p, where the infinite cluster dominates the be-
havior of the system. In particular, the link, node, and
blob picture of the infinite cluster has helped to clarify
the conduction of electricity through random networks
and the flow of water through random porous materials
[3,4]. Since the backbone of the infinite cluster carries
current across the cluster, the structure and connectivity
of the backbone has been examined carefully [5-7].
Comparatively little effort has been spent, however, on

characterizing overall cluster connectivity, an important
issue for fragmentation.

In this spirit, we ask about the consequences of remov-

ing a bond of mass 1 from a percolation cluster of finite
mass s, given by the number of bonds, at the percolation
threshold p, . Is the cluster easily broken or is it more
likely to remain connected? Also, if it does break, what
are the relative masses s' and s —s' —

1 of the resulting
"daughter" clusters'? Are clusters more likely to break
into daughters of comparable or of vastly different
masses? To uniquely quantify these questions, we define
an ensemble average number a, of fragmenting" bonds
on a cluster of mass s and a probability b, , of obtaining a
daughter cluster of mass s' by fragmentation of a cluster
of mass s. For the bond cluster of mass s =11 in Fig. 1,

removing any of three fragmenting bonds (thin lines)
breaks the cluster, with s'=2 for fragmenting bond 1.
Bond clusters are particularly simple because, in contrast
with site clusters, fragmentation of a bond cluster of
any dimensionality is "binary, " always producing two
daughters. The functions a, and b, , are clearly funda-
mental to understanding the fragmentation of percolation
clusters; their determination is the primary goal of this
Letter.

Rate equations [8-11] describe the time evolution of
the mass distribution of a system of particles subject to
fragmentation. Solutions of such equations depend on

prior knowledge of the particle breakup rate and the dis-
tribution of daughter masses upon fragmentation. Al-
though these "kernels" contain the essential physics of
the particle morphology and of the fragmentation pro-
cess, their mass dependences are typically assumed out of
mathematical convenience. For random bond dilution of
percolation clusters, the breakup rate is proportional to a,
and the distribution of daughter masses is just b, , Thus,
calculation of a, and b, , supplies essential physics for a
rate-equation approach to percolation.

The key to understanding the fragmentation of a per-
colation cluster lies in determining which bonds are singly
connected in the sense that their removal causes the clus-
ter to break into two distinct parts. These fragmenting
bonds are closely related to "red" bonds on the cluster
backbone [4,5]. The backbone is the set of bonds through
which current flows when two bonds designated i and J
are maintained at different potentials. Red bonds are

FIG. l. Example of an eleven-bond cluster on a square bond
lattice. There are three fragmenting bonds on this cluster (thin
lines) and two of these (1 and 2) are red bonds on the backbone
between bonds i and j.
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a, -s,
b;, -s ~g(s'/s)

(1a)

(lb)

for large clusters, with A, P 1 for linear chains and

1, p 2, and g(x)-x (1 —x) ~ for the Bethe
lattice. Thus, for the Bethe lattice, the daughter distribu-
tion scales as the daughter/parent mass ratio x =s'/s and
fragmentation is less likely to produce daughters of com-
parable masses than of vastly different masses.

For finite d & 1 the situation is considerably more com-
plicated due to the p dependence of cluster structure [14];
fragmentation properties are likewise expected to be p
dependent. At p„however, the scaling forms given by
Eqs. (I) are expected to apply with, perhaps, different ex-
ponents. In the absence of exact solutions for finite
d ) I, we propose Eqs. (1) as scaling forms for fragmen-
tation of clusters at p, and perform Monte Carlo simula-
tions on a square lattice to test this proposal for d =2.

The simulations for d =2 employ clusters generated at

p, on a 1200x1200 square lattice using a Leath algo-
rithm. Finite-size effects are negligible [15] for clusters
of mass less than 50000 grown on this lattice. To deter-
mine whether a bond on a cluster of mass s is a fragment-
ing bond, it is removed and one of its ends is selected as a
starting point. The mass of the subcluster connected to

singly connected bonds on the backbone whose removal
results in a loss of connectivity (and current) between i
and j. In Fig. 1, fragmenting bonds I and 2 serve as red
bonds with i and j as shown, whereas bond 3 does not.
The set of red bonds for a cluster is not unique; designa-
tion of different i and j on the same cluster results in a
new backbone and a new set of red bonds. The
identification of a fragmenting bond on a finite cluster
does not depend, however, on the designation of two
reference bonds; the set of fragmenting bonds on a cluster
is unique. The scaling properties of red bonds have been
studied because they are essential to understanding the
connectivity across the incipient infinite cluster. In the
same way that the study of red bonds on the backbone of
the incipient infinite cluster is fundamental to under-

standing the conductivity of random networks, the study
of fragmenting bonds on finite clusters is fundamental to
understanding the way random materials break up.

Explicit scaling forms for a, and b,; can be found for
bond clusters in one dimension (linear chains) and on the
Bethe lattice. For d 1, all but the two end bonds of a
chain of length s are fragmenting bonds and all daughter
masses are equally likely, so that [10] a, s —2 and

b;, 2/(s —2). For the Bethe lattice, a, =(1 —B,o)s and

6;, (s/a, )B„ follow from [12] 8„, the probability of
obtaining a cluster of mass s' by removing an arbitrary
bond (not restricted to fragmenting bonds as for b,;)
from a cluster of mass s. For both d=1 and the Bethe
lattice [13], these p-independent functions obey the scal-
ing forms

that point is then determined by a burning algorithm. If
the mass of the subcluster is zero or s —

1 or if the other
end of the bond is reached during the burning process,
then the bond is nonfragmenting. Otherwise, the bond is

fragmenting and the mass of the subcluster is the mass s'

of one of the daughters.
The computed average number of fragmenting bonds

per cluster as a function of the cluster mass s (Fig. 2),
though consistent with the large-s scaling form a, -s",
indicates that corrections to scaling are important. A de-

tailed correction-to-scaling analysis of data from 66024
clusters yields a computed value [13] X=I.001 ~0.006
for d =2 which includes the value A, =1 obtained for d =1
and for the Bethe lattice.

To estimate P, we define an ensemble average number

c,;=a,b;, of daughters of mass s' on a cluster of mass s
and compute its first moment p, ') =g, s'c,;-s~ involv-

ing a sum over the smaller daughters s' and a combined

exponent qr=2+A, —p. A linear fit to the corresponding
data in Fig. 2, obtained from 39109 clusters and satisfy-

ing s ~ 3162, where corrections to scaling are negligible

[13], yields y = 1.400 ~ 0.006. The computed value

1.601~0.008 then follows from the computed value

of k. A correction-to-scaling analysis [13] yields a value

@=1.396 ~ 0.007 and a comparable value p =1.605
+ 0.009.

A plot of the computed scaled daughter distribution
s~b;, using the value P =1.601 versus the scaled daughter
mass s'/s (Fig. 3) shows striking agreement with the pro-

posed form b„s ~g(s'/s). The computed scaling
function g(s'/s) for d=2 has the same basic features as

the exact scaling function for the Bethe lattice, including
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S
F|G. 2. Computed average number of fragmenting bonds

a, —s (squares) and first moment p~'i =g, s'c,;—s2+ ~ (cir-
cles) of the number c,; of daughters of mass s' on clusters of
mass s on a square bond lattice at p, . Dashed lines are power-
law fits with A. 1.001 and &=1.601. Solid traces include
correction-to-scaling terms.
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is the number of daughters of mass s' on the cluster.
Equation (2) is easily verified for the cluster in Fig. 1, for
whtch g; pal j Ajj 68.

The next step is to sum Eq. (2) over all clusters i on
the lattice, which yields the exact result

10
gA;, =gg c„s'(s —s' —1) .
IJ 5 5

(3)

10

10 10'
s'/s

FIG. 3. Computed scaled daughter distribution s b, , at p, as
a function of the scaled daughter mass s'/s plotted for & =1.601
and for parent masses s in the ranges 4096-4467 (circles),
8192-8933 (squares), 16384-17867 (diamonds), and 32768-
35734 (triangles). Slight deviations from scaling are evident

for small daughter masses s' (leftmost points for each range of
s).

10 10 10

The convenient second equality involves a sum over all
daughter masses s' produced by fragmentation of the
cluster, where

c,t" =g(a, „,+ ~, „„,, )

symmetry about x =s'/s =1/2 guaranteed for binary
fragmentation.

To relate l and p to standard percolation exponents, we
now develop a scaling theory involving the number A;~ of
red bonds between two bonds i and j on a d-dimensional
lattice. Clearly, A;J 0 ifi and j are on the same blob or
are not on the same cluster. For i and j in Fig. 1, A;~ =2.
It is helpful to consider the sum g;,„IJ A;J over all bonds

j on a single realization of a finite-size lattice of linear di-
mension L and over bonds i on a particular cluster i, not-
ing that only bonds j on that cluster contribute to the
sum. The number of times a fragmenting bond k is
counted in the sum equals the number of distinct com-
binations of i and j on the cluster for which bond k is
counted as a red bond. This number is just twice the
product sl, l(sr s/I —1) of the masses of the daughters
produced by removing the bond, where ski is the mass of
the smaller daughter and sl is the mass of cluster I. An
exact relationship between the backbone and fragmenta-
tion properties of a single cluster follows by summing
over all fragmenting bonds on the cluster:

X A, =2X~I((~I ~/I 1)—
I'On Ij k

=gC,'"s'(s, —s' —1) .

The sum over i and j on the left-hand side is unrestricted
because A;J =0 when i is on an unoccupied bond. The
right-hand side involves a sum over cluster masses s and a
total number C, , =+18...C, of daughters of mass s' on

clusters of mass s on the lattice. The corresponding en-
sernble average,

g(A;, )gg c, , (L)N, (L)s'(s —s' —1),
IJ S S

(4)

lp= 1 +0 (s)
involving the combined exponent y=2+A. —

p and the
cluster-number scaling exponent a. This relationship
holds exactly for d =1 where ca=1 and for the Bethe lat-
tice where a = —,

' (Ref. [14]). For d=2, our linear-fit re-

sult y =1.400+.0.006 includes the exponent [14] 1+cr

=1+ 9] 1 396. These confirrnations give compelling
evidence for the validity of Eq. (5).

Results for d =1, d =2 (on the square lattice), and the

Bethe lattice indicate the possibility that X=1 for all d.

over all realizations of the lattice involves the average
number c, , (L) =(C„)/N, (L) of daughters of mass s' per
cluster of mass s on a finite lattice of linear dimension L,
where N, (L) is the total number of clusters of mass s on
such a lattice.

Finite-size scaling forms allow us to evaluate Eq. (4).
The scaling form N , (L) =L n. , (L) is the product of the
number L of bonds on the d-dimensional lattice and the
number [14] n, (L) =s 'f(s/L r) of clusters of mass s
per lattice bond at p„, where df is the fractal dimension
of percolation clusters at p, . The quantity c„(L) is the
finite-lattice version of c, , =a,b„-s ~g(s'/s). Clus-
ters of mass s comparable to the largest typical cluster
mass L that will fit on the finite lattice are more com-
pact and have fewer fragmenting bonds than typical clus-
ters of mass s on the infinite lattice. Accordingly, the ap-
propriate scaling form c„(L)-s ~f2(s'/s, s/L r) for the
number of daughters must cut oA' with increasing s near

L; this cutoff' behavior is verified numerically in Ref.
[13]. To complete the necessary scaling forms, we recall
the average number [4] (A~i) =r~j "+'i'h(rr~/L) of red
bonds between bonds i and j on a finite lattice, where r;J.

is the Euclidian distance between these bonds. Substitut-
ing these forms yields the scaling behavior L +

d+df(4+k —
P

—r )
and L of the left- and right-hand sides of
Eq. (4), respectively.

Finally, use of the standard scaling relationships
2 —ri=y/v (Ref. [16]), vdf =tr ', and y=(3 —r )/cr
(Ref. [14]) results in the desired scaling relationship
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This would imply that the fraction a, /s of fragmenting
bonds on large clusters at p, is a specific finite number
equal to I, 0.24+ 0.02, and I —[(z —2)/(z —I )]' ', re-
spectively, for d 1, d=2, and the z-coordinated Bethe
lattice (z) 3). This is consistent with the notion that
large clusters at p, are ramified and are easily broken,
whereas A, & 1 would imply a vanishingly small fraction of
fragmenting bonds and X, & 1 would imply an unphysical
fraction greater than unity. Furthermore, the small frac-
tion for d 2 reflects the importance of loops in that di-
mension [4]. Using the likely value A, =l in tit 2+1

1.400+'0.006 (from the linear fit) instead of the
computed value of A, implies a higher-precision estimate

1.600+'0.006 for d =2.
The scaling theory and simulations presented here are

restricted to binary fragmentation on bond lattices. It
would be interesting to study nonbinary fragmentation on
site lattices to determine whether ts is universal and to ex-
plore the symmetries of the scaling functions. Explora-
tion of the p dependence of a, and b,;, particularly the

p 0 limit, should be interesting and could be useful in

the context of rate-equation approaches to percolation.
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