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Topological states in two-dimensional optical lattices

Tudor D. Stanescu,1, 2 Victor Galitski,1 and S. Das Sarma1

1Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics,
University of Maryland, College Park, Maryland 20742-4111, USA

2Department of Physics, West Virginia University, Morgantown, West Virginia 26506, USA

We present a general analysis of two-dimensional optical lattice models that give rise to topologically
non-trivial insulating states. We identify the main ingredients of the lattice models that are responsible
for the non-trivial topological character and argue that such states can be realized within a large family
of realistic optical lattice Hamiltonians with cold atoms. We focus our quantitative analysis on the
properties of topological states with broken time-reversal symmetry specific to cold-atom settings.
In particular, we analyze finite-size effects, multi-orbital phenomena that give rise to a variety of
distinct topological states and transitions between them, the dependence on the trap geometry, and
most importantly, the behavior of the edge states for different types of soft and hard boundaries.
Furthermore, we demonstrate the possibility of experimentally detecting the topological states through
light Bragg scattering of the edge and bulk states.

I. INTRODUCTION

It has been shown recently that band structures of
non-interacting lattice models and quadratic mean-field
Hamiltonians can be classified according to the topolog-
ical character of the wave functions associated with the
bands. The most complete classification of this type of
Hamiltonians in the physically relevant two and three
dimensions was recently presented by Kitaev [1] and
by Ryu et al. [2] who identified all distinct topological
classes, which differ sharply depending on the presence
or absence of particle-hole symmetry and time-reversal
symmetry. The general interacting case was addressed
by Volovik [3] using the Green function, rather than the
Hamiltonian, as the object for the topological classifica-
tion [4, 5]. With this understanding achieved, a question
appears on how to realize various such topological states
in physical systems. Until now a few promising solid-
state materials have been identified that are expected to
host certain topological phases. However, in solid-state
settings, we are bound to work with the existing com-
pounds provided by nature and we have no choice but
to rely on serendipity in our search for physical realiza-
tions of topological states, rather than on a controlled
”engineering” of appropriate lattice Hamiltonians that
are guaranteed to host these exotic phases.

On the other hand, optical lattices populated with cold
atoms offer a very promising alternative avenue to build
topological insulating states. Cold-atom systems pro-
vide more control in constructing specific optical lattice
Hamiltonians by allowing both tunable hoppings and
interparticle interactions that can be adjusted as needed,
hence opening the possibility of accessing interacting
topological states such as topological Mott insulators.
However, cold-atom settings bring in their own spe-
cific challenges associated with the trapping potential,
the effective vector potential responsible for the nontriv-
ial topological properties, the soft boundaries, and also
with the fact that cold atom experiments involve neutral
particles and therefore make any transport measurement

irrelevant or very difficult, thus bringing up the question
of how to probe experimentally the topological character
of these phases. Motivated by the opportunity of creat-
ing topological insulating states with cold atoms and by
the aforementioned challenges, we discuss in this arti-
cle a general prescription for building certain types of
topological optical lattice models and analyze in detail
the properties of the emergent states in the presence of
trapping potentials with different geometries.

Until the discovery in the early 1980s of the quantum
Hall effect [6, 7], the standard way of classifying quan-
tum states of condensed matter systems was to consider
the symmetries they break. The existence of extremely
robust properties, such as the quantized Hall conduc-
tance, was found to be linked to the nontrivial topologi-
cal structure of the quantum Hall states. These states do
not break any symmetry, hence cannot be described by
the Landau symmetry breaking theory [8], but possess
a more subtle organizational structure sometimes called
topological order [9]. In two-dimensional systems, such
as the quantum Hall fluids, the nontrivial topological
structure is intrinsically connected with the existence of
robust gapless edge modes. In the three-dimensional
case it leads to robust gapless surface or interface modes,
such as the interface midgap states in heterojunctions
composed of semiconductors with opposite band-edge
symmetry [10, 11]. In recent years a significant number
of different models and solid state systems with topo-
logically ordered ground states were found and studied
both theoretically [12–24] and experimentally [25–29].
While most of the efforts are concentrated on solid state
systems, it was recently proposed to realize topological
quantum states with cold atoms trapped in optical lat-
tices [30–32]. The original focus was on the realization
of a particular model that supports topological quantum
states, the Haldane model [33]. However, to take full ad-
vantage of the great flexibility in constructing an optical
lattice and of the high possibility of parameter control of-
fered by cold atom systems, a generalization scheme that
can easily generate new models would come in handy.
In this article we describe a very intuitive scheme to
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construct new families of models with nontrivial topo-
logical properties starting from the model introduced by
Haldane [33] in the late 1980s.

Before proceeding to the main technical part, we first
explain our choice of the model, which as we will show
below gives rise to topological states within the same
class as the lattice quantum Hall state described by the
Haldane model. This quantum Hall-like state explicitly
breaks time-reversal symmetry and therefore does not
represent a time-reversal invariant topological insulator
of the type that most recently has been of main interest
in the solid-state context. This focus on time-reversal-
invariant systems is understandable there, because the
driving force that generates the non-trivial topological
structure arises from the spin-orbit coupling, which in
a sense is responsible for the ”internal magnetic fields”
associated with the spin-split bands. The absence of any
required external field is of course a huge experimen-
tal simplification in solid-state experiments, which deal
with given material compounds with predetermined
properties. It is also a limitation restricting the topolog-
ical insulator states that are practically accessible. In the
cold-atom context, however, the time-reversal-invariant
topological insulators and their equivalents (in the pres-
ence of a pseudospin variable) are not necessarily experi-
mentally preferable. A cold-atom Hamiltonian has to be
build from scratch and typically there are no predeter-
mined chiral hopping terms and spin- or pseudo-spin-
orbit interactions or no relevant spin degree of freedom
at all. It has been shown recently both theoretically and
experimentally that one indeed can construct an ana-
log of a spin-orbit-coupled system with cold atoms [34].
However, the corresponding schemes are by no means
easier to realize than an analog of a magnetic field,
dubbed a synthetic magnetic field, which may suffice
to produce the topological insulating states with broken
time-reversal symmetry. In fact, because the artificial
magnetic fields do not involve any spin (or pseudospin)
degree of freedom, the broken time-reversal symmetry
lattice quantum Hall states are expected to be easier to
realize than the time-reversal-invariant topological insu-
lators. These later systems require additional optical se-
tups to produce equivalents of the spin-orbit interaction
and their realization will probably represent the second
stage of building topological quantum states with cold
atoms. For this reason, we focus specifically our discus-
sion on the two-dimensional lattice quantum Hall states,
which as explained above, are of more direct experimen-
tal relevance.

A. Main results and open questions

1. Model and implementation

We show that there are infinitely many lattice mod-
els, descendants of the canonical Haldane model [33],
which host the same type of lattice quantum Hall states.

The topological character of such a state is associated
with chiral hoppings, which usually are thought of in
the context of a simple honeycomb lattice. We argue in-
stead that one can start with a local model that includes
chiral hoppings as the main initial ingredient and then
add other ordinary hopping terms to produce non-local
dispersion on various lattices. We show that the nature
of the latter is not germane to the topological nature of
the state and that in particular, one can construct a square
optical super-lattice, which will give rise to topological
insulating behavior and which may be easier to realize
by optical means with cold atoms.

The main ingredient for realizing topological insula-
tors (TIs) in cold atom systems is a periodic vector poten-
tial, which generates a Peierls phase for certain hopping
matrix elements. Such vector potentials can be induced
by the interaction of atoms with spatially modulated
light fields [35–44]. We provide the functional spatial de-
pendence of the artificial vector field consistent with the
realization of topological quantum states. The descrip-
tion of the model and the proposed scheme for realizing
it in optical lattices are presented in Sec. II.

Open questions: In this article we propose the realiza-
tion of topological insulators with noninteracting spin-
less atoms. The analysis can be generalized to the case
atoms with pseudo-spin degrees of freedom subjected to
synthetic SU(2) gauge fields, which allow building time-
reversal invariant topological insulators[45] similar to
the quantum spin Hall state in HgTe quantum wells [25].
More exotic topological phases could, in principle, be
realized using various types of non-Abelian synthetic
gauge fields [43, 46]. Some of these phases may have
no realization in solid-state systems. However, the main
direction that requires further study is considering the
particle-particle interactions. Given the robustness of the
topological states, weak interactions are not expected to
modify significantly the present results. In fact, most of
the topological states found in condensed matter systems
(with the exception of fractional quantum Hall states)
belong to various classes of noninteracting TIs. On the
other hand, the study of strongly interacting topological
insulators is only at the beginning and many fundamen-
tal questions remain to be answered. Nonetheless, con-
sidering the high capability of tuning the interaction, it
is clear that ultra-cold atoms trapped in optical lattices
represent the ideal platform for the potential realization
of strongly-interacting TIs [47, 48].

2. Edge states properties

We describe in detail the edge states of topological in-
sulators that can be realized using an optical lattice im-
plementation of the square super-lattice model (Sec. III).
Using ideal boundaries, i.e., boundaries created by an
infinitely steep potential wall, we demonstrate that the
nature of the gapless edge state mode is independent of
the geometry of the two-dimensional system. In par-
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ticular, we discuss the properties of the edge states for
systems with stripe (subsection III A 1) and disk (sub-
section III A 2) geometries. This equivalence reflects the
topological nature of the edge states and allows for a
more convenient computational treatment of large sys-
tems. For example, the edge states within a small region
near the boundary of a large disk are similar to the edge
states within a comparable region near the boundary of
a stripe.

The broken time-reversal symmetry TIs belong to dif-
ferent classes labeled by an integer number (Z-type TIs).
There is a direct connection between this integer and the
number of gapless edge modes. We show explicitly that
different types of topological insulators can be obtained
by filling multiple bands (subsection III B). The number
of characteristic edge modes is arbitrary, in contrast to
the case of time reversal invariant topological insulators
(Z2-type TIs), which support only odd numbers of pairs
of edge modes.

Open questions: The most natural and interesting man-
ifestations of the nontrivial topological properties of an
insulator take place at the boundary. Exotic manifesta-
tions, such as Majorana fermions, require interfaces be-
tween a TI and a superconductor. Creating well defined
boundaries in cold atom systems represents a significant
challenge. The requirement of an infinitely sharp edge
can be relaxed and the TI survives even in shallow traps
(see below). However, a soft boundary determines the
softening of the edge mode(s) and the proliferation of
edge states, a process which modifies some of the phys-
ical properties of the system.

3. Phase transitions

We study transitions between topologically distinct
band insulators (Sec. IV). Being able to drive the system
through these transitions is an important tool that allows
identifying various topological states and distinguish-
ing them from trivial insulating states. The transitions
can be driven by an additional staggered potential (sub-
section IV A) or, in the multi-band situation, by simply
tuning the system parameters (subsection IV B). The lat-
ter case turns out to be especially interesting as we find
that band crossings controlled by optical lattice tunable
parameters may ”transfer” or ”exchange” Chern num-
bers between different bands, while conserving the total
Chern number of the bands.

Open questions: A significant challenge for realizing
TIs with cold atoms in optical lattices is controlling the
filling. The number of atoms has to correspond to a
certain number of filled bands and the chemical potential
has to lie within a band gap. This issue is connected with
the problem of realizing and controlling the boundary
(see above).

4. Stability of the TI states

We address the very important experimental question
regarding the stability of the edge states, which represent
the hallmark of the lattice TI phase (Sec. V). In particular
we focus on the finite-size effects (subsection V A) and
the effects of soft boundaries generated by a confining
potential (subsection V B). We show that the finite size
effects are a consequence of the overlap between different
edge states. The amplitude of the edge states decreases
exponentially away from the boundary with a certain
characteristic length scale. If this length scale is much
smaller than the system size, the gaps in the edge states
spectrum scale as the inverse of the boundary length.

We also find that a shallow confining potential deter-
mines a strong softening of the edge mode(s) and the
proliferation of edge states, which acquire a quasi con-
tinuous spectrum. Nonetheless, the TI survives even in
a shallow harmonic trap, but in this case the insulating
core is surrounded by a non-homogeneous chiral metal.
The fact that TIs with hard and soft boundaries have dif-
ferent physical characteristics, yet are topologically iden-
tical, illustrates vividly the nature of topological order.
For an arbitrary boundary potential characterized by a
length scale L associated with the width of the bound-
ary, we find that the edge mode velocity is rescaled by a
factor a/L, where a is the lattice constant.

Open questions: If one considers the phenomenology of
the boundary, TIs in optical lattices can be divided into
two categories: TIs with edge states (in systems with
well defined boundaries) and TIs with inhomogeneous
(chiral) metallic clouds (in systems with shallow confine-
ment). Realizing experimentally well defined bound-
aries is a serious challenge (see above). On the other
hand, a more detailed analysis of the properties of the
inhomogeneous chiral metal is an important direction
for future study.

5. Detection of topological edge states

We propose three different methods of probing topo-
logical quantum states (Sec. VI). First, we propose imag-
ing the edge states with bosons. The procedure involves
loading bosons into the edge states and then imaging the
atoms using a direct in situ imaging technique [49, 50].
This technique does not involve the realization of an
equilibrium topological insulating state, but rather a real
space analysis of the properties of the single particle
states. As the nontrivial topological properties of the
system represent a feature of the single particle Hamil-
tonian, identifying the edge states is an effective way of
seeing a topological phase.

A very convenient way of identifying an insulator is
to perform density profile measurements on fermionic
atomic systems. The presence of an insulator generates
a characteristic plateau in the density profile, hence the
procedure can be used for studying metal-insulator tran-
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sitions. However, as we show explicitly by performing
a model calculation, this method cannot distinguish be-
tween a TI and a trivial insulator.

The chiral edge states of a TI can be detected using
optical Bragg spectroscopy. We calculate the dynamical
structure factor for a TI model on a square super-lattice
and show that the edge mode generates a characteris-
tic low-frequency peak. The chiral nature of the edge
mode can be probed by inverting the scattering wave
vector (or, equivalently, the vector potential responsible
for the nontrivial Peierls phases): the characteristic peak
is present for one orientation and absent for the opposite.
We also discuss the effect of softening the confinement
of the system.

Open questions: In the case of imaging the edge states
using bosons, future theoretical studies are required for
a quantitative estimate of the transfer probabilities and
for determining the optimal parameters of the lasers.
Density profile measurements could be supplemented
by probes involving perturbations with opposite angu-
lar orientations. Calculations of the response of a TI
with broken time reversal symmetry to such perturba-
tions are not yet available. Finally, while for strong and
moderate confinement the Bragg spectroscopy provides
a direct way to observe the chiral edge states, probing the
inhomogeneous chiral metal requires further analysis.

II. TOPOLOGICAL INSULATORS ON A SQUARE
SUPERLATTICE: THE MODEL

The goal of this section is twofold: (i) to show that
there is an unlimited number of different families of topo-
logical insulator models and describe a simple method
of constructing such models (this flexibility in building
quantum states with nontrivial topological properties is
particularly relevant in view of their possible realization
in cold atom systems) and (ii) to introduce a particular
two-dimensional model of a topological insulator with
broken time-reversal symmetry on a square superlattice.
The properties of this model will be studied in detail in
the subsequent sections.

A. A recipe for constructing topological insulator models

The Haldane model [33] is a tight-binding represen-
tation of motion on a hexagonal lattice having as key
feature a direction-dependent complex next-nearest -
neighbor hopping. A periodic vector potential A(r) that
generates a magnetic field with zero total flux trough
the unit cell is responsible for the imaginary compo-
nents of the hopping matrix elements. The vanishing
of the magnetic flux through each unit cell ensures that
the nearest-neighbor hoppings remain unaffected by the
vector potential. The quantization of the Hall conduc-
tance in integer quantum Hall systems can be intuitively
linked to the formation of Landau levels in a uniform

magnetic field. However, using the simple tight-binding
model Haldane showed that quantum Hall-like states
may result from breaking time-reversal symmetry in the
presence of a periodic vector potential without having a
net magnetic flux, i.e., without Landau levels. In both
cases it is the non-trivial topology of the ground state
that ensures the quantization of the Hall conductance,
which can be interpreted as the topological Chern num-
ber of the U(1) bundle over the Brillouin zone of the bulk
states [51]. While the value of the Chern number for a
given occupied band is far from obvious without an ex-
plicit calculation, a more direct and intuitive signature of
the non-trivial topological properties of a system is the
existence of chiral gapless edge (in two dimensions) or
surface (in three dimensions) states robust against disor-
der effects and interactions. The basic features of these
states are intrinsically linked to the topological proper-
ties of the system, but their detailed structure is dictated
by the boundary. As the bulk of the system is an insula-
tor, it is the edge or surface states that participate in trans-
port. The quantization on the transverse Hall conduc-
tance can understood within this edge states picture [52]
using Laughlin’s gauge invariance argument [53].

The hexagonal (honeycomb) lattice for the Haldane
model is shown in Fig. 1a. It consists of two inter-
penetrating triangular sublattices A and B. The near-
est neighbor hoppings between A-type and B-type sites
(black lines) are real, while the next-nearest-neighbor
hoppings (red and blue/gray lines) contain imaginary
components due to the presence of a periodic vector po-
tential A(r). The total magnetic flux generated by A(r)
through each hexagonal unit cell vanishes, but the mag-
netic fluxes through the white and yellow (light gray)
triangles are nonzero and have equal magnitudes and
opposite signs. It is crucial that, in the presence of the
vector potential, A-type and B-type sites are not equiva-
lent. Consequently, after changing the sign of A(r) (i.e.,
exchanging the white and yellow triangles) the original
configuration cannot be restored by any translation or ro-
tation operation. By contrast, if for example we remove
the sublattice B altogether we obtain a triangular lat-
tice in a staggered magnetic field. The nearest-neighbor
hoppings are complex. However, in this case the origi-
nal configuration can be recovered after a time reversal
operation by a π/3 rotation.

Next, we modify the model while preserving the cru-
cial ingredients that ensure the breaking of time rever-
sal symmetry, as discussed above. For example, we
can view the two-dimensional (2D) lattice shown in Fig.
1(a) as a projection of the three-dimensional (3D) model
shown in Fig. 1(b). If we use the same tight-binding
parameters, the two geometries will generate identical
results. However, the 3D version suggests a direct way
of generalizing the Haldane model to three dimensions.
For example, staking layers as the one shown in Fig. 1(b)
on top of each other with the A sublattice sites directly
above the B sites generates a family of models that rep-
resents the 3D generalization of the Haldane model on a
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a

b

FIG. 1: (Color online) (a) Two-dimensional (2D) hexago-
nal lattice for the Haldane tight-binding model, consisting
of real nearest-neighbor hoppings (black lines) and complex
direction-dependent next-nearest-neighbor hoppings (red and
blue or gray lines). The imaginary components of the hopping
matrix elements are generated by an effective vector poten-
tial that produces a “magnetic” field with zero total magnetic
flux through the unit cell [i.e., the magnetic fluxes through
the white and yellow (light gray) triangles have equal magni-
tudes and opposite signs]. (b) A three-dimensional (3D) real-
ization of the model obtained by translating one sub-lattice (the
blue spheres) along the direction perpendicular to the plane (z-
direction). Staking such layers in the z-direction with the A
sub-lattice sites on top of B sites generates a 3D generalization
of the Haldane model on a diamond lattice. Alternatively, we
can treat the model as a quasi-2D lattice of triangular pyra-
mids. Neglecting the hopping between the apex sites (blue
lines) does not change the topological properties of the model.
Pyramids with a different base will generate similar models
with non-trivial topological properties.

diamond lattice. Different members of this family may
be obtained by making further choices for the vector po-
tential. If only the original in-plane components of A(r)
are considered, there are no anomalous interplane hop-
pings. However, complex inter-plane hopping matrix
elements can be generated by including a field compo-
nent in the z-direction. Alternatively, we can simplify
the structure shown in Fig. 1(b) and reduce it to the
bare essentials. For example, we can ignore the hop-
ping between the B-type sites (the blue lines) and treat
the model as a quasi-2D lattice of triangular pyramids
with complex direction-dependent hoppings between
the base sites. Note that the system represents a triangu-
lar lattice with a two-point basis. Within a single band

tight-binding model we cannot eliminate the apex sites
without restoring the equivalence between the white and
yellow (light gray) triangles. However, this elimination
is possible within a multiband model. Intuitively one
can easily understand this property if we notice that
hopping between s-orbitals is isotropic, while p-orbitals
generate direction-dependent hopping matrix elements
that carry the information about the nonequivalence of
white and yellow (light gray) triangles.

B. Topological insulator model on a square super-lattice

The fact that the pyramids in the quasi-2D model de-
scribed above are triangular does not have any particu-
lar significance and does not determine the topological
properties of the model. One can imagine for exam-
ple a similar system of square pyramids, as shown in
Fig. 2(a). Again, we can stack such structures in the
z-direction and generate a family of topological insula-
tors on a cubic lattice. Alternatively, we can project the
structure onto the base plane and generate a 2D square
superlattice model [54–56]. As before, a periodic vector
potential A(r) generates a staggered magnetic field with
opposite flux through the yellow (light gray) and white
squares. The unit cell consisting of one yellow (light
gray) square and one white square contains three sites.
Unlike the triangular lattice case discussed previously,
we can now remove the former apex sites and replace
them with an effective next-nearest-neighbor hopping
within a single-band model without restoring time re-
versal symmetry. The unit cell of the simplified model
contains two-sites and we can view the lattice as consist-
ing of two rectangular sublattices A and B. The resulting
2D square superlattice effective model is shown in Fig.
2(b). The next-nearest-neighbor hoppings t2 and t′2 are
real and have different values. The nearest-neighbor
hopping t1 is complex and has a direction-dependent
phase. If we choose a coordinate system with the axes
along the next-nearest-neighbor directions and set the
nearest-neighbor distance a = 1/

√
2, the tight-binding

model can be expressed analytically by the Hamiltonian

H =
∑

k

(
c†Ak c†Bk

) ( t̃2(kx, ky)
[
t̃1(k)

]∗
t̃1(k) t̃2(ky, kx)

) (
cAk
cBk

)
, (1)

with

t̃1(k) = |t1|
[
e−iφ(1 + ei(kx+ky)) + eiφ(eikx + eiky )

]
,

t̃2(kx, ky) = 2t2 cos kx + 2t′2 cos ky. (2)

In Eq. (1) the operators c†Ak and c†Bk create a particle with
wave vector k on the sublattices A and B, respectively.

So far we did not mention the possible role of the spin
(or pseudospin) degree of freedom in generating non-
trivial topological quantum states. All the topological
insulator models generated according the scheme de-
scribed above can be easily generalized to include spin,
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t1

2t

t2φ

b

a

e i
’

FIG. 2: (Color online) (a) Quasi-2D model of a topological insu-
lator with broken time-reversal symmetry on a lattice of square
pyramids. Expanding the structure in the z direction will gen-
erate 3D models of topological insulators. Alternatively, one
can move the apex site into the base plane and generate a 2D
square superlattice model. (b) Topological insulator model on
a 2D square super-lattice. Instead of extra apex sites, as in (a),
we consider different next-nearest-neighbor hoppings t′2 , t2.
A vector potential A(r) produces an effective ”magnetic” field
with opposite flux through the yellow (light gray) and white
squares and generates a complex direction-dependent nearest-
neighbor hopping t1. Hoppings with a given sign of the phase
are marked by arrows.

similar to the construction used by Kane and Mele who
proposed a tight-binding Hamiltonian for graphene [17]
that generalizes Haldane’s model to include spin with
time-reversal invariant spin-orbit interactions. Basically,
for spin 1/2 particles the models should include a spin-
dependent vector potential Aσ(r) that has opposite ori-
entations for the two spin components, A↑(r) = −A↓(r).
While each spin component breaks time-reversal sym-
metry, the system as a whole is time-reversal invariant.
These systems form new classes of topological insula-
tors [57] that cannot be classified using Chern numbers.
For example, in two-dimensions one obtains a quan-
tum spin Hall state [17, 18, 20, 58], which carries no net
charge current along the system edges. If a U(1) part
of the SU(2) spin-rotation symmetry is preserved, par-
ticles with opposite spin will propagate along a given
edge in opposite directions giving rise to a quantized
spin Hall conductance [17, 18, 20]. However, the sys-
tem remains topologically ordered even in the presence
of small perturbations that break the full spin-rotation
symmetry, when the spin Hall conductance is no longer
quantized. To classify these time-reversal invariant topo-
logical states, Kane and Mele introduced a Z2 topological
invariant [18], which can be interpreted in terms of dou-
blets of edge modes. In three dimensions the Z2 topolog-

ical invariant is associated with the number of Kramers
degenerate points (Dirac points) in the spectrum of the
surface states. In both two and three dimensions, the ex-
istence of an odd number of Kramers degenerate points
ensures the stability of the edge or surface states against
disorder and interactions [22, 59–62]. We note that spin
plays a crucial role in solid state topological insulators as
the band gap itself is opened by strong spin-orbit inter-
actions [25–29]. On the other hand, in cold atom systems
an effective spin-orbit interaction can be generated using
certain spin-dependent vector potentials [34]. These ar-
tificial light-induced vector potentials can be realized in
a system of multi-level atoms interacting with a spatially
modulated laser field [35–43]. However, as a first step in
the realization of topological insulator with cold atoms
a spin-independent vector potential [44] is probably eas-
ier to implement. Therefore in this article we ignore spin
and focus on the relatively simpler case of topological
insulators with broken time-reversal symmetry.

C. Cold atom realization of the square super-lattice model

The relatively simple geometrical structure of the
square super-lattice model described by Eq. (1) and
Fig. 2(b) is particularly appealing if we address the
problem of constructing topological insulators with cold
atoms. The crucial ingredients for constructing topolog-
ical quantum states with cold atoms are [32]: (i) the op-
tical lattice (in the present case the optical super-lattice),
obtained as a superposition of co-planar standing waves
with properly chosen wave-vectors; (ii) the additional
confining potential that determines the properties of the
boundary; and (iii) the effective vector potential. The
general form of the effective single-particle Hamiltonian
describing the atoms trapped in the optical lattice mov-
ing in the presence of the light-induced vector potential
is

H =
1

2m
[
p −A(r)

]2 + Vlatt(r) + Vc(r), (3)

where m is the atom mass, p = −i~∇ the momentum,
A(r) the effective vector potential, Vlatt(r) the optical lat-
tice potential and Vc(r) the extra confining potential.
The role of Vc(r), in addition to preventing the atoms
from escaping the optical lattice, is to create appropriate
boundaries for the system and thus make possible the
formation and observation of the characteristic topolog-
ical edge states [32]. We start by assuming an infinitely
sharp confining potential, and then in Sec. V we dis-
cuss explicitly the case of smooth confining. A crucial
ingredient is the light-induced vector potential A(r) that
generates the effective ”magnetic” field with zero total
flux through the unit cell. The construction of synthetic
Abelian and non-Abelian gauge potentials coupled to
neutral atoms is an emerging theme in the field of cold
atom systems, which has been investigated theoretically
in some detail but is just beginning to receive experimen-
tal attention [35–44, 63]. In order to realize the square
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FIG. 3: (Color online) (Left) Optical super-lattice potential cor-
responding to V1 = 3.4Er, V2 = 1.7Er and α = 2~/a (see main
text). A unit cell consisting of two squares with side length a is
marked with light blue (light gray) lines. Notice the π/2 rota-
tion of the axes relative to lattice in Fig. 2(b). (Right) Effective
”magnetic” field generated by the vector potential A(r). The
total flux through the unit cell is zero.

superlattice model (1) we propose a vector potential of
the form A(r) = αA(r), where α is a parameter that mea-
sures the strength of the potential and

A(r) =

sin

 √2πy
a

 , sin
[ √

2πx
a

] , (4)

with a being the nearest-neighbor distance of the lattice.
The two-dimensional optical super-lattice, generated as
a superposition of co-planar standing waves with prop-
erly chosen wave-vectors [64–68], is characterized by the
effective potential

Vlatt = V1

(
1 −

1
2

cos2

[
π(x + y)
√

2a

]
−

1
2

cos2

[
π(x − y)
√

2a

])
+ V2

(
cos2

[
πx
√

2a

]
+ sin2

[
πy
√

2a

]
− 1

)
, (5)

where the amplitude V1 controls the overall depth of the
optical lattice while V2 generates the super-lattice struc-
ture. The case V2 = 0 corresponds to a simple square
lattice with lattice constant a, while V2 , 0 produces
the doubling of the unit cell. Note that the first term
in Eq. (3) contains a quadratic contribution in the vec-
tor potential, A2/2m, which renormalizes the effective
optical lattice potential. One potential challenge in real-
izing a topological quantum state with cold atoms is the
precise matching of the light wavelengths for the laser
generating the optical lattice and those generating the
artificial vector potential. We note here that a mismatch
∆λ between the two periods leads to a pseudo-random
potential with a strength that cannot be made arbitrar-
ily small. Basically, the strength of the pseudo-random
potential is controlled by the amplitude of the effective
vector potential, which also controls the magnitude of
the insulating band gap. Consequently, in systems with
a linear size larger than λ2/∆λ the pseudo-random po-
tential leads to the closing of the insulating gap and the

destruction of topological quantum states. The structure
of the optical superlattice potential, including the contri-
butions from the A2/2m term, are shown in Fig. 3 (left
panel).

Throughout the article we will use the recoil energy
Er = (~π/a)2/2m as the energy unit. Also, the parameter
α which measures the strength of the vector potential is
expressed in units of ~/a. The positions of the nodes of
the square lattice generated by the potential in Fig. 3 are
given by the minima of the effective potential, V(e f f )

latt (ri) ≡
Vlatt(ri) + A2(ri)/2m = 0. In addition to renormalizing
the optical lattice potential, A(r) generates an effective
”magnetic” field with zero total flux through the unit
cell. The position dependence of the ”magnetic” field is
shown in the right panel of Fig. 3. If (δx, δy) represents
a small deviation away from one of the minima of the
effective optical lattice potential, we have

V(e f f )
latt (xi + δx, yi + δy) (6)

≈
π2

a2

(
V1 ∓ V2

2
+
α2

m

)
δx2 +

π2

a2

(
V1 ± V2

2
+
α2

m

)
δy2

=
m
2

(
ω2

1(2)δx2 + ω2
2(1)δy2

)
,

i.e., near a minimum the effective optical potential can
be approximated by a two-dimensional anisotropic har-
monic oscillator potential with characteristic frequencies

ω1(2) = π

√
V1 ∓ V2

m
+

2α2

m2 . (7)

Consequently, the harmonic oscillator eigenfunctions
represent a natural basis for a tight-binding treatment
of the quantum problem described by the Hamiltonian
(3).

At this point we note that the experimental observabil-
ity of topological quantum states in cold-atom systems
depends on the energy separation between edge states
and bulk states, i.e., on the size of the bulk gap. If the
gap for bulk states is not large compared to the low-
est temperatures that are accessible experimentally, the
standard signature of a topological insulator cannot be
observed in any type of transport measurement, because
of the significant contribution from thermally excited
bulk states. The scheme proposing the direct mapping
of the edge states [32] is equally inapplicable, because
the lack of energy resolution does not allow loading a
significant fraction of particles into specific edge states.
Other schemes are also likely to fail. Hence systems
with large values of the bulk gap are desirable. As the
gap scales with the hopping parameters and, in turn,
these hopping matrix elements depend on the depth of
the lattice potential, we conclude that rather shallow op-
tical lattices may be required for observing topological
quantum states. To capture, at least qualitatively, this
regime when solving the quantum problem (3) within
the tight-binding approximation one has to consider not
only the orbital associated with the ground state of the
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harmonic oscillator (6), but also higher energy states. In
our calculations we include the ground state ψ0,0 and
the first two excited states ψ1,0 and ψ0,1 with energies
(ω1 + ω2)/2, (3ω1 + ω2)/2 and (ω1 + 3ω2)/2, respectively.
As the square super-lattice model is defined on a lattice
with a two-point basis, the three orbitals that we con-
sider will generate six bands. Note that the orbitals ψn,m
for the sublattice B are rotated with π/2 relative to those
of the sublattice A. Explicitly,

ψ(r0)
n,m(r) =

{
ϕ(ω1)

n (x − x0)ϕ(ω2)
m (y − y0), r0 ∈ A

ϕ(ω1)
n (y − y0)ϕ(ω2)

m (x − x0), r0 ∈ B
(8)

where r0 = (x0, y0) is the position of a certain lattice
site (i.e., minimum of V(e f f )

latt ), and ϕ
(ω j)
n (ξ) are eigen-

states of the one-dimensional quantum harmonic oscil-
lator with angular frequency ω j. We calculate the hop-
ping parameters for the effective tight-binding model,
t(n,m)(n′,m′)
i j = 〈ψ(ri)

n,m|H|ψ
(r j)
n′,m′〉, and include nearest-neighbor

and next-nearest-neighbor contributions, which add up
to a total of 22 different hopping parameters. We have
determined analytic expressions for all these hopping
matrix elements as functions of the fundamental param-
eters of the model, V1, V2 and α. The key contribu-
tions coming from the vector potential, 〈ψ(ri)

n,m|p ·A|ψ
(r j)
n′,m′〉,

are complex with an imaginary component that is max-
imal for nearest-neighbor hopping. As the values of
the hopping parameters decrease rapidly with the inter-
site distance, having anomalous nearest-neighbor com-
ponents represents a potential advantage of this model
over the honeycomb geometry of the original Haldane
model, where the anomalous hopping responsible for
the non-trivial topological properties occurs between
next-nearest-neighbors. Finally, we note that the or-
bitals used as a basis for the tight-binding approxima-
tion are not orthogonal, so the corresponding overlap
matrix 〈ψ(ri)

n,m|ψ
(r j)
n′,m′〉 has to be calculated and used in the

diagonalization procedure. To summarize, we solve the
single-particle quantum problem

HΦq(r) = εqΦq(r), (9)

where H is the Hamiltonian given by Eq. (3) and q is
a set of quantum numbers that label the single-particle
states. Within the tight-binding approximation, we look
for solutions of the form

Φq(r) =
∑

j

∑
(n,m)

Ψ(n,m)
q (r j)ψ

(r j)
n,m(r), (10)

where the sum over j runs over all the sites of the lattice,
i.e., the locations of the minima of the effective potential
V(e f f )

latt (r) = Vlatt(r)) + A2(r)/2m and the orbitals ψ(r j)
n,m are

harmonic oscillators wavefunctions given by Eq. (8).
In the calculations we include the components (n,m) ∈
{(0, 0), (1, 0), (0, 1)}. Within the subspace spanned by the

ba c

FIG. 4: (Color online) Spectrum of the square super-lattice
model with periodic boundary conditions (no boundaries).
Only the lowest two bands are shown, although four other
bands were considered in the calculation. The wave-vector
takes values in the first Brillouin zone, 0 ≤ kx ≤ 2π/

√
2a,

0 ≤ ky ≤ 2π/
√

2a, and we make the choice of length units
a = 1/

√
2. (a) If V2 = 0 (no super-lattice structure), the two

bands are degenerate at k = (π, π). (b) If α = 0 (no vector
potential), the gap closes at two Dirac points (0, π) and (π, 0).
(c) For V1 = 3.4Er, V2 = 1.7Er and α = 2~/a a full gap opens.
The bands are shown along the kx direction (with ky out of the
plane).

orbital basis, equation (9) reduces to∑
j

∑
(n′,m′)

t(n,m)(n′,m′)
i j Ψ(n′,m′)

q (r j) (11)

= εq

∑
j

∑
(n′,m′)

s(n,m)(n′,m′)
i j Ψ(n′,m′)

q (r j),

with the hopping matrix t(n,m)(n′,m′)
i j and the overlap ma-

trix s(n,m)(n′,m′)
i j defined above. For a system with transla-

tional symmetry, the problem can be diagonalized with
respect to the position indices by a Fourier transform and
the relevant quantum numbers are q = (λ,k), where λ is
a band index and k is a wave vector in the reduced Bril-
louin zone associated with the super-lattice structure. In
the case of a finite system, Eq. (11) is solved numerically
for the full size matrices.

We emphasize that using the harmonic oscillator basis
imposes no restriction on the accuracy of the numerical
analysis. By including more wave functions in the basis
one can attain any desired accuracy. The results pre-
sented below have quantitative relevance for the low-
est band and give a qualitative picture of the higher-
energy bands. To estimate the accuracy of the approx-
imation, we determine the component of the effective
lowest band hopping due to virtual transitions to higher
bands, δti j(n,m) = t(0,0)(n,m)

i j t(n,m),(0,0)
i j /[ε(n,m)−ε(0,0)]. For the

range of parameters used in this study, the δti j(1, 0) and
δti j(0, 1) represent up to 15% of the bare value t(0,0),(0,0)

i j .
Consequently, one expects a strong renormalization of
the spectrum due to the hybridization with these bands.
Higher-energy bands generate corrections smaller that
5% and we neglect them. Another potential source of er-
rors comes from neglecting longer range hoppings. Sec-
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FIG. 5: (Color online) Energy dispersion for the first two bands
of the square super-lattice model along the (0, 0) → (π, π) →
(π, 0) → (0, 0) path in the Brillouin zone. The full lines corre-
spond to the parameters from Fig. 4(c). The dashed lines show
the energy dispersion obtained if we neglect the hybridization
with higher-energy bands.

ond neighbor hoppings are typically less that 10% of the
nearest neighbor hoppings (up to 25% in a few cases) and
have a crucial role in opening the insulating gap. Con-
sequently, they have to be included. However, longer
range hoppings have values that are always less that 3%
of the nearest neighbor hoppings and are neglected. The
estimates presented here are valid for deep enough op-
tical lattices with V1 > 3Er and V2 < 0.65V1. Note that
higher values of V2 will generate strongly anisotropic lat-
tice minima with large hopping matrix elements along
certain directions.

D. Bulk properties of the square superlattice model

Before studying the properties of the edge states for
the square superlattice model, let us convince ourselves
that the system has nontrivial topological properties
and therefore can support robust chiral edge states if
a boundary is present. Figure 4 shows the spectrum ob-
tained by solving Eq. (11) for an infinite lattice (or by
imposing periodic boundary conditions). The vertical
axis represents the energy and the horizontal axes the
wave vector k taking values within the first Brillouin
zone. The hopping and overlap matrix elements corre-
spond to different sets of original parameters (V1,V2, α)
for the optical lattice: (a) (3.4, 0, 2), (b) (3.4, 1.7, 0), and
(c) (3.4, 1.7, 2), where Vi are measured in units of re-
coil energy, Er, and α in units of ~/a. Notice that a
full gap opens only if both the vector potential and the
component of the optical lattice potential responsible for
the supper-lattice structure, i.e., α and V2, are nonzero.
Moreover, for a given strength α of the vector potential
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FIG. 6: (Color online) Momentum dependence of the Berry
curvature of the lowest energy bands for the same parameters
as in Fig. 4(c). The integral of the Berry curvature over the first
Brillouin zone (i.e., the total flux) is 2π for the lowest energy
band (a) and −2π for the second band (b), corresponding to
the Chern numbers 1 and −1, respectively. The nonvanishing
Chern numbers reveal the nontrivial topological properties of
the system.

there is a critical V∗2(α) above which the full gap opens.
For V2 < V∗2(α), a negative indirect gap will exist between
the top of the first band at (π, π) and the bottom of the
second band at (π, 0) or (0, π). We note that four other
bands, although not shown in Fig. 4, were included in
the diagonalization procedure.

Including the higher-energy bands is crucial for ob-
taining quantitatively relevant results. As mentioned
above, the energy scale in the problem is set by the val-
ues of the hopping parameters, which in turn depend
strongly on the depth of the optical lattice potential.
For example, the nearest-neighbor hoppings contain ex-
ponential factors of the form exp

(
−
π2

8
~ωi
Er

)
, where ωi is

given by Eq. (7). Consequently, to have a large gap com-
pared with the temperatures attainable experimentally,
one has to use a lattice potential that is not very deep. In
turn, this will determine strong inter-orbital hybridiza-
tion. This property is exemplified by the results shown
in Fig. 5. The energy dispersion for the two lowest bands
along a certain path in k-space was calculated, first in-
cluding the mixing with higher-energy bands (full lines)
and then neglecting it (dashed lines). The two sets of
curves, although qualitatively similar, in the sense that
both correspond to energy bands separated by a gap,
show significant quantitative differences.

To unveil the topological properties of the band struc-
ture described above, we calculate the Berry curva-
ture associated with the momentum space gauge field
(or Berry connection) defined for a given band λ as
~Aλ(~k) = i〈Φ

λ~k|∇~k|Φλ~k〉 [51, 69]. The Berry curvature is the
effective ”magnetic field” generated by this momentum-
space gauge field, Fλ(~k) = ∂kx Ay(~k) − ∂ky Ax(~k). The

momentum-space gauge field ~Aλ(~k), which is a prop-
erty of the single-particle wave functions, should not
be confused with the real space vector potential A(r),
which is an externally applied field. The distribution
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FIG. 7: (Color online) The band structure of Eq (3) in the stripe
geometry. The corresponding lattice is schematically shown
in the inset. Notice the edge state modes that populate the
gap and merge with the bulk states. The edge modes cross
the gap connecting the lower and upper bands and intersect
at kx = 0 due to Kramers degeneracy. Small perturbations
can modify the dispersion of the edge modes and the location
of the Kramers degeneracy points, but cannot open a gap for
the edge states. Notice that the bulk bands can be obtained by
projecting the two-dimensional spectrum shown in Fig. 4(c) on
a plane perpendicular to the y axis. The same set of parameters
as in Fig. 4(c) was used.

of Berry curvature over the Brillouin zone for the two
lowest energy bands is shown in Fig. 6. Note the
large values of Fλ in the vicinity of (kx, ky) = (π, 0) and
(kx, ky) = (0, π). These are the points in momentum space
where the gap closes when the strength of the vector po-
tential approaches zero, α→ 0, leading to the Dirac cone
structure shown in Fig. 4(b). In this limit the Berry
curvature diverges at the location of the Dirac points.
Similarly, if V2 → 0, the band gap closes at (π, π) and the
Berry curvature diverges at that point in k-space. The
total flux of berry curvature over the first Brillouin zone
is an integer multiple of 2π and defines the Chern num-
ber Cλ = 1

2π

∫
d2k Fλ(~k) [51, 69]. A nonzero value of the

Chern number is a signature of the nontrivial topolog-
ical properties of the system. In the case shown in Fig.
6 the Chern numbers for the first two bands are quan-
tized to C1 = 1 and C2 = −1, respectively. Changing the
external parameters (V1,V2, α) can significantly modify
the shape of the two bands and the distribution of Berry
curvature in k-space without altering the Chern num-
bers. For example, C1 can be modified only by passing
through a critical point (V∗1,V

∗

2, α
∗) where the band gap

closes at least in one point in k-space. This type of transi-
tion will be addressed in Sec. IV. Having established that
the square superlattice model supports quantum states
with a non-trivial topology, we consider now systems
with boundaries and study in detail the properties of the
states localized in the vicinity of those boundaries.

III. EDGE STATES: PROPERTIES AND
CHARACTERIZATION

In this section we consider a two-dimensional system
described by the square super-lattice model in the pres-
ence of ideal boundaries, i.e., boundaries created by an
infinitely steep potential wall. We discuss the properties
of the edge states for systems with either stripe or disk
geometry. First we concentrate on the edge states that
populate the gap between the lowest energy bands, then
we discuss higher-energy edge states.

A. The s-bands edge states

One defining characteristic of topological insulators
is the existence of gapless edge states that are robust
against disorder and interactions. While the charac-
terization of topological insulators without boundaries
using Berry curvatures and Chern numbers is mathe-
matically elegant, the corresponding experimental man-
ifestations are not straightforward. By contrast, the
existence of gapless edge states should be much eas-
ier to address experimentally even in cold-atom sys-
tems [31, 32, 70], as proved by the experiments on solid
state topological insulators [25–29]. A boundary can be
formally introduced by turning on the extra confining
potential Vc(r) in Eq. (3). We start with an idealized po-
tential that vanishes in a certain region S and is infinite
outside. The problems concerning realistic confining po-
tentials will be addressed in Sec. V. We note, however,
that the crucial assumption here is not the infinite value
of Vc outside S, as any finite value Vmax

c of the order of
the total relevant bandwidth or larger produces similar
consequences. The key assumption is that the transi-
tion between the region with Vc = 0 and the region with
Vc = Vmax

c is characterized by a length scale of the order
of the lattice constant or smaller.

Without translation symmetry, the numerical com-
plexity of the problem increases significantly. Therefore,
it is convenient to address the problem of characterizing
the edge states in two stages: (i) First, we consider a
stripe geometry, in which S is finite along one direction
(y in our calculations) but infinite along the orthogonal
direction (x), and we characterize the edge states that
form near the boundaries. (ii) Second, we consider a disk
geometry and show that the basic properties of the edge
states remain the same while pointing out the properties
that depend on the system geometry. We start our analy-
sis by focusing on the edge modes that populate the gap
between the first two energy bands, i.e., the bands hav-
ing the main contributions from s-type orbitals ψ(r j)

0,0 (r).
We call these bands ”s bands” but remind the reader that
significant contributions from higher energy orbitals due
to strong hybridization are included.
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FIG. 8: (Color online) Band structure for a stripe with inequiva-
lent edges (see main text). All the sites on one boundary belong
to the A sublattice, while all the sites on the other boundary are
B-type. For the top panel the parameters are the same as in Fig.
7, the only difference being an extra line of lattice sites at one
of the boundaries. Notice the completely different dispersion
of the edge modes and the different location of the degeneracy
point. The symmetry between left-moving and right-moving
states is broken. A mirror image of the dispersion lines can be
obtained by adding the extra line of lattice sites to the oppo-
site edge, or by reversing the direction of the vector potential,
α → −α (lower panel). A topologically trivial edge mode de-
velops at the top of the second band (state E belongs to this
mode).

1. Stripe geometry

Let us consider an optical lattice generated by the po-
tential Vlatt given by Eq. (5) and having a real space
profile as shown in Fig. 3(a). In the stripe geometry,
we consider the lattice as infinite in the x direction and
finite in the y direction, as shown schematically in the
inset of Fig. 7. As translation invariance is preserved
along the x direction, so kx is still a good quantum num-
ber. For a given value of kx each band is expected to
contain a number of states equal to the number of unit
cells along the transverse direction of the stripe. The cal-
culated spectrum corresponding to the first two bands is
shown in Fig. 7. In a stripe geometry, the contribution
coming from bulk states can be inferred by projecting the
two-dimensional spectrum (see Fig. 4) on a plane per-
pendicular to the transverse direction of the stripe. In

C

B

A

FIG. 9: (Color online) Spatial dependence of the ”amplitude”
function |Ψkx ,ν|

2 =
∑

(n,m) |Ψ̃
(n,m)
kx ,ν

(y j)|2 for the states marked by the
letters A, B and C in Fig. 7. The stripe has a width d = 252 (in
units of a = 1/

√
2). State A, which is well inside the bulk gap, is

localized near the upper edge and decays exponentially with
a characteristic length scale of a few lattice constants. State
B, which is at the gap edge, is a bulk state with a smoothly
varying envelope function. Notice the multiplication factor of
30 introduced to make the function visible on the same scale as
the edge states. State C belongs to the edge mode but is very
close to the gap edge. It is localized near the bottom edge and
decays exponentially but has a length scale significantly larger
than state A.

Fig. 4(c) the view angle was chosen to visually facilitate
this projection. In addition to the bulk contributions, the
spectrum in Fig. 7 contains edge modes that populate
the bulk gap. These modes cross the gap connecting the
lower and upper bands and intersect at kx = 0 due to
Kramers degeneracy. As we will show below, each of
the states having the energy inside the bulk gap is spa-
tially localized near one of the two edges of the system.
Small perturbations, like disorder and interactions, or
changing the boundary conditions will modify the edge
mode dispersion, but the edge states will remain gap-
less. Considering the Fermi energy somewhere inside
the bulk gap, it will always intersect each of the the edge
modes containing states localized either near the lower
boundary or near the upper boundary an odd number
of times, i.e., these edge modes will necessarily connect
the lower and upper bands.

A simple way to exemplify the properties described
above is to modify the boundary conditions for the
stripe. As we discussed in the previous section when
we described the square super-lattice model (see sub-
section II B), the structure of the lattice can viewed as
consisting of two inter-penetrating sublattices A and B.
For an edge along the x-direction all the boundary sites
will be of the same type, A or B. Consequently, we can
construct stripes with edges of the same type and stripes
with edges of different types. The example shown in
Fig. 7 belongs to the first category. We can modify one
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FIG. 10: (Color online) Spatial dependence of the ”amplitude”
function |Ψkx ,ν|

2 =
∑

(n,m) |Ψ̃
(n,m)
kx ,ν

(y j)|2 for state E and for the se-
quence of states D1 → D4 from Fig. 8. D1 is positioned in the
middle of the gap, while D4 is at the gap edge and has bulk
character. During this transition the characteristic length scale
for the exponential decay of the edge states increases continu-
ously from a value of a few lattice sites to a value comparable
to the width of the stripe. The state E has a very pronounced
edge character, but is not topologically protected. Note that
the horizontal axis was translated for clarity.

of the boundaries by adding (or removing) one line of
points and we obtain a stripe that belongs to the sec-
ond category. The corresponding spectrum is shown in
Fig. 8. The dispersion of the edge modes is significantly
modified as compared to Fig. 7, as well as the location
of the degeneracy point. However, the main property of
the edge modes, namely that they connect the lower and
upper bands, is not affected. This property is a signature
of the topological nature of these edge states. Figure 8
also offers a counterexample, i.e., a topologically trivial
edge mode. This mode, which develops at the top of
the second band, does not connect two different bands
and is not robust, as it can be absorbed into the bulk
continuum in the presence of small perturbations.

So far we referred to the in-gap states as edge states
without showing explicitly that they are indeed localized
near the boundary of the system. If for a given wave
vector kx we order the single-particle states according
to their energy so Φ1,kx is the lowest energy state, then
the spatial properties of a generic state are given by the
norm |Φν,kx (r)|2, where Eq. (10) is used with the am-
plitudes Ψ(n,m)

ν,kx
being solutions of Eq. (11). However,

such a detailed description of the spatial dependence
of the wave function is not necessary for our purpose
and instead we focus on the dependence of the envelope
function, which does not contain the details of the orbital
structure, on the transverse coordinate y. More precisely,
for a state (ν, kx) we define the ”density” or ”amplitude”
function |Ψν,kx |

2 =
∑

(n,m) |Ψ̃
(n,m)
ν,kx

(y j)|2, where Ψ̃(n,m)
ν,kx

(y j) is

the Fourier transform of Ψ(n,m)
ν,kx

(x j, y j) with respect to kx.
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FIG. 11: (Color online) (Upper panel) Average position versus
energy for the single particle states that are solutions of Eq.
(3) in the stripe geometry (with equivalent edges). The sys-
tem is characterized by the parameters V1 = 3.4Er, V2 = 1.7Er

and α = 2 ~/a and has a width d = 100(
√

2a). The bulk states
are characterized by 〈y〉nkx ≈ d/2, while the edge states have
〈y〉nkx ≈ 0 or 〈y〉nkx ≈ d, corresponding to the positions of the
two edges. (Lower panel) Average orbital momentum (in ar-
bitrary units) versus energy for the same system. Notice the
chiral nature of the topological edge states and the extra edge
modes located in the upper band. The spectrum for this system
is shown in Fig. 7 and the density of states (DOS) is shown in
the right panels.

Note that the ”density” is normalized,
∑

j |Ψν,kx |
2(y j) = 1.

The spatial dependence of the ”amplitude” function for
the states marked by the letters A, B and C in Fig. 7
is shown in Fig. 9. The figure shows clearly that the
states within the gap (A and C) are indeed localized in
the vicinity of one of the two edges of the system and
decay exponentially away from the boundary. For states
well inside the gap the characteristic length scale is of the
order of the lattice constant. This length scale increases
as the edge mode merges into the bulk states.

To examine further the transition from edge to bulk
states we show in Fig. 10 the ”amplitude” function for
the sequence of states D1 → D4 from Fig. 8. The state D1
is positioned in the middle of the gap and in real space
it decays exponentially away from the top edge with
a length scale of a few lattice constants. As the edge
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FIG. 12: (Color online) Average position (upper panel) and
average orbital momentum (lower panel) versus energy for the
single-particle states that are solutions of Eq. (3) in the stripe
geometry (inequivalent edges). The system is characterized
by V1 = 3.4Er, V2 = 1.7Er and α = 2 ~/a and has a width
d = 101(

√
2a). The spectrum for this system is shown in Fig. 8.

states mode approaches the gap edge (states D2 and D3)
the characteristic length scale increases and eventually
becomes comparable to the size of the system. D4 is
a bulk state with a very small amplitude near the top
boundary. Also shown in Fig. 10 is the state E from Fig.
8. This is a state with a very pronounced edge character,
but which is not topologically protected, as discussed
above.

In the spectra shown in Figs. 7 and 8 the topologi-
cally protected edge modes are very well defined, yet
the edge mode at the top of the second band (state E) is
manifest only for the inequivalent edge stripe. However,
a detailed analysis reveals the existence of edge states at
the top of the second band even for equivalent edge
stripes. This raises the more general question of distin-
guishing between bulk and edge states and represent-
ing this difference. Of course, determining the ”am-
plitude” of each single-particle state will provide the
answer, but this is a rather cumbersome process and a
more global characterization would be desirable instead.
Two possible quantities that offer such a characteriza-

tion are the average position in the transverse direction,
〈y〉ν,kx = 〈Φν,kx |y|Φν,kx〉, and the average orbital momen-
tum, 〈L〉ν,kx = 〈Φν,kx |L|Φν,kx〉. Diagrams of these average
quantities versus the energy are shown in Fig. 11 for a
stripe with equivalent edges and Fig. 12 for a stripe with
inequivalent edges. The corresponding spectra were al-
ready shown in Figs. 7 and 8, respectively. Each point
in these diagrams corresponds to a single-particle state,
solution of Eq. (3). The edge-type states are character-
ized by average positions corresponding to the location
of the two boundaries and relatively large orbital mo-
menta. These can be easily distinguished from the bulk
like states, which are characterized by average positions
close to the middle of the stripe and which carry small
orbital momenta. The topologically unprotected edge
modes that can be partially seen in Fig. 8 but are totally
obscured by bulk states in Fig. 7 can now be easily iden-
tified. If we focus on the topological edge states within
the gap (εnkx ≈ 2.4), note that for a stripe with equivalent
edges (Fig. 11) the two modes localized on the oppo-
site boundaries carry the same orbital momentum, thus
revealing their chiral nature. In other words, for each
energy within the gap there is a pair of counter prop-
agating edge states localized on opposite edges. For a
stripe with inequivalent edges (Fig. 12) this symmetry
is broken, and for some energy values within the gap it
possible to find states localized on opposite edges, yet
propagating in the same direction. However, the nega-
tive orbital momentum of one state is always larger (in
absolute value) than the positive orbital momentum of
its pair.

The usefulness of these diagrams showing the aver-
age position (orbital momentum) versus energy is even
greater for geometries without any translation symme-
try, when the standard energy versus momentum spectra
cannot be constructed. Before we switch to a different
geometry, let us note that the fundamental properties of
the topologically protected edge states are not affected
by approximations used in the calculation as long as the
bulk gap is preserved. Shown in Fig. 13 are the density
of states and the spectrum of a stripe with inequivalent
edges calculated for the s bands within a simplified tight-
binding approximation that neglects the hybridization
with higher-energy bands. The density of states for the
same system calculated within a three-orbital approxi-
mation is also shown for comparison, while the corre-
sponding spectrum is presented in Fig. 8 (top). We can
say that the edge states are protected against approxi-
mations, as long as these approximations do not affect
the gap structure of the (bulk) spectrum. This is not
surprising, as approximations can be viewed as effective
perturbations applied to the Hamiltonian.

2. Disk geometry

So far we have discussed the properties of the edge
states in systems with translation symmetry in one direc-
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FIG. 13: (Color online) Density of states (a) and spectrum (b)
showing the s bands of a stripe with inequivalent edges cal-
culated within a simplified tight-binding approximation that
neglects hybridization with higher bands. For comparison, the
density of states calculated within a three-orbital tight-binding
approximation is also shown. The corresponding spectrum is
given in Fig. 8 (top panel). Note that the topology of the edge
modes is not altered, in spite of a significant redistribution in
the density of states.

tion (stripes). Because momentum along one direction
is a good quantum number, spectra showing the energy
dispersion as a function of momentum are a very effec-
tive way of characterizing the system and, in the case
of condensed matter systems, have a direct connection
with experimentally measurable quantities. By contrast,
cold-atom systems may contain a relatively small num-
ber of sites, so the explicit treatment of a finite system
may be required, and have a circle or an ellipse as the
most natural shape for the boundary. This raises two
questions: (i) What is the impact of the boundary geom-
etry on the edge states? and (ii) How important are the
finite size effects for the stability of the edge states? We
start by addressing the first question, while the second
will be discussed in Sec. V.

Let us consider the single particle quantum problem
described by Eq. (3) with an extra confining potential
given by

Vc(r) =

{
0 if |r| ≤ R0,
∞ if |r| > R0.

(12)

The system consists of a disk-shaped piece of the square
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FIG. 14: (Color online) Diagram showing the average radial
position versus energy for the single-particle states of a system
described by Eq. (3) in a confining potential (12). The param-
eters of the system are V1 = 3.4Er, V2 = 1.7Er, and α = 2 ~/a.
The underlying lattice (i.e., the minima of the effective optical
lattice potential) is shown in the inset. The edge states are
characterized by values of 〈r〉n comparable with R0 = 29a, the
disk radius, as a result of their localization in the vicinity of the
boundary. The clearly defined edge mode crosses the bulk gap
and connects the lower and upper bands, thus revealing its
topological nature. The density of states (right) is practically
identical with that shown in Fig. 13(a) for a similar system
with stripe geometry.

super-lattice with a boundary that contains sites from
both sublattices, A and B with a distribution that de-
pends on the radius R0. For simplicity, we solve the
problem within the single-orbital tight-binding approx-
imation, as the full size matrices (i.e., N × N matrices,
with N the number of lattice sites inside the disk) have
to be used in Eq. (11). To describe globally the system
we use the type of diagrams introduced in the previous
section. More precisely, we represent the average radial
position for a given single-particle state, 〈r〉n = 〈Φn|r|Φn〉,
versus the state energy, εn. The results for a disk with
radius R = 29a are shown in Fig. 14. The main con-
clusion suggested by the data is that the edge mode is
robust against deformations of the boundary. The states
with energies near the middle of the gap are localized
within a few lattice spacings from the boundary, while
this characteristic length increases as one approaches the
gap edge. The number of edge states is proportional to
the length of the boundary (i.e., R0), while the number
of bulk states scales with the area of the system (i.e., R2

0).
Finally, we note that the topologically unprotected edge
states that were present in the stripe geometry (see Figs.
8, 11, and 12) do not survive in the absence of transla-
tional symmetry.

To visualize the spatial dependence of the single par-
ticle states in the disk geometry, we show in Fig. 15
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FIG. 15: (Color online) ”Amplitude” functions for single-
particle states in the disk geometry. The top and middle panels
show ”densities” corresponding to the first four energy levels
starting with the ground state (top left corner). We note that
the actual density is obtained by multiplying these envelope
functions with a sum of s-type orbitals centered at each lattice
site. The lower panels show a typical edge state (left) and a
typical bulk state (right). The edge state decays exponentially
away from the boundary, with a characteristic length scale of a
few lattice constants.

the ”amplitude” function |Ψn|
2 = |Ψ(0,0)

n (r j)|2 for several
states. The edge state shown in the bottom-left panel has
an energy near the middle of the bulk gap. The ampli-
tude of the edge state decays exponentially away from
the boundary, with a characteristic length scale of the
order of the lattice constant. This length scale increases
for states with energies closer to the gap edge and even-
tually becomes comparable to the system size (i.e., to R0)
as the edge mode merges with the bulk bands. This be-
havior, as well as the characteristic length scales, are the
same as those observed in the stripe geometry and are
independent of the boundary geometry. What depends
on the details of the boundary is the actual distribution
of the ”density” along the boundary. For example, the
edge state shown in Fig. 15 has four regions with higher
amplitude. These regions correspond to sections of the
boundary that contain only sites that belong to one of the
sublattices and are locally similar to the boundary in the
stripe geometry. Modifying those regions determines
a ”density” redistribution along the boundary, but the
transverse properties (e.g., the characteristic length scale
for the exponential decay) are not affected. In conclusion,
the fundamental properties of the edge states do not de-
pend on the geometry of the system and, therefore, can
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FIG. 16: (Color online) Energy dispersion for the first six bands
of the square super-lattice model along the (0, 0) → (π, π) →
(π, 0)→ (0, 0) path in the Brillouin zone. The parameters used
in the calculation are V1 = 3.4Er, V2 = 1.7Er, and α = 2~/a. The
s bands (red lines) are identical with those shown in Fig. 5.

be studied using the most convenient geometry. How-
ever, if we are interested in the detailed behavior of the
edge states along the boundary, a precise characteriza-
tion of this boundary is required and has to be explicitly
included in the calculations.

B. Edge states in a multi-band system

So far we have discussed the properties of the edge
states that populate the gap between the lowest energy
bands. From a practical point of view, in cold atom
systems these may be the most relevant states for two
reasons: (i) the extra confining potential necessary for
defining a boundary [32] for higher energy bands has
to be stronger and may be harder to realize and (ii) for
a relatively shallow optical lattice, which is the opti-
mal condition for observing topological edge states, the
higher bands may strongly overlap, thus filling any pos-
sible gap. Nonetheless, in some cases the p-type bands
may offer some advantages, most notable the possibility
of having larger bulk gaps and the direction dependence
of the p-orbitals (see Sec. II), which can be critical in cer-
tain models. In addition, from a theoretical standpoint
it is interesting to investigate if there is any major dif-
ference between various types edge states that may be
present in a multi-band system. We note that all the re-
sults presented in this section for the p-type bands are
qualitative. Quantitative results would require taking
into account contributions from several higher energy
orbitals, as they hybridize strongly with the p orbitals.

Shown in Fig. 16 is the spectrum of single-particle
Hamiltonian (3) with Vc(r) = 0 (no boundaries) obtained
in a three-orbital tight-binding approximation. The pa-
rameters for this calculation are V1 = 3.4Er, V2 = 1.7Er,
and α = 2~/a, i.e., the parameters used to derive the
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FIG. 17: (Color online) The band structure of the Hamiltonian
given by Eq. (3) in the stripe geometry. The left panel corre-
sponds to the parameters V1 = 3.4Er, V2 = 1.7Er and α = 2~/a,
while the right panel corresponds to a slightly deeper lattice
with V1 = 3.7Er. Note that there are no edge states between the
second and the third bands, but an edge mode is clearly visible
between the third and the fourth bands. Increasing V1 opens
a gap in the spectrum (right panel) and reveals the topological
nature of that edge mode. By contrast, the edge states that
populate the gap between the fourth and the fifth bands are
topologically trivial, as they do not connect the two bands.

majority of the results in the previous subsection. For
these parameters most of the p bands overlap and no
gap opens except between the fourth and the fifth bands
(at energies around 5.2Er). The first question that we
address is whether there are any other topological edge
states except those located in the gap between the first
two bands, which we studied in the previous subsec-
tion. To answer this question, we can either consider
a system with boundaries and identify the edge modes
or remain within a bulk description and calculate the
Chern numbers Cn for each band. We start with the
second approach, as it is much easier to implement nu-
merically. The Chern numbers for the first four bands
are C1 = 1, C2 = −1, C3 = 1, and C4 = −1. The last two
bands are degenerate at k = (0, π) and k = (π, 0). As
the Berry curvature diverges in the vicinity of the de-
generacy points, the Chern numbers for those bands are
not defined. In principle, topological edge states exist
in a gap if the total curvature (i.e., the sum of the Chern
numbers) of all the bands below that gap is nonzero.
The first band has non-zero curvature and topological
edge states exist inside the gap above it, as we have seen
above. The first two bands, as a whole, have zero total
curvature and, consequently, no topological edge states
should be present on the top of the second band. This
is consistent with our previous observation of the topo-
logically unprotected edge states in the stripe geometry.
Similarly, we expect topological edge states to exist be-
tween the third and the fourth bands (if a full gap is

opened), but not between the fourth and the fifth.
To confirm that the structure inferred from the values

of the Chern numbers is indeed realized, we calculate the
band structure of a system with boundaries in the stripe
geometry. The results are shown in Fig. 17 and offer a
picture that is consistent with the above analysis. Two
features are worth mentioning. First, note that the topo-
logical edge mode that develops inside the gap between
the third and fourth bands (Fig. 17, right panel) partially
survives the gap collapse (Fig. 17, left pane). These edge
states are protected by the translation symmetry and are
robust against perturbations that conserve this symme-
try. However, they will be destroyed by the presence
of disorder. Second, we notice some very well defined
edge modes inside the gap between the fourth and fifth
bands. These modes are good example of topologically
trivial edge states: they do not cross the gap connecting
two different bands, but rather start from and return to
the same band. Consequently, at any given energy there
will be an even number of such edge states near a given
boundary and any small perturbation will make them to
become localized. By contrast, in the case of topologi-
cal edge states there is an odd number of states near a
given boundary at any given energy within the gap, so
even in the presence of perturbations a dispersive mode
consisting of de-localized states is preserved.

As we mentioned at the beginning of this subsection,
including higher energy orbitals is expected to modify
quantitatively our picture of the p bands. However, we
expect minor changes as far as the s bands are concerned.
Therefore it is relevant and useful to have a quantitative
estimate of the s band gap and a general idea on how it
depends on the parameters of our model. Shown in Fig.
18 is the gap dependence on the strength of the vector
potential for three different values of V2. Depending
on the parameters, the system has either a direct gap
at π, π) or an indirect gap between the maximum of the
lower band at (π, π) and the minima of the upper band at
(0, π)/(π, 0. Note that the indirect gap becomes negative
for α < α∗(V2), i.e., vector potentials with a strength
lower than a certain critical value.

IV. TRANSITIONS BETWEEN TOPOLOGICALLY
DISTINCT QUANTUM STATES

In this section we give several examples of phase tran-
sitions between quantum states with distinct topological
properties. These transitions can be induced by apply-
ing certain perturbations, i.e., adding some extra terms
to the Hamiltonian, or, in the case of a multi-band topo-
logical insulator, by simply varying the parameters that
characterize the system.

The topological properties of a quantum state are not
modified by any perturbation of the Hamiltonian that
does not close the bulk gap. Nonetheless, when such
a perturbation determines the closing of the bulk gap,
the system undergoes a phase transition to either a
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FIG. 18: (Color online) The s band gap as function of the vector
potential strength for several values of the super-lattice gener-
ating component V2. The main amplitude of the optical lattice
potential is fixed, V1 = 3.4Er. Notice that each curve has a
singularity point and that the slope to the left (right) of the
singularity point is positive (negative). The positive slope cor-
respond to an indirect gap between the maximum of the lower
band at (π, π) and the minima of the upper band at (0, π)/(π, 0,
while the negative slope corresponds to a direct gap at π, π).
Note that for weak vector potentials with the strength α below
a critical value α∗(V2) the indirect gap becomes negative.

metallic state or an insulating state with possibly dif-
ferent topological properties. The topological-insulator-
to-metal transition can be exemplified by the band struc-
ture shown in Fig. 17. Let us assume that the first three
bands in the right panel are completely filled, so the only
gapless excitations are provided by the edge mode that
crosses the gap between the third and fourth bands. By
simply reducing the depth of the optical lattice, this bulk
gap collapses (see left panel) and the system becomes
metallic. More interesting are the transitions between
two different insulating states. We discuss two possi-
ble ways of inducing such transitions: (i) by adding an
extra-term to the Hamiltonian that opens a (topologi-
cally trivial) gap and (ii) by tuning the parameters V1,
V2, and α that characterize the system.

A. Transitions driven by a staggered potential

The tight-binding model described by Eq. (1) is de-
fined on a square super lattice consisting of two inter
penetrating sublattices A and B, as discussed in Sec. I.
If the second neighbor hopping is anisotropic, t′2 , t2,
and the nearest-neighbor hopping is complex, φ , 0 and
φ , π, a full gap ∆(k) opens in the spectrum, with an
explicit wave vector dependence given by

∆2(kx, ky) = 4(t2 − t′2)2(cos kx − cos ky)2 (13)

+ 16|t1|
2
[
1 + cos kx cos ky + cos(2φ)(cos kx + cos ky)

]
.
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FIG. 19: (Color online) Band structure for a system with stripe
geometry described by the parameters V1 = 3.4Er, V2 = 1.7Er,
α = 2~/a and different values of the staggered potential Γ (given
in units of Er). Γ = 0 corresponds to the case shown in Fig.
7. Applying a small staggered potential reduces the gap in
the vicinity of kx = 0 (top right panel). At the critical value
Γc ≈ 0.075Er the gap closes at kx = 0, while for Γ > Γc a full
gap opens again. At large values of Γ the system is a standard
band insulator with no edge modes inside the gap. Notice that
the spectra are shown for half of the one-dimensional Brillouin
zone while the other half can be obtained by mirror symmetry
with respect to kx = π.

For the cold-atom realization of this model described by
Eq. (3), the condition for anisotropic second-neighbor
hopping becomes V2 , 0, while the imaginary compo-
nents of the nearest-neighbor hopping are generated by
the effective vector potential, so the second condition
becomes α , 0. Spectra for the Hamiltonian (3) corre-
sponding to three different sets of parameters are shown
in Fig. 4. Another possibility to open a gap in a square
lattice tight-binding model is to simply add a staggered
potential, i.e., a potential that generates on-site energies
Γ and −Γ for the sublattices A and B, respectively. This
amounts to adding a term of the form

Vstagg = Γ
∑

k

(
c†AkcAk − c†BkcBk

)
(14)

to the Hamiltonian. In the presence of such a term, a sim-
ple tight binding model with t′2 = t2 and exp(iφ) = ±1
is characterized by a full gap with a minimum value
∆min = 2|Γ|. If the lowest band is completely filled, the
system represents a standard band insulator with triv-
ial topological properties. The question that we want
to address concerns the evolution of the spectrum and
the fate of the edge modes as the transition between a
topological insulator and a standard band insulator is
induced by tuning the staggered field strength.

In the cold-atom realization of the model described by
Eq. (3) the staggered potential can be introduced as an
extra term. However, we want to point out the possibil-
ity that such a component be generated in the process
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FIG. 20: (Color online) Band structure for a stripe with in-
equivalent edges and with the same parameters as in Fig. 19.
For Γ = 0.12Er the system is a standard band insulator but, in
contrast with the equivalent edge case (see Fig. 19), a well-
defined edge mode populates the gap. A clean insulator with
the chemical potential inside the bulk gap supports gapless
edge excitations. However, any small perturbation (such as
disorder or interactions) will open a gap in the edge mode.

of constructing the superlattice itself. This represents
a potential problem for realizing topological quantum
states. For example, if the components V1 and V2 of
the optical lattice potential are produced by different
lasers, a misalignment corresponding to x→ x + δx and
y → y + δy in the V2 term will effectively generate a
staggered potential. In the calculations we neglect the
detailed effects of such a misalignment on the hopping
matrix elements and consider only the on site staggered
contributions parameterized by Γ. We start with a sys-
tem in the stripe geometry with parameters V1 = 3.4Er,
V2 = 1.7Er, α = 2~/a and Γ = 0, then we turn on Γ while
keeping the other parameters fixed. The corresponding
spectra are shown in Fig. 19. For Γ = 0 the system is
a topological insulator and the corresponding spectrum
is characterized by an edge mode that crosses the bulk
gap. Applying a small staggered potential reduces the
gap in the vicinity of kx = 0 and, eventually, at the critical
value Γc ≈ 0.075Er the gap closes at kx = 0. For larger
values of Γ the gap opens again but no edge states are
present inside the gap. We conclude that the system is a
topological insulator for Γ < Γc(V1,V2, α) and a standard
band insulator for Γ > Γc(V1,V2, α).

The mechanism described above is quite general. Any
perturbation capable of opening a gap in the spectrum
will have similar effects and will induce a transition at
a particular critical strength. This critical strength is
independent of the boundary geometry. However, the
details that characterize the edge modes in either side
of the transition depend on the properties of the bound-
aries. For example, if instead of the stripe geometry with
equivalent edges considered in Fig. 19 we study a sys-
tem with inequivalent edges (see Fig. 8), we observe a
transition (i.e., the closing of the gap) at the same critical
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FIG. 21: (Color online) Energy dispersion curves for a system
with V1 = 3.7Er, α = 2~/a, and different values of V2 along the
(0, 0)→ (π, π)→ (π, 0)→ (0, 0) path in the Brillouin zone. The
numbers inside the yellow circles represent the Chern num-
bers of the bands. Note the closing of the direct gap at certain
critical values of V2 (panels b and d) and the corresponding
change of the Chern numbers. The spectra shown in panels
a, c, and e are consistent with different insulating states: (a)
topological insulator (with the first three bands filled) and con-
ventional insulator (four bands filled); (c) topological insulator
(one band filled) and conventional insulator (four bands filled);
and (e) topological insulator I (one band filled), conventional
insulator (two bands filled) and topological insulator II (four
bands filled).

value Γc ≈ 0.075Er. However, the band insulator with
Γ > Γc has now a clearly defined edge mode, as shown
in Fig. 20. In particular, this edge mode ensures the exis-
tence of gapless excitations for any value of the chemical
potential inside the gap. Nonetheless, this mode is topo-
logically trivial, as revealed by the fact that it does not
connect the two bands, and consequently it is not pro-
tected against disorder and interactions, in the sense that
any weak perturbation will open a gap in the edge mode.

B. Transitions in a multi-band system

The transition studied in the previous section was
driven by the competition between the contributions to
the Hamiltonian that generate its nontrivial topological
properties and terms like Vstagg that tend to open a con-
ventional band gap. However, the model described by
Eq. (3) contains three independent parameters, V1, V2,
and α, and only the vector potential (i.e., α) is directly
responsible for the nontrivial topology of the bands.
Therefore, we expect several topologically distinct states
to exist in various regions of the parameter space. We
have already seen that small variations of the parame-
ters can lead to the opening/closing of the gaps corre-
sponding to a topological insulator to metal transition,
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FIG. 22: (Color online) Detail of the band structure for a system
in the stripe geometry with the same parameters as in Fig.
21(a) (left) and 21(e) (right). In the left panel notice one pair
of topological edge modes inside the gap above the third band
and the topologically trivial edge states above the fourth band,
consistent with the Chern numbers shown in Fig. 21(a). On
the right we observe four pairs of edge modes inside the gap
above the fourth band. This number of pairs of edge modes
is equal to the total Chern number of the bands below the gap
[see Fig. 21(e)].

as shown in Fig. 17. The question that we address now is
whether insulator to insulator transitions can be induced
by tuning the parameters of the model. Our purpose is
not to determine the full phase diagram of the model,
but rather to give an example showing that such transi-
tions are possible. In general, the parameter space can
be characterized by two independent quantities, for ex-
ample V2/V1 and α/

√
2mV1. However, we fix V1 = 3.7Er

andα = 2~/a and vary V2, which corresponds to a certain
cut in the parameter space. The resulting bulk spectra
are shown in Fig. 21 for several values of V2. The to-
tal flux of Berry curvature (i.e., the Chern number) for
a given band remains unchanged as long as the direct
gaps separating that band from the neighboring bands
do not vanish. When the direct gap between two bands
vanishes (see panels b and d), the total flux of Berry cur-
vature is redistributed between the two bands and the
topological properties of the system change accordingly.

As we mentioned above, the topological character of
an insulating state, and hence the existence of robust
edge states, is determined by the sum of the Chern
numbers of the occupied bands. An interesting case
revealed by the results shown in Fig. 21 is when the first
four bands are completely filled. Then, for V2 < 1.53Er
the system is a conventional band insulator, while for
V2 > 1.53Er it is a topological insulator with the sum
of the Chern numbers of the occupied bands equal to
four. To identify the structure of the corresponding edge
modes we consider a system with boundaries in the
stripe geometry and determine the spectra for V2 = 1.0Er
and V2 = 2.5Er. The results are shown in Fig. 22. As
evident from these results, the number of pairs of topo-
logical edge states that populate a gap equals the total
Chern number of the bands that are below that gap. In
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FIG. 23: (Color online) (Upper panel) Spectrum for the square
superlattice model (1) with parameters t1 = (1 + 0.2i)Er, t2 =
−0.3Er, and t′2 = −0.06Er in the stripe geometry. The system
is finite in the y direction and infinite in the x direction, with
the axes are oriented along the next-nearest neighbor direc-
tions (see Fig. 3). For an odd number of layers (i.e., equivalent
edges) the edge states (red/dark gray lines) with kx < π are
localized near y = 0, while the edge states with kx > π are
localized near the opposite boundary. For an even number of
layers (i.e., inequivalent edges) the mode localized near y = 0
remains unchanged, while the other mode is now character-
ized by kx < π (green/light gray line). (Lower panel) Edge state
amplitudes multiplied by exponential factors to reveal the os-
cillatory behavior. Blue (dark gray): edge state corresponding
to kx = 0.97π/

√
2a and ξ = 1.441

√
2a. Orange (light gray):

edge state with kx = 0.7π/
√

2a and ξ = 1.351
√

2a.

the case shown in right panel of Fig. 22 four pairs of
topological edge modes populate the gap between the
fourth and the fifth bands. Hence, for any given energy
inside the gap at least four different edge states will exist
on each of the two boundaries. The stability of these
edge states is a natural question that we address next.

V. STABILITY OF THE EDGE STATES

The physics that emerges from the nontrivial topolog-
ical properties of a system can be directly related to the
behavior of the edge states. The topological features are
present as long as the spectrum is gaped for all bulk ex-
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citations and the bulk gap is populated by gapless edge
modes. Weak local perturbations cannot induce a phase
transition to a state with different topological properties
and, consequently, the edge or surface states are robust
against disorder and interactions [22, 59–62]. These per-
turbations modify the bulk properties of the system and
generate extra terms in the Hamiltonian that describes
its quantum mechanical properties. However, the solu-
tion of a quantum mechanical problem is determined not
only by the Hamiltonian but also by the boundary con-
ditions. In this section we address the question of how
changing these boundary conditions impact the prop-
erties of the edge states. In particular, we discuss the
stability of the edge states against finite size effects and
their dependence on the confining potential that defines
the boundaries of the system. The answers to these ques-
tions are particularly relevant for cold atom systems, but
they can shed meaningful light on the physics of solid
state topological insulators, for example, in the case of
topological insulator thin films [71–75]. or in the case of
topological insulator heterostructures.

A. Finite size effects

The chiral edge states robustness against disorder and
interactions can be linked to the absence of backscatter-
ing. In a large system, counter propagating edge modes
are localized near boundaries that are well separated
spatially and, consequently, have a vanishing overlap.
However, as the size of the system in a certain direc-
tion is reduced, edge states propagating along opposite
edges may acquire a finite overlap. Consequently, a gap
opens in the edge states spectrum. The dependence of
this gap on the size of the system depends on the spa-
tial behavior of the edge states, in particular on how fast
they decay away from the boundary. As suggested by
the profiles shown in Figs. 9 and 10, the edge state ampli-
tude decreases exponentially with the distance from the
edge. The characteristic length scale for this exponential
decay, ξ, depends on the size of the bulk gap, roughly
scaling as the bandwidth over the gap size, but also on
the location of the edge state within the bulk gap. In ad-
dition, the exponential decay is generally non monotonic
and includes one or more oscillatory components.

To illustrate this general behavior, we show in Fig. 23
the spectrum for a system with a stripe geometry de-
scribed by the square super-lattice model given by Eq.
(1) with the parameters t1 = (1 + 0.2i)Er, t2 = −0.3Er,
and t′2 = −0.06Er. The edges of the stripe are chosen
along one of the next nearest neighbor directions and, as
discussed above, may contain sites from the same sub-
lattice (what we call equivalent edges) or from different
sublattices (inequivalent edges). As shown in the upper
panel of Fig. 23, the dispersion of the edge modes is ex-
tremely sensitive to changes in the boundary conditions
(see also Figs. 7 and 8). In addition, different states from
a given edge mode have different asymptotic behaviors,
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FIG. 24: (Color online) (Upper panel) Spectrum for the square
super-lattice model (1) in the stripe geometry for the same pa-
rameters as in Fig. 23 but with the symmetry axes oriented
along the nearest neighbor directions. The dispersion of the
edge modes is independent of the parity of the number of lay-
ers. (Lower panel) Edge state amplitude multiplied by an ex-
ponential factor with ξ = 2.396a for the state with kx = 0.97π/a.
Note the even-odd oscillations and the k-dependent long
wavelength oscillatory component. At kx = π/a the extra oscil-
latory component is absent.

as shown in the lower panel of Fig. 23. As the parame-
ters describing the asymptotic behavior of an edge state
deep inside the system depend on bulk properties but
also on the position of the state within the gap, they can
be modified by changing the boundary conditions.

If the edges of the stripe are chosen along one of the
nearest neighbor directions, the corresponding spectrum
does not exhibit any even-odd variation with the num-
ber of layers in the system. The band structure for such
a stripe is shown in Fig. 24 for the same model param-
eters as in Fig. 23. The amplitude of an edge state from
the vicinity of the Dirac point is also shown in the lower
panel. Although the bulk parameters are the same as in
Fig. 23, the asymptotic behavior of the edge states is gen-
erally different, as a consequence of the new boundary
conditions. Note that the edge state shown in Fig. 24 is
characterized by multiple oscillatory components, in ad-
dition to the exponential decay. The relative amplitude
of those components depend on kx, the wave vector com-
ponent parallel to the edge, for example at kx = π/a only
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FIG. 25: (Color online) Opening of a gap in the edge state spec-
trum due to finite size effects. The system is a thin stripe with
the same geometry and hopping parameters as in Fig. 24. The
size of the gap is determined by the overlap of edge states local-
ized on opposite boundaries and, consequently, varies roughly
exponentially with the width of the stripe and inherits the os-
cillatory behavior of the edge states. For large N the edge states
are gapless and independent of parity. For thin films, a finite
gap opens in systems with even number of layers, while sys-
tems with odd number of layers remain gapless. Note that the
”bulk” spectrum varies dramatically with the system size, in
contrast with the edge modes that are practically unaffected if
the system size is much larger than their characteristic length
scale.

the short wavelength oscillatory component is present.
Knowing the precise asymptotic behavior of the edge

states for a given system is important for predicting the
dependence of the finite size induced gap on the system
size. As mentioned above, the size of the gap depends
on the overlap between edge states propagating along
opposite edges. More precisely, let us consider an in-
finitely wide stripe described by a certain Hamiltonian
and two Kramers degenerate edge states ψ(1)

k0
x

(δy) and

ψ(2)
k0

x
(δy), where δy is the distance from the boundaries

along which the states propagate. Next, consider a rel-
atively thin stripe of width W described by the same
Hamiltonian. The relevant overlap can be written as

s12(w) =

∫ w

0
dy ψ(1)

k0
x

(y)ψ(1)
k0

x
(w − y). (15)

If w � ξ, where ξ is the characteristic length scale for
the exponential decay of the edge states, the overlap
is negligible, but as the width of the stripe is reduced
we expect s12(w) to grow exponentially. However, this
exponential dependence is not monotonic, due to the
extra oscillatory components of the wave functions.

The dependence of the spectrum on the width of the
stripe is shown in Fig. 25. The model parameters and the
geometry of the stripe are the same as in Fig. 24. As the
width of the system is varied, the bulk spectrum changes
dramatically, in contrast to the edge modes that are prac-
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FIG. 26: (Color online) Gap dependence on the stripe thick-
ness (w) for a system with t1 = (1 + 0.05i)Er, t2 = −0.05Er, and
t′2 = 0.05Er and the symmetry axes oriented along the nearest
neighbor directions. Upper panel: Edge mode dispersions for
stripes with w = (N−1)a, where N is the number of layers. The
gap at kx = π is almost zero for N = 48, 0.1Er for N = 24, and
0.36Er for N = 12. Edge states with kx , πhave extra oscillatory
components (similar to that shown in the lower panel of Fig.
24) that may generate a vanishing overlap between edge states
located on opposite edges. Consequently, for N < 44 the gap
minima shift away from kx , π. (Lower panel) Dependence
of the minimum gap amplitude on the stripe thickness. Note
the even-odd oscillations. The long period extra oscillatory
components of the edge states (see Fig. 24) determine a devia-
tion from an exponential dependence of the gap amplitude on
the stripe thickness for N < 44 in stripes with even number of
layers (red/smooth line).

tically unaffected if the number of layers exceed N = 30.
For thiner stripes, s12(w) becomes finite if the number of
layers is even and a gap opens at the degeneracy point.
The even-odd effect is a consequence of the oscillatory
asymptotic behavior of the edge states at kx = π.

To investigate further the consequences of the oscilla-
tory asymptotic behavior on the finite size induced gap
we consider a system described by the square super-
lattice model given by Eq. (1) with the parameters
t1 = (1 + 0.05i)Er, t2 = −0.05Er, and t′2 = 0.05Er. The sys-
tem has a stripe geometry with edges along one of the
nearest neighbor directions. The asymptotic behavior of
the edge states is qualitatively similar to that shown in
Fig. 24, but the characteristic length scales ξ are signif-
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FIG. 27: (Color online) In-gap states localized along a line
defect in a system with no boundaries described by Eq. (1)
with t1 = (1 + 0.3i)Er, t2 = −0.3Er, and t′2 = 0.3Er. The one-
dimensional defect is oriented along the nearest neighbor di-
rection and is characterized by (see main text): δt = 0.5Er and
no lattice mismatch (green/light gray lines), δt = 0.5Er and a
lattice mismatch (red lines and circles), δt = Re[t1] = Er and a
lattice mismatch (black lines and triangles). In thin stripes the
edge states can overlap with states localized along extended
defects and increase the size of the finite size induced gap.

icantly larger due to the smaller value of the bulk gap.
The dispersion of the edge modes for thin stripes with
three different numbers of layers is shown in the upper
panel of Fig. 26. For N > 44 layers, a small gap opens at
the degeneracy point kx = π due to the overlap between
the edge states propagating on the two edges. The wave-
functions at kx = π are characterized by oscillations with
a period 2a, in addition to the exponential decay. This
leads to the vanishing of the overlap, and implicitly of
the induced gap, in stripes with odd number of layers,
as shown in the lower panel of Fig. 26. By reducing the
system size, the gap induced at kx = π increases expo-
nentially if the number of layers is even. However, edge
states with kx , π are characterized by extra oscillatory
components, similar to the situation shown in the lower
panel of Fig. 24, and the overlap of these states may
vanish for certain stripe widths even if the number of
layers is even. Consequently, the minimum gap shifts
away from kx = π when N < 44 and the dependence of
the (minimum) gap amplitude on the system size is no
longer exponential (see Fig. 26).

We have shown that the amplitude of the edge states
gap induced by finite size effects depends on the asymp-
totic behavior of the edge states. Of course, the presence
of perturbations, such as impurities, will also impact the
size of this gap. For example, the exact vanishing of the
gap in stripes with an odd number of layers does not
happen in the presence of impurities. More generally,
in the presence of disorder one expects the amplitude
of the induced oscillatory effects to decrease. Another

interesting question concerns the effect of extended de-
fects, such as a one-dimensional lattice mismatch, on
the edge states and on the finite size induced gap. Al-
though in cold atom systems the relevance of these type
of defects is not clear, this type of problem is highly rele-
vant for solid-state topological insulators. For example,
scanning tunneling spectroscopy (STS) measurements
on bulk crystals of Bi2Se3 and Bi2Te3 have revealed me-
chanical instabilities of the surface due to the strongly
layered structure of these materials, which causes mi-
crocracking between the layers [76, 77]. We will not
address this issue in detail, but note that the presence of
these extended perturbations induces states inside the
bulk gap that are spatially localized in the vicinity of the
defect. As an example, we show in Fig. 27 the spec-
trum of a two-dimensional square superlattice model
with t1 = (1 + 0.3i)Er, t2 = −0.3Er and t′2 = 0.3Er. The sys-
tem has no boundaries but has a one-dimensional defect
along one of the nearest-neighbor directions. The defect
is modeled as a pair of lattice lines coupled by nearest
neighbor hoppings δt. A lattice mismatch corresponds
to the case when the nearest-neighbor hopping couples
sites of the same sublattice. Note that the limit δt → 0
corresponds to the stripe geometry. As shown in Fig.
27, in the absence of a lattice mismatch the dispersion
of the in-gap modes is similar to that of topologically
trivial edge states, while in the presence of the lattice
mismatch the dispersion is similar to that of topological
edge modes. The main difference between edge states
and these extended defect states is that the defect modes
are not connected to the bulk bands. In thin stripes
these extended defect states can overlap with the edge
states modifying significantly the size of the induced
gap. Also, if such extended defect states are present
close to the edge/surface of a topological insulator, the
transport properties of the edge states can be signifi-
cantly affected.

B. Effects of the confining potential

The properties of the edge states are strongly depen-
dent on the boundary conditions, as we have shown
in the previous subsection. In cold-atom systems these
boundary conditions are determined by the extra con-
fining potential that supplements the optical lattice con-
finement, i.e., the term Vc(r) in Eq. (3). So far, in all the
calculations we have used hard wall boundary condi-
tions, which for the stripe geometry are equivalent with
having a confining potential

Vc(y) =

 0 if 0 ≤ y ≤W,

∞ if y < 0, or y > W,
(16)

The question that we want to address next is how are
the edge states properties modified if we relax the hard
wall boundary conditions. In general, a given confin-
ing potential sharply defines the boundary of a system
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FIG. 28: (Color online) Spectrum for a system with a soft
boundary described by Eq. (1) with t1 = (1+0.3i)Er, t2 = −0.3Er,
and t′2 = 0.3Er in the stripe geometry. The stripe is oriented
along the nearest-neighbor directions and is finite along the y
direction. The confinement at y ≈ 0 is given by the exponen-
tial potential Vc(y) = 5.0exp[−y/(2a)], while the confinement
at the opposite boundary is given by an infinite potential wall.
The dispersion of the edge mode near the soft boundary (or-
ange/light gray lines inside the gap) differs significantly from
the dispersion of the hard boundary edge mode (red/dark gray
line inside the gap) but retains the fundamental property of a
topological insulator edge mode, i.e., it connects the two bulk
bands (note that kx = 2π has to be identified with kx = 0). No-
tice the topologically trivial edge modes that are generated at
high energies (light green or light gray lines).

if it is characterized by values much smaller than the
topological insulator gap over a large area (volume), the
”bulk” of the system, and increases to values larger than
the bandwidth within a length scale much smaller that
the linear size of the ”bulk.” The region defined by this
length scale is the ”boundary region.” A harmonic con-
fining potential, as typically used in cold-atom experi-
ments, does not contain any intrinsic length scale that
could define a boundary. The ”boundary” of a system of
atoms in a harmonic trap potential Vc(r) has a character-
istic length given by d = L∆ − LW , where L∆ is the length
scale at which the confining potential becomes compa-
rable to the bulk gap, Vc(L∆) = ∆, and LW is the length
scale at which the confining potential becomes compa-
rable to the bandwidth, Vc(LW) = W [32]. For a very
smooth potential, the ”boundary region” can represent
a significant fraction of the bulk. The system confined
by such a potential is an inhomogeneous system with no
insulating properties, at least in the absence of inter par-
ticle interactions, which represents an inhomogeneous
topological metal [32]. Before discussing this case, it is
instructive to study the effect of a confining potential
that has an intrinsic length scale on the properties of the
edge states. The particular question that we address is
how the edge states depend on the characteristic length
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FIG. 29: (Color online) Detail of the band structure shown
in Fig. 28. For comparison the dispersion of an edge mode
corresponding to a softer boundary, Vc(y) = 5.0exp[−y/(6.5a)],
is also shown (black lines).

scale of an exponential confining potential.
We restrict our analysis to the stripe geometry and

consider the simple square super lattice model described
by Eq. (1). To detect easily the changes in the edge mode
dispersion we choose a set of model parameters that
generates a large bulk gap: t1 = (1 + 0.3i)Er, t2 = −0.3Er,
and t′2 = 0.3Er. One edge of the stripe, y = W, is defined
by a hard wall boundary condition, while the opposite
”edge” is soft and generated by an exponential confining
potential. Explicitly we have:

Vc(y) =


5Ere−

y
2a if y ≤W,

∞ if y > W.
(17)

Notice that the characteristic length scale for the soft
boundary, ξc = 2a, is larger than (but comparable to) the
typical decay length of the edge states that are localized
near the hard wall, ξ = 0.8a. The corresponding spec-
trum is shown in Fig. 28. The edge mode represented by
the red line propagates along the hard boundary, while
the orange lines represent the edge states near the soft
boundary. Note that the soft mode retains the fundamen-
tal property of a topological edge mode to continuously
cross the gap and connect the two bulk bands.

Increasing the characteristic length scale of the bound-
ary region will further soften the edge mode. For com-
parison, a detail of the gap region from Fig. 28 together
with the edge mode corresponding to a confining poten-
tial with ξc = 6.5a are shown in Fig. 29. We conclude
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FIG. 30: (Color online) Amplitudes for the edge states localized
near a soft boundary marked in Fig. 29. The corresponding
confining potential, Vc(y) is also shown. For comparison we
also show |ΨE(W − y)|2 for the state E which is localized near
the hard boundary.

that in a clean system and in the absence of interactions,
topological edge states exist for any value of ξc. In a real
system, because the edge mode softens with increas-
ing ξc and the gaps between different branches become
smaller, the spectrum of the edge modes will be signif-
icantly renormalized by perturbations such as disorder
or interactions. However, due to the topological nature
of the edge states, these perturbations will not open a
gap in the spectrum.

The next question that we want to clarify concerns the
spatial profile of the edge states in the vicinity of the soft
boundary. The amplitude of the states marked A-E in
Fig. 29 are shown in Fig. 30. Near the soft boundary, four
different states, A-D, are characterized by the same wave
vector, kx = π/a. Each state has a maximum amplitude
inside the boundary region and decay exponentially in
the bulk. Note that the highest energy state, ψA, has the
maximum near the point y∆ where the confining poten-
tial equals the bulk gap, Vc(y∆) = ∆. No topological edge
states exist in the region where the confining potential
exceeds the gap. The edge states with lower energies
have the maxima at points with decreasing values of the
confining potential and are progressively less confined
as the edge mode eventually merges with the bulk.

To have a global characterization of the spatial am-
plitude distribution for all the single particle states it is
useful to represent the energy of a given state as function
of the average position. The resulting diagram is shown
in Fig. 31 (left panel) together with diagram showing
the energy as function of the average angular momen-
tum (right panel). This type of diagram is particularly
useful in analyzing systems with geometries that have
no translation invariance, as, for example, the disk ge-
ometry discussed above. In the left panel of Fig. 31 one
can clearly see the difference between the soft boundary
near y = 0 and the hard wall at y = 250a. Notice that
the topological edge states are not the only edge states
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FIG. 31: (Color online) Average position (left panel) and av-
erage angular momentum (right pane) for a stripe with a soft
boundary and same parameters as in Fig. 28.

localized in the vicinity of the soft boundary, as topo-
logically trivial edge states exist at higher energies. The
softening of the edge mode produces a spiral-like shape
of energy versus angular-momentum curve. Note that
for certain energies the edge states propagating along
opposite edges do not necessarily counter-propagate,
as one would naively expect given their chiral nature.
This is generally the case for systems with inequiva-
lent edges. The consequences of this observation for the
transport properties of topological insulators with asym-
metric boundaries remain an interesting open question.

We return now to the case of smooth confining poten-
tials and in particular to harmonic potentials. As men-
tioned above, in this case one cannot talk, strictly speak-
ing, about a boundary, but rather a boundary region that
can cover, in principle, a significant area. This bound-
ary region is occupied by an inhomogeneous topological
metal [32]. The spectrum that characterizes this inhomo-
geneous metal can be understood qualitatively from Fig.
29. In the limit of a smooth confining potential, the
dispersion of the ”edge” mode becomes weaker and the
gaps between different branches become smaller, leading
to a quasicontinuous spectrum. Explicitly, we consider a
system in the stripe geometry characterized by the same
parameters as in Fig. 28 and confined by a harmonic po-
tential Vc(y) = 1

2 ∆y2/y2
0, where ∆ is the bulk gap of the

uniform system and y0 = 60a. The corresponding spec-
trum is shown in Fig. 32. For comparison we also show
the spectrum of a model with trivial topological prop-
erties (panel b), i.e., a square superlattice model with
staggered on-site potential, which in the absence of a
confining potential would describe a standard insulator
at half filling. Note that from the overall features of the
spectra no distinction can be made between the two sys-
tems, unlike the hard boundary case when the presence
of the characteristic edge modes can clearly identify the
topological insulator. Nonetheless, a detailed analysis
of the low energy spectrum reveals a qualitative differ-
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FIG. 32: (Color online) Spectrum of a system with harmonic
confining potential. Panel (a) corresponds to a square superlat-
tice topological ”insulator” model with the same parameters
as in Fig 28, while panel (b) represents a standard insulator
model on the square superlattice with t1 = Er, t2 = −0.3Er,
t′2 = 0.3Er and a staggered on-site potential ±Γ with Γ = Er.
The lower panels show the low energy spectra that character-
ize the inhomogeneous topological (left) and normal (right)
metals. Note that the topological metal has a spectrum con-
sisting of two modes that are qualitatively the same as the soft
mode shown in Fig. 29 (in the present case both boundaries are
soft). By contrast, the spectrum of the normal metal contains
many disconnected modes.

ence between the two systems. Indeed, the topological
metal has a spectrum consisting of two modes that are
qualitatively the same as the soft mode shown in Fig. 29,
while the spectrum of the normal metal contains many
disconnected modes. In terms of average orbital mo-
mentum, this difference would correspond to the differ-
ence shown in Fig. 31between the in-gap ”spiral” and
the disconnected high-energy ”rings.” Perturbations can
open a gap in the normal metal spectrum [Fig. 32(b)] but
not in the topological metal [Fig. 32(a)].

VI. DETECTION OF TOPOLOGICAL EDGE STATES

Probing quantum Hall states in a condensed mat-
ter system typically involves transport measurements.
However, this is a rather difficult task in a cold-atom sys-
tem. Alternatively, as the nontrivial topological proper-
ties represent a feature of the single particle Hamiltonian
best revealed by the presence of chiral edge states, it was
proposed [32] to directly map out these edge states using
bosons. The procedure involves loading bosons into the
edge states and then imaging the atoms. Note that this
technique does not involve the realization of an equilib-

rium topological insulating state but rather a real-space
analysis of the properties of the single particle states. In
some sense, it is an effective way of ”seeing” a topologi-
cal phase, something one cannot easily realize in the con-
densed matter context. First, the optical lattice is loaded
with atoms and cooled so that the bosons occupy the
lowest-energy single-particle states. Then, a sequence of
staged resonance excitation processes is used to promote
atoms into states of increasing angular momentum, for
example, via a sequence of the two-photon-stimulated
Raman transitions[78]. These intermediate states pro-
vide the overlap needed to make resonant Raman tran-
sitions to the edge states possible. Finally, the atoms
loaded into the edge states are imaged using a direct in
situ imaging technique, such as the method developed
by the Greiner group [49, 50].

Another possibility is to perform density profile mea-
surements on fermionic atomic systems [31, 70]. We
emphasize that such a measurement can probe the exis-
tence of an incompressible insulator, but cannot distin-
guish between a TI and a trivial insulator, unless sup-
plemented by another probe. To illustrate this point, we
calculate explicitly the density profile for a system with
harmonic confinement. Note that, in the presence of a
smooth confining potential the spectral analysis does not
offer much information about the system (see Fig. 32).
In particular, there is no sharp criterion for distinguish-
ing the ”bulk” states from the ”edge” states. However,
a clear signature for the existence of an incompressible
”insulating” bulk surrounded by a compressible metal
can be seen in the particle density. Assuming that the
system contains fermions with a chemical potential µ,
the particle density is defined as

ρ(r) =

εn≤µ∑
n

|ψn(r)|2, (18)

where ψn(r) are single particle wave functions with en-
ergies εn. In the absence of interactions, a small region of
the system around r characterized by an effective ”chem-
ical potential” µ − Vc(r) that falls within the gap corre-
sponding to a uniform infinite system should be an in-
sulator with one particle per site, ρ(r) = 1. Figure 33
shows the results for the topological and standard in-
sulator models with the same parameters as in Fig. 32.
For µ = −1.2Er the effective local chemical potential will
reside in the lower band or below for any given posi-
tion and the system is entirely metallic. If µ = 0, the
effective chemical potential will reside inside the bulk
gap for −y0 ≤ y ≤ y0. This region, characterized by
ρ = 1, represents the insulating incompressible ”bulk”
and is surrounded by the compressible metal. Increas-
ing the chemical potential further will determine the oc-
cupation of bulk states from the second band and the
appearance of a compressible island near the bottom of
the trap. In conclusion measuring the density profile
represents a possible way to probe the existence of an
insulating phase. However, such a measurement cannot
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FIG. 33: (Color online) Density profiles for a fermionic system
with harmonic confinement and different values of the chem-
ical potential. Panel (a) corresponds to a topological insulator
model, while panel (b) shows the density of a standard insula-
tor. The parameters for the models are the same as in Fig. 32.
Note the plateaus characterized by ρ = 1 (particles per lattice
site), which correspond to the insulating phase. No qualitative
difference can be observed between the two types of models.

distinguish between a normal insulator and a topolog-
ical insulator. Complete evidence should be obtained
by probing the characteristic boundary states. How
to probe them remains an important open question in
this field. We note here that there are two different
regimes in which these states can be investigated: (i)
In systems with sharp boundaries there are a relatively
small number of well-defined chiral edge states with
energies within the bulk gap and (ii) in systems with
shallow trapping the insulating ”bulk” is surrounded
by a boundary region populated with a large number of
boundary states which, when occupied, form a topolog-
ical metal. The two regimes are adiabatically connected.
A possible advantage of the shallow trapping is that the
ratio between the number of ”boundary” and ”bulk”
states can become significant. We suggest that the chiral
nature of the boundary states of a topological insulator
with broken time reversal symmetry could help distin-
guishing them from the boundary states of a standard
insulator. Perturbations with opposite angular orien-
tations should determine different responses from the
topological metal, in contrast to the normal metal.

The third type of probe that we propose for detecting
topological phases is optical Bragg spectroscopy [79, 80].
As in the case of the density profile measurement, using
this probe requires the realization of an equilibrium insu-
lating state. This is obtained by loading fermions into the
optical lattice so that the chemical potential lie within the
bulk insulating gap. The atomic system is illuminated
with a pair of lasers with wave vectors k1 and k2, re-
spectively, and a frequency difference ω = ω1 −ω2 much
smaller than their detuning from an atomic resonance.

The two beams create a traveling intensity modulation
Imod(r, t) = I cos(q · r − ωt), where q = k1 − k2. Conse-
quently, the atoms experience a potential proportional
to Imod due to the ac Stark effect and may scatter. The
optimal geometry for detecting the edge states involves
shining the lasers on a certain part of the atomic system
that contains a portion of the boundary (see Fig. 34).
Therefore, we will take into account the laser beam pro-
file, which we assume to be Gaussian. The term in the
Hamiltonian describing the light-atom interaction can
be expressed using the second-quantized notation as

Hint = Ω

∫
dr

[
e−

2r2

w2 e−iq·r−iωtψ̂(r)†ψ̂(r) + h.c.
]
, (19)

where Ω is the effective two-photon Rabi frequency, w is
the beam width, and ψ̂(r) is the atom field operator. The
response of the many body system to this perturbation
can be evaluated using Fermi’s golden rule. If we ne-
glect the beam profile, light Bragg scattering measures
the dynamical structure factor S(q, ω), i.e., the density
correlations. In general, we have

S̃(q, ω) =
∑
νi,ν f

∑
ki,k f

[
1 − f (ε f )

]
f (εi) (20)

× |〈Φν f k f |Hint|Φνiki〉|
2δ[~ω − ε f + εi],

where |Φνiki〉 and |Φν f k f 〉 are the initial atomic state and the
state after scattering, respectively, and f (ε) is the Fermi
distribution function. We assume that the wave vector
q is oriented along the x axis and that the laser beam
illuminates a sufficiently small region near the bound-
ary with local properties similar to those of a stripe
(Fig. 34). Taking into account the beam profile, the
matrix elements in Eq. (20) become 〈Φν f k f |Hint|Φνiki〉 ∝

exp
{
−

w2

8 (q − k f − ki)2
}
Λ

k f ki
ν f νi

, where we approximate the
wave functions Φνk(r) with those of a system with stripe
geometry that has similar local properties, and

Λ
k f ki
ν f νi

=
∑
α,n

Ψ∗ν f k f
(yn, α)Ψνiki (yn, α)e−

2y2
n

w2 ei(k f−ki)δα . (21)

For a stripe oriented along the nearest-neighbor direc-
tion which is finite in the y direction one has Φνk(r) =∑

m,n,α Ψνk(yn, α)eikxmψ(x − xm − δα, y − yn), where ψ(x, y)
are orbitals localized in the vicinity of the lattice nodes.
The eigenstates Ψνk(yn, α) are indexed by the wave vec-
tor k (oriented along the x direction) and the discrete
quantum number ν and depend on the position yn and
the sublattice index α = 1, 2. The two sublattices are
shifted by one lattice spacing, i.e., δ1 = 0 and δ2 = a.

First we consider the TI model on a square super-
lattice described by Eq. (1) and hard wall boundary
conditions. We assume that the system has a portion of
the boundary oriented along the nearest-neighbor direc-
tion that is longer than the width of the intersecting laser
beams (Fig. 34) and focus the lasers on that edge. Note
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FIG. 34: (Color online) Dynamical structure factor for a system
described by Eq. (1) with t1 = (1 + 0.3i)Er, t2 = −0.3Er and
t′2 = 0.3Er. The blue (dark gray) line corresponds to a sharp
boundary, while the red (gray) line is for a soft boundary with
the same profile as in Fig. 28. The extra in-gap contribution
represents transitions between different branches of the soft
edge mode. The green (light gray) line corresponds to the
same parameters as the red curve and opposite scattering wave
vector −q. Note the absence of the low-energy peak. The
inset is a schematic illustration of the intersecting laser beams
illuminating a portion of the system.

that the light field will cover a significant part of the sys-
tem, but no other edge. The dynamical structure factor
(blue/dark gray line in Fig. 34) is characterized by a gap
corresponding to transitions between bulk states and a
low-energy peak at ω ≈ qv0, where v0 is the velocity of
the edge mode in the vicinity of the chemical potential,
associated with the edge states. In addition, edge-bulk
transitions generate a small in-gap contribution.

Next we consider a soft boundary. The edge mode
softens and develops multiple branches (see Fig. 28).
The low-energy peak moves to lower frequencies due
to a smaller value of v0 and, in addition, an extra peak
develops inside the gap (see the red/gray curve in Fig.
34). This peak corresponds to transitions between differ-
ent branches of the edge mode. The chiral character of
the edge states can be probed by reversing the scattering
wave vector, q → −q, or by inverting the vector poten-
tial that generates the Peierls phases, i.e., t1 → t∗1. As a
result, qv0 < 0 and there are no low-energy transitions.
Consequently, the characteristic low energy peak in the
structure factor is absent (green/light gray line in Fig.
34). Note that the secondary in-gap peak correspond-
ing to interbranch transitions is weakly modified. In a
chiral metal generated by very soft confining (see Fig.
32) inter-branch contributions that occur at low energy
become dominant and eventually destroy this signature
of the chiral character of the edge states.

VII. SUMMARY

In this article, we have presented a comprehensive
analysis of two-dimensional optical lattice Hamiltoni-
ans that give rise to topological insulating states with
broken time-reversal symmetry. We have extracted the
main ingredients responsible for the appearance of such
states and shown that there are an infinite number of
lattice models that possess the non-trivial topological
structure. It is suggested that the choice of a model is
to be dictated by experimental convenience and as such,
square superlattices may be an optimal choice from the
experimental point of view. We also note here that using
the setups to create spin-orbit-coupled systems proposed
in Refs. [34, 44, 81], one can engineer in a similar way
time-reversal topological insulator systems. However,
in cold-atom settings these systems would represent a
higher degree of experimental complexity (in contrast to
solid-state systems) and therefore the intimately related
and simpler lattice quantum Hall states studied here rep-
resent a natural starting point for initial experiments in
this line of research.

One particularly important question that remains
open is how to experimentally probe the nontrivial topo-
logical properties of a given optical lattice model. We
note that our analysis here, as well as most other existing
analyses of noninteracting topological insulator models,
represent essentially mathematical studies of a compli-
cated single-particle Hamiltonian, which is not specific
to the types of particles that would occupy the lattice
sites in a physical model. In fact, our calculations in the
finite-size case are basically solving for the spectrum of
a large and finite matrix, either associated with the sites
of a lattice in real space or those in dual space, which
are related to each other via discrete Fourier transform.
The resulting spectrum exists in and of itself, and how
to probe this spectrum and in particular its topological
states within the band gap is a completely separate is-
sue of great physical importance. In solids, the choice of
particles to occupy the bands is limited to electron excita-
tions or fermionic quasiparticles arising in various mean-
field-like treatments of interacting models (e.g., Bogoli-
ubov excitations in superconductors). The experimental
signatures there include charge or spin transport domi-
nated by the edge modes or direct probes of the gapless
spectrum at the boundary, which is especially relevant
in three-dimensional topological insulators. However,
cold atoms are drastically different. First, because there
are many possible choices of atoms that can be loaded
in the optical lattice, which could be either bosons or
fermions. Second, these particles are necessarily electri-
cally neutral and therefore transport like probes, while
not impossible in principle, are probably too difficult to
realize in practice especially if quantized transport is the
goal of such a measurement. Hence, other approaches
need to be developed and we point out here that cold-
atoms bosons, rather than fermions, may become the
first line of choice to visualize the topological properties
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of the spectrum.
While fermions can indeed be used to fill up the band

up to the band gap, so the Fermi level crosses the topo-
logical modes, there are little observable consequences
for e.g. time-of-flight measurement, which will gener-
ally be dominated by the less interesting bulk contri-
butions. One possible solution to increase the bound-
ary contribution is to use shallow trapping potentials.
Alternatively, one can use non-interacting or weakly-
interacting bosons which occupy or condense into the
lowest-energy states in the spectrum, while in thermo-
dynamic equilibrium at low temperatures. Such low-
energy states are not topological. However as pointed
out in Ref. [32], using two-photon-stimulated Raman
transitions (such as that used in Ref. [78]), one can trans-
fer a macroscopic number of bosons from the condensate
specifically into the topological edge states and then use
time-of-flight measurement to observe a vortex, asso-
ciated with a few-lattice-constant-thick chiral topologi-
cal modes. We emphasize here that while such a non-
equilibrium measurement would not represent a ther-
modynamic topological phase, it would, however, lead
to an impressive and explicit manifestation of the non-
trivial topology of the underlying exotic spectrum.

Another particularly interesting avenue is to use inter-
acting bosons, e.g. bosons with strong on-site repulsion.
Since bosons with hard-core repulsion are not equivalent
to free fermions in two dimensions, the noninteracting
spectrum will necessarily be modified and it is an in-
teresting open problem as to what states may arise out
such a system. However, it is conceivable that at the
fillings corresponding to a Mott-insulating phase, the
chiral hopping terms will constraint the bosons into a
topological Mott-insulating state.

Finally, we reiterate that measuring a system with non-

trivial topological properties can be realized following
two possible avenues. Any successful experiment that
would be capable of probing well defined topological
edge states will need to address the problem of creating
”sharp-enough” boundaries of the trapping potential.
We have shown in this article and Ref. [32] that a stan-
dard quadratic trap is not sufficient for this purpose, as
it leads to an inhomogeneous metallic phase. Adding
any term to the confining potential capable of introduc-
ing a boundary length scale would solve this problem
and should give rise to detectable edge states. Another
possibility would be to create a different type of inho-
mogeneity in the bulk of the system, e.g., by adding a
strongly repulsive potential in the center of a regular trap
or by strongly altering the lattice hopping terms along
a certain line of links of the optical lattice. Topological
edge modes are bound to appear not only at the exter-
nal boundaries of the system, but in all such cases, as
long as the perturbation is larger than the relevant band-
width. The second avenue toward detecting topological
quantum states is to probe the inhomogeneous topolog-
ical metal that forms in weakly confined systems. The
significantly increased fraction of boundary states could
lead to observable consequences in a time-of-flight ex-
periment. Regardless of the boundary sharpness, the
existence of an incompressible insulating ”bulk” can be
revealed by a density profile measurement. Nonethe-
less, we emphasize that, while the presence of a den-
sity plateau proves the existence of an insulator, it does
not determine its topological nature. Ultimately, distin-
guishing between a topological insulator and a standard
insulator requires probing the gapless states that form at
their boundaries.
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