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Nonlinear Control of Dynamical Systems from Time Series

Valery Petrov and Kenneth Showalter*
Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045

(Received 20 September 1995)

Feedback control of multidimensional, nonlinear single-input single-output systems is formulated in
terms of an invariant hypersurface in the delayed state space of a system observable and a control
parameter. The surface is created directly from the response of the system to random perturbations,
providing a model-independent nonlinear control algorithm. The algorithm can be used to stabilize
unstable states or to drive a system to any particular objective state in a minimum number of
steps. [S0031-9007(96)00095-6]

PACS numbers: 05.45.+b, 82.40.Bj

The OGY (Ott-Grebogi-Yorke) [1] method for stabi-
lizing unstable periodic orbits initiated a flurry of the-
oretical developments and experimental applications of
feedback control to nonlinear dynamical systems [2–11].
Recent advances in control of high-dimensional systems
offer new possibilities for manipulating complex tempo-
ral and spatiotemporal behavior [12–14]. All of these
methods, however, are based on linearized models and the
feedback control is therefore restricted to small perturba-
tions in the linear regime. Here we present a new, inte-
grated approach for nonlinear feedback control, where the
response of the system to random perturbations is used di-
rectly to construct the control law as a multidimensional
surface in the time-delayed space.

We demonstrate the approach with the Gray-Scott
model for cubic autocatalysis in a flow reactor [15]. The
governing dimensionless equations have the form

≠ay≠t  s1 2 adyTres 2 ab2,

≠by≠t  sb0 2 bdyTres 1 ab2 2 k2b.
(1)

With b0 
1
15 , k2  0, the model is one-dimensional

and displays one unstable and two stable stationary states
over the range of reciprocal residence time1yTres 
0.23 0.35. Transitions from one stable state to the other
can be induced by applying appropriate perturbations
to 1yTres. Perturbations can also move the system to
the unstable stationary state, but it will relax back to
one of the stable states unless some form of feedback
stabilization is applied.

We now describe how to control transitions between the
stable and unstable states using a nonlinear control sur-
face constructed from time series. For a one-dimensional
system, the control surface is constructed by observing
the transitions from an initial statexI std to a final state
xFst 1 td that result from the application of perturbation
p during the sampling intervalt. The collected triplets of
values (xI , xF , p) lie on a surface in a three-dimensional
space. This nonlinear surface,

pI!F  CsxI , xFd , (2)
defines the perturbation that moves the system from an
initial statexI to a desired final statexF in one iteration.
Even though the identification stage can produce only a

finite number of points, linear interpolation between closest
neighbors can be used to construct the remainder of the
surface.

Figure 1 shows the control surface for (1) generated
from a series of responses to sequential random perturba-
tions. The solid (open) circle corresponds to a transition
from a stable (unstable) state to the coexisting unstable
(stable) state in the region of bistability. Figure 2 shows
a time series with transitions between the stable and unsta-
ble states. A similar procedure can be used for targeting
and stabilizing fixed points in 1D return maps.

The control of multidimensional systems is more chal-
lenging since the initial and final states of (2) are no
longer defined by the readings before and after the sam-
pling interval. To derive an analogue of the control
surface for such systems we first consider a linear two-
dimensional model and then generalize to include extra
dimensions and nonlinear terms. The time discretized be-
havior of a linear two-variable system around a station-
ary state can be decomposed into the motion along the

FIG. 1. Control surface for time-discretized (t  5.0) one-
dimensional bistable system (1) at1yTres  0.3. The perturba-
tion pi  1yTres 2 0.3 and the observablexi  astid. Solid
circle corresponds to transition from a stable statesxI  0.41d
to the unstable statesxF  0.76d; open circle shows perturba-
tion required to move the system from the unstable to the stable
state (in one iteration).
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FIG. 2. (a) Time series of the one-dimensional bistable system
(1) as it is moved from the stable state to the unstable state and
back again; (b) applied perturbations.

eigenvectorsj andh:

ji11  ljji 1 s1 2 ljdajpi11 ,

hi11  lhhi 1 s1 2 lhdahpi11 ,
(3)

wherelj, lh are the eigenvalues along the corresponding
eigenvectors, andaj  ≠jSy≠p and ah  ≠hSy≠p are
the shifts of the stationary state arising from the applied
perturbation. The perturbation is constant during the
iteration, and whenp  0 the stationary state is at the
origin.

We assume the availability of only one observable
on which the system dynamics is projected with some
coefficientstj andth :

xi  tjji 1 thhi . (4)

If the system is initially at the stateji, hi, the next
observations ofx will then be defined by Eqs. (3) and (4),
with xi11 being a linear combination ofji, hi, andpi11,

xi11  ljtjji 1 lhthhi 1 Api11 , (5)

andxi12, which also includespi12,

xi12  l2
jtjji 1 l2

hthhi 1 Bpi11 1 Api12 , (6)

where

A  s1 2 ljdajtj 1 s1 2 lhdahth ,

B  s1 2 ljdljajtj 1 s1 2 lhdlhahth .
(7)

It follows from (4) and (5) that the state of the system (i.e.,
the coordinates along the system manifolds) at iterationi
or i 1 1 can be reconstructed from two time-delayed read-
ings of the observable and the perturbation applied to the
system. Analogous arguments for anm-dimensional sys-

tem define the state as a linear combination ofm delayed
observations andm 2 1 perturbations:

sji , hi , . . .d

 LDsxi , xi2l , . . . , xi2m11; pi, pi21, . . . , pi2m12d , (8)

whereLD is a linear function.
Once the system state is known, the control perturba-

tions can be applied to direct the system to a desired ob-
jective state. We assume that only one control parameter
is available to alter the system dynamics. From the second
iteration of (3),

ji12  l2
jji 1 s1 2 ljdajsljpi11 1 pi12d ,

hi12  l2
hhi 1 s1 2 lhdahslhpi11 1 pi12d ,

(9)

we see that two perturbations,pi11 and pi12, can move
the system from any initial statesji , hid to any final
statesji12, hi12d provided thatlj fi lh, lj , lh fi 1 and
aj , ah fi 0 [13]. The control perturbations are a linear
combination of the initial and final states. Even though
a sequence of two perturbations must be applied before
the desired state is reached, it is necessary to determine
only the first perturbation explicitly, since the second is
calculated using the same expression at the next iteration
with the updated readings. For the linearm-dimensional
system, the control algorithm is written as

pi11  LCssssji , hi , . . .d, sji1m, hi1m, . . .dddd , (10)

whereLC is a linear function. Such a function will always
exist provided that the system is controllable and observ-
able, i.e.,lj fi lk for j fi k, lj fi 1 andaj , tj fi 0 for all j.

The sequence ofm readingsx and m 2 1 perturba-
tions p can be utilized in (8) to realize the final state in
(10). It will not be apparent to the observer, however,
that the system has reached that state until themth it-
eration. It is therefore convenient to define the objec-
tive state in a form independent of the control perturba-
tions pi11, . . . , pm. With this in mind, we consider two
separate control problems: stabilizing unstable states and
attaining a prescribed constant output. In each, the objec-
tive state is realized in a minimum number of steps.

With no external perturbations, stationary state behavior
is characterized by the absence of motion, i.e.,xi11 2 xi 
0 and pi  0 for i  1, . . . , m. The difference between
readings for consecutive steps in the two-variable system
can be written by subtracting (6), (5) and (5), (4):

xi11 2 xi  slj 2 1dtjji 1 slh 2 1dthhi 1 Api11 ,

xi12 2 xi11  ljslj 2 1dtjji 1 lhslh 2 1dthhi (11)

1 sB 2 Adpi11 1 Api12 .

It follows that the system state can be determined as a
solution of (11) from the two differences in readings and
two perturbations. For anm-dimensional system, the state
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can be determined fromm consecutive differences andm
applied perturbations:

sji1m, hi1m, . . .d

 LSfsxi1m11 2 xi1md, . . . , sxi12m 2 xi12m21d;

pi1m11, . . . , pi12mg . (12)

Equation (12) has a convenient form for defining a
stationary state or fixed point since no other information
is required for the corresponding position in phase space.

Combining (8) and (12) with (10) yields a general
expression for the stabilization of unstable states in anm-
dimensional system:

pi11  Sfxi , xi21, . . . , xi2m11; pi , pi21, . . . , pi2m12;

sxi1m11 2 xi1md, . . . , sxi12m 2 xi12m21d;

pi1m11, . . . , pi12mg , (13)

whereS is the system invariant function. In the linear re-
gion, S can be identified from the time series of the ran-
domly perturbed system by solving the associated set of
linear equations with 4m unknown coefficients. We as-
sume that Eq. (13) can be expanded into the nonlinear re-
gion with the system state determined by the coordinates
on the curvilinear stable and unstable manifolds replacing
the corresponding eigenvectors. Nonlinear terms can be
incorporated through multivariable Fourier series expan-
sion or by creating a nonlinear surface in 4m-dimensional
space using linear interpolation between nearest neighbors.
Neural networks that are suited for fitting nonlinear func-
tions can also be used to learn theS function on the basis
of available data sets. Once constructed, theS function is
a control invariant for a particular system that can be used
to target unstable states from anywhere in phase space pro-
vided the perturbations do not exceed limits imposed by the
system dynamics and that the function remains single val-
ued. The convergence of the data points to a single-valued
function provides a criterion for system controllability in
the nonlinear sense. In some cases, however, the appli-
cation of theS function is ambiguous; for example, three
different steady states are present forp  0 in the bistable
region. Additional restrictions, such as limiting the range
of the bifurcation parameter to single-valued regions can
be imposed, or, alternatively, one can use theG function
described below to target a particular state.

The process of stabilization is carried out as fol-
lows: The m delayed readings andm 2 1 delayed
perturbations that define the current state are substituted
into the first set of terms in theS function [upper line of
(13)]. The desired behavior yields zeros for the second
set of terms inS. With these substitutions, theS function
returns the first control perturbation. The second control
perturbation is returned on the next iteration, and so on.
After completion of them-perturbation cycle, the system
will reside very close to the objective state.

Unstable periodic orbits or stationary states can be
tracked as a bifurcation parameter is slowly varied [16–

18]. It may be desirable, however, for the system to reach
some prescribed objective state rapidly. Thus we now
consider how the system can be moved inm perturbations
from any point to a desired point where the observable
has a constant valueg. It is not necessary to know
the exact value of the bifurcation parameter at this point
if the final state in (10) is defined bypi11 2 pi  0
and xi  g for i  1, . . . , m and g corresponds to a state
existing in the bifurcation diagram. It is possible to
reconstruct the state of the two-dimensional system, for
example, from three consecutive observations ofx and
one difference inp using (4), (5), and (6). In general,
m-dimensional systems requirem 1 1 readings ofx and
m 2 1 perturbation differences for the reconstruction:

sji1m, hi1m, . . .d  LGfxi1m, . . . , xi12m;

s pi1m12 2 pi1m11d, . . . , s pi12m 2 pi12m21dg . (14)

The appropriate control surfaceG for driving the system
output to some objective value is then constructed by
combining (8), (10), and (14):

pi11  Gfxi , xi21, . . . , xi2m11; pi, pi21, . . . , pi2m12;

xi1m, . . . , xi12m;

s pi1m12 2 pi1m11d, . . . , s pi12m 2 pi12m21dg . (15)

TheG function can be identified from the system response
in a fashion similar to theS function identification. The
control perturbation is returned by theG function when
the second set of terms [middle line of (15)] yields
xi1m, . . . , xi12m  g and the perturbation differences are
set to zero. The effective system dimensionm is usually
not known in advance. Following methods developed for
linear control [13], different values ofm can be used for
creating the control surface and the fitting error is then
evaluated. The value ofm that yields the minimum error
is selected for control.

We now demonstrate stationary state stabilization and
targeting objective states with the two-variable Gray-Scott
model, where the parameterk2 

1
40 . The model exhibits

a Hopf bifurcation at1yTres  0.0049. Changes in1yTres
from 0.0049 to 0.00508 and back again move the system
from one value of the stationary state to another, as
shown in Fig. 3. The oscillatory transients exhibited by
the autonomous system arise from the slowing down in
the vicinity of the Hopf bifurcation. The solid line shows
the tracking obtained by use of theG function. The linear
version of the algorithm works well in this region since
the variations are small. As shown in Fig. 3, only two
iterations are necessary to move the system between the
two stationary state values.

The autonomous Gray-Scott system displays nonlinear
relaxation oscillations with1yTres  0.0037. The seven-
dimensional nonlinearSandG surfaces were obtained for
these conditions by applying 1000 random perturbations
to the system parameter1yTres. Each surface was con-
structed using linear interpolation from 8 neighboring data
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FIG. 3. (a) Response of autonomouss d and controlled
s d two-dimensional Gray-Scott model when changes
in the control parameter move the system between two
stationary state valuess±±±±±±±d, wherex  a in Eq. (1); (b)
corresponding variations ofp  1yTres.

points in the phase space. The system converges to the
stationary state upon activation of the control algorithm.
The convergence rate is initially slow, however, due to the
sparseness of the control surface and the restriction im-
posed by the system dynamics on the perturbation size. As
the system converges, the new data are used to refine the
shape of theSsurface in the vicinity of the stationary state.
The same procedure was used to create and refine theG
function. Figure 4 shows an application of theS function
to suppress the oscillations of the autonomous system and
to stabilize the unstable stationary state. TheS function
was replaced by theG function att  14 500 to alter the
system output between the values of 0.2 and 0.3. Only two

FIG. 4. (a) Stationary state stabilization and targeting objec-
tive states using seven-dimensional control surfacesS and G.
Broken line shows the objective states. (b) Applied perturba-
tions, where dashed lines show the maximum allowed perturba-
tion.

iterations are required to move the system between these
values of the unstable state.

The algorithms proposed here can readily be extended to
include multiple observation and control channels by using
a vector form of theSor G functions. Because the control
laws are constructed directly from the time series, they are
robust and convenient to implement in experimental set-
tings. The number of unknown parameters for the control
surface identification is generally higher than in the case
of linear system identification and may therefore require
larger data sets. The learning stage can be significantly
decreased, however, by refining the control surface adap-
tively in the process of control. Because the control prob-
lem is formulated in terms of an invariant function, many
well-developed techniques for prediction from nonlinear
time series [19] can be used with the control algorithm.

We thank the National Science Foundation (Grant
No. CHE-9531515), the Office of Naval Research
(Grant No. N00014-95-1-0247), and the Petroleum Re-
search Fund (Grant No. 29565-AC6) for supporting this
research.
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