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Thermal field theory and generalized light front quantization

H. Arthur Weldon
Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315

The dependence of thermal field theory on the surface of quantization and on the velocity of the
heat bath is investigated by working in general coordinates that are arbitrary linear combinations of
the Minkowski coordinates. In the general coordinates the metric tensor gµν is non-diagonal. The
Kubo, Martin, Schwinger condition requires periodicity in thermal correlation functions when the
temporal variable changes by an amount −i

/

(T
√
g
00

). Light front quantization fails since g
00

= 0,
however various related quantizations are possible.

I. INTRODUCTION

A. The light front and thermal field theory

For many years light front quantization has been ap-
plied to deep inelastic scattering and the Wilson opera-
tor product expansion. More recently it has been used in
QCD to compute hadron structure [1, 2, 3, 4]. Light front
quantization brings both conceptual and computational
simplifications to certain hadronic processes [5, 6].
Much of the computational simplification occurs be-

cause the mass shell condition expressed in terms of the
momentum variables p± = (p0 ± p3)/

√
2 is

p− =
p2
⊥ +m2

2p+
. (1.1a)

The operator P− = (P 0 − P 3)/
√
2 plays the role of the

Hamiltonian in that it generates the evolution of the
fields in the coordinate x+ = (x0 + x3)/

√
2

[

P−, φ(x)
]

= −i
∂φ

∂x+
. (1.1b)

Recently Brodsky suggested [7] that the computational
advantages of quantizing in light front coordinates might
carry over to statistical mechanics and thermal field the-
ory done on the light front and proposed as the appro-
priate partition function

Tr
[

exp
{

− P−/TLC

}]

. (1.1c)

The relation of TLC to the usual invariant temperature
T was unspecified.
The suggestion was pursued by Alves, Das, and Perez

[8]. For a free field theory they found an immediate prob-
lem that comes from the vanishing of the on-shell energy,
Eq. (1.1a), as p+ → ∞. The breakdown is not specific
to the canonical ensemble. In the microcanonical ensem-
ble the entropy is a measure of the multiparticle phase
space available to a gas of particles whose total energy is
fixed. To any configuration with a fixed value of the to-
tal P− one can add any number of zero-energy particles
each having an infinite value of p+. The entropy of such
a configuration diverges.
Alves, Das, and Perez [8] showed that a thermal av-

erage performed in the rest frame but using light-front

variables does work. Using P 0 = (P+ + P−)/
√
2 the

partition function is

Tr
[

exp
{

− (P+ + P−)/
√
2T

}]

, (1.2)

instead of Eq. (1.1c). They performed one-loop calcula-
tions of the self-energy in scalar field theories with either
a φ4 interaction or a φ3 interaction. The final results for
both calculations were exactly the same as the conven-
tional answers.

B. Thermal field theory in generalized coordinates

In order to explore the various possible options it is
most efficient to consider quantization in a general set
of space-time coordinates and later examine light front
quantization as a special case. The metric signature is
(+,−,−,−).
The conventional approach is to impose quantization

conditions on fields at a fixed value of x0. The opera-
tor that generates time evolution is P0. The partition
function is

Tr
[

exp
{

− P0/T
}]

, (1.3)

as is appropriate for a heat bath at rest. If this sys-
tem is viewed from a Lorentz frame with velocity v and
four-velocity uα = (γ, 0, 0, γv), then the quantization
will be at a fixed value of xαuα; the evolution oper-
ator will be Pαu

α; and the partition function will be
Tr[exp(−βPαu

α)]. The fact that uα serves as both the
vector normal to the surface of quantization and the
velocity vector of the heat bath is a unique feature of
Lorentz boosted coordinates and is not be true in more
general coordinates.
The present paper investigates the dependence of ther-

mal field theory on the surface of quantization and on the
velocity of the heat bath. Subsequent analysis will show
that for any vector nα that is time-like or light-like, it is
possible to quantize at a fixed value of nαx

α,

[

π(x), φ(0)
]

δ(nαx
α − c) = −i δ4(x), (1.4a)

and employ the partition function

Tr
[

exp
{

− Pαu
α/T

}]

, (1.4b)

http://arxiv.org/abs/hep-ph/0302147v1
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appropriate to a heat bath moving with four-velocity
uα = (γ, 0, 0, γv), provided only that nα and uα satisfy

uαnα > 0. (1.4c)

The conventional rest frame choice is n0 = u0 = 1 and
nj = uj = 0. A Lorentz boost from the rest frame still
gives nα = uα. The equality of these two vectors is not
general as various examples will show. One can see that
light front quantization using the partition function in
Eq. (1.1c) fails, even apart from the divergence issues
mentioned previously, because it requires v → 1 in order
that Pαu

α be proportional to P−. This makes TLC =
T
√
1− v2/

√
2 → 0. In contrast, the successful approach

of Alves, Das, and Perez [8] in Eq. (1.2) fits into the
general framework above with nα = (1, 0, 0, 1) and uα =
(1, 0, 0, 0).
The purpose of this paper is to investigate thermal

field theory formulated in general coordinates that are
arbitrary linear combinations of the Cartesian t, x, y, z
and see if there are any computational advantages to
other formulations. The method is conservative in that
the new coordinates are restricted to be linear combina-
tions of the Cartesian coordinates [9], a restriction which
guarantees that physical consequences will be the same
for the following reason. The Lagrangians of fundamen-
tal field theories are invariant under arbitrary nonlinear
coordinate transformations in accord with the principle
of equivalence and thus are trivially invariant under the
linear coordinate transformations considered here. Phys-
ically interesting quantities in thermal field theories are
either scalars, spinors, or tensors. Whether calculated
in Cartesian coordinates or more general linear coordi-
nates, the scalar quantities should be identical and the
spinor and tensor quantities should be simply related by
the chosen transformations.
Section II develops the formalism of thermal field the-

ory in the general coordinates in order to determine the
possible choices for the surface of quantization and the
velocity of the heat bath. Section III treats several exam-
ples that are specifically related to light front quantiza-
tion and it may be read independently of Sec. II. Section
IV provides some conclusions.

II. THERMAL FIELD THEORY IN OBLIQUE

COORDINATES

A. Transformed coordinates and metric

From the Cartesian coordinates x0 = t, x1, x2, x3 a

new set of coordinates x0, x1, x2, x3 can be formed by
taking linear combinations:

xµ = Aµ
α xα, (2.1)

where the Aµ
α are a set of 16 real constants. The notation

used is due to Schouten [10]. It expresses the fact that the
space-time point specified by the four-vector x does not

change under a coordinate transformation; only the la-
bels used to indentify the components change. For exam-

ple, the light front choice is expressed x0 = (x0+x3)/
√
2.

It is also convenient that for Aµ
α the superscript µ is nei-

ther a first index nor a second index since µ cannot be
confused with α.
It is misleading to refer to the general coordinate trans-

formations as a change in the reference frame. A change
in the physical reference frame can only be done by ro-
tations and Lorentz boosts.
The 16 real numbers Aµ

α must have a nonzero deter-

minant. To guarantee that x0 be a time coordinate, it
is necessary to require that the covariant Lorentz vector

A0
α be time-like or light-like:

A0
αA

0
β g

αβ ≥ 0, (2.2)

where gαβ = diag(1,−1,−1,−1) is the Minkowski met-
ric. It is sometimes useful to express the transformation
matrix in terms of partial derivatives:

Aµ
α =

∂xµ

∂xα
. (2.3)

The relation (2.1) can be inverted to find the Cartesian
coordinates xβ as linear combinations of the new coordi-
nates xν . These partial derivatives are denoted

Aβ
ν =

∂xβ

∂xν
. (2.4)

The transformations satisfy

Aµ
α Aα

ν = δµν Aµ
α Aβ

µ = δβα. (2.5)

The differential length element in Cartesian coordi-
nates is gαβ dx

αdxβ = (dt)2− (dx)2− (dy)2− (dz)2. In
the new coordinates there is a new metric gµν given by

gµν = Aα
µ Aβ

ν gαβ, (2.6)

which satisfies gαβ dx
αdxβ = gµν dx

µdxν . If all 12 of the
off-diagonal entries in gµν vanish, the new coordinates
are orthogonal. This occurs, for example, if the A are
Lorentz transformations. In general the gµν are not di-
agonal and in general the new coordinates are oblique.
It will be convenient for later purposes to denote the de-
terminant of the covariant metric by

g = Det
[

gµν

]

< 0. (2.7)

The Jacobian of the coordinate transformation

dx0dx1dx2dx3 = Jdx0dx1dx2dx3,

is therefore

J = Det
[

Aα
µ

]

=
√−g. (2.8)

It will also be necessary to use the contravariant metric
gµν , related to the Minkowski metric by

gµν = Aµ
α Aν

β g
αβ. (2.9)

The requirement in Eq. (2.2) can be stated as

g00 ≥ 0. (2.10)
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B. Four-momentum operators

In the conventional quantization at fixed x0 the mo-
mentum operators Pλ are the generators of space-time
translations. For a scalar field operator φ(x) they satisfy

[

Pλ, φ
]

= −i
∂φ

∂xλ
.

The linear combination of these generators defined by

Pµ = Aλ
µ Pλ, (2.11)

with Aλ
µ given in Eq. (2.4) will satisfy

[

Pµ, φ
]

= −i
∂xλ

∂xµ

∂φ

∂xλ
= −i

∂φ

∂xµ
. (2.12)

In particular, P0 generates the evolution in the variable

x0. Appendix B shows that if one quantizes at fixed x0

then the Hamiltonian is this same operator P0.
Note that the temporal evolution is in the variable

x0 = A0
α xα but the evolution operator is in a differ-

ent linear combination: P0 = Aα
0
Pα. These two vectors

are reciprocal in the sense that A0
α Aα

0
= 1. Lorentz

transformations are special in that the metrics are the
same, gαβ = gαβ and the two vectors are the same,

A0
α = gαβ A

β

0
.

C. Density operator

Field theory at finite temperature requires a density
operator and it is not obvious exactly what the density
operator should be when using general oblique coordi-
nates. For conventional quantization at fixed x0 the den-
sity operator has the form

ˆ̺ = exp
{

− βPαu
α
}

, (2.13)

where uα is some four-velocity. Rewriting this in general

coordinates gives ˆ̺ = exp
{

− βPσ u
σ
}

. The appropriate

value of uσ is undetermined but since the Minkowski four-
velocity satisfies uαuβgαβ = 1, the velocity in oblique
coordinates must satisfy

uσuµgσµ = 1. (2.14)

1. KMS relation

With a partition function of the above form, the ther-
mal Wightman function is

D>(x) = Tr
[

ˆ̺φ(x)φ(0)
]/

Tr[ˆ̺].

Consider a shift the oblique time, i.e. x0 → x0 + δx0

with fixed values of x1, x2, x3. In terms of the Cartesian

coordinates xα → xα + δxα with δxα = Aα
0
δx0. Using

Pα δxα = P0 δx
0 the shifted field operator is

φ(x + δx) = exp(iPα δxα)φ(x) exp(−iPα δxα)

= exp(iP0 δx0)φ(x) exp(−iP0 δx0).

For evolution in imaginary values of δx0 to be equiva-
lent to thermal averaging requires that the density oper-
ator involve only P0 and not Pj . Therefore the spatial
components of the contravariant velocity must vanish:

u1 = u2 = u3 = 0. This describes a heat bath that is at
rest in the oblique coordinates. The normalized velocity
vector is

uσ =
( 1
√
g00

, 0, 0, 0
)

. (2.15)

Note that this imposes a new requirement on the metric,

g00 > 0, (2.16)

that is different than Eq. (2.10). This condition prevents
standard light front quantization since g00 would vanish.
In all subsequent discussion it will be assumed that Eq.
(2.16) is satisfied. The density operator is

ˆ̺ = exp
{

− βP0

/√
g00

}

, (2.17)

or equivalently Eq. (2.13) if the velocity vector is ex-
pressed in Cartesian coordinates:

uα = Aα
µ uµ = Aα

0

/√
g00 . (2.18)

The vector normal to the quantization surface is nα = A0
α

and therefore nαu
α = 1/

√
g00 > 0 as stated in Eq. (1.4c).

The density operator is used to define the thermal av-
eraged Wightman function:

D>(x) = Tr
[

exp
{

− βP0 /
√
g00

}

φ(x)φ(0)
]/

Z, (2.19)

where Z = Tr[ˆ̺] is the partition function. Under imagi-

nary shifts in the oblique time of the form δx0 = iα/
√
g00,

the behavior is

D>

(

x0 + iα
/√

g00 , x
j
)

(2.20)

= Tr

[

exp

{

− (β + α)P0√
g00

}

φ(x) exp

{

αP0√
g00

}

φ(0)

]

/

Z.

The spectrum of P0 is bounded from below but will al-
ways have arbitrarily large positive eigenvalues. If the
two exponents are negative then the infinitely large ener-
gies will be suppressed. In other words, (2.20) is analytic
for −β ≤ α ≤ 0. For the choice α = −β or equivalently
δxα = −iβuα the result is

D>

(

x0 − iβ
/√

g00 , x
j
)

= D>

(

− x0,−xj
)

. (2.21)

This is the Kubo-Martin-Schwinger relation [11] ex-
pressed in oblique coordinates.
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2. Tolman’s law

The dependence of the partition function (2.17) on the
combination P0

/

T
√
g00 merits further discussion. One

explanation comes from perturbation theory in which at
each order the eigenvalues of the operator P0 are the sum
of single particle energies p0, each satisfying a mass shell
condition gµνpµpν = m2, for various masses. Among the
allowed coordinate transformations are scale transforma-
tions. Rescaling the contravariant time by a factor λ,

as in x0 → λx0, would rescale the covariant energy by
p0 → p0/λ. The combination P0/T would not be invari-
ant under this transformation. However, the scale trans-
formation changes the covariant metric, g00 → g00/λ

2,
and the combination P0

/

T
√
g00 is invariant.

There is another way to understand why the partition
function (2.17) depends on the combination T

√
g00. A

condition necessary for thermal equilibrium in inertial
coordinates is that the temperature should be uniform
in space and time. Tolman [12] investigated the condi-
tions for thermal equilibrium in a gravitational field and
showed that a temperature gradient is necessary to pre-
vent the flow of heat from regions of higher gravitational
potential to regions of lower gravitational potential. The
quantitative result is summarized by the statement that
the product T

√
g00 must be constant and is known at

Tolman’s law [13].
An alternative derivation is given by Landau and Lif-

shitz [14], who discuss how to compute the entropy in
the microcanonical ensemble in a general curvilinear co-
ordinate system (with or without gravity). In the mi-
crocanonical ensemble, the temperature is computed by
differentiating the entropy with respect to the energy and
this leads to the result that T

√
g00 must be constant.

3. Covariant density operator

For later purposes it is convenient to express the den-
sity operator (2.17) in a covariant form in terms of the
conserved energy-momentum operator T ν

· µ. The gener-
ators of translations are

Pµ =
√
−g

∫

dx1dx2dx3 T 0
· µ.

Rewrite this in terms of the energy-momentum operator
in Cartesian coordinates, Tα

· λ as

Pµ =

∫

dSα Tα
· λ A

λ
µ, (2.22)

in accordance with Eq. (2.11). The three-dimensional,
differential surface element is

dSα =
√−g A0

α dx1dx2dx3. (2.23)

This surface of quantization is orthogonal to three con-
travariant: vectors Aα

j
dSα = 0 for j = 1, 2, 3. Contract-

ing Pµ with uµ and using Eq. (2.15) gives the density

operator in covariant form:

ˆ̺ = exp
{

− β

∫

dSαT
α
· λu

λ
}

. (2.24)

D. Thermal field theory in real time

To quantize a field theory at a fixed value of x0 is
straightforward but there are some unfamiliar aspects
that originate from the oblique metric gµν being non-
diagonal. Appendix B performs the explicit quantization
for a scalar field theory. It is most natural to deal with
contravariant space-time coordinates xµ and covariant
momentum variables pµ so that the solutions of the field
equations are superpositions of plane waves of the form
exp(±ipµx

µ). For spinor particles the Dirac matrices are
γµ = Aµ

αγ
α and satisfy {γµ, γν} = 2gµν. For gauge boson

propagators there are natural generalizations of Coulomb
gauge, axial gauge, and covariant gauges. This section
will summarize some familiar results but expressed in
oblique coordinates. Either canonical quantization or
functional integration may be used [16, 17].

1. Propagators

At zero temperature the free propagator for a scalar
field is

D(p0, pj) =
1

gµνpµpν −m2 + iǫ
. (2.25)

The integration measure over loop momenta is
∫

dp0dp1dp2dp3√−g(2π)4
. (2.26)

At non-zero temperature the propagator has the usual
2 × 2 matrix structure [16, 17]. The Bose-Einstein or
Fermi-Dirac functions become

n =
1

exp(β|p0|/
√
g00)∓ 1

. (2.27)

As discussed later, the most interesting possibility is

to choose a coordinate transformation such that g00 = 0.
This makes the denominator of the propagator linear in
p0 and therefore there is only one pole in (2.25).

If g00 6= 0 then the propagator has poles at two val-
ues of p0 but the positive and negative values of p0 will
have different magnitudes. It is sometimes convenient to
express the propagator in a mixed form, in terms of the

covariant energy p0 but the contravariant momenta pj .
To do this, use the identity

gµνp
µpν =

1

g00

(

g00 p
0 + g0i p

i
)2

+

(

gij −
goig0j
g00

)

pipj

=
(p0)

2

g00
− γijp

ipj
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where γij is given by

γij = −gij +
goig0j
g00

. (2.28)

The determinant is Det[γij ] = −g/g00 > 0 [18]. Define
the effective energy

E =
[

m2 + γij p
ipj

]1/2

. (2.29)

The same propagator in these variables is

D(p0, p
j) =

g00
(p0)

2 − g00 E
2 + iǫ

(2.30)

The poles are now at p0 = ±√
g00 E. The Bose-Einstein

or Fermi-Dirac functions become

n =
1

exp(βE)∓ 1
. (2.31)

The integration over covariant energy and contravariant
three-momenta is

√−g

g00

∫

dp0 dp
1dp2dp3

(2π)4
. (2.32)

2. Statistical mechanics

The partition function provides a direct calculation of
the thermodynamic functions via the Helmholtz free en-
ergy F :

exp
{

− βF/
√
g00

}

= Tr
[

exp
{

− βP0/
√
g00

}

]

. (2.33)

The free energy F (T, V ) then allows computation of the
pressure and entropy:

P = −
(

∂F

∂V

)

T

(2.34a)

S = −
(

∂F

∂T

)

V

, (2.34b)

and the energy is U = F + TS.

3. Covariant statistical mechanics

The prescriptions in Eq. (2.34) can be derived rather
elegantly from the partition function if it is formulated
covariantly [13, 15]. In global thermal equilibrium con-
sidered here, the temperature T and the velocity uµ of
the heat bath are independent of space-time and so there
is no heat flux or viscosity. The thermal average of the
energy-momentum operator has the perfect fluid form:

Tr
[

ˆ̺T νµ
]

Tr
[

ˆ̺
] = (ρ+ P )gνµ − Puνuµ, (2.35)

where ρ is the energy density. The first law of ther-
modynamics guarantees that there is an additional state
function, the entropy density σ, related to energy density
and pressure by

Tσ = ρ+ P. (2.36)

This relation is equivalent to the more familiar differen-
tial relation TdS = dU + PdV .
It is convenient to express the right hand side of Eq.

(2.33) as the trace of the covariant density operator
(2.24). The left hand side of (2.33) can be written covari-
antly in terms of the differential surface element (2.23)

using
√−g dx1dx2dx3/

√
g00 = dSαu

α as an integral over
the free energy density Φ:

F/
√
g00 =

∫

dSαu
αΦ.

The manifestly covariant statement of Eq. (2.33) is

exp
{

− β

∫

dSαΦu
α
}

= Tr
[

exp
{

−β

∫

dSαT
α
· λu

λ
}]

.

(2.37)
Now apply this to two different equilibrium states with
infinitessimally different β and uα. The difference gives
the differential relation

d(βΦuα) =
Tr

[

ˆ̺Tα
· λ
]

Tr[ˆ̺]
d(βuλ). (2.38)

The differential on the left hand side is

d(βΦ)uα + (βΦ)duα.

Using the thermal average of the energy-momentum ten-
sor (2.35), the right hand side is

(

(ρ+ P )uαuλ − Pδαλ
)(

dβuλ + βduλ
)

= ρdβuα − Pβduα,

where uλdu
λ = 0 has been used. Equating the left and

right hand sides and noting that uα and duα are orthog-
onal vectors, gives the two relations

Φ = −P (2.39a)

d(βΦ) = ρdβ. (2.39b)

The first relation is the same as Eq. (2.34a). The second
relation implies dΦ = (Φ − ρ)dT/T = −(P + ρ)dT/T =
−σdT . Therefore σ = −∂Φ/∂T , which is the same as
Eq. (2.34b) but expressed in terms of densities.

E. Thermal field theory in imaginary time

It is also interesting to quantize in imaginary oblique

time by letting x0 = −iτ with 0 ≤ τ ≤ β/
√
g00. As

shown in Eq. (2.20) the thermal Wightman function is
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analytic for τ in this region. Since the Cartesian coordi-
nates are linear combinations of the oblique coordinates,

xα = Aα
µ xµ, making x0 pure imaginary makes some of

the Cartesian coordinates complex. In other words, going
to imaginary time does not commute with the coordinate
transformations.
The Euclidean propagator comes from the replacement

p0 → −iωn in Eq. (2.25) where ωn = 2πnT
√
g00 :

DE(p) =
−1

g00ω2
n + 2i g0jωn pj − gijpipj +m2

. (2.40)

Note that the denominator has an imaginary part be-
cause of the non-diagonal metric but the real part of the
denominator is positive as always. In perturbation the-
ory the summation/integration over loop momenta is

T
√
g00√−g

∞
∑

n=−∞

∫

dp1dp2dp3
(2π)3

.

One can canonically quantize in imaginary time, in
which case the field operators obey equations of motion.
Alternatively one can use a a Euclidean functional in-
tegral [16, 17, 19] in which case the fields are periodic
under τ → τ + β/

√
g00. The partition function is

Z =

∫

periodic

[Dφ] exp
{

∫

d4xE L
}

, (2.41)

where the integration element in four-dimensional Eu-
clidean space-time is given by

∫

d4xE =
√−g

∫ β/
√
g
00

0

dτ

∫

dx1dx2dx3.

Thermodynamics is computed from the Helmholtz free
energy F (T, V )

exp
{

− βF/
√
g00

}

= Z (2.42)

using Eq. (2.34).

III. EXAMPLES

It is easy to see that time-independent transformations

will not give anything new. More specifically, if x0 = x0

then the quantization is at fixed x0 and if x1, x2, and x3

are independent of x0 then Aj

0
= 0 so that uj = 0 and

the density operator will be exp{−βP0}.
This section will deal with a general class of examples

based on transformations of the form

x0 = ax0 + bx3

x3 = cx0 + dx3, (3.1a)

with x1 = x1 and x2 = x2 always understood. All the
examples in this section will result from special choices

of a, b, c, d. If |a| > |b| and |d| > |c| then x0 is a true time

coordinate and x3 is a true space coordinate. Light front
coordinates violate this, viz. |a| = |b| and |c| = |d|. The
inverse transformation to (3.1a) is

x0 = (dx0 − bx3)/N

x3 = (−cx0 + ax3)/N, (3.1b)

where N = ad− bc 6= 0. The two conditions

a > 0,
d

N
> 0, (3.1c)

guarantee that increasing values of x0 corresponds to in-
creasing x0.
(1) Metric. The contravariant metric is

gµν =







a2 − b2 0 0 ac− bd
0 −1 0 0
0 0 −1 0

ac− bd 0 0 c2 − d2






, (3.2a)

and the covariant metric is

gµν =







d2 − c2 0 0 ac− bd
0 −N2 0 0
0 0 −N2 0

ac− bd 0 0 b2 − a2







1

N2
. (3.2b)

The necessary requirement g00 6= 0 implies |d| 6= |c|; how-
ever, there is nothing wrong with choosing |a| = |b|. The
3× 3 matrix defined in Eq. (2.28) is

γij =





1 0 0
0 1 0
0 0 (d2 − c2)−1



 . (3.3)

(2) Momenta. The contravariant form of the oblique
momenta are pν = Aν

α pα in parallel with Eq. (3.1a).
From this, the covariant momenta are obtained by ap-
plying the metric, pµ = gµν p

ν , with the result

p0 = (dp0 + cp3)/N

p3 = −(bp0 + ap3)/N, (3.4)

and, of course, p1 = −p1, p2 = −p2.
(3) Density operator. The time evolution operator is

P0 =
∂xα

∂x0
Pα =

dP0 − cP3

N
,

and therefore the density operator is

exp
{

− βP0 /
√
g0 0

}

= exp

{

− β
|d|P0 − cP3ǫ(d)√

d2 − c2

}

,

after using Eq. (3.1c). Here ǫ(d) = ±1 is the sign func-
tion. As expected, |d| = |c| is excluded. One can under-
stand the form of the density operator in a more physical

way. Since the heat bath is at rest in the x3 coordinate,
its laboratory velocity is v = dx3/dx0 = −c/d from Eq.
(3.1a). Using γ = (1− v2)−1/2 gives the four-velocity

Uα =
(

γ, 0, 0, γv
)

=

( |d|√
d2 − c2

, 0, 0,
−c ǫ(d)√
d2 − c2

)

(3.5)

Thus the density operator is ˆ̺ = exp(−βPαU
α).
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A. Lorentz transformations and generalizations

(1) Quantization at rest but moving heat bath. The
most intuitive situation physically is to quantize con-
ventionally at fixed x0 but for the heat bath to have
a velocity v. This is easily accomplished by the choice
a = 1, b = 0, c = γv, d = γ so that

x0 = x0

x3 = γ(x3 + vx0). (3.6)

The density operator is exp
{

− βγ(P0 − vP3)
}

.
(2) Quantization surface and heat bath moving differ-

ently. A more general option is to give the quantization
surface a velocity v′ and the heat bath a velocity v:

x0 = γ′(x0 + v′x3)

x3 = γ(x3 + vx0) (3.7)

However, only the velocity v enters into the density op-
erator: ˆ̺ = exp

{

−βγ(P0 − vP3)
}

. Note that the metric
will depend on v and v′.

B. Light front and generalizations

As stated previously, strict light front coordinates in
which |d| = |c| are forbidden.
(1) Front moving at v < 1. An interesting case is the

transformation

x0 = x0 cos(θ/2) + x3 sin(θ/2)

x3 = x0 sin(θ/2)− x3 cos(θ/2), (3.8)

where −π/2 < θ < π/2. These would be light front
coordinates if θ were allowed to take the value ±π/2.
The covariant and contravariant metrics are equal:

gµ ν =







cos θ 0 0 sin θ
0 −1 0 0
0 0 −1 0

sin θ 0 0 − cos θ






= gµν . (3.9)

The density operator is

ˆ̺ = exp

{

− β
P0 cos(θ/2) + P3 sin(θ/2)

cos θ

}

, (3.10)

and obviously fails at θ = π/2. Alternatively, one can
use v = tan(θ/2) and express the transformation as

x0 = (x0 + vx3)/
√

1 + v2

x3 = (vx0 − x3)/
√

1 + v2, (3.11)

so that the density operator is exp
{

− βγ(P0 + vP3)
}

.

(2) Choice of Alves, Das, & Perez. The calculations
in [8] can be stated as the choice a = b = d = 1, c = 0:

x0 = x0 + x3

x3 = x3. (3.12)

The density operator becomes exp{−βP0}. The covari-
ant metric is

gµ ν =







1 0 0 −1
0 −1 0 0
0 0 −1 0

−1 0 0 0






, (3.13)

and so the covariant coordinates are x0 = g0νx
ν = x0 and

x3 = g3νx
ν = −(x0 + x3) = −

√
2x+. The corresponding

covariant momentum components are

p0 = p0

p3 = −(p0 + p3) = −
√
2p+.

The contravariant metric is

gµν =







0 0 0 −1
0 −1 0 0
0 0 −1 0

−1 0 0 −1






. (3.14)

Because g00 vanishes, the momentum space propagator
is linear in p0:

gµνpµpν = −2p0p3 − (p1)
2 − (p2)

2 − (p3)
2

= 2
√
2p0p+ − (p1)2 − (p2)2 − 2(p+)2.

In the Euclidean formulation the contravariant time be-
comes negative, imaginary: x0 → −iτ ; the covariant
energy becomes discrete, imaginary: p0 → −iωn with
ωn = 2πnT . (Note g00 = 1.) The Euclidean propagator
used in [8] is

1

2i
√
2ωn p+ − (p1)2 − (p2)2 − 2(p+)2 −m2

. (3.15)

(3) ADP with moving heat bath. It is simple to modify
the previous case to allow for a moving heat bath. Choose
a = b = 1, c = γv, and d = γ so that

x0 = x0 + x3

x3 = γ(vx0 + x3). (3.16)

The density operator is exp
{

− βγ(P0 − vP3)
}

, corre-

sponding to a moving heat bath. As before g00 = 0 but
now g00 =

√
1 + v/

√
1− v.

IV. CONCLUSIONS

In standard light front quantization g00 = g++ = 0
and this makes it impossible to formulate statistical me-
chanics and thermal field theory. Physically, the problem
is the infinite velocity of the light front.
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The most interesting possibility is to choose oblique

coordinates which satisfy g00 6= 0 but g00 = 0 as in Eq.
(3.12), which is the case studied by Alves, Das, and Perez

[8]. The advantage of choosing g00 = 0 is that the denom-
inator of the propagator, gµνpµpν −m2, will be linear in
the energy variable p0. Consequently the propagator will
have only one pole and not two. This reduces the com-
putational effort required for multiloop diagrams. Any
diagram for which the kinematics allows N propagators
to be on shell would normally produce 2N contributions.

However if g00 = 0, there will be only one contribution.
A very straightforward application would be to com-

pute the quark and gluon propagators in the hard ther-
mal loop approximation using Eq. (3.12) and verify the
rotational invariance of the dispersion relations [17]. A
more ambitious task would be to compute the vertex
functions in the hard thermal loop approximation.
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APPENDIX A: LORENTZ INVARIANCE OF gµν

The general non-diagonal metric gµν is always invari-
ant under three rotations and three Lorentz boosts. How-
ever the representation of these six transformations de-
pend on the coordinate system xµ.
The usual representation of a Lorentz transformation

from one set of Cartesian coordinates to another, xα′

=
Λα′

α xα, leaves invariant the Minkowski metric tensor:

Λα′

α Λβ′

β gα′β′ = gαβ . (A1)

As before, the index notation of Schouten [10] is used.
Here α′ runs over 0′, 1′, 2′, 3′. The Minkowski metric is
invariant: g0′0′ = g00 = 1, g1′1′ = g11 = −1, etc.
Each Lorentz transformation of the Cartesian coordi-

nates induces a Lorentz transformation of the oblique
coordinates, xµ = Wµ

ρ x
ρ, where

Wµ
ρ = Aµ

α′ Λ
α′

α Aα
ρ (A2)

Because Λ keeps the Cartesian metric invariant, W au-
tomatically keeps the oblique metric invariant:

Wµ
ρ W ν

σ gµν = gρσ . (A3)

APPENDIX B: QUANTIZATION IN OBLIQUE

COORDINATES

This section will perform the explicit quantization in
an arbitrary oblique coordinate system for the free scalar

field and then calculate the thermal average of the free
energy-momentum tensor.

1. Equation of motion

The action expressed as an integral over contravariant

coordinates is
√−g

∫

dx0dx1dx2dx3 L with Lagrangian
density

L =
1

2
gµν

∂φ

∂xµ

∂φ

∂xν
− 1

2
m2φ2. (B1)

The field equation that follows from the Lagrangian den-
sity is

gµν
∂2φ

∂xµ∂xν
= m2φ. (B2)

The solution to this will be a superposition of plane waves
of the form exp

(

− ipαx
α
)

, with the phase expressed in
terms of contravariant spatial coordinates and covariant
momentum coordinates. The equation of motion gives
the mass shell condition

gµνpµpν = m2. (B3)

This is a quadratic equation for p0 with two solutions

p0± = −
g0jpj

g0 0
±
[

m2 + pipjΓ
ij

g00

]1/2

(B4)

where Γij is the 3× 3 matrix

Γij =
g0ig0j

g00
− gij . (B5)

The two solutions are exp(−ip0±x
0 − ipjx

j). The ener-
gies p0± are not invariant under momentum inversion,
but rather p0− → −p0+ when pj changes sign. Therefore
one can use for the second plane wave the negative mo-

mentum solution exp(ip0+x
0 + ipjx

j). The solution to
the field equation can be expanded as

φ(x) =

∫

dp1dp2dp3√−g(2π)32|p0|

[

a(p)e−ip·x+a(p)†eip·x
]

. (B6)

where p · x = p0+x
0 + pjx

j . The contravariant energies

p0± are equal in magnitude:

p0± = g00p0± + g0jpj

= ±
√

g00
[

m2 + pipjΓ
ij

]1/2

, (B7)

and |p0| will be denoted simply by p0 [18].
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2. Canonical quantization

For quantization on the surfaces of constant x0, the
canonical momentum is

π(x) =
∂L

∂
(

∂φ/∂x0
) = g0µ

∂φ

∂xµ
=

∂φ

∂x0

(B8)

The explicit mode expansion is

π(x) = −i

∫

dp1dp2dp3√−g(2π)32

[

a(p)e−ip·x − a(p)†eip·x
]

If the mode operators are required to satisfy

[

a(p), a†(p′)
]

=
√−g2p0(2π)3

3
∏

j=1

δ(pj − p′
j
), (B9)

then equal time commutator has the correct value:

[

π(x), φ(x′)
]

x0=x′0

= −i

∫

dp1dp2dp3
(2π)32

[

e−ipj(x
j−x′j) + eipj(x

j−x′j)
]

= − i√−g
δ(x1 − x′1)δ(x2 − x′2)δ(x3 − x′3).

3. Microcausality

It is easy to verify microcausality. The commutator of
two fields is

[

φ(x), φ(0)
]

=

∫

dp1dp2dp3√−g(2π)32p0

[

e−ipαxα − eipαxα
]

.

Change to Minkowski integration variables by defining

pα = pλ∂x
λ/∂xλ so that pαx

α = pλx
λ. The integration

measure is invariant and therefore

[

φ(x), φ(0)
]

=

∫

dp1dp2dp3
(2π)32p0

[

e−ip·x − eip·x
]

.

This is the conventional answer for the commutator. It
vanishes for space-like separations xλx

λ < 0. Since
xαx

α = xλx
λ it vanishes for xαx

α < 0.

4. Hamiltonian

The canonical Hamiltonian density is

H = π
∂φ

∂x0
− L (B10)

It is convenient to express this in terms of mixed con-
travariant and covariant derivatives:

H=
1

2

[

∂φ

∂x0

∂φ

∂x0
− ∂φ

∂x1

∂φ

∂x1
− ∂φ

∂x2

∂φ

∂x2
− ∂φ

∂x3

∂φ

∂x3
+m2φ2

]

The Hamiltonian requires integrating over the contravari-
ant three-volume

P0 =
√−g

∫

dx1dx2dx3 H.

Working this out explicitly gives

P0 =

∫

dp1dp2dp3√−g(2π)32p0
p0
2

[

a†(p)a(p) + a(p)a†(p)
]

.

(B11)
Note that the covariant energy p0 in the numerator does

not cancel the contravariant energy p0 in the denomina-
tor. The commutation relation

[

P0, φ(x)
]

= −i
∂φ

∂x0

verifies that the Hamiltonian is the generator of transla-

tions in the contravariant time variable x0.

5. Energy and momentum

The canonical energy-momentum tensor is

T ν
·µ =

∂φ

∂xν

∂φ

∂xµ
− δνµ L (B12)

and satisfies the conservation laws ∂T ν
· µ/∂x

ν = 0. The

µ = 0 and µ = m components of this equation are

0 =
∂T 0

· 0
∂x0

+
∂T n

· 0
∂xn

(B13)

0 =
∂T 0

· m
∂x0

+
∂T n

· m
∂xn

(B14)

From Eq. (B10), H = T 0
· 0 and thus T 0

· 0 is the energy

density. The first of the above equations indentifies T n
· 0

as the energy flux. From the second, T 0
· m is the momen-

tum density and T n
· m is the momentum flux. Integrating

the energy and momentum densities over a contravariant
three-volume gives

Pµ =
√−g

∫

dx1dx2dx3 T 0
·µ. (B15)

These integrals are independent of the contravariant

time: ∂Pµ/∂x
0 = 0. They generate translations in the

contravariant coordinates:

[

Pµ, φ(x)
]

= −i
∂φ

∂xµ
. (B16)

The explicit form for the three-momentum operators is

Pj =

∫

dp1dp2dp3√−g(2π)32p0

pj
2

[

a†(p)a(p) + a(p)a†(p)
]

.

(B17)
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6. Thermal Averages

This section will show that despite the somewhat com-
plicated dispersion relations in Eqs. (B4) and (B7), the
thermal average of the energy-momentum tensor can be
computed directly and gives the conventional answer.
Bose-Einstein statistics gives for the thermal average

of the energy-momentum tensor of a free gas of scalar
particles

〈Tµν〉 =
∫

dp1dp2dp3√−g(2π)3p0
pµpν

exp
(

βp0/
√
g00

)

− 1
. (B18)

To perform this integration, change to Minkowski mo-
menta kα, where

pµ = Aα
µ kα. (B19)

The mass shell condition requires k0 = (k2+m2)1/2. And

p0/
√
g00 = kλu

λ with uλ = Aλ
0
u0, the oblique velocity

given by Eq. (2.15). The change of variables gives

〈Tµν〉 = Aα
µA

β
ν

∫

dk1dk2dk3
(2π)3k0

kαkβ
exp(βkλuλ)− 1

, (B20)

whose evaluation is standard:

〈Tµν〉 = Aα
µA

β
ν

(

(ρ+ P )uαuβ − Pgαβ

)

= (ρ+ P )uµuν − Pgµν . (B21)

The final result is expressed in terms of the oblique ve-
locity vector and the oblique metric tensor. The most
physical quantity is the mixed tensor

〈T µ
· ν〉 =







ρ 0 0 0
(ρ+P )g01/g00 −P 0 0
(ρ+P )g02/g00 0 −P 0
(ρ+P )g03/g00 0 0 −P






, (B22)

where Eq. (2.15) has been used. The off-diagonal entries

in the metric give a nonzero momentum density: 〈T 0
· n〉 =

(ρ+ P )g0n/g00.
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