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Temporal evolution of double layers in pulsed helicon plasmas
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Delays of the order of tens of milliseconds in the appearance of the fast argon ion population in the
expansion region of a pulsed helicon plasma are observed in time-resolved, laser induced
fluorescence measurements. The fast ion population is a proxy for the presence of a double layer.
The magnitude of the time delay depends strongly on the length of the interval between plasma
pulses; the shorter the time between pulses, the shorter the time delay. The time delay approaches
zero for inter-pulse intervals smaller than 30 ms. The double layer strength is not affected by plasma
source modulation frequency. © 2009 American Institute of Physics. �DOI: 10.1063/1.3204014�

The energetic ion beam generated by the current-free
electric double layer �EDL� which forms spontaneously in
the magnetic expansion region of low pressure helicon
plasma sources1 could provide the thrust needed for extrater-
restrial spacecraft propulsion. The EDL forms with the high
potential side toward the helicon source and the low potential
side toward the expansion region. The resultant ion accelera-
tion to supersonic speeds and the characteristic high ion den-
sities of helicon discharges motivated researchers from the
Australian National University �ANU� to propose the helicon
double layer thruster �HDLT� concept.2 Although the specific
impulse and thrust of the HDTL are low compared to con-
ventional thrusters, the possibility of electrically steering the
ejected ion beam,3 stable operation at very low pressure in a
variety of gases,4 and the possibility of high energy
efficiency5 are sufficiently intriguing that HDLT optimization
studies have continued. For example, recent studies have
shown that the overall energy efficiency can be significantly
improved by replacing the heavy solenoids used to generate
the axial magnetic fields with smaller and lighter permanent
magnets.6,7 The dependence of the ion beam velocity on
the source driving frequency has also been recently
demonstrated.8 Pulsing the helicon discharge might solve re-
maining important HDLT thruster issues such as plasma de-
tachment, turbulent cross-field diffusion, and antenna heat-
ing. Therefore, a detailed understanding of the temporal
evolution of the EDL is required to identify the optimal op-
erational parameters �duty cycle, pulse length, input power,
driving frequency, etc.� of a pulsed helicon source thruster.

In this letter, we present measurements of the time delay,
typically a few milliseconds to a few tens of milliseconds,
between plasma ignition and the appearance of an acceler-
ated �supersonic� ion population. The measurements of the
argon ion velocity distribution function �ivdf� in the expan-
sion region of a helicon plasma source are obtained by time
resolved laser induced fluorescence �LIF�.

The experiments were performed in the HELIX-LEIA
�HL� helicon source-diffusion chamber system described in
detail elsewhere.9 Briefly, the helicon source �HELIX� con-
sists of two coaxial tubes of a total length of 1.5 m. The
Pyrex source tube is 10 cm in diameter and is surrounded by
a 19 cm long, half wave, m=+1, helical antenna that couples

the rf power into the plasma. The rf antenna is 37 cm from
the closed end of the source tube. The second, 15 cm diam-
eter, stainless-steel tube connects the plasma generation re-
gion with plasma expansion region, a 4.5 m long, 2 m diam-
eter aluminum diffusion chamber �LEIA�. The axial
magnetic field of 0–1.2 kG in HELIX and 0–150 G in LEIA
is created by external solenoids. Previous investigations have
shown that the EDL is localized to the region of strong axial
magnetic field gradient which, for the HL system, is a maxi-
mum close to steel tube-aluminum chamber junction. To in-
vestigate the temporal evolution of the ivdf, the discharge
was pulsed at different frequencies and duty cycles; two
function generators, one to provide the 9.5 MHz driving fre-
quency and one to amplitude modulate the rf wave were used
in conjunction with a wide bandwidth rf amplifier. The elec-
tronic rise and decay times in the case of the square wave
pulses used for these investigations were �70 ns, much
shorter than the intervals between plasma pulses, which were
tens to hundreds of milliseconds.

For Ar+ LIF, we used the classic three-level LIF scheme
in which the metastable 3d 2G9/2 state is optically pumped by
611.6616 nm �vacuum wavelength� radiation to the short liv-
ing 4p 2F7/2

0 state, which then decays to the 4s 2D5/2 state by
emitting a photon at 461.09 nm �vacuum wavelength�. De-
tails of the laser used and the time resolved LIF diagnostic
technique are given elsewhere.10 The injected laser light is
modulated with an acousto-optic modulator �AOM� at 10
kHz and then transported with a multimode, nonpolarization
preserving, optical fiber to the injection optics. A high-
frequency lock-in amplifier provided the reference modula-
tion signal for the AOM driver. Adequate signal-to-noise ra-
tios of 10:1 were obtained by averaging the LIF signal at
each laser wavelength over 400 plasma pulses. To obtain a
data record long enough to cover the entire plasma pulse, the
LIF signals were sampled at a digitization rate of 10 kHz.
Thus, a time resolution of 100 �s is theoretically possible.
However, for the lock-in LIF detection scheme, the time res-
olution is limited to 1 ms by the 1 ms integration time of the
lock-in amplifier; needed to obtain sufficient photon counting
statistics �ten on/off chopping cycles of the AOM�. To deter-
mine the parallel ivdf, laser light was injected at an angle of
52° �with respect to the direction of flow� and the fluores-
cence signal detected by an integrated collection optics-
photomultiplier tube mounted on a scanning probe.11 Due toa�Electronic mail: iabiloiu@yahoo.com.
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an error in our previous publications,12,13 the reported values
of the parallel ion speeds were uncorrected for the laser in-
jection angle, i.e., underestimated by a factor of �1.6�. Be-
cause the plasma conditions were chosen to foster EDL for-
mation, the detected ivdf is bimodal, with peaks separated by
�10 GHz. For reliable velocity and temperature resolution,
the ivdf was sampled at 71 equally spaced laser frequencies
over a range of 20 GHz �see Fig. 1�.

The evolution of the parallel argon ivdf at 19 cm down-
stream of helicon source-diffusion chamber junction for a
50% duty cycle, 10 Hz pulse frequency is shown in Fig. 2.
Since previous investigations showed oscillations of the LIF
signal with a characteristic frequency of 1 kHz when the
lower hybrid frequency in the source was comparable to the
driving frequency,11 the source was operated at magnetic
field strengths of 600 G in the source �to avoid the lower-
hybrid frequency� and 35 G in the diffusion chamber. Neutral
pressure in the helicon source was 2 mTorr, sufficient pres-
sure for a good LIF signal, but low enough to allow forma-
tion of the EDL. The pressure in the expansion chamber was
0.24 mTorr. To determine the absolute flow of each distribu-
tion component, at each time step the background light levels
were subtracted from the measured ivdf, normalized to the
peak signal value. The processed ivdf was then fit with
Gauss and LogNormal functions for the slow and fast ion

populations, respectively. The LogNormal function was used
to include the tail of the fast ion ivdf toward slower speeds
that arises from elastic scattering and/or charge-exchange
collisions with the background neutrals and ions.12 Although
LIF only provides detailed information about the population
of a certain excitated state—in our case the metastable
Ar+�3d 2G9/2� state—the large level degeneracy ratio �17:1�
of the metastable ion relative to the ground state ion,14 which
makes the main channel for the formation of this state the
two-step, electron impact process of ionization �15.8 eV� fol-
lowed by excitation �19.1 eV�, as well as our previous stud-
ies that demonstrated that the LIF signal �ne

2�Te
1/2, leads us

to expect that the measured ivdfs accurately represent the
ivdfs of the entire ion population.

Consistent with measurements in steady-state helicon
plasmas, the slow ion population exhibits a bulk speed of
�0.5 km /s and the fast ion population a bulk flow speed of
�10 km /s.15 These observations are consistent with differ-
ent origins for the two ion populations: �a� the slow ions are
a background population created by local ionization; their
parallel flow speed is slightly slower than the neutral gas
flow speed ��600 m /s� estimated at HELIX-LEIA junction
based on the mass flow rate, the pressure difference, and gas
conductance under the assumption of molecular flow; �b� the
fast ions are created upstream in the plasma source and ac-
celerated by the EDL and magnetic expansion on their way
from the helicon source toward diffusion chamber.1 For
slightly different steady-state plasma parameters, electro-
static probe measurements indicated a potential drop of
�18 V from plasma source to expansion chamber,16 corre-
sponding to an EDL strength of �3kBTe /e—sufficient to ac-
celerate the fast ions to the measured speeds. The different
durations of the ivdf components during pulsed operation
also point toward different origins for each component. The
slow ion population appears at the start of the rf pulse and
persists for �30 ms after the rf pulse terminates. The exis-
tence of an argon afterglow plasma is typically attributed to
the long lifetime of the 3d 2G9/2 state �6.1 s� in low collision-
ality systems. Given that the quenching cross-section for col-
lisions of the 3d 2G9/2 state with ground state neutral argon is
1�10−14 cm2,17 at the LIF detection location in the expan-
sion region the quenching mean free path �mfp� is quite long
�12.5 cm. However, the resulting 2.4�103 s−1 quenching
frequency is still too large to explain the observed 30 ms
afterglow plasma. Close inspection of the ivdf temporal evo-
lution shows that after pulse termination, the LIF signal of
the slow ion population does not immediately decay but ac-
tually increases for about 20 ms and then decays. This over-
shoot of LIF signal might be related to continued excitation
into the 3d 2G9/2 by low energy electron impact from well
populated lower ionic metastable states.18

The LIF signal for the fast ion population appears
�19 ms after the start of the plasma pulse and has a short
afterglow ��7 ms�. The 7 ms decay time is consistent with
rapid disappearance of the fast ion population convolved
with the 1 ms lock-in integration time �which artificially
stretches out any rapidly terminating phenomena over a few
milliseconds�.19 The rapid disappearance of the fast ion
population suggests the rapid termination of the mechanism
that generates, accelerates and then injects the fast ions in the
diffusion chamber. Given that the EDL forms 4–5 cm inside
the source, where the pressure is roughly one order of mag-

FIG. 1. �Color online� Parallel ivdf at t=25 ms into the pulse for 10 Hz
modulation frequency: raw data �points�; fits �solid lines� of the slow and
fast ion distributions.

FIG. 2. �Color online� The evolution of the argon ion parallel ivdf during
two cycles of a 50 ms plasma pulse: top—surface plot showing fast
��10 km /s� and a slow ��0.5 km /s� ion populations; bottom—a contour
projection showing the time lag ���19 ms� in the appearance of the fast
ion population.
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nitude higher than in the expansion region, it follows that in
the absence of ongoing ionization rapid quenching of the
3d 2G9/2 metastable state in the source occurs; the �1.5 cm
quenching mfp and �10 km /s ion drift velocity yield a
�15 �s decay time. Similar fast population decay times of
�10 �s were observed for current-free EDLs appearing
in a two-electron population plasma when the discharge was
switched off.20 The most significant feature of the fast
population time evolution is the �19 ms time lag in its ap-
pearance after the plasma pulse begins. Such a time lag is
too long to result from the plasma relaxation time—the
time needed to establish steady-state conditions �which is
roughly equal to the transit time across the system of an ion
traveling at acoustic speed�.21 For an electron temperature of
6 eV from probe measurements, the acoustic ion speed cs
�cs= �gkBTe /m�1/2, where m is the ion mass and � is assumed
1 for isothermal expansion� of �3.8 km /s yields a transit
time of �0.5 ms. The time lag is also unlikely to result from
the propagation of the EDL, such as those observed in colli-
sionless expanding plasmas, because the motion of those
EDLs stagnated after only 0.2–0.3 ms.22 Two other possible
explanations are that time is needed to build up a sufficient
population of the 3d 2G9/2 ionic state to allow detection by
LIF or that the EDL requires some many ms to form. Since
LIF signal from the slow population, observed in the same
3d 2G9/2 ionic state, appears immediately at the onset of the
plasma pulse, it seems most likely that the time lag arises
from a delay in formation of the EDL. Qualitatively, the time
lag can be interpreted as the time needed after the breakdown
of the gas to generate the downstream plasma, establish the
equilibrium between the two different plasmas, and then to
allow for charge separation to occur at their interface.

To investigate the effects of pulsing conditions on the
observed time lag for fast ion creation in the LIF data, ivdfs
were measured for the same duty cycle and different modu-
lation frequencies �3.33, 5, and 10 Hz�. As shown in Fig.
3�a�, the higher the modulation frequency the shorter the
observed time lags. We hypothesize that long lived neutral
and ionic metastable states survive during “plasma off” time,
making the plasma ignition and apparently ion beam forma-
tion faster for shorter time off intervals. Having longer
“plasma off” times leads to complete extinguishment of ex-
cited states between pulses, followed by a completely “new”
breakdown and a new EDL formation. That the plasma off
time controls the time lag in the appearance of the fast ion
population was confirmed by holding the modulation fre-
quency fixed at 5 Hz and varying the duty cycle from 50% to

80%.14 Decreasing the “plasma off” time from 100 to 40 ms
resulted in a decreased �28 versus 7 ms� time lag in the
appearance of the fast ion population. A linear extrapolation
to zero time lag predicts that no delay in the appearance of
the fast ion population will occur for modulation frequencies
larger than 17 Hz ��30 ms plasma off time�.

These observations suggest a resolution for an outstand-
ing discrepancy between previous, time-resolved, LIF and
resolved retarding field energy analyzer �RFEA� measure-
ments in the ANU helicon source23 and in an identical heli-
con source constructed at the L’Ecole Polytechnique Paris
�LPTP�.24 The time resolved RFEA measurements indicated
the presence of a small, but finite population of fast ion
population within 150–200 �s of the beginning of the rf
pulse. Besides the mechanical differences between HELIX-
LEIA and Chi-Kung helicon sources, those RFEA measure-
ments were obtained for considerably shorter plasma “off”
intervals in a pulsed system; plasma on /off=2 /10 ms in the
ANU experiments and 750 /500 �s for the LPTP measure-
ments.

Note that the slow and fast ion population parallel ve-
locities do not vary with “plasma on” time: �0.5 and
�10 km /s for the parallel flow speed of the slow and fast
ion populations �see Fig. 3�b��. Since the parallel velocity of
fast ion population is independent of the length of the plasma
pulse, the energy of the ejected ion beam appears to be fixed
for a given system geometry and/or magnetic field configu-
ration. Since the relative fast ion population density �ob-
tained from the integration of LIF signals� depends only
modestly on the modulation frequency �from 0.6 at 3.33 Hz
to 0.52 at 10 Hz�, the overall thrust generated by a HDLT
should be invariant under changes in pulsing frequency.
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FIG. 3. �Color online� �a� Dependence of the delay on modulation frequency
and a linear extrapolation to zero delay. �b� Dependence of the slow �down
triangles� and fast �up triangles� ion parallel velocities and fast ion popula-
tion fraction �circles� on modulation frequency. For all three frequencies the
duty cycle was 50%.
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