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REVIEW OF SCIENTIFIC INSTRUMENTS 87, 11E504 (2016)

Novel xenon calibration scheme for two-photon absorption laser induced
fluorescence of hydrogen

Drew Elliott, Earl Scime, and Zachary Shorta)

Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26056, USA

(Presented 8 June 2016; received 31 May 2016; accepted 20 June 2016;
published online 14 July 2016)

Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and
its isotopes are typically calibrated by performing TALIF measurements on krypton with the same
diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J.
Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based
on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical
to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying
detector calibration. We determine that the ratio of the TALIF cross sections of xenon and hydrogen
is 0.024 ± 0.001. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4955489]

I. INTRODUCTION

The neutral density at the plasma edge affects global
quantities in tokamak plasmas such as the threshold for the
L to H transition and the level of turbulence in the edge.1,2

Penetration by neutrals also plays an important role in cross
field transport of particles and energy in fusion plasmas.3 Two-
photon absorption laser induced fluorescence (TALIF) has
been developed as a method to measure both the temperature
and absolute density of atomic hydrogen and its isotopes in
plasma.4,5

Fast pressure gauges and Balmer-alpha emission spectros-
copy are two methods used to measure the density and temper-
ature of neutral populations within hot hydrogen plasmas.6,7

Pressure gauges intrinsically convolve neutral temperature
and density and are incapable of non-perturbatively measur-
ing the neutral density profile. Line-integrated Balmer-alpha
measurements are inverted to obtain profile measurements of
the density of the n = 3 excited state of atomic hydrogen and
its isotopes. A collisional radiative (CR) model is then used to
determine the total neutral density profile from the inverted
emission measurements.8 A direct TALIF measurement of
the neutral density eliminates the uncertainties introduced by
the CR model and the need for the electron temperature and
density measurements.

For fusion edge plasma conditions, the ground state den-
sity of hydrogen and its isotopes is a reliable measure of the
overall atomic density.9 TALIF directly measures the density
of a hydrogenic species ground state by exciting the n = 1 to
the n = 3 state (transition energy of 12.096 eV) and measuring
the intensity of emission from the n = 3 to n = 2 state at
656.3 nm.4,5,10,11 For TALIF to produce an absolute density
measurement, the diagnostic is calibrated using a known den-
sity of a gas whose relative two-photon absorption cross sec-

Note: Contributed paper, published as part of the Proceedings of the 21st
Topical Conference on High-Temperature Plasma Diagnostics, Madison,
Wisconsin, USA, June 2016.
a)Author to whom correspondence should be addressed. Electronic mail:

zdshort@mix.wvu.edu

tion to hydrogen is known and for which the initial transition is
accessible with the same laser. The calibration gas commonly
used for hydrogen TALIF calibration is krypton.4,5,10,11 The
krypton calibration scheme begins with a transition from the
ground state to the 5p excited state (transition energy 12.143
eV) and the fluorescence occurs at 826 nm. While the initial
transitions for hydrogen and krypton are nearly identical, the
fluorescing wavelengths are quite different, necessitating a
detailed understanding of the performance of the photode-
tector across a wide spectral range, different emission line
filters, and accounting for wavelength dependent effects in
the light collection system. The wavelength dependent opti-
cal effects are particularly problematic in the light collection
schemes with long path lengths.

Here we present TALIF measurements of ground state
xenon using a new scheme that is ideally suited for calibrat-
ing hydrogen TALIF systems. The xenon ground state is a
J = 0,5p6 state with an ionization energy of 12.130 eV. Ly-
ing 11.848 eV above the ground state is the 5p5 (2Po

3/2)7 f
state with J = 2. This energy difference is equivalent to two
209.287 nm photons. Single photon decay primarily occurs
from the 7 f state to either the 5p5(2Po

1/2)6s (J = 1) state via
a 544.0 nm photon or the 5p5(2Po

3/2)5d state via a 656.0 nm
photon.12 Xe TALIF schemes previously explored employ
very different pump and fluorescence wavelengths (224.26 nm
and 835 nm, respectively).13

II. EXPERIMENTAL APPARATUS

This TALIF system begins with a Spectra-Physics
Quanta-Ray Pro-270 Nd:YAG laser with a maximum power
of 750 mJ/pulse at 532 nm at a repetition rate of 20 Hz. The
dye laser is a Sirah CobraStretch optimized for 615 nm light
with a mixture of Rhodamine B and Rhodamine 101 dyes. The
output energy of the dye laser is ∼100 mJ/pulse and the pulse
width is 12 ns. The output of the dye laser is frequency doubled
to 306-315 nm in a SHG-250 BBO crystal, mixed back with
the 615 nm fundamental, and passed through a SHG-206 BBO
crystal to generate a third harmonic beam at 204-209 nm. The
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FIG. 1. Typical deuterium TALIF spectrum obtained in a spheromak.

205 nm light has a typical power of 1 mJ/pulse, a temporal
FWHM of 7 ns, an energy stability of 5%-7%, and a spatial
profile with a diameter of 5 mm. The measured line width of
the 615 nm beam is∼0.1 cm−1, which should result in a similar
line width, as per the design specifications, at 205 nm.

The collected light is filtered with a bandpass filter and
focused onto a photomultiplier tube (PMT) (Hamamatsu
H11526-20-NF). The PMT signal is then processed by a
Stanford Research Systems Fast Gated Integrator and Boxcar
Averager (Model SR250). The boxcar acquires the integrated
output of the PMT over a 50 ns interval synchronized to the
laser pulse, averages 10 such measurements, and outputs a
voltage proportional to the integrated signal intensity. The
result is recorded along with the measured wavelength of the
∼615 nm beam, which is obtained with a High Finesse WS7
wavelength meter accurate to 0.075 pm. The laser is stepped
in wavelength over a spectral range and several laser pulses
are taken at each wavelength. A deuterium TALIF spectrum
obtained in a spheromak with this TALIF system is shown in
Figure 1.14

The TALIF emission, S(λ), from neutrals of velocity
space density n(v) is

S(λ) = ∆Ω
4π

n(v)I2σαG (1)

proportional to the square of the laser intensity, I. ∆Ω is the
solid angle over which the emitted light is collected, σ is the
absorption cross section from the initial state to the excited
state, and α, which has a value between 0 and 1, accounts for
the branching ratio from the excited state to the final state of

FIG. 2. Optical configuration used for these experiments. BS: beam splitter;
I1 and I2: irises; M1-M3: mirrors.

FIG. 3. (a) Xenon TALIF spectrum. (b) Krypton TALIF spectrum.

the fluorescent transition, the transmission efficiency of any
optical filters, and the quantum efficiency of the photodetector.
G is the overall gain of the photodetector. The known ratio
of cross sections10 between the krypton and the deuterium
schemes, (σDeu/σKr), is 0.62.

Because the objective of these experiments was to estab-
lish the relative absorption cross sections for krypton and
xenon, and thereby determine a value for the relative cross
section value between xenon and hydrogen, the measurements
were performed in a simple, low pressure, gas filled cham-
ber. A diagram of the experimental configuration is shown
in Figure 2. To avoid saturation effects and minimize optical
complexity, the injected laser beam was not focused. Fluores-
cent light collection was accomplished through a 1 in. diam-
eter, 15 cm focal lens oriented perpendicular to the injected
laser beam. The fluorescent emission from krypton was filtered
with a 10 nm wide bandpass filter centered on 830 nm and
the xenon emission was filtered with the same bandpass filter,
656 ± 1.0 nm, used for hydrogen TALIF.

FIG. 4. Normalized TALIF signal for (a) xenon and (b) krypton as a function
of neutral gas pressure.
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FIG. 5. The absorption cross section ratio for xenon to krypton. Dashed lines
represent the ratio of fits from Fig. 4, and solid is their average.

III. KRYPTON AND XENON MEASUREMENTS

The total, integrated over wavelength, TALIF signal
normalized by the square of the laser energy, the detector
gain, and the wavelength dependent PMT quantum efficiency
is therefore directly proportional to the neutral gas density.
Examples of both krypton and xenon TALIF spectra are shown
in Figure 3. To ensure that the two measurements employed
the exact same optical path and collection volumes, two fixed
irises were placed along the optical path and the injection
beam constrained to pass through both irises at all times (see
Figure 2).

The normalized TALIF signals for both krypton and
xenon are shown in Figure 4 as a function of neutral gas
pressure. Note that in these units, the xenon absorption cross
section is significantly smaller than the krypton absorption
cross section. At low gas pressures, both sets of measurements
are linear with increasing neutral pressure. At the largest pres-
sures investigated, the krypton TALIF signal diverges from
linearity, most likely as a result of increased absorption of the
laser light along the injected beam path. That the krypton data
saturates at the highest pressures is consistent with a krypton
absorption cross section that is much larger than the xenon
cross section. Shown in Figure 4 are linear fits to the TALIF
measurement. For krypton, two different linear fits are shown;
one that includes the measurements up to 60 mTorr (solid line)
and one that stops at 50 mTorr (dashed line). The slope of the
linear fit is proportional to the absorption cross section. The
uncertainty in the pressure measurement is ±1.5 mTorr and
the linear fits for both species cross the pressure axis within
the range of pressure uncertainty.

Shown in Figure 5 is the ratio of the measured krypton and
xenon two-photon absorption cross sections as a function of
neutral gas pressure. The dashed lines correspond to the ratio
of the linear fits using the two different krypton fits. The solid
line is the average of the two krypton fits. Using the ratio of the
fits, the relative cross section is 0.038 ± 0.005. The average of
the ratio measurements for pressures less than 50 mTorr yields
a relative cross section of 0.041 ± 0.008. Using the krypton
to hydrogen two photo absorption ratio of 0.62, we obtain a
relative two-photon absorption cross section between xenon
and hydrogen of 0.024 ± 0.001.

IV. SUMMARY

These measurements confirm that this xenon TALIF
scheme is a viable calibration method for hydrogen TALIF.
The similarity in excitation and fluorescence wavelengths with

FIG. 6. Ratio of the effective areas of the image spot size for 826 nm and
656 nm light after passing through a spatial filter of varying diameter. Inset
is the Zemax™ model of the confocal configuration including a spatial filter
that was used for these calculations.

the hydrogen TALIF scheme eliminates chromatic differences
in the collection optics that impede calibration and alignment
using the typical krypton scheme. Note that the uncertainty
reported here in the xenon to hydrogen absorption cross sec-
tion ratio does not include the effect of the uncertainty in the
krypton to hydrogen cross section ratio in the literature.

In recent deuterium TALIF experiments on the HIT-SI3
spheromak, high quality krypton TALIF signals were obtained
after optimizing the collection optics for krypton TALIF emis-
sion. However, after optimizing for krypton TALIF emission,
the deuterium TALIF signal vanished. The lack of deuterium
signal was traced to the focal-plane defining pinhole in the
TALIF emission collection optical path. When optimized
for 826 nm fluorescence, the pinhole served as an effective
blocker of 656 nm deuterium fluorescence. The impact of the
differing fluorescent wavelengths is demonstrated with the
Zemax™model of a TALIF optical system shown in Figure 6.
For a light collection path of 1-2 meters, as is typical of
TALIF designs for fusion systems, the Zemax™model shows
significant blockage of the 656 nm light when the system is
optimized for the 826 nm krypton TALIF fluorescence.
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