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Collective behavior of stabilized reaction-diffusion waves
Aaron J. Steele, Mark Tinsley, and Kenneth Showalter
Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA

�Received 31 January 2008; accepted 29 February 2008; published online 27 June 2008�

Stabilized wave segments in the photosensitive Belousov–Zhabotinsky reaction are directionally
controlled with intensity gradients in the applied illumination. The constant-velocity waves behave
like self-propelled particles, and multiple waves interact via an applied interaction potential. Align-
ment arises from the intrinsic properties of the interacting waves, leading to processional and
rotational behavior. © 2008 American Institute of Physics. �DOI: 10.1063/1.2900386�

Self-organization in far-from-equilibrium systems arises
from local feedback processes that result in larger scale
order. Examples include spatiotemporal patterns in
chemical systems1–3 and in granular media.4–6 Similar
self-organization principles are thought to account for the
collective behavior seen in biological systems, such as pat-
terns in bacteria colonies, schools of fish, and flocks of
birds.7,8 Here, the large-scale order of the group arises
from local interactions between members of the group.
Field studies of collective behavior in groups of living
organisms have inspired theoretical modeling studies of
populations of interacting agents. These studies have of-
fered valuable insights into group behavior, identifying
key features such as density dependent alignment in
swarms of locusts and response behavior to food or threat
in schools of fish.9,10 The specific biological traits that give
rise to the interaction rules in different species remain to
be elucidated in many cases.10 In this paper, we present
an experimental system for studying collective behavior
arising from interactions of individuals within a group.
The group members consist of stabilized chemical waves
that behave like interacting self-propelled particles.

I. INTRODUCTION

The stabilized waves are studied in a thin gel that is
loaded with the catalyst of the photosensitive Belousov–
Zhabotinsky �BZ� reaction,11,12 which is immersed in con-
tinually refreshed catalyst-free BZ reaction mixture. The
particle-like waves can be directionally controlled by impos-
ing gradients of light intensity, giving rise to excitability
gradients.13 A computer controlled feedback algorithm for
monitoring the waves and applying the intensity gradients
allows the construction of interaction potentials between the
waves based upon their mutual locations.

We first describe the propagation behavior of single
waves in static excitability landscapes. The behavior of
single waves provides a basis for understanding interacting
waves, where the excitability landscape is dynamically var-
ied according to the presence of neighboring waves. Our
photosensitive chemical system of interacting waves lies be-
tween that of a naturally occurring system with inherent in-
teraction properties and a theoretical system with model de-
pendent properties. We describe emergent ordered behavior,
including processional and rotational modes as well as more

complex behavior. The collective behavior arises from a
combination of the inherent properties of stabilized waves in
excitability gradients and the interactions between the waves
due to the applied interaction potential.

II. METHODS

Experiments were carried out with the photosensitive BZ
reaction,11,12 which was monitored with a computer inter-
faced camera and illuminated with a computer controlled
video projector. The wave behavior was studied in a thin
layer of silica gel in which the ruthenium �II�-bipyridil cata-
lyst was immobilized. The gel was cast onto a microscope
slide and bathed in continually refreshed, catalyst-free BZ
solution containing 0.166 M NaBrO3, 0.054 M malonic acid,
0.162 M bromomalonic acid, and 0.366 M H2SO4.

Simulations of the spatiotemporal behavior were carried
out with a two-variable Oregonator model for the photosen-
sitive BZ reaction,14,15
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where u and v are the dimensionless concentrations of
HBrO2 and Ru�bpy�3

3+, Du is the diffusion coefficient of
HBrO2, and � represents the rate of bromide production due
to the irradiation. The Euler method was used in the numeri-
cal simulations, with dx=0.15 and dt=0.001, and the param-
eters were f =1.4, q=0.0002, �=0.01, and Du=1.0.

For stabilization and directional control, two feedback
algorithms are applied to each propagating wave. The first is
a proportional-integral-derivative �PID� algorithm16 used to
stabilize the wave segment, which maintains a constant wave
size,17–19

� f = g�S + pi�
t�=t−t0

t�=t

S�t��dt� − pd	dS

dt

� + �0, �3�

where � f is the applied illumination intensity, �0 is the offset
or background illumination intensity, S is the wave size, and
g is the gain. The respective contributions of the integral and
derivative terms are pi and pd.16 The second is an excitability
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gradient arising from the imposed illumination, which is
computed from a potential function U�r�. The gradient of the
potential is evaluated at the centroid of the wave,20 and the
resulting illumination is computed from the component per-
pendicular to the wave velocity v, as shown in Fig. 1. The
intensity �ij at point ri,j inside a small control box around the
wave is determined by

�ij = � f + �v̂� · �U��v̂� · �rij − rc�� , �4�

where rc is the centroid of the wave and � f is the wave
stabilization intensity. We apply the component of the poten-
tial perpendicular to the wave velocity, which provides direc-
tional control of a wave by creating an effective turning
force. This is equivalent to a rotational force acting on a
point object; however, the two-dimensional structure of the
wave leads to asymmetric responses in the turning rate, as
discussed in Sec. V.

III. EXCITABILITY POTENTIALS

The behavior of single waves propagating in various ex-
citability potentials has been investigated. The propagation
behavior in four different potentials is shown in Fig. 2. We
find that the wave generally approaches a path of minimum
potential, where �U=0. For the harmonic valley potential in
�a�, �b� and the radially symmetric Lennard-Jones-type po-
tential in �g�, �h�, these paths are in the x direction and
around a center-oriented circle, respectively. For the radially
symmetric quadratic potential shown in �c�, �d�, there is only
a single point minimum, and the constant velocity wave
therefore traces out a sequence of approximately periodic
loops that pass near the minimum. Quasiperiodic-type orbits
are exhibited in other radially symmetric potentials, such as a
cubic potential. As the wave approaches the minimum, it
turns to align with a radial along which v̂� ·�U=0. As it
travels away from the minimum close to the radial, the wave
eventually turns again toward the minimum. There is no

simple path of minimum potential in the sine-wave excitabil-
ity landscape of hills and valleys shown in �e�, �f�, but rather
paths of relative minimum potential, where a wave finds its
way from one valley to another along the minimum between
two hills. Long transients are occasionally exhibited in this
complex excitability landscape; however, the wave trajectory

FIG. 1. �a� A stabilized wave propagating in a radially symmetric excitabil-
ity potential. Control box for sampling the potential �b� and control box for
applying the light intensity gradient �c�, which is the component of the
potential perpendicular to the wave velocity. Panels �b� and �c� show en-
largement of a wave in �a� and corresponding control box. The intensity
gradient corresponding to the potential is shown in �b�, and the intensity
gradient applied to control the wave is shown in �c�.

FIG. 2. �Color online� The left and right panels show overlaid images from
simulations and experiments of waves propagating in excitability potentials,
which are superimposed in gray scale. �a�, �b� A wave propagating in a
harmonic valley potential, U�y�=�y2, �sim=3.6�10−7, �exp

=0.21 mW cm−2 /mm2. The gray level of the potential has been scaled for
the image. �c�, �d� A wave propagating in a radially symmetric quadratic
potential, U�r�=�r2, �sim=1.1�10−7, �exp=0.29 mW cm−2 /mm2. �e�, �f� A
wave propagating in a two-dimensional, sine-wave potential, U�x ,y�
=��sin�x� /��sin�y� /���, �sim=4.5�10−2, �sim=16, �exp=0.83 mW cm−2,
�exp=9.1 mm. �g�, �h� A wave propagating in a Lennard-Jones-type potential
described by Eq. �5�, with asim=1.13, bsim=0.15, csim=5, and aexp

=0.11 mm2, bexp=8.4�10−2 mm, cexp=108 mW cm−2. �a�–�h� Frame inter-
val is 70 s in the experiments and 1.0 in the simulations. The scale bar is
1.5 mm in the experiments and 3.75 in the simulations. Parameters constant
throughout the paper: �experiments� g=2 mW cm−2 /mm, pi=0.05 /�0, and
pd=0.8�0, where �0=2 s; �simulations� g=0.83, pi=0, and pd=0.
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eventually follows a path near the relative minimum
potential.

IV. INTERACTING WAVES

We use a Lennard-Jones �LJ� type potential as the basis
for interactions between two or more waves,

Um,n = c	 a

�rn − rm�2
−

b

�rn − rm�
 , �5�

where rm is the location of the centroid of wave m, which
experiences the potential Um,n due to the presence of wave n
at location rn. The constant c determines the wave interaction
strength, and the constants a and b determine the equilibrium
distance r0=2a /b, where �Um,n=0. The interaction potential
is illustrated in Fig. 3�a�.

When the wave separation is less than the equilibrium
distance, �r��r0, the intensity gradients applied to the two
interacting waves cause them to turn away from each other,
Fig. 3�b�. When the wave separation is greater than the equi-
librium distance, �r�	r0, the intensity gradients cause the
waves to turn toward each other, Fig. 3�c�. Figures 3�b� and
3�c� illustrate how the waves experience a mutually repulsive
potential when the wave separation is less than the equilib-
rium distance and a mutually attractive potential when the
wave separation is greater than the equilibrium distance. In
the general N-wave case, the light intensity applied to wave
m is determined by the sum of the potential contributions,

Usum = 

n=1,n�m

N

Um,n. �6�

We now describe the varieties of behavior in our simu-
lations and experiments. The various types of behavior are

illustrated in Fig. 4, where the calculated wave trajectories
are indicated by a line with an arrow. The specific motion
depends on the interaction strength, the number of waves,
and the initial conditions.

A. Processional behavior

The most common type of behavior observed is proces-
sional behavior, illustrated in Fig. 5 for two, three, and four
waves. The waves organize into traveling packs from random
initial conditions, with mutually aligned velocities. In a finite
medium, the waves reflect at the boundaries and then reor-
ganize into a similar processional structure.21 Simulations
conducted with an infinite medium demonstrate that the pro-
cessional structures are maintained indefinitely, with the
group centroid traveling in a straight line or a very gradual
arc. Size limitations in the experimental system prevented
the investigation of groups of more than four or five waves;
however, simulations of groups of up to 20 waves have been
conducted. Processional behavior is found over a wide range
of interaction strengths and initial conditions in the experi-
ments and simulations.

Alignment arises with wave trajectories following paths
of minimum potential, along which v̂� ·�U=0. A wave in a
processional group travels along such a path without experi-
encing an excitability gradient. If minimum potential paths

FIG. 3. �Color online� �a� LJ-type potential with an equilibrium distance
r0=15. The potential function determines the intensity gradients applied to
the interacting waves, which affect the direction but not the magnitude of
the wave velocities. Waves with applied intensity gradients, �b� where the
inter-wave distance is less than the equilibrium distance, �r�=7, and �c�
where the inter-wave distance is greater than the equilibrium distance,
�r�=22. The light gray region outside the control boxes corresponds to the
background intensity.

FIG. 4. �Color online� Wave trajectories from simulations demonstrating
possible types of motion. The particular behavior depends on the interaction
strength, the number of waves, and the initial conditions. As the strength of
the wave interactions is increased by increasing the value of c, the following
types of motion are exhibited: For low values of the interaction strength c,
the motion is noncohesive �a�, csim=5.1. As the value of c is increased,
wandering behavior may be exhibited �b�, csim=6.0. Parallel motion �c�,
csim=30, is possible over a wide range of interaction strengths. With high
values of c, rotational modes become possible �d�, csim=70. Panel �d� shows
the rigid rotation of four waves; other rotational modes are shown in Figs. 7
and 8. Other parameters are as in Fig. 5. The scale bar at the bottom of each
panel is equal to the length r0, which is 15 in each of the simulations. The
other LJ parameters are asim=1.13, bsim=0.15.
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simultaneously exist for every wave of a group, the corre-
sponding pattern of waves is then a steady state configura-
tion. Small perturbations of the steady state configurations
are followed by a rapid decay back to similar processional
configurations.

B. Rotational behavior

Rotational modes also occur but are less common. Fig-
ure 6 shows rotational behavior in experiments and simula-
tions for two, three and four waves. The rotations develop at
high values of the interaction parameter c and with initial
conditions of waves equally spaced around a ring. The sta-
bility of these simple rotational modes has been examined in
simulations. Figures 7�a�–7�c� show an unstable two-wave

rotation, where the group centroid of the two waves spirals
outward until the waves align in a processional mode. Fig-
ures 7�d�–7�f� show a stable three-wave rigid rotation. The
three-wave and four-wave rotational modes were perturbed
by changing the position of one of the waves, and the altered
configuration relaxed back to the original rotation following
the small perturbation. Each wave in the three-wave configu-
ration follows an apparent quasiperiodic trajectory, with the
centroid of the system approximately following a circle.
With increasing c, the circle decreases in size until it col-
lapses to a noisy point. The individual wave orbits in the
four-wave case have the features of a rounded square or su-
perellipse, and the centroid of the system is localized at a
noisy point.

FIG. 5. �Color online� The left and right panels show a series of superim-
posed images of processional waves in simulations and experiments, respec-
tively. The LJ interaction parameters are asim=1.13, bsim=0.15, aexp

=0.21 mm2, and bexp=8.4�102 mm. In panels �a� and �b�, two waves ini-
tially closer than the equilibrium distance move apart and then maintain
alignment, with csim=5.0 and cexp=3.3�103 mW cm−2. In panels �c� and
�d�, three waves move in parallel, with csim=8.0 and cexp=8.3
�102 mW cm−2. In panels �e� and �f�, four waves move in parallel, with
csim=8.0 and cexp=8.3�102 mW cm−2. Time between frames: �100 s in the
experiments and 1.5 in the simulations. The length scale bar at the bottom of
each panel is equal to r0 /4.

FIG. 6. �Color online� The left and right panels show a series of images of
rotational waves in simulations and experiments, respectively. The waves
are colored so they can be distinguished over the fraction of the period
shown. The solid curve shows the trajectory of one wave over approxi-
mately one period, with the exception of panel �f�. In panels �a� and �b�, two
waves rotate with respect to each other in an unstable orbit, with csim=35
and cexp=3.3�103 mW cm−2. In panels �c� and �d�, three waves orbit in a
stable configuration, with csim=35 and cexp=1.5�103 mW cm−2. In panels
�e� and �f�, four waves orbit in a stable configuration, with csim=70 and
cexp=1.3�103 mW cm−2. The time between frames is �40 s in the experi-
ments and 0.5 in the simulations. The other parameters and the scale bars are
the same as in Fig. 5. The stability of the orbits in �a�, �b� and �c�, �d� is
described in Fig. 7.
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C. Other behaviors

In addition to the simple rotational modes, we found a
variety of complex rotational modes in our simulations.
Some of the complex modes are shown in Figs. 7 and 8.
Simple rotational modes were found for N=2,3 ,4 and com-
plex rotational modes for N=4,5 ,6 ,7 ,8. The four-wave ro-
tations shown in Figs. 6�e� and 6�f� and Figs. 7�g� and 7�h�
and the six-wave rotations shown in Figs. 7�j� and 7�k� and
Figs. 8�a� and 8�b� demonstrate that more than one rotational
mode may occur with the same number of waves. Other
behaviors include wandering and loose rotation. Wandering
occurs at lower values of c, where the group moves in a
processional manner but with a meandering group centroid.
Loose rotation, in which the relative positions of the waves
in a group shift, also occurs at lower values of c.

Figures 7�j� and 7�k� show an example of a complex
rotation, with two groups of three waves orbiting around a

common center. Additional shell-like complex rotations are
shown in Fig. 8, where one, two and three waves rotating in
the center are orbited by other waves in an outer shell con-
figuration. These complex shell configurations develop from
uniform initial conditions of waves equally spaced on a ring.
Our numerical studies indicate that they are stable to small
perturbations.

Rotational modes occur with each wave tracking a mini-
mum in the excitability potential. In the case of a single
wave, such as in the static LJ potential shown in Figs. 2�g�
and 2�h�, the wave remains near the path defined by �U=0,
with a slight offset for a finite turning rate. Interacting waves
in multiple-wave rotations similarly track paths defined by
�U=0. A complex coupling arises, with each wave tracking
a path of minimum potential resulting from the positions of
the other waves as well as contributing to the path of mini-
mum potential for each of the other waves.

D. Parameters for group behaviors

The various collective behaviors described above arise
in small groups of interacting waves over specific ranges of
the interaction strength c. At lower values of c, the waves
behave in a noncohesive manner with interaction occurring
only if the waves “collide,” as shown in Fig. 4�a�. The onset
of cohesive behavior is indicated by a reduction in the aver-
age distance D of the waves from the group centroid,

D =
1

N


n=1

N

�rn − rgm� , �7�

where

FIG. 7. �Color online� Examples of rotational behavior for various interac-
tion strengths. The left-hand panels show the wave trajectories over a long
period, �100 dimensionless time units, while the middle panels show the
trajectories over a short period, �10 dimensionless time units. The right-
hand panels show the time evolution of the group centroid. Panels �a�–�c�
show two waves in an unstable rotational mode, with csim=35. The group
centroid spirals outward until the waves exhibit processional motion. Panels
�d�–�f� show three waves in a rigid rotational mode, with csim=70, where the
waves maintain a constant inter-wave spacing as they rotate. Panels �g�–�i�
show a loose rotation of four waves, with csim=12, where the waves switch
order as they rotate. An example of a more complex rotational structure is
shown in panels �j�–�l�. The six-wave rotation shows two three-wave sub-
groups orbiting each other, with csim=8.0. The length scale bar at the bottom
of each panel is equal to r0 /4. Other complex rotational structures are shown
in Fig. 8.

FIG. 8. �Color online� Examples of rotational modes with five, six, and
eight waves. �a�–�c� Six waves form a stable structure, with one wave ro-
tating in the middle of the other five, csim=32. �d�–�f� Eight waves form a
stable structure, with two waves rotating in the middle, csim=75. �g�–�i� Five
waves form a stable structure, with three waves rotating in the middle,
csim=35. See Fig. 7 for panel descriptions and Fig. 5 for other parameters.
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rgm�t� =
1

N


n=1

N

rn�t� . �8�

The value of D is generally small for cohesive behavior,
regardless of the details of the behavior, and large for non-
cohesive behavior. Figure 9 shows the time average of D in
an eight-wave system as a function of c for varying initial
conditions. For larger values of c, the value of D remains
small with little deviation, indicating cohesive behavior of
the group. At lower values of c, the average value of D is
larger, and the individual values of D depend upon the initial
conditions. The value of c at which D becomes virtually
independent of initial conditions was used to define the tran-
sition from noncohesive to cohesive behavior.

Figure 10 shows approximate regions of the various
types of behavior as a function of the number of waves N
and the interaction strength c. The transition to coherent be-
havior is shown by the boundary between regions I and II.
For values of c above the transition, the group behaves co-
hesively, regardless of the initial conditions, while below the
transition, the group may or may not behave cohesively, de-
pending on the initial conditions. Stable processional motion
occurs for all values of c above the transition. Simple and
complex rigid rotations generally occur at higher values of c,
as shown in region III, and may be realized with initial con-
ditions of waves equally spaced on a ring or by slowly
changing c to a target value from an existing rotational state.
The limits for rotational behavior were found by tracking
existing rotational states until they collapsed to a proces-
sional state. Initial conditions of waves equally spaced on a
ring lead to loose rotation or wandering for values of c
slightly above the transition from noncohesive to cohesive
behavior, shown by region II.

The coexistence of rotational and processional modes for
a given value of c is illustrated in Fig. 11 for a four-wave

system. The two modes can be characterized by the average
angular momentum R around the group centroid and the
mean velocity P,

R =
1

N
�


n=1

N

�rn − rgm�� � v̂n, �9�

FIG. 9. �Color online� Average wave distance from group centroid as a
function of the interaction strength c. Each point represents a different initial
condition of the group of eight waves. As the strength of the interaction is
increased, the mean wave separation from the group centroid decreases,
representing a transition from noncohesive to cohesive group behavior. The
simulations were carried out for 500 dimensionless time units for each initial
condition, and the values of D represent the time average of the wave dis-
tance following the decay of the transient behavior.

FIG. 10. �Color online� Approximate regions of different types of collective
behavior as a function of the number of waves N and the interaction strength
c. Noncohesive motion occurs in region I; wandering and loose rotation
occur in region II; and rigid rotation occurs in region III. Processional mo-
tion is observed for all values of c above the boundary between region I and
region II �blue, white, and green areas�.

FIG. 11. �Color online� Processional and rotational group behavior as a
function of the interaction strength c. Values of the group processional mea-
sure P �dashed blue line� and rotational measure R �solid green line� are
given on the left-hand side and right-hand side, respectively. High values of
P or R correspond to predominantly processional or rotational behavior,
respectively. The x axis gives the value of the interaction parameter c, which
is first decremented and then incremented during the simulation. The four-
wave simulation begins at a high value of c with the group in a rotational
mode. As the value of c is decreased, the group remains in the rotational
mode, indicated by the high value of R and low value of P. A transition to
parallel motion takes place with a reduction in the value of R and an in-
crease in the value of P. The value of c is then increased. The group motion
remains processional, indicated by the high value of P and low value of R,
as the value of c is increased.
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P =
1

N
�


n=1

N

v̂n� . �10�

When the group is in a rotational or processional state, R or
P will be large, respectively.

Starting in a rotational state at c=80, with large R and P
near zero, the interaction strength is slowly reduced in a
stepwise manner to c=10. The rotational state loses stability
at c�20, and the finite values of both statistics for c between
�10 and �20 result from a mixture of wandering and loose
rotational behavior. Wandering gives rise to finite values of R
over short time periods; however, the sign of R may change
with the direction of the group, and the average value of R is
therefore small over long times. The system finds a proces-
sional state at c�10. As the value of c is increased, the
system remains in the processional state with small R and
large P values. This type of hysteresis has been previously
termed “collective memory,”22 i.e., the group dynamics is
dependent on the current set of interaction parameters as well
as the group history.

V. ASYMMETRIC WAVE RESPONSE
TO EXCITABILITY GRADIENTS

The damping of the wave motion in the harmonic valley
potential shown in Figs. 2�a� and 2�b� indicates that there is
an asymmetric response of the wave to the excitability gra-
dient. Rather than oscillating around the minimum of the
potential with a constant amplitude, the amplitude decreases
as the wave progresses in the x direction. The rate at which
the wave turns is higher when it is traveling away from the
potential minimum than when it is moving toward the mini-
mum. The asymmetric response is also evident in the non-
symmetric reflection shown in Fig. 12. Experiments with pe-
riodic variations in excitability have shown that wave

segments grow or shrink with increasing or decreasing excit-
ability, respectively, at approximately the same exponential
rate.23 However, because wave curvature decreases at the
receding end and increases at the growing end of a wave
segment, an asymmetry arises in the turning rate of a wave in
an excitability gradient. This can be illustrated by subjecting
a wave to an increasing or decreasing light intensity gradient
and comparing the rates of turning in the different cases.

Consider a stabilized wave subject to a gradient gov-
erned by each of the following expressions:

��U� = h , �11�

��U� =
hmaxt

tmax
, �12�

��U� =
hmax�tmax − t�

tmax
, �13�

where tmax=7.5, hmax=0.008, and 0� t� tmax. The orienta-
tion of the gradient is maintained along v̂� as t varies be-
tween 0 and tmax. Equation �11� corresponds to a wave sub-
jected to a constant turning gradient h. The wave trajectory
follows a circle, with the radius dependent on the value of h.
Based upon the radius, the turning rate 
̇ is calculated, where

 is the wave heading. This is the steady state turning rate,

̇ss, which is plotted in Fig. 13 for values of h between 0 and
hmax. Equation �12� corresponds to a wave initially traveling
in a straight line that is then subjected to a linearly increasing
gradient between 0 and hmax. By measuring 
 at each time
step, 
̇ can be estimated at the current value of h. Equation
�13� corresponds to a gradient linearly decreasing from hmax

to 0. For a short time prior to decreasing ��U�, the wave is
subjected to a constant gradient hmax so that 
̇t=0= 
̇ss,h=hmax

.
Figure 13 shows that the turning rate is higher when a wave
experiences an increasing gradient than when it experiences
a decreasing gradient. The value of tmax was chosen to be

FIG. 12. �Color online� Superimposed experimental images showing a wave
reflecting from a boundary. An asymmetry in the response to the potential
gives rise to a larger reflection angle than the incidence angle. The boundary
is defined by the linear potential U�x�=2.3�x−x0� mW cm−2 /mm, which is
applied when the wave centroid crosses x0. The corresponding linear inten-
sity gradient is superimposed on the image.

FIG. 13. �Color online� The dependence of the turning rate of a wave �
 /�t
on the variation of the light intensity gradient. The solid line shows the
asymptotic values of �
 /�t when a constant gradient h is applied, where the
wave orbits with a constant radius and a constant turning rate. With the
gradient linearly increasing in time, h=hmaxt / tmax, the wave turns at a higher
rate �dot-dashed line� than the corresponding steady-state turning rate. With
a gradient linearly decreasing in time, h=hmax�tmax− t� / tmax, the wave turns
at a lower rate �dashed line� than the steady-state turning rate. For the
increasing and decreasing gradient, the constants are tmax=7.5 and
hmax=0.01.
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similar to the interval of time required for a wave to cross the
center of the harmonic valley potential from its initial dis-
placement in Fig. 2�a�. For larger values of tmax, curves �12�
and �13� are expected to approach the steady state curve �11�.

VI. CONCLUSIONS

The behavior of stabilized waves subject to static and
dynamic excitability potentials is dependent on two key
components. The first is the existence of paths of minimum
potential along which waves tend to align. The second is an
asymmetry in the response of a wave to an applied excitabil-
ity gradient. The coupling of these two components leads to
a wide variety of emergent spatiotemporal behavior, includ-
ing stable trajectories for single wave systems and stable
processional and rotational modes for multiple interacting
waves.
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