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Coherent structure analysis of spatiotemporal chaos

Peter Jung
Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701

Jichang Wang, Renate Wackerbauer, and Kenneth Showalter
Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045

~Received 18 May 1999!

We introduce a measure to quantify spatiotemporal turbulence in extended systems. It is based on the
statistical analysis of a coherent structure decomposition of the evolving system. Applied to a cellular excitable
medium and a reaction-diffusion model describing the oxidation of CO on Pt~100!, it reveals power-law
scaling of the size distribution of coherent space-time structures for the state of spiral turbulence. The coherent
structure decomposition is also used to define an entropy measure, which sharply increases in these systems at
the transition to turbulence.

PACS number~s!: 82.40.Bj, 05.45.2a, 05.65.1b, 47.54.1r

Low-dimensional chaos is now well understood and mea-
sures for its characterization are highly developed; however,
the characterization of spatiotemporal chaos remains an im-
portant challenge. Several avenues have been explored in
recent years to establish measures of turbulent behavior in
distributed systems, such as extensive scaling of Liapunov
exponents, fractal dimensions, and spatial and temporal cor-
relation functions~for a review, see Ref.@1#!. Hildebrandet
al. @2# have described spiral turbulence in terms of defect
densities, i.e., the density of centers of rotation, where the
number of defects was found to fluctuate around a constant
mean value. Principal orthogonal decomposition in space
and time@Karhunen-Loeve decomposition# has also been uti-
lized to characterize spatiotemporal chaos@3#. The number
of orthogonal components necessary to reconstruct the essen-
tial dynamical features of a spatiotemporal chaotic system
has been found to scale extensively with the system size, and
extensive scaling has been revealed for spiral defect chaos in
a convection system@4#.

In this paper, we describe a method for characterizing
spatiotemporal dynamics that is based on astatisticalanaly-
sis of the associated spatiotemporal behavior@5#. We create a
decomposition of the space-time matrix in terms of clusters
of correlated events in space and time. The birth and death of
a space-time cluster are directly related to particular dynami-
cal events, and the cluster is therefore linked to the physical
mechanism underlying the spatiotemporal behavior. Further-
more, coherent cluster decomposition allows the reconstruc-
tion of specific features of the spatiotemporal dynamics, such
as cluster-size statistics and associated scaling laws. We have
applied this method to a cellular excitable medium and a
reaction-diffusion model describing the oxidation of CO on
Pt~100!. We find power-law scaling of the cluster-size distri-
bution in each model for the state of spiral turbulence as well
as an increase in spatiotemporal entropy at the onset of this
behavior.

Coherent cluster analysis.We consider the spatiotempo-
ral evolution of a two-dimensional extended dynamical sys-
tem. In the first step, we stack a temporal sequence ofNt
snapshots of the system, taken at timestn5nDt, to obtain a
space-time cube that carries all of the spatiotemporal infor-

mation within the time intervalNtDt. In the second step, we
perform a binary reduction of the data by imposing a thresh-
old to distinguish between active and inactive sites. Active
sites that are connected as neighbors~in the time-forward
direction! form objects which we termcoherent space-time
clusters@6#. In the third step, a decomposition of the coher-
ent clusters is carried out. If two clusters collide and merge
into a single cluster, the younger contributing cluster is ter-
minated at the collision point in order to avoid counting two
structures from uncorrelated sources as one coherent struc-
ture. The sizes of each of the coherent clusters, i.e., the
number of active elements constituting a cluster, is charac-
terized by the cluster-size distribution functionps .

Spiral turbulence in a cellular excitable medium.We con-
sider a square array of excitable three-state cellsei j with
lattice spacinga. The voltage controling the state of the cell
ei j is denoted byv i j . When the voltagev i j crosses the
thresholdb, the cellei j fires, changing from the quiescent to
the excited state. Immediately after firing, the cell becomes
refractory, where it is not excitable during a refractory period
with zero voltage. In the quiescent state, each cell is dissipa-
tive, with an exponential decay~with decay constantg) of
the voltagesv i j ,

v i j ~ t1Dt !5v i j ~ t !exp~2gDt !1(
kl

G~ i , j ;k,l !r~k,l ,t !.

~1!

The additional term on the right-hand side of this equation
describes the impact of pulses emitted by other cellsekl fir-
ing at timet. The indicator functionr(k,l ,t) is unity for cells
that are firing at timet and zero otherwise. It is determined
by the voltagesvkl at time t, i.e., r(k,l ,t)5Q(vkl(t)2b)
with the Heavyside functionQ~•!. The Green’s function
G( i , j ;k,l ) is defined as

G~ i , j ;k,l !5K expS 2l
r i j ,kl

2

a2 D , ~2!

with r i j ,kl being the distance between the emitting and the
receiving cell andl describing the interaction range between
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the cells. While under most conditions, this model repro-
duces the typical patterns of excitable media~such as the
FitzHugh-Nagumo model@7#!, it exhibits spatiotemporal dis-
order in the form of spiral turbulence at weak dampingg and
weak couplingK. The interaction between firing and quies-
cent cells results in the nucleation of daughter waves, which
collide with parent waves to give rise to spatiotemporal dis-
order. A typical turbulent pattern forK close to the propaga-
tion thresholdK0 is shown in Fig. 1~a!. Far from the propa-
gation threshold, the pattern is characterized by the
coexistence of many spiral waves@Fig. 1~b!#, similar to the
convective spiral turbulence observed by Huet al. @8#. Ap-
plying the coherent cluster algorithm to these chaotic pat-
terns reveals the power-law distribution of cluster sizes
shown in Fig. 1~c!. The range and slope of the power law
depends on the value of the coupling constantK. Close to the
propagation thresholdK0, the patterns exhibit the most ir-
regular shapes and we find a power law with an exponent of
approximately 2.0. As we increase the coupling, the patterns
become more ordered and the size range over which the
cluster-size distribution exhibits power-law scaling de-
creases, and the power-law exponent decreases to approxi-
mately 1.5.

Spiral turbulence in a continuous excitable medium.We
also consider a simple but realistic reaction-diffusion model
proposed by Ba¨r and Eiswirth@9# that describes the oxidation
of CO on Pt~100!. It is based on a piecewise linear version of
the FitzHugh-Nagumo model@10# in which a delayed pro-
duction of the inhibitor is introduced:

] tu52
1

e
u~u21!S u2

v1b

a D1Du,

~3!
] tv5 f ~u!2v.

The time scale relationship between the fast activatoru and
the slow inhibitorv is regulated by the parametere, and the
parametersa and b determine the excitation threshold. The
production of the inhibitor is delayed according to the func-
tion f (u), which results from fitting an experimentally ob-
tained nullcline@11#:

f ~u!5H 0 u,1/3

126.75u~u21!2 1/3<u<1

1 u.1.

~4!

As a consequence of the specific form off (u), two unstable
steady states appear in addition to the rest state, which play
an essential role in the appearance of spiral turbulence in this
model @9,12#. For a range of parameter values, a backfiring
event ~reexcitation in the wave back! gives rise to the
breakup of a spiral wave. The resulting spiral turbulence,
sustained by the collision of spiral arms and backfiring
events, is shown in Fig. 2~a!. Binary images of the patterns,
with respect to a threshold valueuth that captures the essen-
tial features of the original spiral patterns, were generated for
the coherent cluster analysis@see, for example, Fig. 2~b!#.
The probability distribution of the coherent space-time clus-
ters follows a power-law scaling to a good approximation
over the parameter range of the spiral turbulence@see, Fig.
2~c!#. The power-law scaling is robust with respect to

changes in the threshold for values aboveuth50.7, which
represents the unstable focus of the system, although the ac-
tual slope~or scaling exponent! increases slightly with in-
creasinguth , since a larger threshold value corresponds to a
systematic decrease of cluster sizes. In contrast to the dis-
crete model, Eq.~1!, the scaling exponent does not depend
significantly upon the bifurcation parametere ~in the range

FIG. 1. Turbulent patterns obtained from the cellular automaton
model, Eq.~1!, with l50.1,g51023, b51.0, and the coupling
parameterK50.08~a! and 0.10~b!. The lattice spacinga51.0, the
time stepDt50.05, and the refractory period was set to 4Dt. An
asymmetric perturbation that yields a single spiral was chosen for
the initial conditions.~c! Cluster-size distribution~10 000 clusters!
for K50.08 obtained from a series of 250 snapshots of an array of
size 2003200. The scaling range can be approximated by the power
law p(s)5bsa, with an exponenta'21.9.
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@0.08, 0.15#!, although the rate of backfiring events increases
with e. This indicates that the size distribution of coherent
structures~or decomposed waves! is relatively independent
of the backfiring rate.

Spatiotemporal entropy.The decomposition of the spa-
tiotemporal patterns into coherent space-time clusters allows
the behavior to be characterized in terms of notations bor-
rowed from statistical physics. We first define the union of
all clustersns of spatiotemporal sizes to be in thes-cluster
classcs . Adding their sizes, one obtains the spatiotemporal
volume Vs of the classcs , Vs5sns . The relative coverage
vs of the classcs is obtained by normalizing with respect to
the total coverage of all classesvs5sns /Vtot , whereVtot
5V11V21••• . The relative coveragevs can be expressed
in terms of the normalized cluster-size distributionps
5ns /Z, with the partition function Z5(sns , i.e., vs
5sps /^s&, where^s& is the first moment of the normalized
cluster-size distribution. The relative coveragevs has a
simple and intuitive meaning: it gives the probability that
any particular excited site belongs to the cluster classcs .

The degree of homogeneity in this distribution of cluster
classes reflects the disorder inherent in the spatiotemporal
pattern and can be quantified by a spatiotemporal entropy,

S52(
s

vs ln vs5 ln^s&2
1

^s& (
s

sps ln~sps!. ~5!

FIG. 2. ~a! Typical spatiotemporal pattern of the surface model,
Eq. ~3!, in the parameter regime of spiral turbulence. The equations
were numerically integrated by an explicit Euler method~integra-
tion stepdt50.014) using a nine-point approximation of the La-
placian on a domain of 3003300 grid points~where the unit grid
size was 0.33!, with the parameter valuesa50.84, b50.07, e
50.08. An asymmetric perturbation that yields a single spiral was
chosen for the initial conditions.~b! Corresponding binary image,
where white regions designate an activator concentration ofu
.0.8. ~c! Probability distribution of coherent spatiotemporal clus-
ters ~37 000 clusters!, where the space-time cube for the analysis
consists of approximately 106 binary layers, and each layer@as in
panel~b!# is taken every time step of 5dt. The scaling range can be
approximated by the power lawp(s)5bsa, with an exponenta'
21.0. The power law is robust with respect to doubling the spatial
size of the medium to 4503450 grid points.

FIG. 3. Spatiotemporal entropy~a! as a function of the control
parameterK for the cellular automaton model, Eq.~1!, and~b! as a
function of e for the reaction-diffusion model, Eq.~3!. All other
parameter values are the same as in Figs. 1 and 2.
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The entropy vanishes if the excited sites belong to only one
cluster classcs (vs51), e.g., the spatiotemporal pattern con-
sists of either a single cluster or clusters of only one size. A
vanishing entropy does not necessarily require a ‘‘simple’’
initial state but can also arise from complex initial condi-
tions, such as many spiral waves with randomly selected
cores, if an inherent process for generating new cluster
sources is lacking. The collision of uncorrelated clusters then
occurs over a transient time to yield one surviving cluster.
The artificial fracturing of waves at the boundaries does not
affect the entropy, since the fractured waves belong to the
same coherent parent structure. Applying the concept of spa-
tiotemporal entropy to the patterns exhibited by the discrete
and continuous models, we observe a marked increase in
entropy at the transition from the ordered to the disordered
state for both models, as shown in Fig. 3.

In the cellular automaton model, Eq.~1!, the entropy in-
creases smoothly with the degree of spatiotemporal disorder,
reflecting an increasingly uniform probability distribution of
cluster classescs . The low entropy values at higher values of
K reflect coherent spatiotemporal clusters arising from nucle-
ation events mainly near defects~spiral cores and broken
waves!, while the higher values in the regime of spiral tur-
bulence~at low values ofK! correspond to nucleation events
throughout the medium and a wide range of cluster sizes. In
the reaction-diffusion model, Eq.~3!, the entropy increases
sharply at the bifurcation point marking the onset of backfir-
ing and the transition from spiral patterns to the turbulent

regime. The backfiring gives rise to a dramatic increase in
the range of cluster sizes with a relatively homogeneous dis-
tribution of cluster classes, and, consequently, a sudden in-
crease in the entropy.

In conclusion, we have suggested a method of quantifying
and characterizing spatiotemporal turbulence that is based on
the notation and concepts of statistical physics. The key fea-
ture of this description is the decomposition of spatiotempo-
ral dynamics into space-time clusters of coherent wave ac-
tivity. A realistic reaction-diffusion model with a backfiring
instability as well as a cellular automaton model with nucle-
ation dynamics exhibit power-law distributions of coherent
cluster sizes, but with different scaling exponents. We have
also introduced a spatiotemporal entropy, based on the size
distribution of the space-time clusters, to quantify the degree
of disorder. A sharp increase in the entropy is linked to the
spontaneous generation of new waves, which collide with
parent waves and thereby generate spatiotemporal disorder.
A large entropy generally implies small predictability, i.e., it
is difficult to predict the cluster class of an excited site in the
turbulent regime. This notion of predictability, however, is
different from the concept of Liapunov exponents for char-
acterizing predictability in temporal chaotic systems. The
coherent-cluster algorithm presented here allows an analysis
of particular dynamical aspects of spiral turbulence, namely,
the processes of wave nucleation and merging.

We thank the National Science Foundation~Grant No.
CHE-9974336!, the Office of Naval Research, and the Petro-
leum Research Fund for supporting this research.
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